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A Direct Sampling Method for the Inversion of the Radon Transform\ast 

Yat Tin Chow\dagger , Fuqun Han\ddagger , and Jun Zou\ddagger 

Abstract. We propose a novel direct sampling method (DSM) for the effective and stable inversion of the Radon
transform. The DSM is based on a generalization of the important almost orthogonality property in
classical DSMs to fractional order Sobolev duality products and to a new family of probing functions.
The fractional order duality product proves to be able to greatly enhance the robustness of the
reconstructions in some practically important but severely ill-posed inverse problems associated with
the Radon transform. We present a detailed analysis to better understand the performance of the
new probing and index functions, which are crucial to stable and effective numerical reconstructions.
The DSM can be computed in a very fast and highly parallel manner. Numerical experiments are
carried out to compare the DSM with a popular existing method and to illustrate the efficiency,
stability, and accuracy of the DSM.
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1. Introduction. In this work, we consider the inverse problem of recovering a function
from its Radon transform. This problem arises when we aim at recovering an object from its
projections in computed tomography (CT). Accurate, stable, and fast numerical reconstruction
methods are of great importance in practice in view of the broad and increasing applications
of CT scan in, e.g., medical imaging, flaw detection, and baggage security scanning.

To recover a function from its Radon transform, analytical inversion formulas are available.
And some popular approaches nowadays are based on these formulas along with various low
pass filters, known as filtered back projections (FBP). Two major reasons for the popularity of
the FBP method are its easy implementation and its relatively low computational complexity
[29]. The method performs very well when the measurement data is very accurate and available
from all directions. Nonetheless, the measurement data may be highly noisy and is only
available in a limited range or only a number of angles in many applications. For instance,
to minimize adverse effects brought by radiation exposure upon a patient’s body during the
scanning process, low dose CT is widely employed for lung cancer detection [36]. However,
this may lead to severely polluted measurement data [26], and in this case, it is difficult
for traditional noniterative methods, such as FBP methods and Fourier methods [27], to work
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1005

stably, which will be demonstrated in our subsequent numerical experiments. Another instance
is when we apply the CT scan in luggage security checks, where we may only be able to collect
measurement data from a small number of or/and a limited range of angles. Those scenarios
are usually named sparse tomography and limited angle tomography, and the singular values of
the corresponding forward operator decay faster [11]. Therefore, by one definition that states
that the ill-posedness of the problem depends on the decaying rate of singular values in [38],
the inverse problems that we are interested in are severely ill-posed and sensitive to noise. It is
challenging to develop efficient and effective reconstruction methods in these special scenarios.

Due to wide applications of the inversion of the Radon transform, many efficient numerical
methods are proposed. They can be generally classified into two categories, direct (nonitera-
tive) methods and iterative methods. Direct methods are usually based on a mathematically
exact inversion formula, which include FBP methods that apply various low pass filters on the
measurement data [22, 27, 28] and Fourier methods that implement certain inversion formulas
in the Fourier domain [27, 33]. Direct methods are usually easy to implement and fast to com-
pute, but it is difficult for them to provide high quality reconstruction results with limited and
noisy measurement data. For iterative methods, algebraic reconstruction type methods derived
from the Kaczmarz method [2, 15] and expectation minimization methods for maximizing like-
lihood functions [18, 34] have been widely applied since the last century. A comprehensive
review of those traditional iterative methods can be found in [3]. Recently, iterative methods
to minimize a cost functional with a data matching term and certain regularization become
popular for the case that measurement data is noisy and relatively sparse. These methods
include standard total variation (TV) regularization [4, 12, 32], nonconvex minimization for
Lp TV regularization (with p < 1) to improve the reconstruction under limited measurements
[5], and anisotropic TV minimization for limited angle tomography [7]. Moreover, the regu-
larization term can also be derived from a certain norm of wavelet coefficients [16, 31], and
Bayesian methods with nonlocal prior information [6].

We would like to remark that since the above iterative type algorithms usually involve
more advanced mathematical or statistical tools, they may employ either certain optimization
functional or leverage on the availability of a huge training dataset, which may lead to higher
computational and storage complexities than direct methods. Instead, we will propose a
method that avoids high computational and storage complexities and at the same time obtains
a reasonable reconstruction in these difficult scenarios. In particular, the direct and iterative
methods can be combined; for instance, the proposed direct sampling method (DSM) can be
used as an initial estimate for many iterative methods to reduce the number of iterations
required, which are demonstrated in the subsequent numerical experiments.

In this work, we design a novel DSM for the inversion of the Radon transform. This
type of method was originally motivated by a crucial observation which is referred to as the
almost orthogonality property. The property associated with an inverse problem may be stated
roughly as follows: for a Sobolev duality product \langle , \rangle , the function K(x, z) := \langle Gx, \eta z\rangle defined
for a fundamental solution Gx at point x and a probing function \eta z at point z behaves like a
Gaussian distribution, i.e., K(x, z) achieves the maximum at z = x and decays quickly when z
moves aways from x. This property was a key observation and motivation in the development
of the previous DSMs. The DSMs have been constructed and developed for various highly
nonlinear and severely ill-posed inverse problems (see, e.g., [8, 9, 10, 19, 25, 30]), including theD
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1006 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

wave and nonwave type inverse problems. These developments have demonstrated that the
DSMs are robust against noise and could generate reasonable reconstruction results even with
highly limited measurement data. These attractive features motivate us naturally to design
a DSM for inverting the Radon transform, and this is the main focus of the current work. A
key observation in our development is that if the measurement data is directly back-projected
by the dual of the Radon transform, the result can be represented by an integral equation
with the Green’s function associated with (a fractional) Laplacian as its kernel. This suggests
making full use of the important almost orthogonality property between the Green’s function
and a special family of probing functions under a fractional order Sobolev duality product.
The choice of the fractional order operator arises naturally considering the ill-posedness of
the inverse problem under noisy and incomplete measurement data and turns out to be able
to greatly enhance the robustness of the new DSM. In the meantime, in order to generate
more satisfactory reconstruction results, we introduce the probing functions that depend on
the sampling interval, which can further render a pointwise convergence of the index function
in certain scenarios. From the perspective of the numerical computations, the DSM can be
computed with low computational efforts and simultaneously with the measurement process.
With these features, the new DSM is expected to find applications in tackling some inverse
problems associated with the Radon transform, such as those arising from security scanning,
cancer detection, and portable CT scanners. These will be further verified numerically in
section 6.

The rest of the paper runs as follows. Section 2 introduces basic motivations and principles
behind direct sampling type methods for the inversion of the Radon transform, including our
detailed choices of probing and index functions. Section 3 provides mathematical justifications
for the novel DSM and investigates how the choice of some critical parameters in the sampling
algorithm affects the reconstruction. Section 4 extends the newly proposed DSM to the limited
angle tomography and the exponential Radon transform. Section 5 presents some strategies
for the numerical implementation to enhance the robustness and reduce the computational
complexity of the new DSM. Section 6 demonstrates a series of numerical experiments by the
new sampling method for some highly ill-posed scenarios, along with a comparison with the
popular FBP method and regularization type methods.

2. Principles of DSMs in inverting the Radon transform. In this section, we explain the
basic principles of direct sampling type methods for the inversion of the Radon transform. The
spirit of direct sampling type methods is to leverage upon an almost orthogonality property
between the family of fundamental solutions of the forward problem and a set of probing
functions under an appropriately chosen duality product [8, 9, 10]. With this in mind, we
first represent the measurement data with the Green’s function of (a fractional) Laplacian and
then introduce a fractional order Sobolev duality product for the coupling of the measurement
data and the probing function. At the same time, a family of probing functions will be
constructed. Finally, an index function is defined to generate a DSM for the inversion of the
Radon transform.

Let us consider the target function to be recovered as f , which is compactly supported in
\Omega and contained in L\infty (\Omega ), where \Omega is a compact set in \BbbR n (n = 2, 3). Moreover, we assume
B(0, r1) \subseteq \Omega \subseteq B(0, r2), with 0 < r1 \leq r2, where B(x, r) is the ball centered at x with radiusD
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1007

r. The Radon transform of a function f and its dual acting on a function g \in L\infty (Sn - 1 \times \BbbR )
are defined respectively by

Rf(\theta , t) :=

\int 
x\cdot \theta =t

f(x)dxL =

\int 
\BbbR n

f(x)\delta (t - x \cdot \theta )dx , R\ast g(x) :=

\int 
Sn - 1

g(\theta , x \cdot \theta )d\theta ,(2.1)

where \theta \in Sn - 1, t \in \BbbR , x \in \Omega , and t = x \cdot \theta represents a hyperplane with normal direction \theta 
and distance t to the origin. We shall first focus on the case that Rf(\theta , t) is avaliable for all
\theta \in Sn - 1 and for all t \in I\theta , where I\theta is defined such that

\Omega \subset 
\bigcup 
t\in I\theta 

\{ x : t = x \cdot \theta \} .(2.2)

In other words, we have measurements for all hyperplanes that intersect with the convex hull
of \Omega . In section 4, we shall further consider the application of DSM for reconstruction with
limited angle measurement, i.e., t is available only for a subset of I\theta .

A crucial motivation in our subsequent design of a DSM is the following inherent mathe-
matical connection between the Radon transform and (a fractional) Laplacian [17, p. 9]:

R\ast Rf(x) =
cn
dn

\int 
\Omega 
f(y)Gx(y)dy with dn =

\pi 1/2

(4\pi )
n - 1
2 \Gamma (n2 )

and cn =
\Gamma (n - 1

2 )

2\pi 
n+1
2

,(2.3)

where Gx(y) = | x  - y|  - 1 is the Green’s function for the (fractional) Laplacian operator
( - \Delta )(n - 1)/2. We use the definition of the fractional Laplacian in \BbbR n by the Fourier mul-
tiplier. More specifically, for a given target function f \in C\infty 

c (\Omega ), we first extend it by zero
to obtain f \in C\infty 

c (\BbbR n), then perform its Fourier transform in \BbbR n and multiply the result
with a Fourier multiplier | \xi | 2\gamma , and then take the inverse Fourier transform in \BbbR n to compute
( - \Delta )\gamma f . This definition of the fractional Laplacian for f \in C\infty 

c (\Omega ) can be quickly generalized
to tempered distributions in \BbbR n in the standard manner. Our definition does not consider
a spectral decomposition of the Laplacian over \Omega with a choice of boundary condition (e.g.,
Dirichlet or Neumann). Moreover, various definitions of the fractional Laplacian in [23] are
equivalent to the definition we use through a Fourier multiplier.

The following equivalent inversion formula will be frequently used in our subsequent analy-
sis:

f(x) = ( - \Delta )
(n - 1)

2 us(x) with us(x) := dnR
\ast Rf(x) .(2.4)

We shall call us the measurement data since the dual transform or the back projection R\ast of
the Radon transform is standard and explicitly available after the Radon transform Rf(\theta , t).

The relation (2.4) can be considered as the most important motivation for many existing
reconstruction methods, e.g., the FBP and Fourier methods. These reconstruction methods
involve usually the application of a pseudodifferential operator on the noisy measurement data
which is not preferable for those ill-posed scenarios that were mentioned in the introduction.

We remark that in order to allow (2.4) to be held in \BbbR 2, we shall assume that f lies in
the Schwarz space, which is the space of functions whose derivatives are all rapidly decreasing.
This assumption will not affect the feasibility of reconstructing the target function f \in L\infty (\Omega ).D
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1008 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

Using the density of smooth functions in L\infty (\Omega ), all our upcoming analyses involving (2.4)
(section 3) can be first carried out for smooth functions, and then extended to a more general
class of target functions by a standard density argument.

To define an index function that is crucial to a DSM, we introduce a Sobolev duality
product of order \gamma > 0:

\langle v, w\rangle \gamma :=

\int 
\BbbR n

v ( - \Delta )\gamma wdx \forall v \in L2(\BbbR n) , w \in H2\gamma (\BbbR n) .(2.5)

The two arguments v and w above will often be the noisy measurement data and the probing
functions (to be defined) in our proposed DSM. The name of the Sobolev duality product
comes from the following reasoning: First, we notice that the completion of H2\gamma (\BbbR n) under
the seminorm | \cdot | 2\gamma :=

\sqrt{} 
\langle ( - \Delta )\gamma \cdot , ( - \Delta )\gamma \cdot \rangle L2(\BbbR n) is a Hilbert space. The seminorm | \cdot | 2\gamma is

actually a norm since a function that is weakly harmonic implies it is harmonic and the only 2\gamma -
harmonic function in H2\gamma (\BbbR n) is 0 [13]. We write this completed space as \scrH := H2\gamma (\BbbR n)

| \cdot | 2\gamma ,
which contains H2\gamma (\BbbR n) a strict subspace. Then we can rigorously show that the dual space
\scrH \ast of \scrH (that is itself isomorphic to \scrH via Riesz representation) is also isomorphic to L2(\BbbR n)
via the mapping v \in L2(\BbbR n) \mapsto \rightarrow \langle v, \cdot \rangle \gamma \in \scrH \ast . With this notion in mind, we call (2.5) a duality
product between \scrH and its dual space \scrH \ast (identified as L2(\BbbR n)). For our subsequent analysis
of DSM, we will restrict our attention to the case that w \in H2\gamma (\BbbR n) and call the parameter \gamma 
in (2.5) the Sobolev scale of the duality product.

The new DSM will rely on a critical index function, which involves an appropriately selected
family of probing functions. Before going on with more details, we first present one of the
primary motivations for employing the duality product in (2.5) and the construction of probing
functions for the inversion of the Radon transform. Let us consider n = 2, and choose w = us
from (2.4), v = Gz, and Sobolev scale \gamma = 1 in (2.5). Then we can easily derive by the
definition of the Green’s function and the inversion formula in (2.4) that

\langle us, Gz\rangle 1=
\int 
\BbbR n

( - \Delta )G0(z  - x)us(x)dx=(( - \Delta )G0 \ast u0)(z) = \scrF  - 1\{ | \omega | \scrF (f)\scrF (G0)\} (z) = f(z) ,

(2.6)

where \scrF and \scrF  - 1 denote the Fourier inverse Fourier transforms, and \omega is the variable in the
frequency domain. Therefore, the duality product defined in (2.5) between us and the Green’s
function Gz can be linked with an exact reconstruction formula. However, we may directly
observe that taking the Laplacian on us will cause numerical instability due to the noise in the
data, especially in those scenarios we mentioned in the introduction. Furthermore, essentially
different from the previous DSMs [8, 9, 10] for which the measurement data is collected on
a partial boundary of the sampling domain, we now have the data us inside \Omega . Hence, it is
not desirable in practice for our numerical methods to involve the singularity of the Green’s
function (as in (2.6)) in computations. For this reason, we shall introduce and justify the
following strategies (in sections 2.1 and 3):

\bullet To enhance the robustness against noise, a smaller Sobolev scale \gamma in the duality
product will be preferable when the measurement data is highly noisy. Moreover, we
will illustrate in section 3 the relationship between \gamma and the variance of the index
function under a simplified noise model.D
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1009

\bullet We will introduce a special family of probing functions to avoid any singularities at
the sampling point z but still preserve the sharpness of the inversion formula.

2.1. Probing and index functions. We are now going to propose an appropriate family
of probing functions based on the primary motivation and principles of direct sampling type
methods that we addressed earlier. For that purpose, we first define two sets of auxiliary
functions \zeta h\alpha and \widetilde \zeta h\alpha for any 0 < h < 1 and \alpha > 0:

\zeta h\alpha (x) :=

\Biggl\{ 
| x|  - \alpha when | x| \geq h ,

\psi \alpha (| x| ) when | x| < h ;
\widetilde \zeta h\alpha (x) :=

\Biggl\{ 
| x|  - \alpha when | x| \geq h ,

h - \alpha when | x| < h ;
(2.7)

where \psi \alpha (x) is a smooth extension function such that \zeta h\alpha (x) \in C2,1(\BbbR n) and | | \zeta h\alpha  - \widetilde \zeta h\alpha | | L1(\BbbR n) <
h. By the density of smooth functions in L2(\BbbR n), we will present an explicit choice of the
smooth extension function \psi \alpha that we use in our numerical computations with verification of
its desired property in Appendix A.

In what follows, \zeta h\alpha is used to construct a crucial family of probing functions, and \widetilde \zeta h\alpha 
will be repeatedly employed in the theoretical justification of the DSM in section 3. These
auxiliary functions can be regarded as some delicate modifications of the Green’s function
associated with the (fractional) Laplacian ( - \Delta )(n - 1)/2. The modifications are necessary for
two reasons. The first is that the original Green’s function is singular at the origin, therefore
we need to remove the singularity but still preserve a certain smoothness property. Second, a
key parameter \alpha is introduced to realize a more satisfactory reconstruction result. Indeed, we
will justify in section 3.2 that a reasonable and reliable choice is \alpha = n+ 1.

We are now ready to define a crucial family of probing functions \eta hz at any sampling point
z \in \Omega :

\eta hz (x) := \zeta hn+1(x - z) .(2.8)

For notational reasons, we also denote

\widetilde \eta hz (x) := \widetilde \zeta hn+1(x - z) .(2.9)

Before we move on to introduce the important index function for defining the DSM, we first
provide some estimates of probing functions, which will be used repeatedly in the verification
of the new DSM in section 3. We would like to point out that Lemma2.1 can be proved
also by using the Hölder estimate [35] and Sobolev embedding theorems. We still provide an
alternative but more direct proof for both the completeness and the subsequent analysis.

Lemma 2.1. The following estimates hold for the probing and auxiliary functions \eta hz and\widetilde \eta hz :
(a) ( - \Delta )\gamma \eta hz (x) belongs to L\infty (\BbbR n) for 0 < \gamma < n

2 ;
(b) ( - \Delta )\gamma \eta hz (x) belongs to L2(\BbbR n) for 0 < \gamma < 1;
(c) ( - \Delta )\gamma \widetilde \eta hz (x) belongs to L2(\BbbR n) for 0 < \gamma < 1.

Proof. Without loss of generality, we assume that z is the origin.D
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To show part (a), we first consider the case \gamma \in (0, 1). By definition, the fractional
Laplacian of \eta h0 for an arbitrary point x \in \BbbR n can be written as

( - \Delta )\gamma \eta h0 (x) = - cn,\gamma 
2

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\int 
| y| >\delta 

\eta h0 (x+ y) + \eta h0 (x - y) - 2\eta h0 (x)

| y| n+2\gamma 
dy

= - cn,\gamma 
2

\bigl( 
I1 + I2

\bigr) 
with cn,\gamma =

4\gamma \Gamma (n2 + \gamma )

\pi n/2| \Gamma ( - \gamma )| 
,

(2.10)

where I1 and I2 are

I1 =

\int 
| y| > | x| 

2

\eta h0 (x+ y) + \eta h0 (x - y) - 2\eta h0 (x)

| y| n+2\gamma 
dy , I2 = \mathrm{l}\mathrm{i}\mathrm{m}

\delta \rightarrow 0

\int 
\delta <| y| < | x| 

2

\eta h0 (x+ y) + \eta h0 (x - y) - 2\eta h0 (x)

| y| n+2\gamma 
dy .

I1 can be bounded directly by

| I1| \leq 
\int 
| y| > | x| 

2

| \eta h0 (x+ y) + \eta h0 (x - y) - 2\eta h0 (x)| 
| y| n+2\gamma 

dy \leq 4| | \eta h0 | | L1(\BbbR n)| x/2|  - n - 2\gamma ,(2.11)

while I2 can be bounded by

| I2| \leq \mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\int 
\delta <| y| < | x| 

2

| | D2\eta h0 | | L\infty (B(x,| x| /2))

| y| n+2\gamma  - 2
dy \leq c2(n, \gamma )| | D2\eta h0 | | L\infty (B(x,| x| /2))| x/2| 2 - 2\gamma ,(2.12)

by using the estimate

| \eta h0 (x+ y) + \eta h0 (x - y) - 2\eta h0 (x)| 
| y| n+2\gamma 

\leq 
| | D2\eta h0 | | L\infty (B(x,| x| /2))

| y| n+2\gamma  - 2
, where | y| < | x| 

2
,(2.13)

from the second order Taylor’s theorem. Here the constant c2(n, \gamma ) only depends on n and \gamma .
Combining (2.11) and (2.12), we conclude that ( - \Delta )\gamma \eta h0 \in L\infty (\BbbR n) for \gamma \in (0, 1).

Now we show ( - \Delta )\gamma \eta hz (x) \in L\infty (\BbbR n) for \gamma \in [1, n2 ). We first establish a result that will
be used twice in the following proof. For arbitrary g \in C0,1(\BbbR n) \cap L\infty (\BbbR n) and \beta \in (0, 1/2),
we have

| ( - \Delta )\beta g(x)| \leq cn,\beta 

\biggl[ \int 
B(0,1)

| | g| | C0,1(\BbbR n)

| y| n+2\beta  - 1
dy +

\int 
\BbbR n\setminus B(0,1)

2| | g| | L\infty (\BbbR n)

| y| n+2\beta 
dy

\biggr] 
(2.14)

\leq c3(n, \beta )
\bigl( 
| | g| | C0,1(\BbbR n) + | | g| | L\infty (\BbbR n)

\bigr) 
for cn,\beta defined in (2.10) and some constant c3(n, \beta ) that only depends on n and \beta . The above
estimate implies ( - \Delta )\beta g \in L\infty (\BbbR n) for any g \in C0,1(\BbbR n) \cap L\infty (\BbbR n) and \beta \in (0, 1/2).

Next, by the construction of the probing function in (2.8), we have ( - \Delta )\eta h0 \in C0,1(\BbbR n) \cap 
L\infty (\BbbR n), which shows the case \gamma = 1. For \gamma > 1, to make use of the estimate in (2.14), we
observe that the order \gamma fractional Laplacian of the probing function can be written as

( - \Delta )\gamma \eta h0 = ( - \Delta )\gamma  - 1
\bigl( 
( - \Delta )\eta h0

\bigr) 
with \gamma \in 

\Bigl( 
1,
n

2

\Bigr) 
.

This indicates ( - \Delta )\gamma \eta h0 \in L\infty (\BbbR n) by replacing g by ( - \Delta )\eta h0 and \beta by \gamma  - 1 \in (0, 1/2) in
(2.14).
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1011

To show part (b) that ( - \Delta )\gamma \eta h0 \in L2(\BbbR n) for \gamma \in (0, 1), it suffices to show that | ( - \Delta )\gamma \eta h0 (x)| 
\leq c| x|  - n - \epsilon for | x| > 2h, \epsilon > 0, and some constant c that is independent of x. This property is
satisfied by I1 due to (2.11). Now we investigate I2 in (2.10) more carefully. By the definition
of the probing function, we have

| | D2\eta h0 | | L\infty (B(x,| x| /2)) \leq 4n2| x/2|  - n - 3 when | x| > 2h .(2.15)

Substituting this estimate into (2.12) implies that | I2| \leq c2(n, \gamma )4n
2| x/2|  - n - 1 - 2\gamma . Hence, we

can conclude that ( - \Delta )\gamma \eta h0 \in L2(\BbbR n).
To show part (c) that ( - \Delta )\gamma \widetilde \eta h0 \in L2(\BbbR n) for \gamma \in (0, 1), we first notice that for | x| > 2h,

all above estimates in (2.11), (2.12), and (2.15) hold after replacing \eta h0 by \widetilde \eta h0 since the point-
wise value of \widetilde \eta h0 (x) for | x| < h is not involved in those estimations. Therefore, we have
( - \Delta )\gamma \widetilde \eta h0 \in L2(\BbbR n\setminus B(0, 2h)). Now, it only remains to show ( - \Delta )\gamma \widetilde \eta h0 belongs to L2(B(0, 2h)).

For \gamma \in (0, 1/2), with (2.14) and the definition in (2.7) which states that \widetilde \eta h0 \in C0,1(\BbbR n),
we have ( - \Delta )\gamma \widetilde \eta h0 \in L\infty (B(0, 2h)) \subset L2(B(0, 2h)).

For \gamma \in [1/2, 1), denoting \eta h0 := \eta h0  - \widetilde \eta h0 which satisfies \eta h0(x) = 0 if | x| > h. Then showing
( - \Delta )\gamma \widetilde \eta h0 belongs to L2(B(0, 2h)) is equivalent to showing ( - \Delta )\gamma \eta h0 belongs to L2(B(0, 2h)).
By definition, for h < | x| < 2h, we have

| ( - \Delta )\gamma \eta h0(x)| = cn,\gamma 

\bigm| \bigm| \bigm| \bigm| \int 
| y| <h

\eta h0(y)

| x - y| n+2\gamma 
dy

\bigm| \bigm| \bigm| \bigm| \leq 4\pi 2cn,\gamma | | \eta h0  - \widetilde \eta h0 | | L\infty (\BbbR n)(| x|  - h) - 2\gamma .

For | x| < h, similarly to the decomposition in (2.10), we have

| ( - \Delta )\gamma \eta h0 (x)| \leq cn,\gamma 

\bigm| \bigm| \bigm| \bigm| \int 
| y| <h - | x| 

\eta h0 (x - y) + \eta h0 (x+ y) - \eta h0 (x)

2| y| n+2\gamma 
dy

\bigm| \bigm| \bigm| \bigm| + cn,\gamma 

\bigm| \bigm| \bigm| \bigm| \int 
h - | x| <| y| <2h

\eta h0 (x) - \eta h0 (x+ y)

| y| n+2\gamma 
dy

\bigm| \bigm| \bigm| \bigm| 
\leq c4(n, \gamma )

\biggl[ 
| | D2(\eta h0  - \widetilde \eta h0 )| | L\infty (B(0,h))(h - | x| )2 - 2\gamma + 2| | \eta h0  - \widetilde \eta h0 | | L\infty (\BbbR n)(h - | x| )2\gamma 

\biggr] 
for some constant c4(n, \gamma ) that is independent of x. Combining estimates for | x| > h and
| x| < h, we conclude that ( - \Delta )\gamma \eta h0 \in L2(B(0, 2h)), which leads to part (c) of the lemma.

We are now ready to introduce the crucial index function Ih\gamma that defines the DSM, more
accurately speaking, it generates the numerical image at all sampling points z \in \Omega :

Ih\gamma (z) :=
\langle us, \eta hz \rangle \gamma 
n(z)

with n(z) := \langle dnR\ast R(1\Omega ), \eta 
h
z \rangle \gamma ,(2.16)

where \eta hz is the probing function introduced in (2.8) and dn is defined in (2.3). The normaliza-
tion term n(z) is taken to migrate the influence of the choice of h and \gamma on the magnitude of
the index function, which is independent of the measurement data us. In particular, this choice
of n(z) ensures that our method is exact for constant valued target function. In sections 3.1
and 3.3, we shall justify that the numerator of the index function, that is, the duality product
between us and \eta hz , will approximately recover the target function f(z) up to a constant. With
this in mind, we observe that n(z) is simply an approximation to the characteristic function
of the sampling domain \Omega , hence n(z) is nearly a constant for all sampling points in \Omega .
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1012 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

We remark that, since us introduced in (2.4) is not compactly supported, the duality
product involved in the index function (2.16) is defined with respect to \BbbR n. However, the
numerical implementation of the index function is still realized in a compact set due to the
fact that the target function f is often compactly supported in \Omega . The implementation of the
new DSM will be presented in detail in section 5

The proposed index function leverages upon the very important almost orthogonality prop-
erty of the Green’s function Gx and the family of probing functions defined in (2.8) in fractional
order Sobolev duality products, i.e., the magnitude of \langle Gx, \eta z\rangle \gamma is large when z is close to x
and decays quickly when z moves away from x. Combined with the representation of the mea-
surement data that we introduced in (2.4), this desired property helps reconstruct the target
function f with the index function (see the careful verification in section 3). We now empha-
size a very important feature of the novel DSM. By the definition of the index function (2.16),
the evaluation of the index function does not involve any pseudodifferential operator applied
to the noisy measurement data us, unlike many existing numerical methods in inverting the
Radon transform. This feature shall allow our DSM to be stable under high level noise and
limited measurement data, which is evident from many numerical experiments in section 6.

Under the setups above, the index function in (2.16) gives rise to our new algorithm.

Direct sampling method. Given the Radon transform Rf(\theta , t) of the target function
f for a limited set of discrete angles \theta \in \BbbS n - 1 and discrete points t \in \BbbR , we evaluate Ih\gamma (z)
numerically to approximate f(z) for every sampling point z in the domain \Omega .

Parallel implementation of the DSM. From the definition of the index function in
(2.16), we can see a very attractive feature of the proposed DSM that the evaluations of the
index function at different sampling points are independent of each other. Hence, the DSM
can be implemented in a highly parallel manner, which can improve its efficiency significantly
for large-scale reconstructions.

3. Verification of the index function. In this section, we aim to verify that our proposed
index function in (2.16) can recover the target function f accurately (see subsection 3.1 for
the Sobolev scale \gamma \in ((n  - 1)/2, n/2) and subsection 3.3 for \gamma \in (0, (n  - 1)/2]) and stably
(see subsections 3.3 and 3.4). In particular, the verification for the latter case relies on the
alternative characterization of the index function that will be presented in subsection 3.2.
Moreover, the choice of the key parameter \alpha = n+ 1 in the definition of the probing function
(2.8) will also be explained in the same subsection. In subsection 3.4, we will demonstrate
the relationship between the Sobolev scale \gamma in (2.5) and the variance of the index function
under a particular noise model that provides crucial insight on the choice of \gamma during the
reconstruction with noisy measurement data. In addition, the conclusion from subsection 3.4
implies the choice of \gamma \geq n/2 is not preferable in real applications and hence we only consider
the possibility of \gamma < n/2 in the subsequent discussions.

3.1. Convergence of the index function for (\bfitn  - \bfone )/\bftwo < \bfitgamma < \bfitn /\bftwo . We will first focus
on the case (n - 1)/2 < \gamma < n/2 and verify that the index function proposed in (2.16) can
recover the target function f as h \rightarrow 0, separately for the smooth case f \in C0,1(\Omega ) and the
nonsmooth case f \in L\infty (\Omega ). The parameter h could be considered as the sampling interval in
real applications.D

ow
nl

oa
de

d 
07

/1
9/

22
 to

 1
37

.1
89

.4
9.

14
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DSM FOR THE INVERSION OF THE RADON TRANSFORM 1013

Lemma 3.1. Let Ih\gamma be the index function defined in (2.16).
(a) For any f \in C0,1(\Omega ) and z \in \Omega , it holds that

| Ih\gamma (z) - f(z)| \leq h
1 - 2

4+2\gamma  - n (| | f | | C0,1(\Omega ) + 2c1(n, \gamma )| | f | | L\infty (\Omega )) +\scrO (h3+2\gamma  - n)(3.1)

for some positive constant c1(n, \gamma ) that depends only on n and \gamma . In particular, the
exponent of the leading order term with respect to h, that is, 1  - 2/(4 + 2\gamma  - n), is
larger than 1/3 for all \gamma > (n - 1)/2.

(b) For any f \in L\infty (\Omega ), it holds that

| | Ih\gamma  - f | | L2(\Omega ) \leq h
1
2
 - 1

4+2\gamma  - n c2(\Omega , \gamma )| | f | | L\infty (\Omega ) +\scrO (h3+2\gamma  - n)(3.2)

for some positive constant c2(\Omega , \gamma ) that depends only on \Omega and \gamma . In particular, the
exponent of the leading order term with respect to h, that is, 1/2  - 1/(4 + 2\gamma  - n), is
larger than 1/6 for all \gamma > (n - 1)/2.

Proof. (a) First, based on the inversion formula (2.4) and the self-adjointness of the frac-
tional Laplacian which holds due to parts (b) and (c) of Lemma 2.1, we can write

\langle us, \eta hz \rangle \gamma =

\int 
\BbbR n

us(x)( - \Delta )\gamma \eta hz (x)dx =

\int 
\BbbR n

( - \Delta )\gamma  - 
n - 1
2 f(x)\eta hz (x)dx

=

\int 
\BbbR n

f(x)( - \Delta )\gamma  - 
n - 1
2 \widetilde \eta hz (x)dx+

\int 
\BbbR n

( - \Delta )\gamma  - 
n - 1
2 f(x)[\eta hz (x) - \widetilde \eta hz (x)]dx .(3.3)

For the second integration above, by definitions of \eta hz and \widetilde \eta hz in (2.8) and (2.9), we have\bigm| \bigm| \bigm| \bigm| \int 
\BbbR n

( - \Delta )\gamma  - 
n - 1
2 f [\eta hz  - \widetilde \eta hz ]dx\bigm| \bigm| \bigm| \bigm| \leq | | ( - \Delta )\gamma  - 

n - 1
2 f | | L\infty (\BbbR n)| | \zeta hn+1  - \widetilde \zeta hn+1| | L1(\BbbR n)(3.4)

\leq | | ( - \Delta )\gamma  - 
n - 1
2 f | | L\infty (\BbbR n)h ,

where the boundness of the term | | ( - \Delta )\gamma  - 
1
2 f | | L\infty (\BbbR n) follows from f \in C0,1(\BbbR n) and the

estimate (2.14).
Moreover, by substituting \widetilde \eta 10\bigl( xh\bigr) = hn+1\widetilde \eta h0 (x) which comes from (2.7) and (2.9) into the

definition of the fractional Laplacian operator, we further have the following rescaling property:

( - \Delta )\gamma  - 
n - 1
2 (\widetilde \eta h0 )(x) = hn+1+2\gamma 

\bigl( 
( - \Delta )\gamma  - 

n - 1
2 \widetilde \eta 10\bigr) \biggl( xh

\biggr) 
.(3.5)

For simplicity, we write \beta = \gamma  - n - 1
2 . By part (c) of Lemma 2.1 that ( - \Delta )\beta \widetilde \eta 10 \in L2(\BbbR n) \subset 

L1(\BbbR n), we can define a family of approximations to the identity for all f \in C0,1(\Omega ):

\tau h\beta (x) =
h - n( - \Delta )\beta \widetilde \eta 10(xh)
| | ( - \Delta )\beta \widetilde \eta 10| | L1(\BbbR n)

= h1+2\gamma ( - \Delta )\beta (\widetilde \eta h0 )(x)
| | ( - \Delta )\beta \widetilde \eta 10| | L1(\BbbR n)

.(3.6)

For any \nu > 0, by definition, the integration of \tau h\beta satisfies a rescaling property\int 
B(0,h\nu )

\tau h\beta (y)dy =

\int 
B(0,h\nu  - 1)

\tau 1\beta (y)dy .
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1014 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

Using the above defined family of the approximations to the identity, we can derive\bigm| \bigm| \bigm| \int 
\BbbR n

f(y)\tau h\beta (z  - y)dy  - f(z)
\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| h2\nu | | f | | C0,1(\Omega )

\int 
B(0,h\nu  - 1)

\tau 1\beta (y)dy

+ 2| | f | | L\infty 

\int 
\BbbR n\setminus B(0,h\nu  - 1)

\tau 1\beta (y)dy
\bigm| \bigm| \bigm| 

\leq h2\nu | | f | | C0,1(\Omega ) + 2c1(n, \gamma )| | f | | L\infty (\Omega )h
(1 - \nu )(1+2\beta ) ,(3.7)

where the positive constant c(n, \gamma ) only depends on the dimension and \gamma . The last in-
equality above is from our proof in Lemma 2.1 following (2.15) which implies ( - \Delta )\beta \tau h\beta \leq 
c\prime (n, \gamma )| x|  - \alpha  - 2\beta for x > 2h and c\prime (n, \gamma ) that is independent of h.

Combining (3.3) and (3.7), we can conclude that for any sampling point z \in \Omega and \nu > 0,\bigm| \bigm| \bigm| \bigm| h1+2\gamma \langle us , \eta hz \rangle \gamma  - | | ( - \Delta )\gamma  - 
n - 1
2 \widetilde \eta 10| | L1(\BbbR n)f(z)

\bigm| \bigm| \bigm| \bigm| 
\leq | | ( - \Delta )\gamma  - 

n - 1
2 \widetilde \eta 10| | L1(\BbbR n)(h

2\nu | | f | | C0,1(\Omega ) + 2h(1 - \nu )(1+2\beta )| | f | | L\infty (\Omega )c1(n, \gamma ))

+ h2+2\gamma | | ( - \Delta )\gamma  - 
n - 1
2 f | | L\infty (\BbbR n) .(3.8)

We pick \nu such that 2\nu = (1 - \nu )(1 + 2\beta ), i.e., \nu = 1/2 - 1/(3 + 2\beta ) that is the optimal order
of h.

Next, replacing us and f in (3.8) by R\ast R(1\Omega ) and 1\Omega , we derive for z \in \Omega and n(z) from
(2.16),\bigm| \bigm| \bigm| \bigm| h1+2\gamma n(z) - | | ( - \Delta )\gamma  - 

n - 1
2 \widetilde \eta 10| | L1(\BbbR n)

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| h1+2\gamma \langle dnR\ast R(1\Omega ) , \eta 
h
z \rangle \gamma  - | | ( - \Delta )\gamma  - 

n - 1
2 \widetilde \eta 10| | L1(\BbbR n)

\bigm| \bigm| \bigm| \bigm| 
\leq 2| | ( - \Delta )\gamma  - 

n - 1
2 \widetilde \eta 10| | L1(\BbbR n)h

1+2\beta .

With the above two estimates and the definition (2.16) of Ih\gamma , we readily derive\bigm| \bigm| \bigm| \bigm| Ih\gamma (z) - h1+2\gamma \langle us , \eta hz \rangle \gamma 
| | ( - \Delta )\gamma  - 

n - 1
2 \widetilde \eta 10| | L1(\BbbR n)

\bigm| \bigm| \bigm| \bigm| = \langle us , \eta hz \rangle \gamma 
n(z)

| | ( - \Delta )\gamma  - 
n - 1
2 \widetilde \eta 10| | L1(\BbbR n)  - h1+2\gamma n(z)

| | ( - \Delta )\gamma  - 
n - 1
2 \widetilde \eta 10| | L1(\BbbR n)

(3.9)

\leq 2| | f | | L\infty (\Omega )h
1+2\beta .

Combining (3.8) and (3.9), we conclude that

| Ih\gamma (z) - f(z)| \leq h
1 - 2

3+2\beta (| | f | | C0,1(\Omega ) + 2c1(n, \gamma )| | f | | L\infty (\Omega )) +
h2+2\gamma | | ( - \Delta )\gamma  - 

1
2 f | | L\infty (\BbbR n)

| | ( - \Delta )\gamma  - 
n - 1
2 \widetilde \eta 10| | L1(\BbbR n)

+ 2| | f | | L\infty (\Omega )h
1+2\beta = h

1 - 2
4+2\gamma  - n (| | f | | C0,1(\Omega ) + 2c1(n, \gamma )| | f | | L\infty (\Omega )) +\scrO (h3+2\gamma  - n) ,(3.10)

which is the desired result for the first part of the lemma.
(b) For the sake of notation, we write the output reconstructed from the target function f

by index Ih\gamma as Ih,f\gamma . We can first observe that | | Ih,f\gamma | | L2(\Omega ) \leq c\prime (\Omega , \gamma )\delta with c\prime independent of
h if | | f | | L2(\Omega ) \leq \delta , with an application of the Fubini’s theorem.
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1015

For a given f \in L\infty (\Omega ), we recall that f can be approximated arbitrarily accurately by a
sum of characteristic function in the L2 sense. Hence, without loss of generality, we assume
f = M1U , a scaled characteristic function over a compact set U \subset \Omega (M > 0). Now we
consider a family of smooth modifiers \{ \rho \delta \} \delta >0 (with c chosen such that

\int 
\BbbR n \rho (x) = 1):

\rho (x) :=

\Biggl\{ 
c \mathrm{e}\mathrm{x}\mathrm{p}( - 1

1 - | x| 2 ) for | x| < 1 ,

0 otherwise ;
\rho \delta (x) :=

1

\delta n
\rho 
\Bigl( x
\delta 

\Bigr) 
,

Then we have f \ast \rho \delta \in C\infty (\Omega ), and | | f  - f \ast \rho \delta | | L2(\Omega ) \leq c3(\Omega )M\delta with c3 independent of h,
therefore

| | Ih,f\gamma  - Ih,f\ast \rho 
\delta 

\gamma | | L2(\Omega ) \leq c3(\Omega )M\delta .(3.11)

To compare f \ast \rho \delta and Ih,f\ast \rho 
\delta 

\gamma , we need to estimate | | f \ast \rho \delta | | C0,1(\Omega ) from (3.10). We can
compute

d

dxi
f \ast \rho \delta (x) =

\int 
\BbbR n

f(t)
d

dxi
\rho \delta (x - t)dt \leq M

\delta 

\int 
\BbbR n

\partial 

\partial xi
\rho (x - t)dt ,(3.12)

which implies | | f \ast \rho \delta | | C0,1(\Omega ) \leq \delta  - 1c4(n, \gamma ). By (3.10) and (3.12), then we further derive

| | f \ast \rho \delta  - Ih,f\ast \rho 
\delta 

\gamma | | L2(\Omega ) \leq c4(\Omega , \gamma )Mh
1
2
 - 1

4+2\gamma  - n +\scrO (h3+2\gamma  - n).(3.13)

Combining all the above estimates and choosing \delta = h
1
2
 - 1

3+2\beta , we come to the desired estimate:

| | Ih,f\gamma  - f | | L2(\Omega ) \leq | | Ih,f\gamma  - Ih,f\ast \rho 
\delta 

\gamma | | L2(\Omega ) + | | Ih,f\ast \rho \delta \gamma  - f \ast \rho \delta | | L2(\Omega ) + | | f \ast \rho \delta  - f | | L2(\Omega )

\leq h
1
2
 - 1

4+2\gamma  - n c2(\Omega , \gamma )| | f | | L\infty (\Omega ) +\scrO (h3+2\gamma  - n) .

We see from Lemma 3.1 that the convergence rates are different for smooth and non-
smooth f . However, we have observed from our numerical experience that the DSM performs
quite similarly and robustly for both smooth and nonsmooth images. Hence, we shall mainly
examine the DSM for nonsmooth target functions in section 6, as most real images are usually
nonsmooth and may have sharp edges.

We shall make the justification of the index function for the case of the Sobolev scale
\gamma \leq (n  - 1)/2 in section 3.3. Before that, we next present an alternative characterization of
the index function which explains the choice of \alpha in (2.8). This alternative characterization
will be also essential to our subsequent justification of the index function for \gamma \leq (n - 1)/2.

In the remainder of this section, with the help of the remark that we mentioned after (2.4),
we further assume that the target function f is a smooth function.

3.2. Alternative characterization of the index function. In this subsection, we present
an alternative characterization of the index function defined in (2.16) for all possible choices of
\gamma \in (0, n2 ). The characterization is mainly to obtain a dominating term in the index function
with respect to the small parameter h involved in the probing function (2.7). More specifically,
we shall show that the index function at the sampling point z approximately equals the average
of ( - \Delta )\gamma us at the neighborhood of z. This characterization will be used in two ways:D
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1016 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

\bullet We shall justify that the preferable choice of the key parameter \alpha \in \BbbR involved in the
probing function is \alpha = n+1, as we suggested in (2.8). To do so, we will estimate and
investigate the dominating term of the index function when the probing function (2.8)
is used or replaced by other functions \zeta h\alpha with \alpha \not = n+ 1.

\bullet The dominating term in the index function will provide an essential tool to help us
justify that the proposed DSM can approximately recover the target function f when
\gamma \in (0, (n - 1)/2] in subsection 3.3.

Lemma 3.2. For \alpha = n + 1, the duality product defined in (2.5) between the measurement
data us and the probing function \eta hz can be written as

\langle us, \eta hz \rangle \gamma = h - 1

\int 
B(z,h)

usdx+\scrO (1) .(3.14)

Proof. Let us first assume \alpha = n + 1, which is the one used in the definition (2.8). To
obtain a dominating term of the numerator of the index function, we rewrite it, by using direct
addition and subtraction, as

\langle us, \eta hz \rangle \gamma =

\int 
\BbbR n

( - \Delta )\gamma us
\bigl[ 
\eta hz  - \widetilde \eta hz \bigr] dx\underbrace{}  \underbrace{}  

\phi 1(z)

 - 1

n - 1

\int 
\BbbR n

( - \Delta )\gamma +1us

\biggl[ \widetilde \zeta hn - 1(x - z) - 1

| x - z| n - 1

\biggr] 
dx\underbrace{}  \underbrace{}  

\phi 2(z)

 - 1

n - 1

\int 
\BbbR n

( - \Delta )\gamma +1us
1

| x - z| n - 1
dx\underbrace{}  \underbrace{}  

\phi 3(z)

+

\int 
\BbbR n

\biggl[ 
( - \Delta )\gamma us\widetilde \eta hz +

1

n - 1
( - \Delta )\gamma +1us\widetilde \zeta hn - 1(x - z)

\biggr] 
dx\underbrace{}  \underbrace{}  

\phi 4(z)

,

(3.15)

where \widetilde \zeta hn - 1 is defined in (2.7) and the derivation of the constant 1/(n  - 1) in (3.15) will be
introduced in the analysis of \phi 4(z).

We now investigate the properties of the terms \phi i(z) (1 \leq i \leq 4) one by one. For \phi 1(z),
the estimate is identical with (3.4), so we have

| \phi 1(z)| \leq | | ( - \Delta )\gamma  - 
1
2 f | | L\infty (\BbbR n)h .(3.16)

Next, for \phi 2(z), recalling the definition of \zeta hn - 1 in (2.7), we notice the integrand vanishes
if | x - z| > h, which leads to

| \phi 2(z)| =
\bigm| \bigm| \bigm| \bigm| \int 

| x - z| \leq h
( - \Delta )\gamma +1us

\biggl[ 
1

| x - z| n - 1
 - 1

hn - 1
)

\biggr] 
dx

\bigm| \bigm| \bigm| \bigm| \leq 4\pi | | ( - \Delta )\gamma +
1
2 f | | L\infty (\Omega )h .(3.17)

To consider the term \phi 3(z), we make use of a convenient representation of a smooth function
g from harmonic analysis (e.g., [24]):

( - \Delta ) - \gamma g(z) = cn, - \gamma 

\int 
\BbbR n

g(x)

| x - z| n - 1
dx with cn, - \gamma =

\Gamma (n2  - \gamma )

4\gamma \pi 
n
2 \Gamma (\gamma )

.
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1017

Using this property, taking g = ( - \Delta )\gamma +1us and \gamma = 1/2, we have

\phi 3(z) =
1

c(n, - 1
2)
( - \Delta ) - 

1
2
\bigl( 
( - \Delta )\gamma +1us(z)

\bigr) 
=

1

c(n, - 1
2)
( - \Delta )\gamma +

1
2us(z) .(3.18)

To summarize, we notice that the orders of \phi 1(z) and \phi 2(z) are \scrO (h), and the magnitude of
\phi 3(z) is independent of the choice of h.

Finally, we come to analyze \phi 4(z). Since ( - \Delta )\widetilde \zeta hn - 1(x) =  - (n - 1)\widetilde \zeta hn+1(x) for | x| > h , the
Green’s identity leads to

\phi 4(z) =

\int 
\BbbR n

\biggl[ 
( - \Delta )\gamma us\widetilde \zeta hn+1(x) +

1

n - 1
( - \Delta )\gamma +1us\widetilde \zeta hn - 1(x - z)

\biggr] 
dx

=

\int 
\partial B(z,h)

( - \Delta )\gamma us
\partial 

\partial n - 
1

| x - z| n - 1
dxs +

1

hn+1

\int 
B(z,h)

( - \Delta )\gamma usdx

=
1

hn

\int 
\partial B(z,h)

( - \Delta )\gamma usdxs +
1

hn+1

\int 
B(z,h)

( - \Delta )\gamma usdx ,

(3.19)

where n - denotes the normal vector pointing toward z. The simplification of the integration
on \partial B(z, h) comes from the definition of \widetilde \zeta hn - 1, since it is a constant inside B(z, h).

We can observe from (3.19) that the order of \phi 4(z) is \scrO 
\bigl( 
h - 1

\bigr) 
, which is larger than the

orders \scrO (1) of \phi i(z) (1 \leq i \leq 3). Hence we can now conclude that the dominating term in the
duality product \langle us, \eta hz \rangle \gamma is \phi 4(z), which is the desired result in (3.14).

From the above lemma and especially the final approximation in (3.14), \langle us, \eta hz \rangle \gamma can be
readily seen as a good approximation of the average of ( - \Delta )\gamma us in a close neighborhood of
the sampling point z. This fact will be used in section 3.3.

We are now ready to justify our choice of \alpha = n+1 in the definition of the probing function
in (2.8). First, the choice of \alpha \leq n is not applicable as \zeta h\alpha /\in L1(\BbbR n). In this case, the index
function (2.16) which involves integration in \BbbR n might not always be well defined and we can
not ensure its accuracy and stability of reconstruction.

Second, for the choice of \alpha > n+1, there are two reasons that this option is not preferable.
The first one is that the L\infty -norm of the auxiliary function \zeta h\alpha in (2.7) is of order h - \alpha . Hence,
a larger choice of \alpha > n + 1 may lead to an issue of numerical instability. Let us discuss a
special case of \alpha > n+1 below, i.e., \alpha = n+3, and we will conclude that the dominating term
in the duality product between us and \zeta hn+3 is the same as the dominating term in the duality
product between us and \zeta hn+1 (the probing function we employed in DSM). We will compare
the numerical reconstructions (see Example 1, section 6), with \alpha being n+1, n+2, and n+3,
to justify the choice of \alpha = n+ 1 in our DSM.

Let us now consider the case \alpha = n+3, that is, the probing function (2.8) used in the index
function (2.16) is replaced by \zeta hn+3. We first observe that ( - \Delta )2\widetilde \zeta hn - 1(x) = 1/e(n)\widetilde \zeta hn+3(x) for
x > h with e(n) = 1/3(n2  - 1). We rewrite the duality product between us and \zeta hn+3 like in
(3.15):
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1018 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

\langle us, \zeta 
h
n+3(x - z)\rangle \gamma =

\int 
\BbbR n

( - \Delta )\gamma us
\bigl[ 
\zeta hn+3(x - z) - \widetilde \zeta hn+3(x - z)

\bigr] 
dx\underbrace{}  \underbrace{}  \widetilde \phi 1(z)

 - e(n)

\int 
\BbbR n

( - \Delta )\gamma +2us

\biggl[ \widetilde \zeta hn - 1(x - z) - | x - z|  - n+1

\biggr] 
dx\underbrace{}  \underbrace{}  \widetilde \phi 2(z)

 - e(n)

\int 
\BbbR n

( - \Delta )\gamma +2us| x - z|  - n+1dx\underbrace{}  \underbrace{}  \widetilde \phi 3(z)

+

\int 
\BbbR n

\biggl[ 
( - \Delta )\gamma us

\widetilde \zeta hn - 1(x - z) + e(n)( - \Delta )\gamma +2us
\widetilde \zeta hn+3(x - z)

\biggr] 
dx\underbrace{}  \underbrace{}  \widetilde \phi 4(z)

.

The estimates for \widetilde \phi i(z) (1 \leq i \leq 3) are basically the same as the above estimates for \phi i(z)
(i \leq 1 \leq 3), expect the minor differences in replacing the order of the fractional Laplacian
from \gamma + 1/2 to \gamma + 3/2 in the right-hand side of (3.17) and (3.18). For \widetilde \phi 4(z), we can apply
the Green’s identity twice to derive

\widetilde \phi 4(z) = c5(n, \gamma )

hn+1

\int 
\partial B(z,h)

( - \Delta )\gamma usdxs +
1

hn+2

\int 
B(z,h)

( - \Delta )\gamma usdx+\scrO (h - 1) ,(3.20)

where c5(n, \gamma ) is a positive constant independent of z and h. \widetilde \phi 4(z) now still represents the
average of ( - \Delta )\gamma us over the neighborhood of z. We can conclude that the dominating terms
of the index function with \alpha = n+1 and \alpha = n+3 are approximately the same. Although the
order of \widetilde \phi 4(z) in (3.20) with \alpha = n+3 is higher than \phi 4(z) in (3.19) with \alpha = n+1, we point
out that the difference in order has a minor influence on the accuracy of the reconstruction
as the magnitude of \phi i(z) and \widetilde \phi i(z), i = 1, 2, 3, are much smaller than both of \phi 4(z) and\widetilde \phi 4(z). Moreover, as we are particularly interested in reconstruction with noisy and inadequate
measurement data, it is preferable to choose a probing function that is smoother and has a
smaller L\infty -norm.

With the above considerations and Lemma 3.2, in order to maintain the appropriate regu-
larity of the probing function as well as to minimize numerical instability, we shall, from now
on, only consider a choice of \alpha in the range \alpha \in (n, n + 1]. From numerical experiments, we
do not observe much difference in the quality of numerical reconstruction for any choice of
\alpha \in (n, n + 1], and therefore for simplicity, we always choose the probing function (2.8) with
\alpha = n+ 1 instead of some other probing functions \zeta h\alpha with \alpha \not = n+ 1.

3.3. Verification of the index function for \bfzero < \bfitgamma \leq (\bfitn  - \bfone )/\bftwo and the frequency
domain representation of the probing function. In this section, we shall first verify that
our proposed index function Ih\gamma approximately recovers the target function f when 0 < \gamma \leq 
(n  - 1)/2, and then present a frequency domain representation of the function \widetilde \eta hz . This
representation reveals the fact that the application of the probing function can be regarded
as applying a low pass filter on the measurement data, which helps us better understand the
importance and necessity of computing the duality product between the measurement data
and the chosen probing function \eta hz .

To verify that the index function can properly recover the target function f , we first recall
the critical motivation for direct sampling type methods in (2.3), that us = dnR

\ast Rf can be
represented by the convolution of f and a fast decaying kernel function Gx(y) = 1/| x  - y| .
It can be observed that Gx(y) is very large when x \approx y and is relatively small otherwise.
Hence, if we are given noisy or inadequate measurement data, us is already an approximation
to the target function f . Furthermore, considering the reconstruction by the proposed DSMD
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1019

with \gamma \leq (n  - 1)/2, we next show that our method can improve the approximation to the
target function f compared with the approximation provided by us without applying any
pseudodifferential operator on the noisy measurement data.

First, by the singular integral representation of negative order fractional Laplacians, we
have

( - \Delta )\gamma us(x) = ( - \Delta )\gamma  - 
n - 1
2 f(x) =

\Gamma ((n+ 1)/4 + \gamma /2)

2(n+1)/2 - \gamma \pi n/2\Gamma ((n - 1)/4 - \gamma /2)

\int 
\Omega 

f(y)

| y  - x| 
n+1
2

+\gamma 
dy .

(3.21)

We observe that the integration in the right-hand side is simply the convolution of f and
1/| x| (n+1)/2+\gamma . As \gamma becomes larger, the convolution kernel 1/| x| (n+1)/2+\gamma becomes more con-
centrated at the origin, hence ( - \Delta )\gamma us provides a better approximation to f(x). In particular,
as \gamma \rightarrow (n  - 1)/2, ( - \Delta )\gamma us also converges to the target function f(x) up to a normalization
constant that follows from the inversion formula (2.4).

Now we recall the alternative characterization of the index function that we obtained
through the discussion following (3.19) in section 3.2. The dominating term of the dual-
ity product \langle us, \eta hz \rangle \gamma is the average of ( - \Delta )\gamma us at the neighborhood of the sampling point
z. Moreover, with the same reason, the denominator of the index function which equals to
\langle dnR\ast R(1\Omega ), \eta 

h
z \rangle \gamma also approximately equals to a constant in \Omega . Hence, this justifies that our

index function can approximately recover f due to the approximation property of ( - \Delta )\gamma us
and the alternative characterization of the index function.

We shall remark that, although computing ( - \Delta )
n - 1
2 us recovers f exactly in the noise-free

case, the choice of \gamma = (n  - 1)/2 is not preferable in applications that we mentioned in the
introduction due to numerical instability. This theoretical prediction will also be justified in
section 3.4 and Example 1 of section 6.

In the remaining part of this subsection, we would like to investigate the frequency do-
main representation of the probing function. The main motivation for this part is that the
discussion following (3.21) implies that the reconstruction solely with ( - \Delta )\gamma us is already an
approximation to the target function f . Therefore, it is necessary for us to justify that the
introduction of the duality product and the probing function in the new DSM are essential
in recovering the target function f more stably. First, by the definitions (2.5) and (2.16), the
duality product allows us to avoid applying a pseudodifferential operator directly on the noisy
measurement data us. Moreover, we will now show that our choice of the probing function
induces a low pass filter in the frequency domain. For this reason, it helps improve the quality
of reconstruction with noisy measurement data. To justify the low pass filtering property of
the probing function, we consider the numerator of the index function in the frequency domain
which yields

\langle us, \eta hz \rangle \gamma =

\int 
\BbbR n

( - \Delta )\gamma us\widetilde \eta hz dx+

\int 
\BbbR n

( - \Delta )\gamma us[\eta 
h
z  - \widetilde \eta hz ]dx = \scrF  - 1

\biggl\{ 
\scrF (\widetilde \eta h0 )\scrF (( - \Delta )\gamma us)

\biggr\} 
+\phi 1(z) ,

(3.22)

where \scrF  - 1 denotes the inverse Fourier transform and \phi 1(z) is defined in (3.15) which is of
the order \scrO (h) by (3.16). The representation of the duality product in (3.22) implies that theD
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1020 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

reconstruction by the proposed DSM can be regarded as applying the filtering function induced
by \widetilde \eta h0 on ( - \Delta )\gamma us. Therefore, we now investigate the Fourier transform of \widetilde \eta h0 explicitly to
show the following.

Lemma 3.3. Denoting \lambda = 2\pi h| \omega | , the Fourier transform of \widetilde \eta h0 defined in (2.9) can be
written as

\scrF (\widetilde \eta h0 )(\omega ) =
\left\{       

1
h
J1(\lambda )
\lambda + \lambda 

h

\biggl[ \biggl( 
\lambda 2+1
\lambda  - \pi \lambda 

2 \bfitH 1(\lambda )

\biggr) 
J0(\lambda ) - 

\biggl( 
1 - \pi \lambda 

2 \bfitH 0(\lambda )

\biggr) 
J1(\lambda ) - 1

\biggr] 
, n = 2,

4\pi 
h

\biggl[ 
\mathrm{s}\mathrm{i}\mathrm{n}(\lambda ) - \lambda \mathrm{c}\mathrm{o}\mathrm{s}(\lambda )

\lambda 3 + \lambda 

\biggl( 
 - \pi +2Si(\lambda )

4 + \mathrm{s}\mathrm{i}\mathrm{n}(\lambda )
2\lambda 2 + \mathrm{c}\mathrm{o}\mathrm{s}(\lambda )

2\lambda 

\biggr) \biggr] 
, n = 3 .

Proof. For n = 2, we use the Fourier Bessel transform:\int 
\BbbR 2

\widetilde \eta h0 (| x| )e - i2\pi x\cdot \omega dx =

\int 
\BbbR 
\widetilde \eta h0 (r)J0(2\pi | \omega | r)rdr ,

where J\nu is the Bessel function of the first kind of order \nu . This can be simplified to a
one-dimensional integration involving the Bessel function:

\scrF 
\bigl( \widetilde \eta h0 \bigr) (\omega ) = \int h

0

J0(2\pi | \omega | r)r
h3

dr +

\int \infty 

h

J0(2\pi | \omega | r)
r2

dr

(3.23)

=
1

4\pi 2| \omega | 2h3

\int 2\pi | \omega | h

0
J0(t)tdt+ 2\pi | \omega | 

\biggl[ \int \infty 

0

J0(t) - 1

t2
dt+

\int \infty 

2\pi | \omega | h

1

t2
dt+

\int 2\pi | \omega | h

0

1 - J0(t)

t2
dt

\biggr] 
.

Moreover, we notice the following integrals regarding Bessel functions of the first kind in
[1]: \int x

0
J0(t)tdt = xJ1(x) ,

\int \infty 

0

1 - J0(t)

t2
dt = 1 ,(3.24) \int x

0

1 - J0(t)

t2
=  - 1

x
 - 
\biggl[ 
1 - \pi x

2
\bfitH 0(x)

\biggr] 
J1(x) +

\biggl[ 
x2 + 1

x
 - \pi x

2
\bfitH 1(x)

\biggr] 
J0(x) ,

where \bfitH \nu is the Struve function of order \nu . Combining the above computations, we conclude
that

\scrF (\widetilde \eta h0 )(\omega ) = 1

h

J1(\lambda )

\lambda 
+
\lambda 

h

\biggl[ \biggl( 
\lambda 2 + 1

\lambda 
 - \pi \lambda 

2
\bfitH 1(\lambda )

\biggr) 
J0(\lambda ) - 

\biggl( 
1 - \pi \lambda 

2
\bfitH 0(\lambda )

\biggr) 
J1(\lambda ) - 1

\biggr] 
, \lambda = 2\pi | \omega | h .

For the case n = 3, we first consider the identity regarding the Fourier transform of a
radial function in \BbbR 3:\int 

\BbbR 3

f(| x| )e - 2\pi ix\cdot \omega dx = 2\pi 

\int \infty 

0

\int \pi 

0

f(r)e - 2\pi ir \mathrm{c}\mathrm{o}\mathrm{s} \theta | \omega | r2d( - \mathrm{c}\mathrm{o}\mathrm{s} \theta )dr =
2

| \omega | 

\int \infty 

0

f(r)r \mathrm{s}\mathrm{i}\mathrm{n}(2\pi r| \omega | )dr ;

then we can derive (with Si being the sine integral function and \lambda = 2\pi h| \omega | )
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DSM FOR THE INVERSION OF THE RADON TRANSFORM 1021

\scrF (\widetilde \eta h0 )(\omega ) = 2

| \omega | 

\biggl[ \int h

0

r

h4
\mathrm{s}\mathrm{i}\mathrm{n}(2\pi r| \omega | )dr +

\int \infty 

h

1

r3
\mathrm{s}\mathrm{i}\mathrm{n}(2\pi r| \omega | )dr

\biggr] 
=

2

| \omega | 

\biggl[ 
1

h44\pi 2| \omega | 2

\int 2\pi | \omega | h

0
t \mathrm{s}\mathrm{i}\mathrm{n}(t)dt+ 4\pi 2| \omega | 2

\int \infty 

2\pi | \omega | h

\mathrm{s}\mathrm{i}\mathrm{n}(t)

t3
dt

\biggr] 
=

4\pi 

h

\biggl[ 
\mathrm{s}\mathrm{i}\mathrm{n}(\lambda ) - \lambda \mathrm{c}\mathrm{o}\mathrm{s}(\lambda )

\lambda 3
+ \lambda 

\biggl( 
 - \pi + 2Si(\lambda )

4
+

\mathrm{s}\mathrm{i}\mathrm{n}(\lambda )

2\lambda 2
+

\mathrm{c}\mathrm{o}\mathrm{s}(\lambda )

2\lambda 

\biggr) \biggr] 
.

We know \scrF (\widetilde \eta h0 )(\omega ) \in \BbbR from Lemma 3.3, hence we now draw the values of the Fourier
transform of \widetilde \eta h0 in \BbbR 2 (left) and \BbbR 3 (right), respectively, with respect to the norm of frequency
domain variable, i.e., | \omega | for a fixed h (h = 0.1); see Figure 1. In particular, the value of
\scrF (\widetilde \eta h0 )(\omega ) depends only on \omega . Supposing the data is band-limited to 1/(2h), we observe that
the frequency domain representation of \widetilde \eta h0 decays smoothly to 0 as | \omega | becomes larger. Hence,
the probing function can be approximately viewed as a low pass filter since it cuts off the high
frequency components and smoothes the low frequency component of the measurement data
in both \BbbR 2 and \BbbR 3.

To conclude, the crucial family of probing functions defined in (2.8) for the new DSM allows
our reconstruction to be very stable under highly noisy measurement data since the application
of the probing function can be regarded as applying a low pass filter on the measurement data
as illustrated in Figure 1.

3.4. Relationship between the Sobolev scale and the variance of the index function. In
this subsection, we consider a particular noise model from [21] that approximates the measure-
ment process to showcase some close relationship between the Sobolev scale \gamma in the duality
product (2.5) and the variance of the index function for \gamma \in (0, 1). We only consider the case
\gamma < 1 since the L2-norm of ( - \Delta )\gamma \widetilde \eta hz is bounded for \gamma < 1 by part (c) of Lemma 2.1 and the
boundedness of the L2-norm is essential in our following discussion.

Suppose the collected data is polluted by a stationary zero-mean additive Gaussian noise,
and the noise distributions are independent of each other for projections on different hyper-
planes, namely, the noisy measurement takes the form

0 5 10 15 20 25 30 35 40 45 50
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Figure 1. Frequency domain representation of \widetilde \eta h0 (cf. (2.7)) in \BbbR 2 (left) and \BbbR 3 (right), with the data being
band-limited to 1/(2h) (h = 0.1). The horizontal and vertical axes are the norm of | \omega | and the value of the
Fourier transform of \widetilde \eta h0 , respectively.
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1022 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

Rf(\theta , t) = Rfe(\theta , t) + n(\theta , t) , n(\theta , t) \sim N(0, \sigma 20) ,\BbbE 
\bigl[ 
n(\theta 1, t1)n(\theta 2, t2)

\bigr] 
=\sigma 20\delta (\theta 1  - \theta 2)\delta (t1 - t2) ,

(3.25)

where \BbbE represents the expectation operator, N(\mu , \sigma 2) stands for the normal distribution with
mean \mu and standard deviation \sigma , and the subscript e denotes the exact value.

Lemma 3.4. Under the assumption (3.25) on the measurement data, the variance of recon-
struction, defined by \sigma 2\gamma (z) = \BbbE 

\bigl[ 
(Ih\gamma (z))

2
\bigr] 
 - \BbbE 

\bigl[ 
Ih\gamma (z)

\bigr] 2, satisfies
\bigl[ 
n(z)\sigma \gamma (z)

\bigr] 2
= \sigma 20

\bigm| \bigm| Sn - 1
\bigm| \bigm| \int 

\BbbR n

| \omega | 4\gamma | \scrF (\widetilde \eta hz )(\omega )| 2d\omega +\scrO (h) .(3.26)

Proof. Recalling the numerator of our proposed index function in (2.16), we can rewrite it
as

\langle us, \eta hz \rangle \gamma =

\int 
\BbbR n

( - \Delta )\gamma us\widetilde \eta hz dx+

\int 
\BbbR n

( - \Delta )\gamma us[\eta 
h
z  - \widetilde \eta hz ]dx .

Since Rf \in L\infty (Sn - 1 \times \BbbR ), the expectation of the product of measurements is given by

\BbbE 
\bigl[ 
us(x)us(y)

\bigr] 
=

\int 
Sn - 1\times Sn - 1

\biggl[ 
Rfe(\alpha , \alpha \cdot x)Rfe(\beta , \beta \cdot y) + \sigma 20\delta (\alpha  - \beta )\delta (\alpha \cdot x - \beta \cdot y)

\biggr] 
d\alpha d\beta 

= ue(x)ue(y) +
\bigm| \bigm| Sn - 1

\bigm| \bigm| 2\sigma 20\delta (x - y) ,(3.27)

where ue represents the exact value, and us is the measurement data with noise. From the
above, we see the expectation for z \in \Omega is

\BbbE 
\bigl[ 
Ih\gamma (z)

\bigr] 
=

\int 
\BbbR n us( - \Delta )\gamma \widetilde \eta hz dx+ \phi 1(z)

n(z)
,(3.28)

where \phi 1(z) is defined in (3.15). By Lemma 2.1(c), ( - \Delta )\gamma \widetilde \eta hz belongs to L2(\BbbR n). Then one
can finally derive the relationship between the variance of the index function and the Sobolev
scale \gamma : \bigl[ 

n(z)\sigma \gamma (z)
\bigr] 2

+ \phi 1(z)

=

\int 
\BbbR n\times \BbbR n

\biggl[ 
\BbbE 
\bigl[ 
us(x)us(y)

\bigr] 
( - \Delta )\gamma \widetilde \eta hz (x)( - \Delta )\gamma \widetilde \eta hz (y)\biggr] dxdy  - \biggl[ \int 

\BbbR n

\BbbE [us]( - \Delta )\gamma \widetilde \eta hz dx\biggr] 2
= \sigma 20

\bigm| \bigm| Sn - 1
\bigm| \bigm| \int 

\BbbR n

| ( - \Delta )\gamma \widetilde \eta hz | 2dx = \sigma 20
\bigm| \bigm| Sn - 1

\bigm| \bigm| \int 
\BbbR n

| \omega | 4\gamma | \scrF (\widetilde \eta hz )(\omega )| 2d\omega .
(3.29)

By the estimate in (3.16), we know \phi 1(z) \leq | | ( - \Delta )\gamma  - 
1
2 f | | L\infty (\BbbR n)h, hence the magnitude of

\phi 1(z) is of the order \scrO (h). Now, we have the desired conclusion of the lemma.

We now substitute the representation of the normalization term n(z) defined in (2.16) into
(3.29). In Figure 2, assuming \Omega = [ - 0.5, 0.5]n for n = 2 (left) and n = 3 (right) with h = 0.025,
we plot the natural logarithm of the variance of the index function at the origin, i.e., \mathrm{l}\mathrm{n}(\sigma 2\gamma (0)),
with respect to \gamma \in [0.2, 0.975] where the step size of \gamma equals to 0.025. The constant \sigma 0 inD

ow
nl

oa
de

d 
07

/1
9/

22
 to

 1
37

.1
89

.4
9.

14
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DSM FOR THE INVERSION OF THE RADON TRANSFORM 1023

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-7

-6

-5

-4

-3

-2

-1

0
ln

(
2 (0

))

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ln
(

2 (0
))

Figure 2. \mathrm{l}\mathrm{n}(\sigma 2
\gamma (0)) (cf. (3.28)) with respect to \gamma \in [0.2, 0.975] in \BbbR 2 (left) and in \BbbR 3(right).

(3.29) is chosen such that \mathrm{m}\mathrm{a}\mathrm{x}\gamma \in [0.2,0.975] \sigma 
2
\gamma (0) = 1 for all \gamma . Our computation only considers

\gamma \geq 0.2 is due to (3.21), which implies the accuracy of the reconstruction is not satisfactory
for relatively small \gamma . From Figure 2, for both reconstructions in \BbbR 2 and \BbbR 3, the variance of
the index function increases exponentially with respect to \gamma . Hence, we shall not consider the
possibility of very large \gamma , i.e., \gamma \geq n/2, in real applications. This conclusion is also consistent
with the motivation of DSM in section 2 that we expect a smaller choice of the Sobolev scale
\gamma will improve the robustness of the reconstruction under high level of random noise.

We end this section with a summary of our theoretical predictions on the appropriate
choice of the Sobolev scale \gamma for applications, based on the discussions in sections 3.3 and 3.4.
For the reconstruction from noisy and inadequate measurement data that we are particularly
interested in, we shall choose \gamma that is relatively small considering the relationship revealed in
Figure 2. Moreover, for \gamma > 0 but much smaller than (n - 1)/2, from (3.21) in section 3.3, the
reconstruction results may not be accurate enough. Hence, we may prefer to choose \gamma that is
close to (n - 1)/2 for our DSM, for instance, \gamma = 0.4 in \BbbR 2 and \gamma = 0.9 in \BbbR 3. This theoretical
prediction will be verified in Example 1 of section 6.

4. DSMs for some other tomography problems. As we pointed out in section 3, the
new DSM is expected to be robust against noise, due to the property of the probing function
as a low pass filter and the choice of the duality product which avoids applying any pseudo-
differential operator on the noisy measurement data. Therefore, we are interested in whether
the DSM also performs reasonably in the limited angle tomography, which is another closely
related and highly ill-posed inverse problem associated with the Radon transform.

We will focus on the two-dimensional case when detectors are distributed in the parallel
geometry. Recall the Radon transform for a smooth target function f :

Rf(\theta , t) =

\int 
x\cdot \theta =t

f(x)dxL , \theta \in S1 , t \in \BbbR ,

where we assume \theta \in [ - \Phi ,\Phi ] for \Phi < \pi /2, and s \in I\theta , with I\theta being the same as in (2.2). In
this case, the dual of the Radon transform with limited angle measurement is given by

R\ast 
\Phi g(x) :=

\int 
\BbbS 1
g(\theta , x \cdot \theta )\scrX V\Phi 

(\theta )d\theta , V\Phi = [ - \Phi ,\Phi ] \cup [\pi  - \Phi , \pi +\Phi ] ,(4.1)

where \scrX V (\theta ) = 1 if \theta \in V and \scrX V (\theta ) = 0 otherwise.D
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1024 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

The limited angle tomography will be very different from the case where we have mea-
surements from all directions as in section 2. In particular, the extra discontinuity of the
characteristic function in (4.1) will create undesirable artifacts when we apply a pseudodif-
ferential operator on the measurement data, including the proposed fractional Laplacian. A
classification of artifacts was deduced in the work [14] with an argument using microlocal
analysis and the wavefront set.

If we employ the same index function as in (2.16), with us replaced by u\Phi s = 1/2R\ast 
\Phi Rf ,

the numerator of the index function becomes

\langle u\Phi s , \eta hz \rangle \gamma =

\int 
\BbbR 2

u\Phi s ( - \Delta )\gamma \eta hz (x)dx .(4.2)

We now consider the above duality product in the frequency domain. Recalling the Fourier
slice theorem, i.e., \scrF t(Rf)(\theta , t) = \scrF (f)(t\theta ), where \scrF t is the one-dimensional Fourier transform
with respect to t, we can rewrite u\Phi s as

u\Phi s (x) =

\int 
\BbbS 1
\scrF  - 1
t \{ \scrF tRf\} (\theta , x \cdot \theta )\scrX V\Phi 

(\theta )d\theta =

\int 
\BbbS 1

\int 
\BbbR 
\scrF (f)(\theta \tau )e2\pi i\tau (x\cdot \theta )d\tau \scrX V\Phi 

(\theta )d\theta 

=

\int 
\BbbR 2

\scrF (f)(\omega )
\scrX V\Phi 

(\omega /| \omega | )
| \omega | 

e2\pi i\omega \cdot xd\omega =

\biggl( 
f \ast \scrF  - 1

\biggl( 
\scrX V\Phi 

(\omega /| \omega | )
| \omega | 

\biggr) \biggr) 
(x) .

(4.3)

Hence, the duality product between the measurement data and the probing function with a
small choice of the Sobolev scale \gamma < 1/2 becomes

\langle u\Phi s , \eta hz \rangle \gamma = \scrF  - 1

\biggl( 
\scrX V\Phi 

(\omega /| \omega | )| \omega | 2\gamma  - 1\scrF (\widetilde \eta h0 )\scrF (f)

\biggr) 
(z) +

\int 
\BbbR 2

( - \Delta )\gamma u\Phi s (\widetilde \eta hz  - \eta hz )dx ,(4.4)

where the order of the second integration in the right-hand side is\scrO (h) with an estimate similar
to (3.4). In this case, the duality product with a relatively small Sobolev scale combining with
the probing function will serve as a low pass filter in the frequency domain to improve the
numerical stability of the reconstruction.

Similarly to [14], we can further employ the modified back projection operator to improve
the accuracy of the reconstruction:

\widetilde R\ast 
\Phi g(x) :=

\int 
\BbbS 1
g(\theta , x \cdot \theta )\Psi V\Phi 

(\theta )d\theta ,(4.5)

where \Psi V\Phi 
is defined as (with \lambda being a fixed value representing the range of data that is

smoothed)

\Psi V\Phi 
(\theta ) =

\left\{           
1 , \theta \in [ - \Phi ,\Phi ] \cup [\pi  - \Phi , \pi ) \cup [ - \pi , - \pi +\Phi ] ;

1 - | \theta |  - \Phi 
\lambda , \theta \in [ - \Phi  - \lambda , - \Phi ) \cup (\Phi ,\Phi + \lambda ] ;

1 - (\pi  - \Phi ) - | \theta | 
\lambda , \theta \in [\pi  - \Phi  - \lambda , \pi  - \Phi ) \cup ( - \pi +\Phi , - \pi +\Phi + \lambda ] ;

0 otherwise .

This modified back projection operator smooths the original characteristic function \scrX V\Phi 
that

appears in (4.1) to a piecewise linear function. We plot the values of \Psi V\Phi 
(\theta ) in Figure 3 forD
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Figure 3. Values of \Psi V\Phi (\theta ) (cf. (4.5)) with V\Phi = [ - \pi /6, \pi /6] and \lambda = \pi /6, where V\Phi is the range of angles
for that the projection data is available.

V\Phi = [ - \pi /6, \pi /6] and \lambda = \pi /6. The realization of \Psi V\Phi 
is achieved by a direct extension of

the measurement data.
To conclude, the index function for reconstructing f at the sampling point z reads now as

I\gamma h (z) =
\langle u\Phi s , \eta hz \rangle \gamma 
n(z)

with u\Phi s =
1

2
\widetilde R\ast 
\Phi Rf and n(z) =

\biggl\langle 
1

2
R\ast R(1\Omega ), \eta 

h
z

\biggr\rangle 
\gamma 

.(4.6)

We shall demonstrate the robustness of the DSM in this limited angle tomography numerically
in Example 5 of section 6.

Furthermore, our above discussion applies to the case that the measurement is in the fan
beam geometry when the range of measurement angles is limited. The proposed index function
can be employed after replacing u\Phi s in (4.6) by the back-projected data obtained from the fan
beam measurement.

We end this section with a discussion of the application of the DSM to a special inverse
problem of the exponential Radon transform. The exponential Radon transform appears in
the radionuclide imaging and can be regarded as a generalization of the Radon transform [37].

First, assuming f is smooth and compactly supported in \Omega , we denote T\mu f(\theta , t) and T \ast 
\nu g(x)

as

T\mu f(\theta , t) :=

\int 
\BbbR n

f(x)e\mu x\cdot \theta 
\bot 
\delta (t - x \cdot \theta )dx , T \ast 

\nu g(x) :=

\int 
Sn - 1

g(\theta , \theta \cdot x)e\nu x\cdot \theta \bot d\theta (4.7)

for x \in \BbbR n, \theta \in Sn - 1, and t \in \BbbR . We note that \theta \bot can be defined through a fixed rotation
rule, for instance, rotating \theta clockwise for \pi /2 in \BbbR 2. The Radon transform is a special case
of (4.7) with \mu = 0. With a change of variable, the measurement data after back projection
becomes

u\mu (x) := T \ast 
\mu T - \mu f(x) =

\int 
\BbbR n

\int 
Sn - 1

f(y)e\mu (y - x)\cdot \theta \bot \delta (y \cdot \theta  - x \cdot \theta )d\theta dy =

\int 
\BbbR n

f(y)
e\mu | x - y| 

| x - y| 
dy .

(4.8)
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1026 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

Considering a special case of the exponential Radon transform, that is, n = 3 and \mu = ik
with k > 0,

uik(x) = T \ast 
ikT - ikf(x) =

\int 
\Omega 
f(y)

eik| x - y| 

| x - y| 
dy = (f \ast \~G0)(x) ,(4.9)

where \~Gx satisfies (\Delta + k2) \~Gx = 4\pi \delta x. Hence, an inversion formula for the measurement is

f(x) = (4\pi ) - 1(\Delta + k2)uik(x) .(4.10)

We observe that, with the index function defined in (2.16), f(x) can be reconstructed by
employing \~I(x) = Ih\gamma (x) + k2uik(x) and all our early discussions could be extended to this
scenario.

5. Numerical implementations. In this section, we introduce some numerical implemen-
tations of the proposed DSM, especially the evaluation of the duality product (2.5) between
the measurement data and the probing function. With several strategies that are employed to
reduce the computational time of our method, we will compare the computational complexity
of DSM with the popular FBP method.

We first recall the definition of the index function in (2.16); since both ( - \Delta )\gamma \eta hz and f are
contained in L2(\BbbR n), the numerator of Ih\gamma (z) can be written as

\langle us, \eta hz \rangle \gamma = dn

\int 
\BbbR n

R\ast Rf(x)( - \Delta )\gamma \eta hz dx = dn

\int 
\BbbR n

\biggl[ \int 
\BbbS n - 1

Rf(\theta , x \cdot \theta )d\theta )
\biggr] 
( - \Delta )\gamma \eta hz (x)dx

= dn

\int 
\BbbS n - 1

\biggl[ \int 
\BbbR n

Rf(\theta , x \cdot \theta )( - \Delta )\gamma \eta hz (x)dx

\biggr] 
d\theta .(5.1)

Now we investigate more carefully the integration of the product between the Radon trans-
form of the target function f and the fractional Laplacian of the probing function in \BbbR n. We
first notice that if supp\{ f\} \subseteq \Omega \subseteq B(0, r2), then Rf(\theta , t) = 0 for | t| > r2. With this observa-
tion, we know the integral part with respect to \theta in (5.1) equals to\int 

\BbbR n

Rf(\theta , x \cdot \theta )( - \Delta )\gamma \eta hz (x)dx =

\int 
\BbbR 

\int 
x\cdot \theta =t

( - \Delta )\gamma \eta hz (x)Rf(\theta , t)dxdt(5.2)

=

\int 
| t| <r2

R(( - \Delta )\gamma \eta h0 )(\theta 0, t - z \cdot \theta )Rf(\theta , t)dt

=

\int 
| t| <r2

( - \Delta t - \tau )
\gamma R(\eta h0 )(\theta 0, t - \tau )Rf(\theta , t)dt

for a fixed angle \theta 0, where we have employed in the second equality of (5.2) the following
property regarding the Radon transform for an arbitrary radial function g0 \in L2(\BbbR n) that
satisfies g0(x) = g0(| x| ) and gz(x) = g(x - z):

R(gz)(\theta , t) = R(g0)(\theta 0, t - z \cdot \theta )

for a fixed angle \theta 0 and arbitrary angles \theta . The last equality in (5.2) holds due to the intertwin-
ing property between the fractional Laplacian and the Radon transform, which can be derived
through the Fourier slice theorem, i.e., \scrF t(Rf)(\theta , t) = \scrF (f)(t\theta ), and the representation of the
fractional Laplacian through a Fourier multiplier.
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For notational reasons, we defineH(\theta , \tau ) :=
\int 
| t| <r2

( - \Delta t - \tau )
\gamma R(\eta h0 )(\theta 0, t - \tau )Rf(\theta , t)dt. Then

(5.1) can be computed by

\langle us, \eta hz \rangle \gamma = dnR
\ast (H(\theta , \tau ))(z) .

To summarize, the implementation of the DSM for reconstructing the target function f
consists of the following steps:

\bullet In the off-line computation, for a set of discrete sampling point zj \in \Gamma z \subset \Omega \subseteq B(0, r2),
we take h = \mathrm{m}\mathrm{i}\mathrm{n}zi,zj\in \Gamma z | zi  - zj | . Then we choose a set of uniformly distributed points

\Gamma \tau = \{ \tau k =  - r2 + hk ; hk < 2r2 + h , k \in \BbbN \} \subset \BbbR 

and compute ( - \Delta \tau )
\gamma R(\eta h0 )(\theta 0, \tau k) with \theta 0 = 0 and \tau k \in \Gamma \tau \cup r2 + \Gamma \tau \cup  - r2 + \Gamma \tau .

Finally, for each sampling point zj , we compute n(zj) defined in (2.16).
\bullet Given the measurement data Rf(\theta i, tj) with measurement angles \theta i \in \Gamma \theta \subset \BbbS n - 1 and

discrete measurement points tj \in \Gamma t(\theta ) \subset I\theta \subset \BbbR defined by (2.2),
1. for each \theta i \in \Gamma \theta , \tau k \in \Gamma \tau , we compute

H(\theta i, \tau k) = h
\sum 
j

( - \Delta t - \tau )
\gamma R(\eta h0 )(\theta 0, tj  - \tau k)Rf(\theta i, tj) ;(5.3)

2. for each sampling point zj , we apply the back projection operator R\ast on
H(\theta i, \tau k) to obtain \langle us, \eta hzj \rangle \gamma . Then we divide it by n(zj) to obtain the in-
dex function Ih\gamma (zj) which recovers the target function f(zj).

Comparison between computational complexities of DSM and FBP. We now
recall the implementation of the FBP method, which applies the ramp filter composed with
a proper low pass filter on the t variable of Rf(\theta , t), and then back-projecting it to recover
f . In general, for the standard case that measurement points tj are uniformly distributed,
the step of filtering in an FBP reconstruction requires \scrO (N \mathrm{l}\mathrm{o}\mathrm{g}N) flops for N discretization
points. Considering the computational complexity of our DSM, except for the step of back
projection that we share with the FBP method, the method requires only two extra steps.
The first is to compute H(\theta , \tau ) with (5.3). In this step, we can observe that the matrix
representation of ( - \Delta t - \tau )

\gamma R(\eta h0 )(\theta 0, tj  - \tau k) is a Toeplitz matrix since the value of entries
only depends on tj  - \tau k. Hence, with the fast Fourier transform, the computation of (5.3)
costs \scrO (N \mathrm{l}\mathrm{o}\mathrm{g}N) flops. The second extra step required by DSM is to divide the duality
product by the normalization term n(zj) which only costs \scrO (N) flops. To conclude, the
overall computational complexity of the DSM is of the same order as the traditional FBP
method. However, as we shall observe from a series of numerical experiments in section 6,
DSM provides more robust and accurate reconstructions. We mention that the traditional
methods which yield reasonable reconstructions in those challenging situations have much
higher computational complexities; for instance, they often involve minimizing a functional
with certain regularization [16].

Comparison between DSM and methods with total variation regularization.
Another popular approach in solving Radon inverse problems is least-square minimization
with TV regularization. In particular, we think the proposed DSM and the minimizationD
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1028 YAT TIN CHOW, FUQUN HAN, AND JUN ZOU

approach with TV penalty may be better considered as two numerical methods that are suitable
for different purposes. First, the reconstruction with TV penalization should be much more
computationally intensive compared with the DSM, as one needs to minimize a nonlinear and
nonsmooth functional formed by a data-fitting term and a TV regularization. This is often
solved by an appropriate iterative method. This solution process is a global minimization and
appears hard to do in parallel.

In contrast, DSMs do not require any iterative procedure and can be implemented in a
highly parallel manner to further improve its efficiency as introduced earlier. Furthermore,
DSMs do not require any prior information that is usually key to the success of regularization
type methods.

Nevertheless, it would be interesting to combine the regularization type methods with
DSMs to further improve the reconstructions of DSMs. As we will see from numerical exper-
iments in section 6, even for the cases with very noisy or inadequate measurement data, the
reconstructions from DSM provide very good geometrical and physical approximations of the
unknown targets. Therefore, we may use the fast and robust reconstructions from DSM as a
reasonable initial guess for the regularization type methods; see the numerical Example 5 in
section 6.

6. Numerical experiments. A series of numerical experiments are carried out in this sec-
tion to illustrate the robustness and accuracy of the novel DSM for a number of representative
applications in two and three dimensions. For two-dimensional experiments, we take the sam-
pling domain \Omega = [ - 0.5, 0.5] \times [ - 0.5, 0.5], with the mesh size h = 5 \times 10 - 3. Detectors are
placed in parallel arrays and the angular increment is 0.25 degree except for Examples 3 and 5.

In the first five examples, the Radon transform of the target function f supported in \Omega is
available at a set of discrete angles \Gamma \theta , which are uniformly distributed in [ - \pi /2, \pi /2) (except
for Examples 4 and 5) and at discrete points \Gamma t(\theta ) \subset I\theta defined by (2.2). For each example, the
number of projection data collected equals to 284\times N\theta , where 284 \approx 200

\surd 
2 is the number of

data collected in each angle that is chosen to cover the convex hull of \Omega and N\theta represents the
number of projection angles. For a summary of discretization parameters, we refer to Table 1.
Two original images are examined, with the first one being an image containing four objects
with different shapes, and the second one being the classical head phantom image.

Additive Gaussian random noises are added to the Radon transform of f in all experiments:

Rfs(\theta , t) := Rfe(\theta , t) + \epsilon \delta , \theta \in \Gamma \theta , t \in \Gamma t(\theta ) ,(6.1)

where \epsilon is the standard normal distribution, Rfe is the exact data, and \delta = mean(Rfe) \times 
(noise level).

Table 1
Summary of discretization parameters in \BbbR 2 for Examples 1 to 5.

Domain of reconstruction (\Omega ) [ - 0.5, 0.5]\times [ - 0.5,\times 0.5]

Mesh size of discretization (h) 0.005

Number of discretization points (N) 40101 = (201)2

Number of projection angles (N\theta ) 10 \leq N\theta \leq 720

Number of projection data collected 284\times N\theta 

D
ow

nl
oa

de
d 

07
/1

9/
22

 to
 1

37
.1

89
.4

9.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DSM FOR THE INVERSION OF THE RADON TRANSFORM 1029

In each of the following examples, we first generate the exact measurement data Rfe(\theta , t)
and then impose the noise on the exact data as in (6.1) to obtain Rfs(\theta , t). Then the index
function (2.16) is evaluated with the basic computational strategies introduced in section 5. To
compare DSM with existing methods, we choose the FBP method with the Hamming filter for
reconstructing the images. This corresponds to adding the Hamming window on the classical
ramp filter.

To compare the numerical reconstruction qualities, we compute the mean square error
(MSE), L\infty -norm error (Err\infty ), peak signal to noise ratio (PSNR), and structural similarity
index (SSIM) of the reconstruction by different methods, respectively. We denote by Ir the
image reconstructed by the new DSM or the FBP method or the regularization type method,
and by IO the original image. We denote \mu r, \sigma r as the mean and the standard deviation of Ir,
and \sigma r,O as the covariance of Ir and IO. With the set of sampling points \{ zj\} 1\leq j\leq N = \Omega N \subset \Omega ,
we then define

MSE :=
1

N2

\sum 
zj\in \Omega N

| Ir(zj) - IO(zj)| 2 , Err\infty :=
\mathrm{m}\mathrm{a}\mathrm{x}zj\in \Omega N \{ | Ir(zj) - IO(zj)| \} 

\mathrm{m}\mathrm{a}\mathrm{x}zj\in \Omega N \{ | IO(zj)| \} 
,(6.2)

PSNR := 10 \mathrm{l}\mathrm{o}\mathrm{g}10

\biggl( 
1

MSE

\biggr) 
, SSIM :=

(2\mu r\mu O + c1)(2\sigma r,O + c2)

(\mu 2r + \mu 2O + c1)(\sigma 2r + \sigma 2O + c2)
,

where c1 = 0.012 and c2 = 0.032 are constants to avoid instability in computations. We remark
that a better reconstruction is expected to have smaller MSE, Err\infty and larger PSNR, SSIM.
Moreover, we also report the CPU times in seconds for executing numerical algorithms on
an AMD Ryzen 7 4800HS CPU in MATLAB R2020B to compare the efficiency of different
reconstruction methods.

To fairly compare the reconstruction quality of DSM, FBP, and the regularization type
method, we plot the normalized index function \~Ir(z) for each reconstruction that is defined to
be \~Ir(z) = Ir(z)/\mathrm{m}\mathrm{a}\mathrm{x}y\in \Omega N | Ir(y)| . In all figures, images in the same row are generated with
the same measurement data to demonstrate certain numerical phenomena; plots with subtitles
DSM, FBP, TV, and f(x) are the reconstructions by DSM, FBP, the least-square method with
TV, and the original image being recovered.

Example 1. We examine in this example the influence of the Sobolev scale \gamma (cf. (2.5)) and
parameter \alpha (cf. (2.8)) on the reconstruction to validate our previous theoretical predictions
and also to provide some important practical guidance on their choice for the subsequent
examples. Reconstructions by DSM (with \gamma = 0.3, 0.4, 0.5, 0.6) and reconstructions by DSM
(with \alpha = 3, 4, 5) are shown in Figure 4.

We compute the four images in the first row of Figure 4 with the same measurement data
under different choices of \gamma = 0.3, 0.4, 0.5, and 0.6 with \alpha = 3 and 20\% additive Gaussian
noise. We may observe that the reconstruction is sharper but less stable as \gamma increases.
Denoting MSE\gamma =\lambda as the MSE of the reconstruction by DSM with \gamma = \lambda as in (6.2), then the
corresponding reconstruction errors are given by

MSE\gamma =0.3 = 0.171 , MSE\gamma =0.4 = 0.135 , MSE\gamma =0.5 = 0.153 , MSE\gamma =0.6 = 0.342 .

The above numerical results follow from our previous theoretical conclusions at the end of
section 3.4 that we expect a smaller \gamma will provide more stable reconstruction results withD
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(a) DSM: \gamma = 0.3
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(b) DSM: \gamma = 0.4
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(c) DSM: \gamma = 0.5
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(d) DSM: \gamma = 0.6
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(e) DSM: \alpha = 3
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(f) DSM: \alpha = 4
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(g) DSM: \alpha = 5
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Figure 4. Example 1. Influence of choices of \gamma and \alpha : reconstruction by DSM under 20\% additive Gaussian
noise and \alpha = 3 with \gamma = 0.3, 0.4, 0.5, and 0.6 (first row); reconstruction by DSM under 30\% additive Gaussian
noise and \gamma = 0.4 with \alpha = 3, 4, 5 and the original image (second row).

noisy measurement data, i.e., comparing \gamma = 0.4, 0.5, and 0.6, but at the same time, the
reconstruction is not accurate enough for \gamma that is too small, i.e., comparing \gamma = 0.3 and
0.4. Hence, for the following examples, we will mainly employ \gamma = 0.4 to enhance both
the numerical stability and the accuracy of the reconstruction. Moreover, to illustrate the
feasibility of the proposed DSM with other choices of \gamma , we also employ \gamma = 0.55 in the second
case of Example 2 to demonstrate that our method performs stably for a wide range of \gamma 
due to the choice of the probing function which serves as a low pass filter as we discussed in
section 3.3.

Next, we would like to justify our preference of choosing \alpha = n + 1 (\alpha = 3 in \BbbR 2) for
reconstruction. We compute the first three images in the second row with the same measure-
ment data under different choices of \alpha = 3, 4, and 5 with \gamma = 0.4 and 30\% additive Gaussian
noise. Denoting MSE\alpha =\lambda as the MSE of the reconstruction with \alpha = \lambda , then the corresponding
reconstruction errors are given by

MSE\alpha =3 = 0.151 , MSE\alpha =4 = 0.173 , MSE\alpha =5 = 0.189.

We observe that the reconstruction becomes less accurate as \alpha becomes larger under high level
Gaussian noise. The above observation echoes with the analysis in section 3.2. This suggests
the choice of \alpha = 3 in most real applications, namely, \alpha = n+1 in \BbbR n as justified in section 3.2.

Example 2. This example involves additive Gaussian noise in the data. The reconstructions
by DSM (with \gamma = 0.4 in the first row and with \gamma = 0.55 in the second row) and FBP are
shown in Figure 5. The corresponding indicators measuring reconstruction qualities are listed
in the tablesD
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(a) DSM: \gamma = 0.4
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(b) FBP
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(c) f(x)
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(d) DSM: \gamma = 0.55
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(e) FBP
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Figure 5. Example 2. Under additive Gaussian noise: 20\%.

Method MSE Err\infty PSNR SSIM CPU time (s)
DSM 0.234 0.188 18.774 0.293 0.075
FBP 0.274 0.210 17.4111 0.223 0.103

for the reconstructions with the noise level being 20% (the first row of Figure 5) and

Method MSE Err\infty PSNR SSIM CPU time (s)
DSM 0.135 0.139 21.948 0.486 0.136
FBP 0.293 0.248 15.237 0.086 0.366

for the reconstructions with the noise level being 20% (the second row of Figure 5).
From the numerical reconstructions, we can observe that the DSM is very robust against

strong Gaussian noise in the measurement data. And based on the L2-norm error and the
L\infty -norm error of the reconstruction, we can see that the DSM performs obviously better than
FBP.

Example 3. This example studies a relatively challenging case with a limited number of
projection angles in \Gamma \theta , sparsely distributed over [ - \pi /2, \pi /2). The reconstructions by DSM
(with \gamma = 0.4) and FBP are shown in Figure 6. The corresponding indicators measuring
reconstruction qualities are listed in the tables

Method MSE Err\infty PSNR SSIM CPU time (s)
DSM 0.166 0.219 20.169 0.298 0.008
FBP 0.473 0.701 11.076 0.048 0.008

for the reconstruction with projections from 18 angles (the first row of Figure 6) and
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(a) DSM: \gamma = 0.4
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(b) FBP
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(d) DSM: \gamma = 0.4
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(e) FBP
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Figure 6. Example 3. Sparse measurements with 5\% additive Gaussian noise.

Method MSE Err\infty PSNR SSIM CPU time (s)
DSM 0.213 0.235 17.987 0.199 0.008
FBP 0.663 0.857 8.136 0.029 0.005

for the reconstruction with projections from 10 angles (the second row of Figure 6).
As we may see from the reconstructions, the DSM demonstrates its strong robustness in this

highly ill-posed scenario especially with respect to the L\infty -norm error of the reconstruction.
Moreover, for reconstructions in the second row with projections only from 10 directions, DSM
still allows us to identify the shape and the location of objects in a reasonable manner, while
it is difficult to obtain useful information from the reconstruction by the FBP method. This
shows the great potential of the DSM in real applications when projection angles are very
sparsely distributed.

Example 4. In this example, we consider the projection angles limited to a specific range as
in section 4. The back projection operator needed in both the DSM and FBP reconstructions
takes the form (4.5) with \lambda = \pi /18. The reconstructions by DSM (with \gamma = 0.4) and FBP are
shown in Figure 7. The corresponding indicators measuring reconstruction qualities are listed
in the tables

Method MSE Err\infty PSNR SSIM CPU time (s)
DSM 0.179 0.174 19.525 0.643 0.063
FBP 0.270 0.232 15.939 0.142 0.065

for the reconstruction with \Phi = \pi /3 (the first row of Figure 7) and

Method MSE Err\infty PSNR SSIM CPU time (s)
DSM 0.217 0.213 17.836 0.552 0.043
FBP 0.350 0.328 13.699 0.100 0.061

for the reconstruction with \Phi = 2\pi /9 (the second row of Figure 7).
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(a) DSM: \gamma = 0.4
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(b) FBP
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(c) f(x)
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(d) DSM: \gamma = 0.4
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(e) FBP
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Figure 7. Example 4. Limited angle tomography, with 10\% additive Gaussian noise: reconstructions with
\Phi = \pi /3 (first row) and \Phi = 2\pi /9 (second row).

As we may see from the numerical reconstructions, especially from the second case where
the projections are restricted only on a very narrow range with \Phi = 2\pi /9, the DSM performs
obviously better than FBP, based on the MSE and the L\infty -norm error of the reconstruction.
As we can see from Figure 7(a), the shape of objects is recovered more accurately compared
with FBP.

Example 5. In this example, we consider the comparison and the combination of the novel
DSM with least-square methods with TV regularization for the sparse tomography and lim-
ited angle tomography with 5\% additive Gaussian noise. In particular, we are interested in
the speed-up of the convergence of the minimization of the target functional if we use the
reconstruction by DSM as an initial guess for the minimization process. The functional to be
minimized is of the form | | RITV  - Rf | | 22/2+\alpha 

\int 
\Omega | \nabla ITV | dx, where Rf is the noisy measurement

data, ITV is the reconstruction, and \alpha is the TV regularization parameter. To minimize the
target functional, we follow the practical implementation of the Nesterov’s optimal first order
method in [20] and choose \alpha = 50 to reconstruct the piecewise constant original image more
efficiently. The iteration terminates when the norm of an approximate gradient map is smaller
than 10 - 2; we refer to [20] for more details and report the number of iterations required in the
following table when the TV approach is employed.

From left to right, the reconstructions by DSM (with \gamma = 0.4), FBP, least-square method
with TV regularization (but with the reconstruction by DSM as the initial guess), and R\ast Rf
(unfiltered backprojection) that is a common choice in practice as the initial guess are shown
in Figure 8, respectively. The corresponding indicators measuring reconstruction qualities of
different methods and the number of iterations required for the minimization are listed in the
tables
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(a) DSM: \gamma = 0.4.
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(b) FBP.
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(c) TV + DSM.
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(d) TV + R\ast Rf .
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(e) DSM: \gamma = 0.4.
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(f) FBP.
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(g) TV + DSM.
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(h) TV + R\ast Rf .

Figure 8. Example 5. Reconstruction with 5\% additive Gaussian noise for sparse tomography (first row)
and limited angle tomography (second row).

Method MSE Err\infty PSNR SSIM CPU time (s) Iterations
DSM 0.152 0.162 21.205 0.464 0.015 /
FBP 0.334 0.452 14.350 0.060 0.016 /

TV + DSM 0.044 0.071 32.045 0.936 1.462 43
TV + R\ast Rf 0.047 0.073 31.324 0.911 2.486 83

for the reconstruction with projections from 36 angles uniformly distributed in ( - \pi , \pi ] (the
first row of Figure 8) and

Method MSE Err\infty PSNR SSIM CPU time (s) Iterations
DSM 0.186 0.182 19.434 0.743 0.036 /
FBP 0.282 0.269 15.842 0.228 0.054 /

TV + DSM 0.065 0.092 28.587 0.869 17.013 103
TV + R\ast Rf 0.072 0.106 27.633 0.825 29.240 191

for the reconstruction with projection angles uniformly distributed in [ - \pi /3, \pi /3] (the second
row of Figure 8).

Comparing the reconstructions by DSM and FBP, we see that DSM demonstrates its
strong robustness through accurate reconstruction results in the above two scenarios which
are consistent with our previous observations. Moreover, it is evident that the direct type
methods, i.e., DSM and FBP, are much faster compared with iterative methods regarding the
CPU times of reconstruction that can be found in the sixth column of the above table.

By comparing the number of iterations required by minimizing the target functional (with
the initial guesses provided by the common choice R\ast Rf and the proposed DSM), we can
further observe that the novel DSM helps reduce the number of iterations needed significantly
for more than 45\%. Hence, the application of DSM as an initial guess for minimizing the
least-square functional with TV is attractive in practice.D
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(a) DSM: \alpha = 4, \gamma = 0.9. (b) FBP. (c) f(x).

Figure 9. Example 6. Reconstruction in \BbbR 3, with 1\% additive Gaussian noise.

Example 6. In this example, we consider a three-dimensional reconstruction. The recon-
struction by DSM (with \alpha = 4, \gamma = 0.9) and the FBP method under 1\% Gaussian noise are
shown in Figure 9, with the mesh size h = 10 - 2. For this example, the measurement data
is available for 900 discrete angles \Gamma \theta \subset \BbbS 2 and discrete measurement points \Gamma t(\theta ) \subset I\theta as
defined in (2.2). We point out that the distribution of measurement angles in this example is
relatively sparse considering the difficulty of the three-dimensional reconstruction. The three
objects are one rectangular box and two balls located in \Omega = [ - 0.5, 0.5]3 as illustrated in
Figure 9(a). The target function f(x) = 0.5 if x lies in these three objects and f(x) = 0.3
otherwise. The corresponding reconstruction errors are given respectively by

Method MSE Err\infty PSNR SSIM CPU time (s)
DSM 0.086 0.414 31.696 0.847 3.844
FBP 0.148 0.840 27.005 0.641 3.719

To better illustrate reconstruction results, in Figure 9, supposing Ir as the reconstructed image
by the DSM or the FBP, we set Ir(z) = 0 if | Ir(z)| < 0.4 and Ir(z) = 1 if | Ir(z)| \geq 0.4 for
z \in \Omega to represent the support of objects reconstructed. From Figure 9(a), we see that DSM
can recover the basic shape, size, and position of the three objects quite reasonably, with
three objects well separated, especially the two balls that are rather close to each other. The
reconstruction by the FBP method in Figure 9(b) generates many improper noisy points in the
whole sampling domain. This example demonstrates the accuracy of DSM in reconstructing
the support of objects in \BbbR 3 with noisy measurement data.

7. Concluding remarks. We have proposed a novel stable and fast DSM for the inversion
of the Radon transform that can be implemented in a completely parallel manner, which is
severely ill-posed when the measurement data is noisy and very limited as it appears frequently
in real applications.

The DSM leverages on an important almost orthogonality property under a fractional
order duality product. A family of probing functions is constructed by modifying the Green’s
function associated with a related fractional Laplacian. As a result of the choices of the
appropriate duality product space and probing functions, the novel DSM can generate fast and
satisfactory reconstruction results in challenging cases when the measurement data is highly
noisy and limited. So DSM may have good potential applications in many real scenarios, such
as security scanning, cancer detection, portable CT scanners, and so on.D
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Along this research direction, there are several important topics that are worth exploring
in the future. For instance, a more systematic derivation and optimal choice of other effective
probing functions are very interesting and can provide more concrete guidance in practice
when DSM is applied. Moreover, the validation of the DSM for the sparse tomography and
the limited angle tomography are also very important due to the wide applications of these
imaging techniques. From our analyses in this work, it is feasible to generalize direct sampling
type methods to many other tomography problems, for instance, the general exponential Radon
transform, cone-beam CT, the geodesic Radon transform, and so on. In the meantime, the
generalization should preserve nice features similar to the ones of DSM in this work.

Appendix A. Choice of the smooth extension function \bfitpsi \bfitn +\bfone in (2.8). In this appendix,
we shall present our choice of the smooth extension function \psi n+1 in the definition of the
auxiliary function \zeta hn+1 (2.7) which is further employed to define the crucial probing function
in (2.8). We shall point out that the smooth extension function for other choices \alpha in (2.7)
can be constructed similarly.

We notice that, to allow \zeta hn+1 to possess desired properties stated in (2.7), it is sufficient
to require \psi n+1 : [0, h] \rightarrow \BbbR to satisfy

\psi n+1 \in C2,1
\bigl( 
[0, h]

\bigr) 
;

\left\{     
\psi n+1(h) = h - n - 1 ,

\psi \prime 
n+1(h) =  - (n+ 1)h - n - 2 ,

\psi \prime \prime 
n+1(h) = (n+ 1)(n+ 2)h - n - 3 ;

\left\{     
\psi n+1(0) = h - n ,

\psi \prime 
n+1(0) = 0 ,

\psi \prime \prime 
n+1(0) = 0 ;

(A.1)

and for B(0, h) \subset \BbbR n and h < 1,\int 
B(0,h)

| \psi n+1(| x| ) - h - n - 1| dx \leq h .(A.2)

Our choice of \psi n+1(t) is to construct a polynomial that matches desired boundary con-
ditions when t = h and t = 0 in (A.1), and then we restrict the support of the function
\psi n+1(t)  - h - n - 1 to meet the requirement (A.2). For simplicity, we write k = n + 1 and
b = h - h2/n, then \psi k(t) is defined as

\psi k(t) :=
1

hk

\biggl[ 
1 +

\biggl( 
k2 + k

2h4
+

4k

h5

\biggr) 
(t - b)3  - 1

h2

\biggl( 
k2 + k

h4
+

7k

h5

\biggr) 
(t - b)4(A.3)

+
1

h4

\biggl( 
k2 + k

2h4
+

3k

h5

\biggr) 
(t - b)5

\biggr] 
for t \in [b, h], and \psi k(t) := 0 for t \in [0, b) .

Therefore, the first and second order derivatives of \psi k(t) for t \in [b, h] are

\psi \prime 
k(t) =

1

hk

\biggl[ 
3

\biggl( 
k2 + k

2h4
+

4k

h5

\biggr) 
(t - b)2  - 4

h2

\biggl( 
k2 + k

h4
+

7k

h5

\biggr) 
(t - b)3 +

5

h4

\biggl( 
k2 + k

2h4
+

3k

h5

\biggr) 
(t - b)4

\biggr] 
,

\psi \prime \prime 
k (t) =

1

hk

\biggl[ 
6

\biggl( 
k2 + k

2h4
+

4k

h5

\biggr) 
(t - b) - 12

h2

\biggl( 
k2 + k

h4
+

7k

h5

\biggr) 
(t - b)2 +

20

h4

\biggl( 
k2 + k

2h4
+

3k

h5

\biggr) 
(t - b)3

\biggr] 
.

In this case, it is straightforward to verify that \psi k(t) satisfies (A.1).D
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To show that the condition (A.2) is satisfied by \psi k, we first notice, for t \in [b, h], \psi k(t) - h - k

equals to

\psi k(t) - 
1

hk
=
(t - b)3

hk

\biggl( 
t - b

h
 - 1

\biggr) \biggl[ \biggl( 
k2 + k

2h4
+

3k

h5

\biggr) \biggl( 
t - b

h

\biggr) 
 - 
\biggl( 
k2 + k

2h4
+

4k

h5

\biggr) \biggr] 
.

The above shows \psi k(t)  - h - k > 0 for t \in [0, h]. We now integrate \psi k(| x| )  - h - k directly by
replacing t - b by \tau :\int 

B(0,h)

\bigm| \bigm| \bigm| \bigm| \psi k(| x| ) - 
1

hk

\bigm| \bigm| \bigm| \bigm| dx= | Sn - 1| 
\int h

h - h2

n

tn - 1 (t - b)3

hk

\biggl( 
t - b

h
 - 1

\biggr) \biggl[ \biggl( 
k2 + k

2h4
+
3k

h5

\biggr) \biggl( 
t - b

h

\biggr) 
 - 
\biggl( 
k2 + k

2h4
+
4k

h5

\biggr) \biggr] 
dt

=
| Sn - 1| 
hk+2

\int h2

n

0

(\tau + h - h2

n
)n - 1\tau 3(\tau  - h)

\biggl[ \biggl( 
k2 + k

2h4
+

3k

h5

\biggr) 
\tau  - 

\biggl( 
k2 + k

2h4
+

4k

h5

\biggr) 
h

\biggr] 
d\tau .

As h < 1, for n = 2, we have\int 
B(0,h)

\bigm| \bigm| \bigm| \bigm| \psi k(| x| ) - 
1

hk

\bigm| \bigm| \bigm| \bigm| dx= h\pi 

13440
( - 30h4 + 473h3  - 294h2  - 3612h+ 5040)<

h\pi 

13340
(473 + 5040)<h;

and for n = 3, we have\int 
B(0,h)

\bigm| \bigm| \bigm| \bigm| \psi k(| x| ) - 
1

hk

\bigm| \bigm| \bigm| \bigm| dx =
h\pi 

688905
(25h5  - 810h4 + 10914h3  - 41076h2 + 3402h+ 136080)

\leq h\pi 

688905
(25 + 10914 + 3402 + 136080) < h .

We have verified that our choice of \psi n+1(t) in (A.3) satisfies the requirements (A.1) and (A.2)
which are a proper candidate to be employed in the numerical computation.
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