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Abstract

Based on a new a posteriori error estimator, an adaptive finite element method is proposed for
recovering the Robin coefficient involved in a diffusion system from some boundary measurement.
The a posteriori error estimator can not be derived for this ill-posed nonlinear inverse problem
as it was done for the existing a posteriori error estimators for direct problems. Instead, we shall
derive the a posteriori error estimator from our convergence analysis of the adaptive algorithm. We
prove that the adaptive algorithm guarantees a convergent subsequence of discrete solutions in an
energy norm to some exact triplet (the Robin coefficient, state and costate variables) determined
by the optimality system of the least-squares formulation with Tikhonov regularization for the
concerned inverse problem. Some numerical results are also reported to illustrate the performance
of the algorithm.
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1 Introduction

This work is concerned with estimation of the Robin coefficient associated with a diffusion equa-
tion. This is a severely ill-posed nonlinear inverse problem. To describe the inverse problem, we let
Ω ⊂ Rd (d = 2, 3) be an open bounded polyhedral domain, with its boundary Γ made up of two
connected disjoint open subsets satisfying Γa ∪ Γi = Γ, both of which are a union of some (d − 1)-
dimensional polyhedral domains. The governing system of our interest is the diffusion equation:

−∇ · (α∇u) = f in Ω, (1.1)

α
∂u

∂n
= q on Γa ; α

∂u

∂n
+ γu = 0 on Γi, (1.2)

where f ∈ L2(Ω), coefficient α is assumed to be piecewisely W 1,∞ such that 0 < α1 ≤ α ≤ α2 a.e.
in Ω for two positive constants α1 and α2, n is the unit outward normal on Γ. In addition, q is a
prescribed flux in L2(Γa), and γ is the Robin coefficient belonging to the admissible set

A = {γ ∈ L∞(Γi) : c0 ≤ γ ≤ c1 a.e. on Γi}

with c0 and c1 being two given positive constants.
The Robin boundary condition in (1.2) is encountered in many industrial applications, such as

convection between the conducting body and the ambient environment in heat transfer [46], damage
in corrosion detection [29] [32] and the metal-to-silicon contact in semiconductor device [8] [18], where
the Robin coefficient represents the material profile on part of the boundary. As collecting accurate
values of this coefficient is very expensive and difficult experimentally [46], some non-destructive
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methods involving boundary or internal measurements are used in engineering [14] [37], which leads
to the inverse problem of our interest: determine the Robin coefficient γ with partial measurement
data g of u on the accessible boundary Γa. Both identifiability and stability of this inverse problem
have been investigated intensively [11] [12] [13] [20] [29].

In terms of numerical methods, there have been various techniques applied to the least-squares
formulation with (1.1)-(1.2) as a constraint. This is a commonly used approach to deal with an
inverse problem when measurement errors are present. The existing studies include the boundary
integral method [19] [35], and the finite element methods [30] [31]. Despite these efforts, it is still chal-
lenging to numerically estimate the Robin coefficient accurately and efficiently in a PDE-constrained
optimization problem, particularly in the presence of discontinuity of the unknown Robin coefficient
and the non-smooth boundaries. To resolve this difficulty, we propose in this work an adaptive fi-
nite element method (AFEM) for the inverse problem, in a hope that AFEM can achieve a desired
accuracy for the numerical reconstruction with minimum degrees of freedom.

In practical computations, AFEM generates a sequence of nested triangulations and discrete
solutions by successive loops:

SOLVE→ ESTIMATE→ MARK→ REFINE. (1.3)

This procedure is mainly driven by the module ESTIMATE consisting of a posteriori error estima-
tion, i.e., some computable quantities formed by the discrete solution, the local mesh size and the
given data. This field has been explored extensively for finite element approximations of direct par-
tial differential equations and the relevant theory is well understood for elliptic problems; see the
monographs [1] [45] and the references therein. Over the past decade, there have also been great
developments in the a posteriori error analysis for PDE-constrained optimal control problems; see
[3] [27] [28] [34] [36]. Compared with optimal control problems, inverse problems are quite different
in nature due to their severe instability with respect to the noise in the data. Several efforts have
already been made in the direction; see e.g. [2] [4] [5] [21] [33].

Another crucial issue regarding AFEM is its convergence, does the iteration (1.3) ensure the
convergence of the resulting approximate solutions ? This issue has been investigated intensively
for second order linear boundary value problems (see [7] [9] [38] [41] [42]), and for some nonlinear
equations (see [6] [16] [22] [24] [25]). On the contrary, little has been done for inverse problems in this
direction. The only related work is the one in [26] for a PDE-constrained optimal control problem,
which studied the asymptotic error reduction property of an adaptive finite element approximation
for the distributed control problems. The adaptive algorithm in [26] requires one extra step for some
oscillation terms in the module MARK and the interior node property in the module REFINE. To the
best of our knowledge, our earlier work [47] seems to be the only one that studies the convergence of
an AFEM for an inverse problem. In [47], we considered the numerical reconstruction of distributed
fluxes by an adaptive finite element method of the form (1.3) with the error estimator from [33]
involved in ESTIMATE and several practical marking strategies adopted in MARK. Then it was
proved that as the loop (1.3) proceeds, the sequence of discrete solutions generated by the adaptive
algorithm converges to the exact solution in some norm and the error estimator also goes to zero.
Unlike [26], the AFEM in [47] does not require the extra step for some oscillation terms in the module
MARK and the interior node property in the module REFINE.

In this paper, we shall make a first effort to analyze the convergence of an adaptive finite element
method for a nonlinear inverse problem, i.e., estimation of the Robin coefficient associated with
(1.1)-(1.2) from partial measurements on the accessible boundary Γa. To be more precise, we will
demonstrate that the sequence of discrete solutions produced by an adaptive algorithm of the form
(1.3) has a subsequence converging in some appropriate norm to an exact solution to the Robin
inverse problem. Though the analysis on the current nonlinear ill-posed inverse problem is much
more technical and difficult than the ones for direct problems, we can still manage to establish an
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AFEM here that is of the same effective framework as the standard one for direct elliptic problems
(cf. [9] [39]), that is, no oscillation terms is involved in the module MARK and no interior node
property is enforced in the module REFINE, therefore it is most favorable to practical computation.
A unique feature of our analysis here is its derivation of the a posteriori error estimator. The existing
approaches for direct partial differential equations and PDE-constrained optimal control problems
fail for the current variational formulation associated with the Robin inverse problem due to the
intrinsic nature in its severe ill-posedness and strong nonlinearity. Instead, we shall derive the a
posteriori error estimator for the state, the costate and the Robin coefficient in the process of the
convergence analysis for the new adaptive algorithm (see section 5).

In analyzing nearly all the existing adaptive algorithms that are based on a posteriori error
estimator, a general procedure consists of three steps. The first step is to derive an error estimator
that provides an upper and lower bound of the error between the exact solution and the finite element
solution; The second step is to formulate an adaptive algorithm of the form (1.3) based on the a
posteriori error estimator; The last step is to establish the convergence of the adaptive algorithm.
Unfortunately the existing approaches to establish error estimators for direct problems (see, e.g., [1]
[45]) or for inverse problems (see, e.g., [21] [33] [47]) do not work for our current nonlinear inverse
problem. On one hand, the least-square functional for the Robin inverse problem is non-convex
so that we can not deal with it like [21] [33] [47] or [34] [36]. On the other hand, the Galerkin
orthogonality is an essential property in a posteriori error analysis for direct problems, but it fails
now as the optimality conditions contain a variational inequality associated with the Robin coefficient.

Because of the reasons above, we plan to consider the convergence directly by showing some
limiting solution given by a successive iteration of the process (1.3) is an exact solution and derive
some computable quantities during the convergence analysis, and these quantities are used as the
error estimator in an adaptive algorithm. Moreover, this estimator is sufficient to guarantee the
convergence of the resulting adaptive algorithm. This is one of the major novelties of the work,
and it seems to be the first time to establish a posteriori error estimates from the perspective of
convergence analysis. And we think this approach works for other nonlinear inverse problems as
well.

Even though some of our arguments in convergence analysis follow partial existing principles
(cf. [22] [23] [24] [38] [41]), there are several new yet essential difficulties and technical differences due
to the strong nonlinearity of the inverse problem.

• The problems in [22] [23] [24] [38] [41] are all in the form of variational equations. However, the
formulation of the Robin inverse problem in this work is a nonlinear constrained optimization
problem, whose optimal conditions couple the state, the costate and the Robin coefficient
(control) in a saddle-point system, including a variational inequality.

• To prove strong convergence of a subsequence of discrete solutions by the adaptive process
(1.3) to some minimizer to a limiting optimization problem we utilize some techniques from
nonlinear optimization, while the result for linear boundary value problems may be established
by the standard finite element convergence theory (see, e.g., [38] [41]).

• To assert the limiting triplet (state, costate and control) is also an exact solution, we prove
that it also satisfies the saddle-point system for the corresponding continuous optimization
problem as in [22] for an eigenvalue problem and [24] for a quasi-linear elliptic equation. But
unlike the existing works, the optimality conditions in the current situation include a variational
inequality, so we have to first establish the convergence of a subsequence of the error indicators
deduced from the relevant discrete inequality residuals of the adaptive discrete triplets and
then come to our conclusion by some density argument.

We shall establish our convergence results in two steps. First, the sequence of discrete triplets
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(the approximate state, costate and Robin coefficient) produced by the adaptive algorithm is proved
to contain a subsequence that converges strongly to some limiting triplet. It this step, we need to
handle a nonlinear optimization problem with the system (1.1)-(1.2) as a constraint; see section 4. The
second step is to prove that the limiting triplet satisfies the saddle-point system of the Robin inverse
problem, which in turn leads to the desired result. Here we consider and study limiting behaviors
of residuals with respect to the approximate state, costate and Robin coefficient; see section 5. It is
noted that an a posteriori error estimator to drive an adaptive process (1.3) for the Robin inverse
problem is obtained simultaneously.

The rest of this paper is organized as follows. In section 2, we give a description of the Robin
inverse problem in a variational formulation and its finite element method. A standard adaptive
algorithm based on an a posteriori error estimator is introduced in section 3 and it is proved to
generate a sequence of discrete triplets strongly converging to some limiting triplet in section 4.
Section 5 is devoted to the main result and the derivation of the error estimator. Two numerical
examples for the algorithm are presented in section 6. Finally, some concluding remarks are provided
in section 7.

Throughout the paper we adopt the standard notation for the Lebesgue space Lp(G) and the
Sobolev space Wm,p(G) as well as Hm(G) (p = 2) for integer m ≥ 0 on an open bounded domain
G ⊂ Rd. Related norms and semi-norms of Wm,p(G), Hm(G) and the norm of Lp(G) are denoted by
‖ · ‖m,p,G, ‖ · ‖m,G, | · |m,G and ‖ · ‖Lp(G) respectively. We use (·, ·)G to denote the L2 scalar product on
a domain G ⊂ Ω̄. The subscript is omitted when G = Ω. Moreover, we shall use C, with or without
subscript, for a generic constant independent of the mesh size and it may take a different value at
each occurrence.

2 Mathematical formulation

The Robin inverse problem of our interest is severely ill-posed [30] [31]. For a stable estimation
of the Robin coefficient, we shall reformulate it as the following constrained optimization problem
with the Tikhonov regularization:

inf
γ∈A
J (γ) =

1

2
‖u(γ)− g‖20,Γa

+
β

2
‖γ‖20,Γi

, (2.1)

where β > 0 is a regularization parameter, and u := u(γ) ∈ H1(Ω) solves the variational formulation
of (1.1)-(1.2):

(α∇u,∇φ) + (γu, φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ H1(Ω) . (2.2)

There exists at least one minimizer to the problem (2.1)-(2.2) [31]. We note that over H1(Ω) the
norm (‖∇ · ‖20 + ‖ · ‖20,Γi

)1/2 is equivalent to the usual H1-norm due to the Poincaré inequality. For
efficient evaluation of the gradient in numerical simulation of the optimal problem (2.1) and (2.2), we
often introduce a costate p(γ) satisfying an adjoint problem for (1.1)-(1.2) with respect to u(γ)− g:

−∇ · (α∇p) = 0 in Ω,

α
∂p

∂n
= u(γ)− g on Γa; α

∂p

∂n
+ γp = 0 on Γi.

With the help of this adjoint system, the Gâteaux derivative of J (γ) at γ ∈ A in the direction
λ ∈ L∞(Γi) can be represented by (cf. [31])

J ′(γ)[λ] = (βγ − u(γ)p(γ), λ)Γi .
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Now with the above preparations and the introduction of a costate p∗(γ∗) ∈ H1(Ω), the minimizer
(γ∗, u∗(γ∗)) to the problem (2.1)-(2.2) is characterized by the following optimality conditions:

(α∇u∗,∇φ) + (γ∗u∗, φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ H1(Ω), (2.3)

(α∇p∗,∇v) + (γ∗p∗, v)Γi = (u∗ − g, v)Γa ∀ v ∈ H1(Ω), (2.4)(
βγ∗ − u∗(γ∗)p∗(γ∗), λ− γ∗

)
Γi
≥ 0 ∀ λ ∈ A . (2.5)

We note that the equation (2.3) is the constraint (2.2) for u∗ and the equation (2.4) is the variational
formulation of the adjoint problem for (1.1)-(1.2) with respect to u∗−g. Using the Gâteaux derivative
of J (γ) at γ∗, we find that the variational inequality (2.5) is a necessary condition for the minimizer
γ∗ to the problem (2.1) over a convex set A .

Next we introduce a finite element method to approximate the continuous optimization problem
(2.1)-(2.2). Let Th be a shape-regular conforming triangulation of Ω̄ into a set of disjoint closed
simplices with diameter hT := |T |1/d for each T ∈ Th such that the coefficient α is W 1,∞ in each
element. Let Vh be the usual H1-conforming linear element space over Th, Vh,Γi

:= Vh|Γi be the
restriction of Vh on Γi and Ah := Vh,Γi

⋂
A be the discrete admissible set. Then we approximate

the problem (2.1)-(2.2) by

min
γh∈Ah

J (γh) =
1

2
‖uh(γh)− g‖20,Γa

+
β

2
‖γh‖20,Γi

, (2.6)

where uh := uh(γh) ∈ Vh solves the discrete problem

(α∇uh,∇φh) + (γhuh, φh)Γi = (f, φh) + (q, φh)Γa ∀ φh ∈ Vh. (2.7)

As in the continuous case, there exists at least one minimizer to (2.6)-(2.7) [31], and the minimizer
γ∗h ∈ Ah, the discrete state and costate u∗h ∈ Vh and p∗h ∈ Vh satisfy the optimality conditions:

(α∇u∗h,∇φh) + (γ∗hu
∗
h, φh)Γi = (f, φh) + (q, φh)Γa ∀ φh ∈ Vh, (2.8)

(α∇p∗h,∇vh) + (γ∗hp
∗
h, vh)Γi = (u∗h − g, vh)Γa ∀ vh ∈ Vh, (2.9)(

βγ∗h − u∗h(γ∗h)p∗h(γ∗h), λh − γ∗h
)

Γi
≥ 0 ∀ λh ∈ Ah. (2.10)

We end this section with two uniformly stability estimates for finite element approximations uh
and (u∗h, p

∗
h), which are easily obtained from the problems (2.7), (2.8) and (2.9):

‖uh‖1 + ‖u∗h‖1 ≤ C(‖f‖0 + ‖q‖0,Γa), ‖p∗h‖1 ≤ C(‖f‖0 + ‖q‖0,Γa + ‖g‖0,Γa). (2.11)

3 Adaptive algorithm

In this section, we propose an adaptive finite element for the problem (2.3)-(2.5). For this purpose,
some more notation and definitions are needed.

The collection of all faces (resp. all interior faces) in Th is denoted by Fh (resp. Fh(Ω)) and its
restriction on Γa and Γi by Fh(Γa) and Fh(Γi) respectively. The scalar hF := |F |1/(d−1) stands for
the diameter of F ∈ Fh, which is associated with a fixed normal unit vector nF in the interior of
Ω and nF = n on the boundary Γ. We use DT (resp.DF ) for the union of all elements in Th with
non-empty intersection with element T ∈ Th (resp.F ∈ Fh). Furthermore, for any F ∈ Fh(Ω) (resp.
F ∈ Fh(Γa) ∪ Fh(Γi)) we denote by ωF the union of two elements in Th sharing the common face F
(resp. the element with F as a face).

For any (φh, vh, λh) ∈ Vh × Vh ×Ah, we define two element residuals for each T ∈ Th and three
face residuals for each face F ∈ Fh by

RT,1(φh) = f + ∇ · (α∇φh), RT,2(vh) = ∇ · (α∇vh),
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JF,1(φh, λh) =


[α∇φh · nF ] for F ∈ Fh(Ω),
−q + α∇φh · nF for F ∈ Fh(Γa),
λhφh + α∇φh · nF for F ∈ Fh(Γi),

JF,2(vh, φh, λh) =


[α∇vh · nF ] for F ∈ Fh(Ω),
α∇vh · nF − (φh − g) for F ∈ Fh(Γa),
λhvh + α∇vh · nF for F ∈ Fh(Γi),

and
JF,3(φh, vh, λh) = βλh − φhvh for F ∈ Fh(Γi),

where [α∇φh · nF ] and [α∇vh · nF ] are the jumps across F ∈ Fh(Ω). Then for any Sh ⊆ Fh, we
introduce the error estimator

η2
h(φh, vh, λh, f, q, g,Sh) + ξh(φh, vh, λh,Sh)

:=
∑
F∈Sh

η2
F,h(φh, vh, λh, f, q, g) +

∑
F∈Sh∩Fh(Γi)

ξF,h(φh, vh, λh)

:=
∑
F∈Sh

(η2
F,h,1(φh, λh, f, q) + η2

F,h,2(vh, φh, λh, g)) +
∑

F∈Sh∩Fh(Γi)

ξF,h(φh, vh, λh) (3.1)

with
η2
F,h,1(φh, λh, f, q) :=

∑
T∈ωF

h2
T ‖RT,1(φh)‖20,T + hF ‖JF,1(φh, λh)‖20,F ,

η2
F,h,2(vh, φh, λh, g) :=

∑
T∈ωF

h2
T ‖RT,2(φh)‖20,T + hF ‖JF,2(vh, φh, λh)‖20,F

and
ξF,h(φh, vh, λh) := h2

F ‖JF,3(φh, vh, λh)‖L1(F ).

When Sh = Fh, Sh will be dropped in the parameter list of the error estimator above.
Generally speaking, the error estimator is supposed to admit an upper bound of the error u∗−u∗h,

p∗ − p∗h and γ∗ − γ∗h in some norms as in the case of direct boundary value problems [45]. But in the
current situation, we are unable to achieve such a result directly due to the high nonlinearity of the
Robin inverse problem. Nevertheless, we shall utilize the estimator as an error measure in an adaptive
algorithm for the minimization problem (2.1)-(2.2) or the saddle-point system (2.3)-(2.5). As we shall
see in section 5, this measure will ensure the convergence of the resulting adaptive algorithm.

Now we are in a position to state the adaptive algorithm based on the above error estimator.
¿From now on we will write every dependence on triangulations by the number k of the mesh
refinements, and always use, unless specified otherwise, the pair (u∗k, γ

∗
k) for the minimizer of the

problem (2.6)-(2.7) with h replaced by k.

Algorithm 3.1. Given a conforming initial mesh T0. Set k := 0.

1. (SOLVE) Solve the discrete problem (2.6)-(2.7) on Tk for (u∗k, γ
∗
k) ∈ Vk ×Ak.

2. (ESTIMATE) Compute the error estimator ηk(u
∗
k, p
∗
k, γ
∗
k , f, q, g) + ξk(u

∗
k, p
∗
k, γ
∗
k) as defined in

(3.1).

3. (MARK) Mark a subset Sk ⊂ Fk containing at least one face F̃ in Fk with the largest error
indicator, i.e.,

η
F̃ ,k

(u∗k, p
∗
k, γ
∗
k , f, q, g) + ξ

F̃ ,k
(u∗k, p

∗
k, γ
∗
k) = max

F∈Fk

(ηF,k(u
∗
k, p
∗
k, γ
∗
k , f, q, g) + ξF,k(u

∗
k, p
∗
k, γ
∗
k)). (3.2)
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4. (REFINE) Refine each triangle T with at least one edge in Sk by bisection to get Tk+1.

5. Set k := k + 1 and go to Step 1.

At the end of this section, we state a stability estimate of local error indicators, which will be
used in convergence analysis in section 5.

Lemma 3.1. Let {(u∗k, p∗k, γ∗k)} be the sequence of discrete solutions given by Algorithm 3.1. Then
there holds for the error indicator ηF,k defined in (3.1) that

η2
F,k(u

∗
k, p
∗
k, γ
∗
k , f, q, g)

≤ C(‖u∗k‖21,ωF
+ ‖p∗k‖21,ωF

+ h2
F ‖f‖20,ωF

+ hF ‖g‖20,F∩Γa
+ hF ‖q‖20,F∩Γa

) ∀ F ∈ Fk . (3.3)

Proof. By the inverse estimate, local quasi-uniformity of Tk and the constraints of α and γ∗k , we get

η2
F,k,1(u∗k, γ

∗
k , q) ≤ C(max

T∈ωF

‖α‖21,∞,T ‖u∗k‖21,ωF
+ h2

F ‖f‖20,ωF
+ hF ‖q‖20,F∩Γa

),

η2
F,k,2(p∗k, u

∗
k, γ
∗
k , g) ≤ C(‖u∗k‖21,ωF

+ max
T∈ωF

‖α‖21,∞,T ‖p∗k‖21,ωF
+ hF ‖g‖20,F∩Γa

),

which, along with the definition (3.1), leads to the estimate (3.3).

Remark 3.1. One may notice that only a general principle is given for possible marking strategies to
be used in Step 3 of Algorithm 3.1. In fact, the condition (3.2) there can be easily fulfilled by some
commonly used marking strategies, such as the maximum strategy, the equidistribution strategy and
the modified equidistribution strategy. In addition, the bisection in the module REFINE divides a
given tetrahedron/triangle into two subtetrahedra/subtriangles of the same size such that the shape-
regularity of {Tk} holds uniformly [39] [44]. In other words, all constants in our subsequent estimates
depend only on the initial mesh and the given data.

4 Limiting behavior

In this section, we study the limiting behavior of the sequence {(u∗k, p∗k, γ∗k)} generated by Algo-
rithm 3.1. It is noted that all results in this section are independent of any specific marking strategy
in the module MARK. We start with a limiting space and a limiting admissible set

V∞ :=
⋃
k≥0

Vk (in H1-norm) and A∞ :=
⋃
k≥0

Ak (in L2(Γi)-norm),

where {Vk} and {Ak} are both induced by Algorithm 3.1. It is worth pointing out that V∞ and
A∞ are generally different from H1(Ω) and A respectively since the sequence of underlying meshes
is produced by the non-uniform refinement. To be precise, it is easy to check that V∞ is a closed
subspace of H1(Ω). For A∞, we have the following lemma.

Lemma 4.1. A∞ is a closed convex subset of A .

Proof. The strong closedness of A∞ comes directly from its definition. Now for any λ and µ in
A∞, there exist two sequences {λk} and {µk} ⊂

⋃
k≥0 Ak such that λk → λ and µk → µ in L2(Γi).

Therefore, noting the convexity of Ak, we have {tλk + (1− t)µk} ⊂
⋃
k≥0 Ak and tλk + (1− t)µk →

tλ + (1 − t)µ in L2(Γi) for any t ∈ [0, 1]. As a result, the convexity follows. Furthermore, we have
λk → λ a.e. on Γi after (possibly) passing to a subsequence, which, together with the constraint
c0 ≤ λk ≤ c1 on Γi, implies that c0 ≤ λ ≤ c1 a.e. on Γi. This proves that A∞ ⊂ A .
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Now we introduce a counterpart of the minimization problem (2.6)-(2.7) over A∞:

inf
γ∈A∞

J (γ) =
1

2
‖u∞(γ)− g‖20,Γa

+
β

2
‖γ‖20,Γi

, (4.1)

where u∞ := u∞(γ) ∈ V∞ satisfies the variational problem:

(α∇u∞,∇φ) + (γu∞, φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ V∞. (4.2)

Theorem 4.1. There exists at least one minimizer to the optimization problem (4.1)-(4.2).

Proof. Let {γn} ⊂ A∞ be a minimizing sequence satisfying J (γn) → inf J (γ). As A∞ is a closed
convex set in L2(Γi), there exists a subsequence, still denoted by γn, and some γ∗ ∈ A∞ such that

γn → γ∗ weakly in L2(Γi). (4.3)

With γ = γn in (4.2), un := un(γn) ∈ V∞ satisfies

(α∇un,∇φ) + (γnun, φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ V∞. (4.4)

Taking φ = un in (4.4), we obtain by the norm equivalence and the trace theorem that ‖un‖1 is
uniformly bounded independent of n. Therefore, there exists a subsequence, also denoted by {un}
and some u∗ ∈ V∞ as V∞ is weakly closed such that

un → u∗ weakly in H1(Ω); un → u∗ in L2(Γ). (4.5)

Next we prove u∗ = u(γ∗). Letting n go to infinity and noting the assumption on γn and u∗, φ ∈
L4(Γi) due to the trace theorem, we deduce from the convergence results in (4.3) and (4.5):

(α∇un,∇φ)→ (α∇u∗,∇φ),

(γnun, φ)Γi = (γnu∗, φ)Γi + (γn(un − u∗), φ)Γi → (γ∗u∗, φ)Γi ,

which imply
(α∇u∗,∇φ) + (γ∗u∗, φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ V∞.

Finally, the standard argument, together with the strong convergence in (4.5) and the weak lower
semi-continuity of ‖ · ‖0,Γi , yields that γ∗ is a minimizer of the cost functional J (·) over A∞.

To present the main results of this section, we need some auxiliary results in the following two
lemmas.

Lemma 4.2. Let {Vk×Ak} be a sequence of discrete spaces and discrete sets generated by Algorithm
3.1. If the sequence {γk} ⊂

⋃
k≥0 Ak converges weakly to some γ∗ ∈ A∞ in L2(Γi), then there exists a

subsequence {γkn}, such that for the sequence {ukn(γkn)} ⊂
⋃
k≥0 Vk produced by (2.7) with h replaced

by kn and u∞(γ∗) ∈ V∞ generated by (4.2) with γ = γ∗ there holds that

ukn(γkn)→ u∞(γ∗) in L2(Γ). (4.6)

If the sequence {γk} ⊂
⋃
k≥0 Ak converges strongly to some γ∗ ∈ A∞ in L2(Γi), then for the whole

sequence {uk(γk)} ⊂
⋃
k≥0 Vk given by (2.7) with h replaced by k and u∞(γ∗) ∈ V∞ given by (4.2)

with γ = γ∗ there holds
uk(γk)→ u∞(γ∗) in H1(Ω). (4.7)
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Proof. Taking φk = uk(γk) in (2.7), we immediately know from (2.11) that ‖uk(γk)‖1 is uniformly
bounded independently of k, hence there exists a subsequence, denoted by {ukn(γkn)}, and some
u∗ ∈ H1(Ω) such that

ukn(γkn)→ u∗ weakly in H1(Ω); ukn(γkn)→ u∗ in L2(Γ). (4.8)

As V∞ is weakly closed, u∗ ∈ V∞. For any integer l ≥ 0, if we choose kn ≥ l we know from (2.7) that

(α∇ukn(γkn),∇φl) + (γknukn(γkn), φl)Γi = (f, φl) + (q, φl)Γi ∀ φl ∈ Vl.

Letting n go to infinity and noting the convergence results in (4.8) as well as the weak convergence
of {γk}, we find

(α∇ukn(γkn),∇φl)→ (α∇u∗,∇φl),

(γknukn(γkn), φl)Γi = (γknu
∗, φl)Γi + (γkn(ukn(γkn)− u∗), φl)Γi → (γ∗u∗, φl)Γi ,

which imply
(α∇u∗,∇φl) + (γ∗u∗, φl)Γi = (f, φl) + (q, φl)Γi ∀ φl ∈ Vl.

As l is arbitrary and φl ∈ Vl, we easily see

(α∇u∗,∇φ) + (γ∗u∗, φ)Γi = (f, φ) + (q, φ)Γi ∀ φ ∈ V∞.

Now the first claim holds with u∗ = u∞(γ∗) in the second convergence result in (4.8).
To show the second convergence (4.7), we begin with an auxiliary discrete problem: Find uk(γ

∗) ∈
Vk such that

(α∇uk(γ
∗),∇φ) + (γ∗uk(γ

∗), φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ Vk. (4.9)

Subtracting (2.7) from (4.9) with φ = uk(γ
∗) − uk(γk) and using the generalized Hölder inequality,

the Sobolev embedding theorem and the stability estimate (2.11), we come to

‖uk(γ∗)− uk(γk)‖21 ≤ C((γk − γ∗)uk(γk), uk(γ∗)− uk(γk))
≤ C‖γ∗ − γk‖0,Γi‖uk(γk)‖L4(Γi)‖uk(γ

∗)− uk(γk)‖L4(Γi)

≤ C‖γ∗ − γk‖0,Γi‖uk(γ∗)− uk(γk)‖1.

i.e.,
‖uk(γ∗)− uk(γk)‖1 ≤ C‖γ∗ − γk‖L2(Γi).

On the other hand, we note that (4.9) is a finite element approximation of (4.2) with γ = γ∗ ∈ A∞,
so the Cea’s lemma admits an optimal approximation property

‖u∞(γ∗)− uk(γ∗)‖1 ≤ C inf
v∈Vk
‖u∞(γ∗)− v‖1.

Now the desired convergence (4.7) is a consequence of the above two estimates and the density of⋃
k≥0 Vk in V∞.

Next comes the first main result of this section.

Theorem 4.2. Let {Vk×Ak} be a sequence of discrete spaces and discrete sets generated by Algorithm
3.1 and {γ∗k} be the corresponding sequence of minimizers to the discrete problem (2.6)-(2.7). Then
the sequence {γ∗k} has a subsequence {γ∗kn} converging strongly in L2(Γi) to a minimizer γ∗∞ ∈ A∞
of the problem (4.1)-(4.2).
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Proof. Since {γ∗k} is uniformly bounded in L2(Γi) there exist a subsequence (still denoted by {γ∗k})
and some γ∗ ∈ A∞ such that

γ∗k → γ∗ weakly in L2(Γi). (4.10)

Then we know from Lemma 4.2 by extracting a subsequence that

u∗kn(γ∗kn)→ u∞(γ∗) ∈ V∞ in L2(Γa). (4.11)

Furthermore, for any γ ∈ A∞ there exists a sequence {γl} ⊂
⋃
k≥0 Ak such that

lim
l→∞
‖γl − γ‖0,Γi = 0, (4.12)

which, along with (4.7) in Lemma 4.2 and the trace theorem, implies

lim
l→∞
‖ul(γl)− g‖20,Γa

= ‖u∞(γ)− g‖20,Γa
. (4.13)

Noting the whole sequence {γ∗k} are minimizers of J (·) over {Ak}, we know

J (γ∗k) ≤ J (γl) =
1

2
‖ul(γl)− g‖20,Γa

+
β

2
‖γl‖20,Γi

when k ≥ l for sufficiently large l. Then a collection of (4.10)-(4.13) gives

J (γ∗) =
1

2
‖u∞(γ∗)− g‖20,Γa

+
β

2
‖γ∗‖20,Γi

≤ lim
n→∞

1

2
‖ukn(γ∗kn)− g‖20,Γa

+ lim inf
n→∞

β

2
‖γ∗kn‖

2
0,Γi

≤ lim inf
n→∞

J (γ∗kn) ≤ lim sup
n→∞

J (γ∗kn) ≤ lim sup
k→∞

J (γ∗k) ≤ lim sup
l→∞

J (γl) = J (γ)

for any γ ∈ A∞. This indicates that γ∗ is a minimizer of the problem (4.1)-(4.2). The choice γ = γ∗

in the above estimate yields equality lim
n→∞

J (γ∗kn) = J (γ∗) = inf J (A∞), which, along with (4.11),

implies that lim
n→∞

‖γ∗kn‖
2
0,Γi

= ‖γ∗∞‖20,Γi
. Now the desired strong convergence follows from (4.10).

¿From the above theorem, it can be observed that if the sequence {Vk × Ak} is given over
uniformly refined triangulations, the strong convergence of γ∗k to γ∗ holds directly since we have

naturally H1(Ω) =
⋃
k≥0 Vk in H1-norm and A =

⋃
k≥0 Ak in L2(Γi)-norm. But this is generally

not true for a sequence of adaptively generated meshes. To achieve the desired convergence, we have
to show that γ∗∞ is also a minimizer of the problem (2.1)-(2.2). Noting that Algorithm 3.1 involves
the solution of the discrete saddle-point system (2.8)-(2.10), we introduce a costate p∗∞ ∈ V∞ like
the continuous case, then this costate, together with the minimizer γ∗∞ ∈ A∞ and the related state
u∗∞ ∈ V∞ of the problem (4.1)-(4.2) solves the following system:

(α∇u∗∞,∇φ) + (γ∗∞u
∗
∞, φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ V∞, (4.14)

(α∇p∗∞,∇v) + (γ∗∞p
∗
∞, v)Γi = (u∗∞ − g, v)Γa ∀ v ∈ V∞, (4.15)(

βγ∗∞ − u∗∞(γ∗∞)p∗∞(γ∗∞), λ− γ∗∞
)

Γi
≥ 0 ∀ λ ∈ A∞. (4.16)

It is easy to verify that the solution (u∗∞, p
∗
∞) to (4.14)-(4.15) admits the stability estimates:

‖u∗∞‖1 ≤ C(‖f‖0 + ‖q‖0,Γa), ‖p∗∞‖1 ≤ C(‖f‖0 + ‖q‖0,Γa + ‖g‖0,Γa). (4.17)

Now we end this section with the second main result of this section for the above system.
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Theorem 4.3. Let {Vk×Ak} be a sequence of discrete spaces and discrete sets generated by Algorithm
3.1, then the sequence {(u∗k, p∗k, γ∗k)} of discrete solutions to the system (2.8)-(2.10) has a subsequence
{(u∗kn , p

∗
kn
, γ∗kn)} which converges to (u∗∞, p

∗
∞, γ

∗
∞) ∈ V∞×V∞×A∞, a solution of the problem (4.14)-

(4.16), in the following sense:

‖u∗kn − u
∗
∞‖1 → 0, ‖p∗kn − p

∗
∞‖1 → 0, ‖γ∗kn − γ

∗
∞‖0,Γi → 0 as n→∞. (4.18)

Proof. The last convergence in (4.18) follows directly from Theorem 4.2, while the first one is a
consequence of Lemma 4.2 (cf. (4.7)). To demonstrate the second convergence in (4.18), we introduce
a solution p̃kn ∈ Vkn to the following auxiliary problem:

(α∇p̃kn ,∇v) + (γ∗∞p̃kn , v)Γi = (u∗∞ − g, v)Γa ∀ v ∈ Vkn . (4.19)

Combining (2.9) and (4.19) with v = p̃kn − p∗kn and arguing as in the proof of Lemma 4.2, we obtain

‖p̃kn − p∗kn‖
2
1 ≤ C[(γ∗kn − γ

∗
∞)p∗kn , p̃kn − p

∗
kn)Γi + (u∗kn − u

∗
∞, p̃kn − p∗kn)Γa ]

≤ C(‖γ∗kn − γ
∗
∞‖0,Γi‖p∗kn‖L4(Γi)‖p̃kn − p

∗
kn‖L4(Γi) + ‖u∗kn − u

∗
∞‖0,Γa‖p̃kn − p∗kn‖0,Γa)

≤ C(‖γ∗kn − γ
∗
∞‖0,Γi + ‖u∗kn − u

∗
∞‖0,Γa)‖p̃kn − p∗kn‖1,

which implies
‖p̃kn − p∗kn‖1 ≤ C(‖γ∗kn − γ

∗
∞‖0,Γi + ‖u∗kn − u

∗
∞‖1). (4.20)

Furthermore, it is easy to see that the problem (4.19) is a discrete version of (4.15). Hence the Cea’s
lemma gives

‖p∗∞ − p̃kn‖1 ≤ C inf
v∈Vkn

‖p∗∞ − v‖1. (4.21)

Now the desired result comes readily from (4.20)-(4.21), the first and last convergences in (4.18) and
the construction of V∞.

5 Convergence

In this section, we shall present the main result of this paper: the sequence {(u∗k, p∗k, γ∗k)} generated
by Algorithm 3.1 has a subsequence {(u∗kn , p

∗
kn
, γ∗kn)} converging strongly to some true solution of

the problem (2.3)-(2.5). By Theorem 4.3 this reduces to verifying that (u∗∞, p
∗
∞, γ

∗
∞) satisfies the

system (2.3)-(2.5). For this purpose, we shall first show that two sequences of the residuals with
respect to u∗kn and p∗kn have vanishing weak limits (see Lemma 5.2), with the help of which the
limiting triplet (u∗∞, p

∗
∞, γ

∗
∞) is proved to satisfy the equations (2.3) and (2.4) (see Lemma 5.3). For

the variational inequality (2.5), the existing approaches for variational equations (see, e.g., [38] [41])
do not work. Instead, we shall relate it to ξkn(u∗kn , p

∗
kn
, γ∗kn) (cf. (3.1)) through some residual of the

discrete problem (2.10), then prove the error indicator tends to zero and apply a density argument
(see Lemmas 5.4-5.6). This new approach is one of the key ingredients in our arguments specifically
for the variational inequality (2.5) featured by the Robin inverse problem. It is also worth mentioning
that the a posteriori error estimator ηk+ξk (cf. (3.1)) in the module ESTIMATE of Algorithm 3.1 is a
natural consequence of the above arguments. This approach is completely different from traditional
ones for boundary value problems [1] [45]. Particularly, the existing standard way is to bound the
error in some norm from above by some computable quantities, while this is difficult to achieve for
the state, the costate and the control variable due to the strong nonlinearity of the current inverse
problem.

Before starting our proof, we state some properties of adaptively generated triangulations and the
error estimator first. Let T be the class of all possible conforming triangulations of Ω̄ refined from a
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certain shape-regular initial mesh by the successive bisections [39] [43]. We call T ′ a refinement of T
for any T and T ′ ∈ T if T ′ is produced from T by a finite number of bisections. For any triangulation
sequence {Tk} ⊂ T with Tk+1 a refinement of Tk, we define

T +
k :=

⋂
l≥k
Tl, T 0

k := Tk \ T +
k , F+

k :=
⋂
l≥k
Fl, F0

k := Fk \ F+
k

and
Ω+
k :=

⋃
T∈T +

k

DT , Ω0
k :=

⋃
T∈T 0

k

DT .

That is, T +
k consists of all elements not refined after the k-th iteration while all elements in T 0

k are
refined at least once after the k-th iteration. The same is also said of faces in F+

k and F0
k . In addition,

we define a mesh-size function hk : Ω̄ → R+ almost everywhere by hk(x) = hT for x in the interior
of an element T ∈ Tk and hk(x) = hF for x in the relative interior of a face F ∈ Fk. Letting χ0

k be
the characteristic function of Ω0

k, then this mesh-size function has the following property [38] [41]:

lim
k→∞

‖hkχ0
k‖L∞(Ω) = 0 . (5.1)

By virtue of Theorem 4.3 and the property (5.1), we can study the convergence behavior of the
maximal error indicator in the set of marked elements.

Lemma 5.1. Let {Tk, Vk × Ak, (u
∗
k, p
∗
k, γ
∗
k)} be the sequence of meshes, finite element spaces and

discrete admissible sets, and discrete solutions produced by Algorithm 3.1 and Sk the set of marked
elements given by (3.2). Then for the convergent subsequence {(u∗kn , p

∗
kn
, γ∗kn)} given by Theorem 4.3,

there holds for the error indicator defined in (3.1) that

lim
n→∞

max
F∈Skn

ηF,kn(u∗kn , p
∗
kn , γ

∗
kn , f, q, g) + ξF,kn(u∗kn , p

∗
kn , γ

∗
kn) = 0. (5.2)

Proof. For each kn, we denote by F̃ the face in Skn with the largest error indicator. As F̃ ∈ Skn , we
know ωF ⊂ Ω0

kn
, from which and (5.1) it follows that

|F̃ | ≤ C‖hkn‖d−1
L∞(Ω0

kn
)
→ 0, |ω

F̃
| ≤ C‖hkn‖dL∞(Ω0

kn
) → 0 as n→∞. (5.3)

By means of the stability estimate (3.3), inverse estimates and the triangle inequality, we have

η2
F̃ ,m

(u∗kn , p
∗
kn , γ

∗
kn , f, q, g) ≤ C(‖u∗kn‖

2
1,ω

F̃
+ ‖p∗kn‖

2
1,ω

F̃
+ h2

F̃
‖f‖20,ω

F̃
+ h

F̃
‖g‖2

0,F̃∩Γa
+ h

F̃
‖q‖2

0,F̃∩Γa
)

≤ C(‖u∗kn − u
∗
∞‖21 + ‖u∗∞‖21,ω

F̃
+ ‖p∗kn − p

∗
∞‖21 + ‖p∗∞‖21,ω

F̃

+ |F̃ |2/(d−1)‖f‖20,ω
F̃

+ |F̃ |1/(d−1)‖g‖2
0,F̃∩Γa

+ |F̃ |1/(d−1)‖q‖2
0,F̃∩Γa

)

and

ξ
F̃ ,kn

(u∗kn , p
∗
kn , γ

∗
kn) ≤ (h2

F̃
‖βγ∗kn‖L1(F̃∩Γi)

+ h2
F̃
‖u∗knp

∗
kn‖L1(F̃∩Γi)

)

≤ (h2
F̃
β‖γ∗kn − γ

∗
∞‖L1(Γi) + h2

F̃
β‖γ∗∞‖L1(F̃∩Γi)

+ h2
F̃
‖u∗kn‖0,F̃∩Γi

‖p∗kn‖0,F̃∩Γi
)

≤ C|F̃ |1/(d−1)
(
‖γ∗kn − γ

∗
∞‖L1(Γi) + ‖γ∗∞‖L1(Γi) + (‖u∗kn − u

∗
∞‖1 + ‖u∗∞‖1,ωF̃

)

× (‖p∗kn − p
∗
∞‖1 + ‖p∗∞‖1,ωF̃

)
)
.

Now the desired result comes from (4.18), (5.3) and the absolute continuity of ‖ · ‖1 and ‖ · ‖0,Γ with
respect to the Lebesgue measure.
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As mentioned at the beginning of this section, we now introduce two residuals with respect to u∗k
and p∗k respectively as follows:

〈R(u∗k), φ〉 := (α∇u∗k,∇φ) + (γ∗ku
∗
k, φ)Γi − (f, φ)− (q, φ)Γa ∀ φ ∈ H1(Ω),

〈R(p∗k), v〉 := (α∇p∗k,∇v) + (γ∗kp
∗
k, v)Γi − (u∗k − g, v)Γa ∀ v ∈ H1(Ω).

It is easy to see from (2.8) and (2.9) that

〈R(u∗k), φ〉 = 0 ∀ φ ∈ Vk; 〈R(p∗k), v〉 = 0 ∀ v ∈ Vk. (5.4)

Lemma 5.2. The following convergences hold for the convergent subsequence {(u∗kn , p
∗
kn
, γ∗kn)} of

{(u∗k, p∗k, γ∗k)} given by Theorem 4.3:

lim
n→∞

〈R(u∗kn), φ〉 = 0 and lim
n→∞

〈R(p∗kn), φ〉 = 0 ∀ φ ∈ H1(Ω) . (5.5)

Proof. The desired convergence can be proved in a standard way. And only the proof for the first
result is given, while the second one can be done in a similar manner. Let {(u∗kn , p

∗
kn
, γ∗kn)} be the

convergent subsequence given by Theorem 4.3. For notational convenience, the counter kn is replaced
with m. We write Im and Iszm for the Lagrange and Scott-Zhang interpolation operators respectively
associated with Vk [40] and use the orthogonality (5.4) and the definition (3.1) to proceed for m > l
and any ψ ∈ C∞(Ω̄):

|〈R(u∗m), ψ〉| = |〈R(u∗m), ψ − Imψ〉| = |〈R(u∗m), ψ − Imψ − Iszm (ψ − Imψ)〉|

≤ C
∑
F∈Fm

ηF,m,1(u∗m, γ
∗
m, f, q)‖ψ − Imψ‖1,∪DT

= C
( ∑
F∈Fm\F+

l

ηF,m,1(u∗m, γ
∗
m, f, q)‖ψ − Imψ‖1,∪DT

+
∑
F∈F+

l

ηF,m,1(u∗m, γ
∗
m, f, q)‖ψ − Imψ‖1,∪DT

)
,

where ∪DT is the union of DT with T ∈ ωF . In the third inequality, we also use the definition of
〈R(u∗m), ·〉, elementwise integration by parts, error estimates for Iszm [40] and the Cauchy-Schwarz
inequality. Noting Lemma 3.1 and the stability estimate (2.11) we have( ∑

F∈Fm\F+
l

η2
F,m,1(u∗m, γ

∗
m, f, q)

)1/2
≤ C

and then by the error estimate for Im we are further led to

|〈R(u∗m), ψ〉| ≤ C1‖hl‖L∞(Ω0
l )‖ψ‖2 + C2

( ∑
F∈F+

l

η2
F,m,1(u∗m, γ

∗
m, f, q)

)1/2‖ψ‖2.
Due to (5.1), for any given ε > 0 we have C1‖hl‖L∞(Ω0

l )‖φ‖2 < ε for sufficiently large l. Moreover,

the inclusions that F+
l ⊂ F

+
m ⊂ Fm for m > l and the marking property (cf. (3.2)) imply that( ∑

F∈F+
l

η2
F,m,1(u∗m, γ

∗
m, f, q)

)1/2 ≤√|F+
l | max

F∈F+
l

ηF,m,1(u∗m, γ
∗
m, f, q)

≤
√
|F+
l | max

F∈Sm
ηF,m(u∗m, p

∗
m, γ

∗
m, f, q, g) + ξF,m(u∗m, p

∗
m, γ

∗
m).

By Lemma 5.1, we can choose M ≥ l for some fixed l such that the following estimate holds for
m ≥M :

C2

( ∑
F∈F+

l

η2
F,m,1(u∗m, γ

∗
m, f, q)

)1/2
‖ψ‖2 < ε.
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This proves
lim
m→∞

〈R(u∗m), ψ〉 = 0 ∀ ψ ∈ C∞(Ω̄),

which, in combination with the density of C∞(Ω̄) in H1(Ω), yields the first vanishing limit.

Lemma 5.3. The solution (u∗∞, p
∗
∞, γ

∗
∞) of the problem (4.14)-(4.16) also satisfies the variational

problems (2.3) and (2.4), i.e.,

(α∇u∗∞,∇φ) + (γ∗∞u
∗
∞, φ)Γi = (f, φ) + (q, φ)Γa ∀ φ ∈ H1(Ω) (5.6)

(α∇p∗∞,∇v) + (γ∗∞p
∗
∞, v)Γi = (u∗∞ − g, v)Γa ∀ v ∈ H1(Ω). (5.7)

Proof. Let {(u∗kn , p
∗
kn
, γ∗kn)} be the convergent subsequence given by Theorem 4.3. For any φ ∈ H1(Ω),

we can easily deduce

|(α∇u∗∞,∇φ) + (γ∗∞u
∗
∞, φ)Γi − (f, φ)− (q, φ)Γa |

= |(α∇(u∗∞ − u∗kn),∇φ) + (γ∗∞u
∗
∞ − γ∗knu

∗
kn , φ)Γi + 〈R(u∗kn), φ〉|

≤ α2‖u∗∞ − u∗kn‖1‖φ‖1 + |(γ∗∞u∗∞ − γ∗knu
∗
kn , φ)Γi |+ |〈R(u∗kn), φ〉| . (5.8)

The second term above is further estimated by the generalized Hölder inequality, the Sobolev em-
bedding theorem and the trace theorem

|(γ∗∞u∗∞ − γ∗knu
∗
kn , φ)Γi | = |((γ∗∞ − γ∗kn)u∗∞, φ)Γi + (γ∗kn(u∗∞ − u∗kn), φ)Γi |

≤ ‖γ∗∞ − γ∗kn‖0,Γi‖u∗∞‖L4(Γi)‖φ‖L4(Γi) + c1‖u∗∞ − u∗kn‖0,Γi‖φ‖0,Γi

≤ C(‖γ∗∞ − γ∗kn‖0,Γi‖u∗∞‖1 + c1‖u∗∞ − u∗kn‖1)‖φ‖1.

Theorem 4.3, the stability (4.17) and Lemma 5.2 imply that the three terms in the right-hand side
of (5.8) all tend to zero as n goes to infinity, from which we conclude the first equation (5.6).

As for the second equation (5.7), it is not difficult to proceed as above for any v ∈ H1(Ω) that

|(α∇p∗∞,∇v) + (γ∗∞p
∗
∞, v)Γi − (u∗∞ − g, v)Γa |

= |(α∇(p∗∞ − p∗kn),∇v) + (γ∗∞p
∗
∞ − γ∗knp

∗
kn , v)Γi − (u∗∞ − u∗kn , v)Γa + 〈R(p∗kn), v〉|

≤ α2‖p∗∞ − p∗kn‖1‖v‖1 + |(γ∗∞p∗∞ − γ∗knp
∗
kn , v)Γi |+ ‖u∗∞ − u∗kn‖0,Γa‖v‖1 + |〈R(p∗kn), v〉|.

Then the proof is finished by using Theorem 4.3, Lemma 5.2 and same argument as for (5.8).

Next we turn our attention to the claim: the variational inequality (2.5) holds for the limiting
triplet (u∗∞, p

∗
∞, γ

∗
∞). As in the proof of Lemma 5.2, our approach still lies in a density argument.

Therefore, we need the following density result with respect to the admissible set A .

Lemma 5.4. Suppose Γi is split in L open faces/edges Γi,1, · · · ,Γi,L, then Ã = {λ ∈ A ∩C(Γi)|λ ∈
C∞(Γi,l), 1 ≤ l ≤ L} is weakly-∗ dense in A with respect to L∞(Γi).

Proof. We only focus on d = 3 as the arguments for the two dimensional case are similar. Let us first
assume that Γi is the intersection of the whole boundary Γ with a plane in R2, i.e. L = 1. For any
λ ∈ A , we define an extension of λ̃ in R2 as λ̃ := λ in Γi; λ̃ := c0 in Γi,3ε0/2\Γi; λ̃ := 0 in Γi,3ε0\Γi,3ε0/2,

where ε0 > 0 is a positive constant and Γi,δ := {x ∈ R2| d(x,Γi) < δ} with d(x,Γi) denoting the
distance between x and Γi and δ > 0. Recall c0 is the lower bound of the Robin coefficient γ. Then
we make use of the standard mollifier ρ(x) in R2 to construct a sequence {λn}n≥0 ⊂ C∞(Γi) with

λn = (ε−2
n ρ(x/εn) ∗ λ̃)|Γi

, where {εn} is a positive sequence of numbers decreasing to zero. Since
λn → λ a.e. in Γi as εn → 0+ (cf. [17]) and supn ‖λn‖L∞(Γi) ≤ c1, the upper bound of the Robin
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coefficient γ, the Dominated Convergence Theorem admits λn → λ weakly-∗ in L∞(Γi). Moreover
by the construction of {λn}, we find c0 ≤ λn ≤ c1 a.e. in Γi for all n.

For the general case that Γi = ∪Ll=1Γi,l, we extend any λ ∈ A on the whole boundary Γ such that
λ̄ := λ on Γi and λ̄ := c0 otherwise. As the boundary Γ is closed and Lipschitz continuous, there exist
finite open cubes {Uj}1≤j≤J covering Γ and a corresponding Lipschitz continuous function sequence
{φj}1≤j≤J of 2 variables such that Γ ∩ Uj is the graph of φj defined on some open square Sj in R2.
Arguing as above, on each Γ ∩ Uj we obtain a sequence {λ̄j,n(x, φj(x))} ⊂ C∞(Sj) satisfying that
λ̄j,n → λ̄ weakly-∗ in L∞(Γ ∩ Uj) when n → ∞ and c0 ≤ λ̄j,n ≤ c1 a.e. in Γ ∩ Uj . Then using the
partition of unity {ψj}1≤j≤J subordinate to {Uj} and noting φj is smooth when (x, φj(x)) in some

Γi,l, λn := (
∑J

j=1 ψj λ̄j,n)|Γi
∈ Ã and λn → λ weakly-∗ in L∞(Γi), which completes the proof.

With Lemma 5.4 in hand, we first prove the result in Ã and then extend to A .

Lemma 5.5. The solution (u∗∞, p
∗
∞, γ

∗
∞) of the problem (4.14)-(4.16) satisfies

(βγ∗∞ − u∗∞p∗∞, µ− γ∗∞)Γi ≥ 0 ∀ µ ∈ Ã . (5.9)

Proof. As in the proof of Lemma 5.2, we still denote the convergent subsequence {(u∗kn , p
∗
kn
, γ∗kn)}

given in Theorem 4.3 by {(u∗m, p∗m, γ∗m)}. Invoking the Lagrange interpolation operator Im associated

with Vm,Γi , we note Imµ ∈ Am for any µ ∈ Ã . Then the variational inequality (2.10) allows

(βγ∗m − u∗mp∗m, µ− γ∗m)Γi = (βγ∗m − u∗mp∗m, µ−Imµ)Γi + (βγ∗m − u∗mp∗m,Imµ− γ∗m)Γi

≥ (βγ∗m − u∗mp∗m, µ−Imµ)Γi ∀ µ ∈ Ã . (5.10)

By the error estimate of Im [15] and the definition of ξm in (3.1) we know for m > l

|(βγ∗m − u∗mp∗m, µ−Imµ)Γi | ≤
∑

F∈Fm(Γi)

‖βγ∗m − u∗mp∗m‖L1(F )‖µ−Imµ‖L∞(F )

≤ C
∑

F∈Fm(Γi)

ξF,m(u∗m, p
∗
m, γ

∗
m)‖µ‖2,∞,Γi

= C(ξm(u∗m, p
∗
m, γ

∗
m,Fm \ F+

l ) + ξm(u∗m, p
∗
m, γ

∗
m,F+

l ))‖µ‖2,∞,Γi .

By the definition of ξm, the constraint of γ∗m and the stability estimate (2.11), we further come to

ξm(u∗m, p
∗
m, γ

∗
m,Fm \ F+

l ) ≤ C‖hl‖2L∞(Ω0
l )‖γ

∗
m − u∗mp∗m‖L1(Γi)

≤ C‖hl‖2L∞(Ω0
l )(‖γ

∗
m‖L1(Γi) + ‖u∗m‖L2(Γi)‖p

∗
m‖L2(Γi))

≤ C‖hl‖2L∞(Ω0
l )(c1|Γi|+ ‖u∗m‖1‖p∗m‖1) ≤ C‖hl‖2L∞(Ω0

l ).

Therefore,

|(βγ∗m − u∗mp∗m, µ−Imµ)Γi | ≤ C3‖hl‖2L∞(Ω0
l )‖µ‖2,∞,Γi + C4ξm(u∗m, p

∗
m, γ

∗
m,F+

l )‖µ‖2,∞,Γi . (5.11)

Now noting (5.1), we find that for any given ε > 0 there exists a large l such that

C3‖hl‖2L∞(Ω0
l )‖µ‖2,∞,Γi < ε. (5.12)

Since F+
l ∩ Sm = ∅ the condition (3.2) in the module MARK of Algorithm 3.1 admits

ξm(u∗m, p
∗
m, γ

∗
m,F+

l ) ≤ |F+
l | max

F∈F+
l ∩Fm(Γi)

ξF,m(u∗m, p
∗
m, γ

∗
m)

≤ |F+
l | max

F∈Sm
ηF,m(u∗m, p

∗
m, γ

∗
m, q, g) + ξF,m(u∗m, p

∗
m, γ

∗
m).
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Then using Lemma 5.1, we can choose M ≥ l such that

C4ξm(u∗m, p
∗
m, γ

∗
m,F+

l )‖µ‖2,∞,Γi < ε (5.13)

for m ≥M . Summarizing (5.11)-(5.13) gives

(βγ∗m − u∗mp∗m, µ−Imµ)Γi → 0 as m→∞. (5.14)

On the other hand, recalling some elementary identities

(u∗mp
∗
m − u∗∞p∗∞, µ)Γi = ((u∗m − u∗∞)p∗m + (p∗m − p∗∞)u∗∞, µ)Γi ,

(u∗mp
∗
m, γ

∗
m)Γi − (u∗∞p

∗
∞, γ

∗
∞)Γi = ((u∗mp

∗
m − u∗∞p∗∞), γ∗m)Γi + (u∗∞p

∗
∞, γ

∗
m − γ∗∞)Γi ,

we know from the generalized Hölder inequality, the stability estimates (2.11), (4.17) and Theorem
4.3 that

lim
m→∞

(βγ∗m − u∗mp∗m, µ− γ∗m)Γi = (βγ∗∞ − u∗∞p∗∞, µ− γ∗∞)Γi ∀ µ ∈ Ã . (5.15)

The proof is concluded by a combination of (5.14) and (5.15) in (5.10).

Lemma 5.6. The solution (u∗∞, p
∗
∞, γ

∗
∞) of the problem (4.14)-(4.16) satisfies the variational in-

equality (2.5), i.e.,
(βγ∗∞ − u∗∞p∗∞, λ− γ∗∞)Γi ≥ 0 ∀ λ ∈ A . (5.16)

Proof. We argue by contradiction. If (5.16) fails, then there exists some ν ∈ A such that

(βγ∗∞ − u∗∞p∗∞, ν − γ∗∞)Γi < 0. (5.17)

Lemma 5.4 implies for any ε > 0 there exists a µ ∈ Ã such that

(βγ∗∞ − u∗∞p∗∞, µ− γ∗∞)Γi = (βγ∗∞ − u∗∞p∗∞, µ− ν)Γi + (βγ∗∞ − u∗∞p∗∞, ν − γ∗∞)Γi

< ε+ (βγ∗∞ − u∗∞p∗∞, ν − γ∗∞)Γi .

It follows from (5.17) that when ε ≤ ε0 for some ε0 > 0,

(βγ∗∞ − u∗∞p∗∞, µ− γ∗∞)Γi < 0.

This contradicts Lemma 5.5.

Remark 5.1. As can be seen from the proof of Lemma 5.2 and Lemma 5.5, the residuals 〈R(u∗m), φ〉
and 〈R(p∗m), φ〉 associated with (2.8) and (2.9) are bounded by

|〈R(u∗m), φ〉|+ |〈R(p∗m), φ〉| ≤ Cηm(u∗m, p
∗
m, γ

∗
m, f, q, g)‖φ‖1 ∀ φ ∈ H1(Ω)

and the residual (βγ∗m − u∗mp∗m, µ− γ∗m)Γi with respect to the variational inequality (2.10) leads to

|(βγ∗m − u∗mp∗m, µ−Imµ)Γi | ≤ Cξm(u∗m, p
∗
m, γ

∗
m)‖µ‖2,∞,Γi ∀ µ ∈ Ã .

The terms ηm and ξm (see (3.1) for definition) in the right-hand side of the above two inequalities only
depend on the discrete solutions, the mesh size and the given data. Consequently, we use ηm + ξm
as the estimator in Algorithm 3.1. More importantly, the proofs of the above lemmas show that the
estimator is sufficient for convergence of adaptive algorithm although it does not provide an upper
bound of the error ‖u∗−u∗k‖1, ‖p∗−p∗k‖1 and ‖γ∗−γ∗k‖0,Γi . In terms of the a posteriori error analysis,
this is quite different from the existing works for direct partial differential equations.

Finally, by virtue of Theorem 4.3, Lemma 5.3 and Lemma 5.6 we present the main result of the
current work.

Theorem 5.1. The sequence of discrete solutions {(u∗k, p∗k, γ∗k)} produced by Algorithm 3.1 has a
subsequence converging to a solution (u∗, p∗, γ∗) of the problem (2.3)-(2.5) in the following sense:

‖u∗kn − u
∗‖1 → 0, ‖p∗kn − p

∗‖1 → 0, ‖γ∗kn − γ
∗‖0,Γi → 0 as n→∞. (5.18)
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6 Numerical experiments

In this section, we shall provide some numerical experiments to verify the effectiveness of our
proposed adaptive finite element Algorithm 3.1. In all the experiments, the general requirement
(3.2) in the module MARK is represented by a specific maximum strategy (see Remark 3.1), i.e.,
mark a subset Sk ⊂ Fk such that

ηF,k(u
∗
k, p
∗
k, γ
∗
k , f, q, g) + ξF,k(u

∗
k, p
∗
k, γ
∗
k) ≥ 0.5 max

F∈Fk

(ηF,k(u
∗
k, p
∗
k, γ
∗
k , f, q, g) + ξF,k(u

∗
k, p
∗
k, γ
∗
k))

for any F ∈ Sk. The resulting discrete nonlinear optimization problems (2.6)-(2.7) are solved by
a conjugate gradient method formulated in [31] and the initial guess of the Robin coefficient for
reconstruction on Γi is set to be constants 0.1 and 0.2 everywhere for Examples 1 and 2 respectively.
These are very poor initial guesses for the concerned nonlinear inverse problem.

We will mainly focus on the difficulties arising from the challenging nature of two different types
of Robin coefficients. To make our examples more practical and reasonable, the true solution u(x) of
the diffusion system (2.3) is assumed to be unknown in advance and is calculated in a very fine mesh
under the boundary conditions (1.2) on Γa and Γi, with coefficients α = 1 and f = 0 in Ω, and q = 1
on Γa. In applications, the boundary data g on Γa is experimentally measured and thus inevitably
contaminated by measurement errors. In our examples, the simulated noisy data is synthesized as
follows:

g(x) = u(x) + δ u(x) rand(x) on Γa,

where u(x) denotes the true solution, δ represents the noise level and is set to be 1%, and rand(x)
is a uniformly distributed random function in the range between −1 and 1.

The computational domain is designed to be an open domain lying between two circles centred
at the origin, with its outer boundary Γa being a circle with radius 2 and its inner boundary Γi being
a unit circle. The outer boundary Γa is accessible while the inner boundary Γi is inaccessible.

For ease of visualization, the plot of the Robin coefficient on the inner boundary Γi is parametrized
in the order of left, bottom, right and top by its arc length so that the Robin coefficients can be
represented by a function of arc length in one dimension.

Example 1 (Robin coefficient with sharp spike) The true distribution of the Robin coefficient has
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Figure 1: True solution u (left) and the initial mesh with 480 nodes (right) in Example 1.
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(a) L2-norm error of γ = 6.8835e− 03, β = 10−5 (b) Final mesh with 2406 nodes by adaptive Algorithm 3.1

Figure 2: Exact and numerically reconstructed Robin coefficients (left) and adaptively generated
final mesh (right) in Example 1.

a sharp spike at the point (0, 1) and is given by

γ(x, y) = exp(−10(x2 + (y − 1)2))

restricted on the inner boundary Γi.
The true solution u is shown in Figure 1(a). With Algorithm 3.1 starting from the initial mesh

with 480 nodes in Figure 1(b), the reconstructed Robin coefficient (blue) approximates the exact one
(green) reasonably well as shown in Figure 2(a) and the corresponding adaptively generated mesh is
displayed in Figure 2(b). We observe that the reconstructed coefficient has well captured the location
and height of the sharp spike. In addition, mesh refinements are correctly centered around the upper
point of the interior boundary due to the spike point of the Robin coefficient.

Example 2 (Discontinuous Robin coefficient) In this example, the true Robin coefficient is set to
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Figure 3: True solution u (left) and the initial mesh with 480 nodes (right) in Example 2.
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(a) L2-norm error of γ = 5.9734e− 03, β = 10−6 (b) Final mesh with 9401 nodes by adaptive Algorithm 3.1

Figure 4: Exact and numerically reconstructed Robin coefficients (left) and adaptively generated
final mesh (right) in Example 2.

be highly discontinuous, which is expressed in the polar coordinate as

γ(1, θ) =

{
1 if sin(2θ) > 0.9,

0.1 otherwise

restricted on the inner boundary Γi. It behaves like two narrowly banded Delta functions; see
Figure 4(a) (green). Figure 3(a) provides a graphical representation of the true solution u. An
approximate Robin coefficient (blue) reconstructed by Algorithm 3.1, starting from the initial mesh
in Figure 3(b), is depicted in Figure 4(a) and the corresponding adaptively generated final mesh
in Figure 4(b). We observe that the reconstructed Robin coefficient has well detected the location
and height of the strongly discontinuous exact coefficient, in view of the severe ill-posedness of the
nonlinear inverse problem and the very poor constant initial guess of γ = 0.2. Moreover, as one
expects, the mesh refinements are correctly centered around two highly spiky regions to resolve the
singularities of the strong discontinuities of the true Robin coefficient.

7 Concluding remark

We have proposed in this work an adaptive finite element method for recovering the Robin
coefficient and established its convergence. With a general yet practical assumption imposed in the
module MARK, discrete solutions produced by the adaptive algorithm are proved to converge to some
exact Robin coefficient, state and costate variables.

One of the major difficulties in the analysis is a lack of convexity in the objective functional J (γ)
for the Robin inverse problem, so we are unable to establish a reliable bound of the error in terms of an
error estimator as in the existing theories for a posterior error estimates for direct partial differential
equations or PDE-constrained optimal control problems. To overcome the difficulty, we have made
use of some techniques in nonlinear optimization to study a limiting saddle-point system and the
solution of this limiting problem is proved to satisfy the optimality conditions for the continuous
problem. In our proofs a density argument is also utilized to handle a variational inequality. Then
some computable quantities are derived only from our convergence analysis and serve as the effective
estimator in our adaptive algorithm to guarantee the desired convergence. Numerical results show
that the adaptive algorithm is efficient in the reconstruction of Robin coefficients.
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We think the approach in this work can be extended for the convergence analysis of AFEMs for
other nonlinear inverse problems.
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