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MINNAERT RESONANCES FOR BUBBLES IN SOFT ELASTIC
MATERIALS\ast 

HONGJIE LI\dagger , HONGYU LIU\ddagger , AND JUN ZOU\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Minnaert resonance is a widely known acoustic phenomenon, and it has many im-
portant applications, in particular in the effective realization of acoustic metamaterials using bubbly
media in recent years. In this paper, motivated by the Minnaert resonance in acoustics, we consider
the low-frequency resonance for acoustic bubbles embedded in soft elastic materials. This is a hybrid
physical process that couples the acoustic and elastic wave propagations. By delicately and subtly
balancing the acoustic and elastic parameters as well as the geometry of the bubble, we show that
Minnaert resonance can occur (at least approximately) for rather general constructions. Our study
highlights the great potential for the effective realization of negative elastic materials by using bubbly
elastic media.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Minnaert resonance, bubbly elastic medium, hybrid Neumann--Poincar\'e operator,
spectral, negative elastic materials

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35R30, 35B30, 35Q60, 47G40

\bfD \bfO \bfI . 10.1137/21M1400572

1. Introduction. The oscillation of bubbles in media is a classical problem. In
particular, when bubbles are immersed in liquids, even a very small-volume fraction
of bubbles can have a significant influence on the effective velocity of waves in liq-
uids [10, 19]. This is due to the high oscillation of the bubbles caused by the high
contrast in density between the bubbles and the surrounding liquid [2, 18]. In fact,
at a particular low frequency known as the Minnaert resonant frequency, the bubbles
can be treated as acoustic resonators [27]. The exceptional acoustic properties men-
tioned above can have many important applications and in particular can be used to
design new materials, such as phononic crystals. In addition to much experimental
progress, the bubbly acoustic materials have been systematically and comprehen-
sively investigated recently in the mathematical literature. Furthermore, based on
the mathematical theory developed, novel applications have also been proposed, es-
pecially for the effective realization of acoustic metamaterials. For the case that a
single bubble is immersed in liquids, the authors in [2] provided a rigorous treatment
of the Minnaert resonance and the monopole approximation. Later, they investigated
the acoustic scattering by a large number of bubbles in liquids at frequencies near
the Minnaert resonant frequency in [3]. Thus, by designing bubble metascreens, the
superabsorption effect can be achieved [4]. Around the Minnaert resonant frequency,
an effective medium theory was derived in [8].

Nevertheless, as pointed out in [20, 31], the practical constructions of acoustic
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120 HONGJIE LI, HONGYU LIU, AND JUN ZOU

bubbly designs are very challenging. The major difficulty arises from making bubbles
have a uniform size and letting them remain inside the liquids. In order to overcome
these challenges, substituting the host medium from liquids to soft elastic materials
(the shear modulus is small) becomes a more practical scheme. In fact, the oscillation
of a spherical cavity in an elastic material was investigated many years ago [28].
When a spherical bubble is immersed in a soft elastic material, it was shown in
[11] that there also exists a certain low-frequency resonance. Using such resonant
properties, the bubbly elastic structures have been used in the experimental design of
new materials for strikingly new applications. For example, bubble phononic crystals
were designed in [20], superabsorption of acoustic waves with bubble metascreens was
achieved in [21], and reducing underwater sound transmission was shown in [12] by
microfabricating cavities into silicone rubber (a soft elastic material).

Motivated by the aforementioned physical and mathematical studies, we consider
in this paper the low-frequency resonance for the case where a bubble is embedded
in a soft elastic medium. We aim to derive a systematic and comprehensive mathe-
matical understanding of the resonance phenomena caused by the acoustic and elastic
interactions. It turns out that the mathematical investigation on the resonance asso-
ciated with the elastic bubbly media is more challenging than that for the acoustic
bubbly media. Indeed, we note that, first, the wave scattering from an elastic bubbly
medium is a hybrid physical process which couples the acoustic wave propagation
inside the bubble and the elastic wave propagation outside the bubble. Second, since
the shear modulus in the elastic material is nonzero, the resonance heavily depends
on the geometry of the bubble [11]. This property is in sharp contrast to the case of
bubbles in liquids which features weak shape dependence [2]. Therefore, one cannot
expect an explicit expression of the resonant frequencies (unless the geometry of the
bubble is simple---say, a radial one) as in the case for bubbles in liquids that was
derived in [2]. Third, the bubble-liquid resonance only depends on the high contrast
of the density between the bubble and the liquid. However, for the bubble--elastic
material resonance, in addition to the high contrast of the density, the high contrast
of the shear modulus and the compression modulus is required; see also [30] for a
related discussion.

According to our discussion above, it is clear that the bubble-elastic resonance is
of a different physical nature from the bubble-liquid resonance. Nevertheless, in order
to reveal its origin of motivation, as well as for terminological convenience, we still
call it the Minnaert resonance in the present paper. In order to derive the resonance
results, in the spirit of the mathematical treatment in [2], we rely on the layer-potential
techniques, which boil down our study to the asymptotic and spectral analysis of the
layer-potential operators involved for the coupled PDE systems. By delicately and
subtly balancing the acoustic and elastic parameters as well as the geometry of the
bubble, we show that Minnaert resonance can (at least approximately) occur for a
rather general construction in the three-dimensional case. In the two-dimensional
case, due to technical constraints, we can only deal with the case that the bubble is in
the radial geometry. Moreover, as mentioned earlier, we only consider the case with a
single bubble embedded in a soft elastic material. We shall study the other case, e.g.,
the scattering from multiple bubbles, in our forthcoming work. It is emphasized that
similar to the bubble-liquid case [5], our study highlights the great potential for the
effective realization of negative elastic materials by using bubbly elastic media, which
we shall also investigate in our near-future study.

The rest of the paper is organized as follows. In section 2, we present the general
mathematical formulation of our study, especially the acoustic-elastic wave scattering
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MINNAERT RESONANCES FOR BUBBLES IN ELASTICITY 121

from a bubble-elastic structure and its integral reformulation. In section 3, we discuss
the general requirements for the medium configuration and also derive some auxiliary
results for the subsequent use. Sections 4 and 5 are, respectively, devoted to the
Minnaert resonances in three and two dimensions. Our study is concluded in section
6 with some related remarks.

2. Mathematical setup. In this section, we present the general mathematical
formulation of our study. We consider an air bubble D in our study, and D is assumed
to be a bounded domain in \BbbR N (N = 2, 3), with a C2-regular boundary \partial D. Let
\rho b \in \BbbR + and \kappa \in \BbbR + signify the density and the bulk modulus of the air inside the
bubble, respectively. Assume that the background \BbbR N\setminus D is occupied by a regular
and isotropic elastic material parameterized by the Lam\'e constants (\~\lambda , \~\mu ) satisfying
the following strong convexity conditions:

(2.1) (i) \~\mu > 0 and (ii) N \~\lambda + 2\~\mu > 0.

The density of the background material is set to be \rho e \in \BbbR +. Let ui be an incident
elastic wave, which is an entire solution to \scrL \~\lambda ,\~\mu u+ \omega 2\rho eu = 0 in \BbbR N . Here, \omega \in \BbbR +

denotes the frequency of the elastic wave. The acoustic-elastic wave interaction is
described by the following coupled PDE system (cf. [29]):

(2.2)

\left\{                   

\scrL \~\lambda ,\~\mu u(x) + \omega 2\rho eu(x) = 0, x \in \BbbR N\setminus D,

\bigtriangleup u(x) + \~k2u(x) = 0, x \in D,

u(x) \cdot \bfitnu  - 1
\rho b\omega 2\nabla u(x) \cdot \bfitnu = 0, x \in \partial D,

\partial \~\bfitnu u(x) + u(x)\bfitnu = 0, x \in \partial D,

u(x) - ui(x) satisfies the radiation condition,

where u is the total elastic wave field outside the domain D, u is the pressure inside
the domain D, \omega \in \BbbR + is the angular frequency, and \~k = \omega /cb with cb =

\sqrt{} 
\kappa /\rho b

signifying the velocity of the wave in D. In (2.2), the Lam\'e operator \scrL \~\lambda ,\~\mu and the co-

normal derivative \partial \~\bfitnu , associated with the parameters (\~\lambda , \~\mu ) are respectively defined
by

(2.3) \scrL \~\lambda ,\~\mu w := \~\mu \bigtriangleup w + (\~\lambda + \~\mu )\nabla \nabla \cdot w

and

(2.4) \partial \~\bfitnu w = \~\lambda (\nabla \cdot w)\bfitnu + 2\~\mu (\nabla sw)\bfitnu .

Here \bfitnu represents the outward unit normal vector to \partial D, and the operator \nabla s is the
symmetric gradient

(2.5) \nabla sw :=
1

2

\bigl( 
\nabla w +\nabla wt

\bigr) 
,

with \nabla w denoting the matrix (\partial jwi)
N
i,j=1 and the superscript t signifying the ma-

trix transpose. In (2.2), the third condition denotes the continuity of the normal
component of the displacement on the boundary \partial D, and the fourth condition is
the continuity of the stress across \partial D. Moreover, the radiation condition in (2.2)
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122 HONGJIE LI, HONGYU LIU, AND JUN ZOU

designates the following condition as | x| \rightarrow +\infty (cf. [22]):

(\nabla \times \nabla \times (u - ui))(x)\times x

| x| 
 - i\~ks\nabla \times (u - ui)(x) =\scrO (| x|  - 2),

x

| x| 
\cdot 
\bigl( 
\nabla (\nabla \cdot (u - ui))

\bigr) 
(x) - i\~kp\nabla (u - ui)(x) =\scrO (| x|  - 2),

(2.6)

where i =
\surd 
 - 1,

(2.7) \~ks =
\omega 

\~cs
=

\omega \sqrt{} 
\~\mu /\rho e

, and \~kp =
\omega 

\~cp
=

\omega \sqrt{} 
(\~\lambda + 2\~\mu )/\rho e

,

with \~\lambda and \~\mu as defined in (2.1).
Next we apply the potential theory to derive the integral representation of the

solution to system (2.2) and give the definition of the resonance. First, we introduce
the potential operators for the Helmholtz system and the Lam\'e system. Let Gk(x)
be the fundamental solution of the operator \bigtriangleup + k2, namely

(2.8) Gk(x) =

\left\{       
 - i

4
H

(1)
0 (k| x| ), N = 2,

 - eik| \bfx | 

4\pi | x| 
, N = 3,

where H
(1)
0 is the zeroth-order Hankel function of the first kind. The single layer

potential associated with the Helmholtz system is defined for \varphi (x) \in L2(\partial D) by

(2.9) Sk
\partial D[\varphi ](x) =

\int 
\partial D

Gk(x - y)\varphi (y)ds(y), x \in \BbbR N .

Then the conormal derivative of the single layer potential enjoys the jump formula

(2.10) \nabla Sk
\partial D[\varphi ] \cdot \bfitnu | \pm (x) =

\biggl( 
\pm 1

2
I +Kk,\ast 

\partial D

\biggr) 
[\varphi ](x), x \in \partial D,

where

Kk,\ast 
\partial D [\varphi ](x) = p.v.

\int 
\partial D

\nabla \bfx G
k(x - y) \cdot \bfitnu \bfx \varphi (y)ds(y), x \in \partial D,

which is also known as the Neumann--Poincar\'e operator associated with the Helmholtz
system. Here and in what follows, p.v. stands for the Cauchy principal value. More-
over, we introduce the following L2-adjoint of the operator Kk,\ast 

\partial D :

Kk
\partial D[\varphi ](x) = p.v.

\int 
\partial D

\nabla \bfy G
k(x - y) \cdot \bfitnu \bfy \varphi (y)ds(y), x \in \partial D.

In what follows, we denote Sk
\partial D,K

k,\ast 
\partial D , andKk

\partial D by S\partial D,0, K
\ast 
\partial D,0, andK\partial D,0 for k = 0.

We would like to point out that the operators K\ast 
\partial D,0 and K\partial D,0 have the following

expressions in three dimensions:

K\ast 
\partial D,0[\varphi ](x) =

\int 
\partial D

\langle x - y,\bfitnu \bfx \rangle 
4\pi | x - y| 3

\varphi (y)ds(y), x \in \partial D,

K\partial D,0[\varphi ](x) =

\int 
\partial D

\langle y  - x,\bfitnu \bfy \rangle 
4\pi | x - y| 3

\varphi (y)ds(y), x \in \partial D.

(2.11)D
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MINNAERT RESONANCES FOR BUBBLES IN ELASTICITY 123

We refer the reader to [9, 26] for the mapping properties of the operators introduced
above.

Next we introduce the potential operators for the Lam\'e system. The fundamental
solution \Gamma \omega = (\Gamma \omega 

i,j)
N
i,j=1 for the operator \scrL \~\lambda ,\~\mu + \rho e\omega 

2 can be decomposed into shear
and pressure components (cf. [6]):

(2.12) \Gamma \omega = \Gamma \omega 
s + \Gamma \omega 

p ,

where

\Gamma \omega 
p =  - 1

\rho e\omega 2
\nabla \nabla G\~kp and \Gamma \omega 

s =
1

\rho e\omega 2
(\~k2sI+\nabla \nabla )G

\~ks ,

with I denoting the N \times N identity matrix, Gk given in (2.8) and \~ks as well as \~kp de-
fined as in (2.7). The single layer potential operator associated with the fundamental
solution \Gamma \omega is defined by

(2.13) S\omega 
\partial D[\bfitvarphi ](x) =

\int 
\partial D

\Gamma \omega (x - y)\bfitvarphi (y)ds(y), x \in \BbbR N ,

for \bfitvarphi \in L2(\partial D)N . On the boundary \partial D, the conormal derivative of the single layer
potential satisfies the following jump formula:

(2.14)
\partial S\omega 

\partial D[\bfitvarphi ]

\partial \bfitnu 
| \pm (x) =

\biggl( 
\pm 1

2
I+ (K\omega 

\partial D)
\ast 
\biggr) 
[\bfitvarphi ](x), x \in \partial D,

where

(2.15) K\omega ,\ast 
\partial D [\bfitvarphi ](x) = p.v.

\int 
\partial D

\partial \Gamma \omega 

\partial \bfitnu (x)
(x - y)\bfitvarphi (y)ds(y),

with the subscript \pm indicating the limits from outside and inside D, respectively.
The operator K\omega ,\ast 

\partial D is called Neumann--Poincar\'e (N--P) operator of the Lam\'e system.
In our subsequent analysis, we also need the following single layer potential operators
associated with the p-wave (pressure wave) and s-wave (shear wave), respectively:

(2.16) S\omega ,i
\partial D[\bfitvarphi ](x) =

\int 
\partial D

\Gamma \omega 
i (x - y)\bfitvarphi (y)ds(y), x \in \BbbR N\setminus D,

where \bfitvarphi (y) \in L2(\partial D)N and the kernel functions \Gamma \omega 
i , i = p, s, are defined as in (2.12).

We refer the reader to [6] for the mapping properties of the operators introduced
above.

With the help of the potential operators introduced above, the solution to (2.2)
can be represented by the following integral ansatz:

(2.17) u =

\Biggl\{ 
S
\~k
\partial D[\varphi b](x), x \in D,

S\omega 
\partial D[\bfitvarphi e](x) + ui, x \in \BbbR N\setminus D,

for some density functions \varphi b \in L2(\partial D) and \bfitvarphi e \in L2(\partial D)N . By matching the
transmission conditions on the boundary \partial D, along with the help of the jump formulas
(2.10) and (2.14), it can be verified by some straightforward calculations that the
density functions \varphi b,\bfitvarphi e satisfy the following system of boundary integral equations:

(2.18) \~\scrA (\omega , \delta )[\Phi ](x) = F (x), x \in \partial D,
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124 HONGJIE LI, HONGYU LIU, AND JUN ZOU

where

\~\scrA (\omega , \delta ) =

\left(  1
\rho b\omega 2

\Bigl( 
 - I

2 +K
\~k,\ast 
\partial D

\Bigr) 
 - \bfitnu \cdot S\omega 

\partial D

\bfitnu S
\~k
\partial D

\bfI 
2 +K\omega ,\ast 

\partial D

\right)  , \Phi =

\biggl( 
\varphi b

\bfitvarphi e

\biggr) 
, and F =

\biggl( 
\bfitnu \cdot ui

 - \partial \bfitnu ui

\biggr) 
.

Then the Minnaert resonance of the system (2.2) is defined for all \omega \in \BbbC such that
the following equation holds:

(2.19) \~\scrA (\omega , \delta )[\Phi ](x) = 0

for a nontrivial solution \Phi \in \scrH . For notational convenience, we shall write \scrH :=
L2(\partial D) \times L2(\partial D)N . Moreover, in our subsequent study of the Minnaert resonance,
we may weaken the condition (2.19) by finding a solution \Phi \in \scrH with \| \Phi \| \scrH = 1 such
that for \omega \ll 1,

(2.20) \| \~\scrA (\omega , \delta )[\Phi ](x)\| \scrH \ll 1.

If the condition (2.20) is fulfilled, we say that the weak (Minnaert) resonance occurs
for the system (2.2). In contrast to the weak Minnaert resonance, when the condition
(2.19) is fulfilled, we say that the strong (Minnaert) resonance occurs.

We remark that the definition of the weak resonance in (2.20) is rather qualitative
and heuristic at the moment, but it will become clearer and more substantiated in our
subsequent study; see, e.g., (3.10), where all the parameters involved are dimensionless
after appropriate normalization.

Finally, we make some remarks on the definition of the Minnaert resonance in-
troduced above. In fact, the definition of the strong (Minnaert) resonance is similar
to the one introduced in [2] for the bubble-liquid resonance. For the weak resonance,
let us assume that

\~\scrA (\omega , \delta )[\Phi ](x) = \~\Psi .

According to (2.20), one has that

\| \~\Psi \| \scrH \ll 1.

Set \Psi = \~\Psi /\| \~\Psi \| \scrH such that \| \Psi \| \scrH = 1. If F in (2.18) is properly chosen, which has
a component being \Psi , one can easily conclude from (2.17) that the scattering wave
will blow up at the order 1/\| \~\Psi \| \scrH .

3. General requirements for the medium configuration and auxiliary
results on the layer-potential operators. In this section, we first introduce some
general requirements for the medium configuration that are critical for the occurrence
of the Minnaert resonances in our subsequent constructions of the bubble-elastic struc-
tures in sections 4 and 5. Then we derive some auxiliary results for subsequent use.

3.1. General requirements for the medium configuration. We will con-
sider

(3.1) \delta = \rho b/\rho e = o(1),

which states that the contrast of the densities of the bubble and the elastic material
is high. Moreover, we assume that the bulk modulus of the air \kappa and the compression
modulus \~\lambda as well as the shear modulus \~\mu of the elastic material satisfy

(3.2) \kappa /\~\lambda = \scrO (\delta ) and \~\mu /\~\lambda = o(1).
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MINNAERT RESONANCES FOR BUBBLES IN ELASTICITY 125

Under these assumptions, we can easily derive

(3.3) \tau =
cb
\~cp

=

\sqrt{} 
\kappa /\rho b\sqrt{} \Bigl( 

\~\lambda + 2\~\mu 
\Bigr) 
/\rho e

= \scrO (1),

where cb and \~cp are defined as in (2.2) and (2.7), respectively. Indeed, the assumptions
in (3.1) and (3.2) are reasonable, and this is the case that air bubbles are embedded
in the polydimethylsiloxane, a soft elastic material (cf. [11]).

As a matter of fact, the low frequency is mainly caused by the fact that the size
of the air bubble D is much smaller than the wavelength of the elastic wave. Since
the elastic wave can be decomposed into the compressional wave (p-wave) and the
shear wave (s-wave) [14], we are mainly concerned in this paper with the case that
the wavelength of the p-wave is much larger than the size of the bubble D and the
wavelength of the s-wave generically does not satisfy this requirement. That means
that the Minnaert resonance is mainly caused by the p-wave. Thus by the coordinate
transformation, we may assume that the size of the domain D is of order 1 and
\omega = o(1). Since cb is fixed, we further have

\~k = o(1) and \~kp = o(1),

where \~k and \~kp are defined as in (2.2) and (2.7), respectively.
Let L be the typical length (average length) of the domain D. Then we introduce

the following nondimensional parameters:

x\prime = x/L, k = \~kL, u\prime = u/L,

\mu = \~\mu /(\~\lambda + 2\~\mu ), \lambda = \~\lambda /(\~\lambda + 2\~\mu ), u\prime = u/(\rho bc
2
b).

(3.4)

Thus, from the previous assumptions, one has that

(3.5) k = o(1), \delta = \rho b/\rho e = o(1), \tau = \scrO (1), \mu = o(1), and \lambda = \scrO (1).

Substituting these parameters into (2.2) and dropping the primes, one can obtain the
following coupled PDE system for our subsequent study:

(3.6)

\left\{                   

\scrL \lambda ,\mu u(x) + k2\tau 2u(x) = 0, x \in \BbbR N\setminus D,

\bigtriangleup u(x) + k2u(x) = 0, x \in D,

u(x) \cdot \bfitnu  - 1
k2\nabla u(x) \cdot \bfitnu = 0, x \in \partial D,

\partial \bfitnu u(x) + \delta \tau 2u(x)\bfitnu = 0, x \in \partial D,

u(x) - ui(x) satisfies the radiation condition,

where \tau is as defined in (3.3). Here we would like to point out that in (3.6), the
p-wavenumber satisfies

kp =
k\tau 

cp
=

k\tau \surd 
\lambda + 2\mu 

= o(1).

Following our earlier discussions in (2.17)--(2.19), the solution to the system (3.6)
can be given by

(3.7) u =

\Biggl\{ 
Sk
\partial D[\varphi b](x), x \in D,

Sk\tau 
\partial D[\bfitvarphi e](x) + ui, x \in \BbbR N\setminus D,
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126 HONGJIE LI, HONGYU LIU, AND JUN ZOU

for some surface densities (\varphi b,\bfitvarphi e) \in \scrH that satisfy

(3.8) \scrA (k, \delta )[\Phi ](x) = F (x), x \in \partial D,

where

\scrA (k, \delta ) =

\left(  1
k2

\Bigl( 
 - I

2 +Kk,\ast 
\partial D

\Bigr) 
 - \bfitnu \cdot Sk\tau 

\partial D

\delta \tau 2\bfitnu Sk
\partial D

\bfI 
2 +Kk\tau ,\ast 

\partial D

\right)  , \Phi =

\biggl( 
\varphi b

\bfitvarphi e

\biggr) 
, and F =

\biggl( 
\bfitnu \cdot ui

 - \partial \bfitnu ui

\biggr) 
.

Based on our earlier definitions of the strong and weak Minnaert resonances, we shall
establish the sufficient conditions for the occurrence of resonances associated with
(3.7)--(3.8); that is, it holds for the strong resonance of (3.6) that

(3.9) \scrA (k, \delta )[\Phi ](x) = 0,

while it holds for the weak resonance of (3.6) that

(3.10) \| \scrA (k, \delta )[\Phi ](x)\| \scrH \ll 1

for a nontrivial \Phi \in \scrH with \| \Phi \| \scrH = 1 and k \ll 1,

3.2. Some auxiliary results. We first introduce the following lemmas.

Lemma 3.1. If a vector field w \in H1(\BbbR 3\setminus D)3 satisfies the three equations

\bigtriangleup w + k2w = 0, \nabla \times w = 0, and \nabla \cdot w = 0,

with k \not = 0, then w \equiv 0.

Proof. Direct calculations show that

\nabla \times \nabla \times w = \nabla \nabla \cdot w  - \bigtriangleup w = 0 + k2w = 0.

Thus one can obtain w \equiv 0 since k2 \not = 0.

Recall that the operator S\omega ,s
\partial D : L2(\partial D)3 \rightarrow H1(\BbbR 3\setminus D)3 is defined in (2.16). In

what follows, if \bfitvarphi \in L2(\partial D)3 satisfies\int 
\partial D

1

\rho \omega 2
(k2sI+\nabla \nabla )Gks(x - y)\bfitvarphi (y)ds(y) = 0, x \in \BbbR 3\setminus D,

then we say that \bfitvarphi \in ker (S\omega ,s
\partial D).

Lemma 3.2. For \bfitvarphi \in ker (S\omega ,s
\partial D), one has that\int 

\partial D

\nabla \nabla G0(x - y)\bfitvarphi (y)ds(y) = 0, x \in \BbbR 3\setminus D,

where Gk(x - y) is defined as in (2.8) with k = 0.

Proof. From the definition of the fundamental solution in (2.12), if \bfitvarphi \in ker (S\omega ,s
\partial D),

one has that\int 
\partial D

1

\rho \omega 2
(k2sI+\nabla \nabla )Gks(x - y)\bfitvarphi (y)ds(y) = 0, x \in \BbbR 3\setminus D.
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Thus one can further have that for x \in \BbbR 3\setminus D,
(3.11)

 - 
\int 
\partial D

\nabla \nabla G0(x - y)\bfitvarphi (y)ds(y) =

\int 
\partial D

\bigl( 
k2sG

ks +\nabla \nabla (Gks  - G0)
\bigr) 
(x - y)\bfitvarphi (y)ds(y).

From the expression

G0(x - y) =  - 1

4\pi | x - y| 
,

the integral possesses the following property:\int 
\partial D

\nabla \nabla G0(x - y)\bfitvarphi (y)ds(y) \rightarrow 0 as | x| \rightarrow \infty .

Therefore, from the expansion of the fundamental solution Gks(x - y) and (3.11), one
can obtain that for x \in \BbbR 3\setminus D
(3.12)

 - 
\int 
\partial D

\nabla \nabla G0(x - y)\bfitvarphi (y)ds(y) =  - k2s
4\pi 

\int 
\partial D

\biggl( 
1

| x - y| 
+\nabla \nabla (| x - y| )

\biggr) 
\bfitvarphi (y)ds(y).

Taking the Laplace operator \bigtriangleup on both sides of the last equation gives that for
x \in \BbbR 3\setminus D

0 =  - k2s
4\pi 

\int 
\partial D

\nabla \nabla 
\biggl( 

1

| x - y| 

\biggr) 
\bfitvarphi (y)ds(y).

The proof is completed by noting that the function on the right side of the equation
(3.12) is continuous from \BbbR 3\setminus D to \BbbR 3\setminus D.

Lemma 3.3. If \bfitvarphi \in ker (S\omega ,s
\partial D) does not depend on ks, then one has that

S\omega ,p
\partial D [\bfitvarphi ](x) =

1

\lambda + 2\mu 

\int 
\partial D

Gkp(x - y)\bfitvarphi (y)ds(y), x \in \BbbR 3\setminus D,

where the operators S\omega ,i
\partial D (i = p, s) are defined as in (2.16).

Proof. From the definition of the fundamental solution in (2.12), if \bfitvarphi \in ker (S\omega ,s
\partial D),

one has that\int 
\partial D

1

\rho \omega 2
(k2sI+\nabla \nabla )Gks(x - y)\bfitvarphi (y)ds(y) = 0, x \in \BbbR 3\setminus D.

Replacing ks with kp in the last equation yields that for x \in \BbbR 3\setminus D,\int 
\partial D

 - 1

\rho \omega 2
(\nabla \nabla )Gkp(x - y)\bfitvarphi (y)ds(y) =

1

\lambda + 2\mu 

\int 
\partial D

Gkp(x - y)\bfitvarphi (y)ds(y).

The proof is readily completed by noting that the operator S
kp

\partial D is continuous from
\BbbR 3\setminus D to \BbbR 3\setminus D.

Remark 3.1. We can derive that ker (S\omega ,s
\partial D) \not = \emptyset and \bfitnu \in ker (S\omega ,s

\partial D). Indeed, we
set

(3.13) w(x) =

\int 
\partial D

1

\rho \omega 2
(k2sI+\nabla \nabla )Gks(x - y)\bfitnu \bfy ds(y), x \in \BbbR 3\setminus D.

It is directly verified that the function w defined in (3.13) satisfies the following two
equations in \BbbR 3\setminus D:

\bigtriangleup w + k2sw = 0 and \nabla \cdot w = 0.
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128 HONGJIE LI, HONGYU LIU, AND JUN ZOU

With the help of the identities

\nabla \times \nabla = 0 and \nabla \bfx G
ks(x - y) =  - \nabla \bfy G

ks(x - y),

one furthermore has for x \in \BbbR 3\setminus D that

\nabla \times w =

\int 
\partial D

1

\rho \omega 2
\nabla \bfx \times (k2sI+\nabla \nabla )Gks(x - y)\bfitnu \bfy ds(y)

=
1

\rho \omega 2

\int 
\partial D

(k2s\nabla \bfx \times I+\nabla \bfx \times \nabla \nabla )Gks(x - y)\bfitnu \bfy ds(y)

=
 - k2s
\rho \omega 2

\int 
\partial D

\nabla \bfy G
ks(x - y)\times \bfitnu \bfy ds(y)

=
k2s
\rho \omega 2

\int 
D

\nabla \bfy \times \nabla \bfy G
ks(x - y)dy = 0.

Finally, Lemma 3.1 shows that w defined in (3.13) vanishes in \BbbR 3\setminus D, and one can
conclude that \bfitnu \in ker (S\omega ,s

\partial D) and \bfitnu does not depend on ks.

Lemma 3.4. For the operators Sk
\partial D : L2(\partial D) \rightarrow H1(\partial D) and Kk,\ast 

\partial D : L2(\partial D) \rightarrow 
L2(\partial D) defined in (2.9) and (2.10), respectively, we have the following asymptotic
expansions in three dimensions (cf. [2]):

(3.14) Sk
\partial D =

+\infty \sum 
j=0

kjS\partial D,j , Kk,\ast 
\partial D =

+\infty \sum 
j=0

kjK\ast 
\partial D,j ,

where

S\partial D,j [\varphi ](x) =  - i

4\pi 

\int 
\partial D

(i| x - y| )j - 1

j!
\varphi (y)ds(y),

and

K\ast 
\partial D,j [\varphi ](x) =  - ij(j  - 1)

4\pi j!

\int 
\partial D

| x - y| j - 3(x - y) \cdot \bfitnu \bfx \varphi (y)ds(y).

Moreover, S\partial D,j and K\ast 
\partial D,jare uniformly bounded with respect to j, and the two series

in (3.14) are convergent in \scrL (L2(\partial D), H1(\partial D)) and \scrL (L2(\partial D)), respectively.

As discussed earlier, only the wavelength of the p-wave is required to be asymp-
totically larger than the size of the domain D, and the wavelength of the s-wave is
not required to satisfy such a requirement; thus the low-frequency resonance is mainly
caused by the p-wave, and the s-wave generically makes no contribution. Therefore, in
the following analysis for the low-frequency resonance, we choose to mainly consider
the density function \bfitvarphi \in ker (S\omega ,s

\partial D), which can be proved not depending on ks later.
From Lemma 3.3, we can focus our attention on the operator S\omega ,p

\partial D with the kernel
\delta ijG

kp/(\lambda +2\mu ) and the operator K\omega ,p,\ast 
\partial D : L2(\partial D)3 \rightarrow L2(\partial D)3 defined in (2.15) with

the kernel function \Gamma \omega replaced by \delta ijG
kp/(\lambda +2\mu ). By straightforward calculations,

we have the following asymptotic expansions for the operators S\omega ,p
\partial D and K\omega ,p,\ast 

\partial D for the
density function \bfitvarphi \in ker (S\omega ,s

\partial D) that does not depend on ks.

Lemma 3.5. For the density function \bfitvarphi \in ker (S\omega ,s
\partial D) not depending on ks, the

operators S\omega ,p
\partial D from L2(\partial D)3 to H1(\partial D)3 and K\omega ,p,\ast 

\partial D from L2(\partial D)3 to L2(\partial D)3 enjoy
the following asymptotic expansions in three dimensions:

(3.15) S\omega ,p
\partial D =

+\infty \sum 
j=0

kjpS
p
\partial D,j , K\omega ,p,\ast 

\partial D =

+\infty \sum 
j=0

kjpK
p,\ast 
\partial D,j ,
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where

Sp
\partial D,j [\bfitvarphi ](x) =  - i

4\pi (\lambda + 2\mu )

\int 
\partial D

(i| x - y| )j - 1

j!
\bfitvarphi (y)ds(y),

and

(3.16) Kp,\ast 
\partial D,j [\bfitvarphi ](x) =

\lambda 

\lambda + 2\mu 
R1,j [\bfitvarphi ](x) +

\mu 

\lambda + 2\mu 
R2,j [\bfitvarphi ](x),

with R1,j and R2,j given by

R1,j [\bfitvarphi ](x) =  - ij(j  - 1)\bfitnu \bfx 

4\pi j!

\int 
\partial D

| x - y| j - 3\langle x - y,\bfitvarphi (y)\rangle ds(y),

and

R2,j [\bfitvarphi ](x) = - ij(j  - 1)

4\pi j!

\biggl( \int 
\partial D

| x - y| j - 3\langle x - y,\bfitnu \bfx \rangle \bfitvarphi (y)ds(y)

+

\int 
\partial D

| x - y| j - 3(x - y)\langle \bfitnu \bfx ,\bfitvarphi (y)\rangle ds(y)
\biggr) 
.

Moreover, Sp
\partial D,j and Kp,\ast 

\partial D,j are uniformly bounded with respect to j, and the two series

in (3.15) are convergent in \scrL (L2(\partial D)3, H1(\partial D)3) and \scrL (L2(\partial D)3), respectively.

Lemma 3.6. If \bfitvarphi \in ker (S\omega ,s
\partial D), kp \ll 1, \mu \ll 1, and \lambda = \scrO (1), then one has that

for x \in \partial D,
K\omega ,\ast 

\partial D [\bfitvarphi ](x) = R1,0[\bfitvarphi ] +\scrO (\mu ) +\scrO (k2p),

where R1,0 is defined as in (3.16).

Proof. From the definition of the fundamental solution in (2.12) and the fact
\bfitvarphi \in ker (S\omega ,s

\partial D), we only need to deal with the kernel function  - 1
\omega 2\nabla \nabla Gkp . Moreover,

the traction operator \partial \bfitnu defined in (2.4) can also be written as

(3.17) \partial \bfitnu w = 2\mu \nabla w \cdot \bfitnu + \lambda (\nabla \cdot w)\bfitnu + \mu \bfitnu \times (\nabla \times w).

From Lemma 3.2, we have that\int 
\partial D

2\mu \nabla 
\biggl( 
 - 1

\omega 2
\nabla \nabla Gkp(x - y)\bfitvarphi (y)

\biggr) 
\cdot \bfitnu ds(y)

=

\int 
\partial D

2\mu \nabla 
\biggl( 
 - 1

\omega 2
\nabla \nabla 

\bigl( 
Gkp  - G0

\bigr) 
(x - y)\bfitvarphi (y)

\biggr) 
\cdot \bfitnu ds(y)

=\scrO (\mu ),

(3.18)

where the last identity follows from the Lemma 3.5. It also holds that

\lambda \bfitnu 

\int 
\partial D

\nabla \cdot 
\biggl( 
 - 1

\omega 2
\nabla \nabla Gkp(x - y)\bfitvarphi (y)

\biggr) 
ds(y)

=\lambda \bfitnu 

\int 
\partial D

 - 1

\omega 2
\bigtriangleup \nabla Gkp(x - y) \cdot \bfitvarphi (y)ds(y)

=\bfitnu 

\int 
\partial D

\nabla Gkp(x - y) \cdot \bfitvarphi (y)ds(y)

=R1,0[\bfitvarphi (y)] +\scrO (k2p),

(3.19)
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where R1,0 is defined as in (3.16). Moreover, since \nabla \times \nabla = 0, one finally concludes
that from (3.17), (3.18), and (3.19)

K\omega ,\ast 
\partial D [\bfitvarphi ](x) = R1,0[\bfitvarphi ] +\scrO (\mu ) +\scrO (k2p).

The proof is completed.

Remark 3.2. Lemma 3.6 holds for any \bfitvarphi \in ker (S\omega ,s
\partial D), which could depend on ks.

For later convenience, we introduce an important subspace of L2(\partial D):

(3.20) L2
0(\partial D) =

\biggl\{ 
\varphi \in L2(\partial D) :

\int 
\partial D

\varphi ds = 0

\biggr\} 
and the following results, which can be found in [7].

Lemma 3.7. Let \xi be a real number. The operator \xi  - K\ast 
\partial D,0 is invertible on

L2
0(\partial D) if | \xi | \geq 1/2, where K\ast 

\partial D,0 is as given in (2.11). Furthermore, the kernel of

the operator ( - I
2 +K\ast 

\partial D,0), restricted in the space L2(\partial D), is one-dimensional, and

ker

\biggl( 
 - I
2
+K\ast 

\partial D,0

\biggr) 
= span\{ S - 1

\partial D,0[1]\} ,

where the operator S - 1
\partial D,0 is the inverse of the operator S\partial D,0 defined in (2.9).

Lemma 3.8. All f \in L2(\partial D) satisfying ( - I
2 +K\partial D,0)f = 0, with K\partial D,0 defined

as in (2.11), are constant.

4. Minnaert resonances in three dimensions. In this section, we show the
Minnaert resonances for the system (3.6) in \BbbR 3. We first prove that the weak resonance
always occurs provided that the parameters are properly chosen. Then with a proper
choice of the geometry of the domain D, we further show that enhanced or even strong
resonances can occur.

Theorem 4.1. Consider the system (3.6) in three dimensions. If the parame-
ters are chosen according to (3.1)--(3.2) (or equivalently (3.5)), then weak Minnaert
resonance occurs.

Proof. The proof proceeds by construction. By the definition of the weak reso-
nance in (3.10) for the system (3.6), we construct in what follows a density function
\Phi \in \scrH with \| \Phi \| \scrH = 1 such that condition (3.10) is fulfilled.

Since we consider the low-frequency resonance, i.e., k \ll 1, the density function
\Phi \in \scrH should satisfy the following asymptotic expansion:

\Phi = \Phi 0 + k\Phi 1 + k2\Phi 2 + \cdot \cdot \cdot ,

where

\Phi j =

\biggl( 
\varphi j

\bfitvarphi j

\biggr) 
, j = 0, 1, 2, . . . .

As we discussed earlier, the resonance is mainly caused by the p-wave in our
study. Therefore, we choose

\bfitvarphi j \in ker (S\omega ,s
\partial D) , j = 0, 1, 2, . . . .

From the assumption that \delta \ll 1 and the operator Sk
\partial D is bounded, we can derive

from the definition of the operator \scrA (k, \delta ) in (3.8) and Lemmas 3.4--3.6 that
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\scrA (k, \delta )[\Phi ] =
1

k2

\Biggl( \Bigl( 
 - I

2 +K\ast 
\partial D,0

\Bigr) 
[\varphi 0]

0

\Biggr) 
+

1

k

\Biggl( \Bigl( 
 - I

2 +K\ast 
\partial D,0

\Bigr) 
[\varphi 1]

0

\Biggr) 

+

\left(  K\ast 
\partial D,2[\varphi 0] - \bfitnu \cdot Sk\tau 

\partial D[\bfitvarphi 0] +
\Bigl( 
 - I

2 +K\ast 
\partial D,0

\Bigr) 
[\varphi 2]\Bigl( 

\bfI 
2 +Kk\tau ,\ast 

\partial D

\Bigr) 
[\bfitvarphi 0]

\right)  +\scrO (k) +\scrO (\delta ).

(4.1)

Since k \ll 1, the first two terms in (4.1) should vanish. Thus one can conclude from
Lemma 3.7 that

(4.2) \varphi 0, \varphi 1 \in ker

\biggl( 
 - I
2
+K\ast 

\partial D,0

\biggr) 
= span\{ S - 1

\partial D,0[1]\} .

Next we deal with the third term in (4.1). Since \bfitvarphi 0 \in ker (S\omega ,s
\partial D), one has that from

Lemma 3.6 \biggl( 
I

2
+Kk\tau ,\ast 

\partial D

\biggr) 
[\bfitvarphi 0] =

1

2
\bfitvarphi 0 +R1,0[\bfitvarphi 0] +\scrO (\mu ) +\scrO (k2p),

where

(4.3) R1,0[\bfitvarphi 0] = \bfitnu \bfx 

\int 
\partial D

\langle x - y,\bfitvarphi 0\rangle 
4\pi | x - y| 3

ds(y)

and is bounded from L2(\partial D)3 to L2(\partial D)3. Therefore the leading term 1
2\bfitvarphi 0+R1,0[\bfitvarphi 0]

should vanish. From (4.3), R1,0[\bfitvarphi 0] contains only the normal component; therefore
the function \bfitvarphi 0 should also contain only the normal component, namely

\bfitvarphi 0 = \varphi \bfitnu 

for some \varphi \in L2(\partial D). Thus

1

2
\bfitvarphi 0 +R1,0[\bfitvarphi 0] = \bfitnu 

\biggl( 
1

2
\varphi  - K\partial D,0[\varphi ]

\biggr) 
,

and \varphi should be a constant thanks to Lemma 3.8. Hence one finally obtains that

\bfitvarphi 0 = c0\bfitnu 

for some constant c0, which will be further determined later. Since \bfitvarphi 0 derived in the
last equation does not depend on ks, one has the following expansion from Lemma
3.5:

Sk\tau 
\partial D[\bfitvarphi 0] = S\omega ,p

\partial D [\bfitvarphi 0] =

+\infty \sum 
j=0

kjpS
p
\partial D,j [\bfitvarphi 0],

and

Kk\tau ,\ast 
\partial D [\bfitvarphi 0] = K\omega ,p,\ast 

\partial D [\bfitvarphi 0] =

+\infty \sum 
j=0

kjpK
p,\ast 
\partial D,j [\bfitvarphi 0].

We proceed to deal with the first component of the third term in (4.1) by solving the
following equation:

(4.4)

\biggl( 
 - I
2
+K\ast 

\partial D,0

\biggr) 
[\varphi 2] = c0\bfitnu \cdot Sp

\partial D,0[\bfitnu ] - K\ast 
\partial D,2[\varphi 0].
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Lemma 3.7 shows that the operator
\bigl( 
 - I

2 +K\ast 
\partial D

\bigr) 
is invertible on L2

0(\partial D); thus c0
should be chosen as

(4.5) c0 =

\int 
\partial D

K\ast 
\partial D,2[\varphi 0](x)ds(x)\int 

\partial D
\bfitnu \cdot Sp

\partial D,0[\bfitnu ](x)ds(x)

such that (4.4) is solvable. Thus

\varphi 2 =

\biggl( 
 - I
2
+K\ast 

\partial D,0

\biggr)  - 1 \Bigl[ 
c0\bfitnu \cdot Sp

\partial D,0[\bfitnu ] - K\ast 
\partial D,2[\varphi 0]

\Bigr] 
.

Following the process above, one can construct

(4.6) \Phi =

\biggl( 
\varphi 0

c0\bfitnu 

\biggr) 
+ k

\biggl( 
\varphi 1

c1\bfitnu 

\biggr) 
+ k2

\biggl( 
\varphi 2

c2\bfitnu 

\biggr) 
+ k3

\biggl( 
\varphi 3

0

\biggr) 
+ k4

\biggl( 
\varphi 4

0

\biggr) 
,

where \varphi 0, \varphi 1 are as given in (4.2), c0 is as given in (4.5), and

c1 =

\int 
\partial D

K\ast 
\partial D,2[\varphi 1](\bfx ) +K\ast 

\partial D,3[\varphi 0](\bfx ) - (\tau /cp)\bfitnu \cdot \bfS p
\partial D,1[c0\bfitnu ](\bfx )d\bfx \int 

\partial D
\bfitnu \cdot \bfS p

\partial D,0[\bfitnu ](\bfx )d\bfx 
,

\varphi 3 =

\biggl( 
 - I

2
+K\ast 

\partial D,0

\biggr)  - 1 \bigl[ 
c1\bfitnu \cdot \bfS p

\partial D,0[\bfitnu ] - K\ast 
\partial D,2[\varphi 1] + (\tau /cp)c0\bfitnu \cdot \bfS p

\partial D,1[\bfitnu ] - K\ast 
\partial D,3[\varphi 0]

\bigr] 
,

c2 =

\int 
\partial D

K\ast 
\partial D,2[\varphi 2](\bfx ) +K\ast 

\partial D,3[\varphi 1](\bfx ) +K\ast 
\partial D,4[\varphi 0](\bfx )d\bfx \int 

\partial D
\bfitnu \cdot \bfS p

\partial D,0[\bfitnu ](\bfx )d\bfx 

 - 
\int 
\partial D

(\tau /cp)\bfitnu \cdot \bfS p
\partial D,1[c1\bfitnu ](\bfx ) + (\tau /cp)

2\bfitnu \cdot \bfS p
\partial D,2[c0\bfitnu ](\bfx )d\bfx \int 

\partial D
\bfitnu \cdot \bfS p

\partial D,0[\bfitnu ](\bfx )d\bfx 
,

\varphi 4 =

\biggl( 
 - I

2
+K\ast 

\partial D,0

\biggr)  - 1 \bigl[ 
c2\bfitnu \cdot \bfS p

\partial D,0[\bfitnu ] - K\ast 
\partial D,2[\varphi 2](\bfx ) - K\ast 

\partial D,3[\varphi 1](\bfx )

+(\tau /cp)\bfitnu \cdot \bfS p
\partial D,1[c1\bfitnu ](\bfx ) - K\ast 

\partial D,4[\varphi 0](\bfx ) + (\tau /cp)
2\bfitnu \cdot \bfS p

\partial D,2[c0\bfitnu ](\bfx )
\bigr] 
.

Then one can have that

\scrA (\omega , \delta )[\Phi ] =

\Biggl( 
0

\delta \tau 2\bfitnu + \mu 
\Bigl( 

1
\lambda +2\mu (R2,0  - 2R1,0)[c0\bfitnu ]

\Bigr) 
+ k2(\tau /cp)

2R1,2[c0\bfitnu ]

\Biggr) 

+

\biggl( 
\scrO (k3)

\scrO (k3) +\scrO (\delta k) +\scrO (\mu k)

\biggr) 
,

(4.7)

with \Phi defined as in (4.6) and the operator Ri,j defined as in Lemma 3.5. Finally one
can conclude that

\| \scrA (\omega , \delta )[\Phi ](x)\| \scrH = \scrO (\delta ) +\scrO (\mu ) +\scrO (k2) \ll 1,

which clearly shows that the weak resonance occurs.

From the proof of Theorem 4.1, one readily sees that we cannot enhance the
resonance by diminishing the parameter k only. The parameter k should be chosen in
an appropriate way that is correlated to the parameters \delta and \mu in order to achieve
enhanced resonance effects. In fact, we have the following results.
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Proposition 4.1. Consider the same setup as that in Theorem 4.1. If the equa-
tion

(4.8) \delta \tau 2\bfitnu + \mu 

\biggl( 
1

\lambda + 2\mu 
(R2,0  - 2R1,0)[c0\bfitnu ]

\biggr) 
+ k2(\tau /cp)

2R1,2[c0\bfitnu ] = 0

is solvable, where R2,0, R1,0, and R1,2 are defined as in Lemma 3.5, then one has
that

(4.9) \| \scrA (\omega , \delta )[\Phi ](x)\| \scrH = \scrO (\delta k) +\scrO (\mu k) +\scrO (k3),

which indicates that the enhanced resonance can be achieved. If (4.8) is solvable, the
parameter k should fulfil

(4.10) k =
\sqrt{} 
\scrO (\delta ) +\scrO (\mu ).

Proof. If we take the density function \Phi as in (4.6), and if (4.8) is solvable, then
from (4.7) one has that

(4.11) \scrA (\omega )[\Phi ] =

\biggl( 
\scrO (k3)

\scrO (k3) +\scrO (\delta k) +\scrO (\mu k)

\biggr) 
.

Thus the estimate in (4.9) is proved. Moreover, by noting that the functions

(R2,0  - 2R1,0)[c0\bfitnu ] and R1,2[c0\bfitnu ]

are bounded in L2(\partial D)3 and

\tau = \scrO (1) and \lambda = \scrO (1),

one can show by direct computations that if (4.8) is solvable, then the parameter k
fulfils

k =
\sqrt{} 

\scrO (\delta ) +\scrO (\mu ).

Remark 4.1. If (4.8) is solvable, the function R2,0[\bfitnu ] should contain only the
normal component, since the functions R1,0[\bfitnu ] and R1,2[\bfitnu ] contain only the normal
components. Indeed, this is also physically justifiable. We can see from the fourth
equation in (3.6) that it is natural to require the leading term of the traction of the
elastic wave outside the bubble D to contain only the normal component in order
to strengthen the resonance, since the pressure in the bubble has only the normal
component. This property depends heavily on the geometry of the domain D.

Remark 4.2. Since \delta \ll 1 and \mu \ll 1, we can readily see from (4.9) and (4.10) in
Proposition 4.1 that enhanced resonance effects can be achieved.

Remark 4.3. We apply Proposition 4.1 to the case when the bubble D is a unit
ball. In such a case, one has that for x \in \partial D,

S - 1
\partial D,0[1](x) =  - 1 and S\partial D,0[\bfitnu ](x) =  - 1

3
\bfitnu .

Thus we can obtain from (4.2) that

\varphi 0 = \varphi 1 =  - 1.
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134 HONGJIE LI, HONGYU LIU, AND JUN ZOU

We first calculate the parameter c0 defined in (4.5). A direct calculation shows that\int 
\partial D

K\ast 
\partial D,2[ - 1](x)ds(x) =  - 4\pi /3.

Hence, one obtains

c0 =

\int 
\partial D

K\ast 
\partial D,2[\varphi 0](x)ds(x)\int 

\partial D
\bfitnu \cdot Sp

\partial D,0[\bfitnu ](x)ds(x)
=

 - 4\pi /3

 - 4\pi /(3(\lambda + 2\mu ))
= \lambda + 2\mu .

From the proof in Theorem 4.1, we derive

R1,0[\bfitnu ] =  - \bfitnu /2.

Moreover, by some straightforward but rather tedious calculations, one can obtain
that

R2,0[\bfitnu ] = \bfitnu /3 and R1,2[\bfitnu ] =  - \bfitnu /3.

Therefore (4.8) in Proposition 4.1 can be simplified to be

\delta \tau 2\bfitnu +
4

3
\mu \bfitnu  - 1

3
k2\tau 2\bfitnu = 0,

which shows that k should be chosen as

(4.12) k =
\sqrt{} 

3\delta + 4\mu /\tau 2.

Substituting the parameters in (3.4) into the last equation shows that the resonance
frequency should be

(4.13)
1

2\pi L

\sqrt{} 
3\kappa + 4\~\mu 

\rho e
,

where L is the radius of the sphere, which recovers the physical result in [1, 11].

Remark 4.4. It is definitely very interesting to explore whether the enhanced
resonance condition (4.8) can hold for bubbles of more general shapes other than the
radial one as discussed in Remark 4.3. However, it is rather impractical to solve (4.8)
analytically, even in the case when \partial D has a global parameterization, say an ellipsoid.
Instead, we have conducted extensive numerical experiments, and shall present one
typical example below for the illustration. We note that the geometrical dependence
of the resonance was also investigated numerically for the bubbly elastic materials
in [11].

From a numerical and practical point of view, instead of solving (4.8) exactly, we
consider the following optimization problem:

(4.14) min
k\in (0,\alpha )

\int 
\partial D

| g(k)| ds,

where \alpha \in \BbbR + is properly chosen, say \alpha = 1, and g(k) is the desired function involved
in (4.8), namely

g(k) := \delta \tau 2\bfitnu + \mu 

\biggl( 
1

\lambda + 2\mu 
(R2,0  - 2R1,0)[c0\bfitnu ]

\biggr) 
+ k2(\tau /cp)

2R1,2[c0\bfitnu ].
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Fig. 1. The values of
\int 
\partial D | \bfg (k)| ds in (4.14) versus the parameter k when D is an oblate spheroid.

We choose the same parameter configuration as that in [11]. The material parameters
for the air in the bubble are

\kappa = 1.4\times 105 Pa, \rho b = 1.2 kg/m3,

and the corresponding material parameters for the soft-elastic material are

\~\mu = 6.5\times 105 Pa, \~\lambda = 109 Pa, \rho e = 1042 kg/m3.

With these physical parameters, one can easily derive that the dimensionless param-
eters defined in (3.1), (3.3), and (3.4) are given by

\delta = 0.0012, \tau = 0.3363, \mu = 5.9\times 10 - 4.

The volume of the bubble D is maintained to be the constant 3.605\times 10 - 12m3, which
is the same as that in [11].

First, we consider the case that D is a central ball whose radius is 9.5\times 10 - 5m.
From (4.13), we can easily derive that the resonance frequency is 90 kHZ. Next, we
consider the case thatD is an oblate spheroid with two semiaxes of length 1.5\times 10 - 4m
and 3.7\times 10 - 5m, respectively. For the spheroidal geometry, we need to solve the opti-
mization problem (4.14) instead of solving (4.8) analytically as previously mentioned.
The values of

\int 
\partial D

| g(k)| ds versus the parameter k are plotted in Figure 1. From
Figure 1, it is easy to locate that the minimum for (4.14) is obtained at k = 0.194,
which implies that the physical resonance frequency is 70 kHZ, which agrees with the
result in [11]. This fact in turn verifies the correctness of identifying the resonance
frequency based on solving the optimization problem (4.14) for other geometries of
the domain. We see that the enhanced resonance condition (4.8) is not exactly ful-
filled in this case; nevertheless, the resonance phenomenon is significantly enhanced,
as naturally expected.

Finally, we point out that the enhanced resonance condition (4.8) may still be held
if one allows the shape of the embedded bubble to be geometrically and topologically
more general, say nonconvex or even nonsimply connected. However, this is beyond
the scope of the current work, and it may also lack physical significance since one can
always choose to work under the radial geometry from the construction point of view.

We end this section with a generalization of our previous results.

Proposition 4.2. Consider the same setup as that in Theorem 4.1. Further-
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more, if

\delta \bfitnu 

m\sum 
j=0

\tau 2kj
j\sum 

i=0

S\partial D,i[\varphi j - i] +
k2\tau 2

c2p

m\sum 
j=0

\biggl( 
k\tau 

cp

\biggr) j j+2\sum 
i=2

R1,i[cj+2 - i\bfitnu ]

+
\mu 

\lambda + 2\mu 

m\sum 
j=0

\biggl( 
k\tau 

cp

\biggr) j j\sum 
i=0

(R2,i  - 2R1,i)[cj - i\bfitnu ] = 0

(4.15)

is solvable, where \varphi j is defined as in (4.17), then one has that

(4.16) \| \scrA (\omega , \delta )[\Phi ](x)\| \scrH = \scrO (\delta km+1) +\scrO (\mu km+1) +\scrO (km+3).

Proof. Following the proof of Theorem 4.1, one can construct

(4.17) \Phi =

\infty \sum 
j=0

kj
\biggl( 
\varphi j

\bfitvarphi j

\biggr) 
,

where \varphi 0, \varphi 1 are the same as those in (4.2) and

\varphi j =

\biggl( 
 - I

2
+K\ast 

\partial D

\biggr)  - 1
\Biggl[ 

j - 2\sum 
m=0

(\tau /cp)
m\bfitnu \cdot \bfS p

\partial D,m[\bfitvarphi j - 2 - m] - 
j\sum 

m=2

K\ast 
\partial D,m[\varphi j - m]

\Biggr] 
for j \geq 2,

\bfitvarphi j = cj\bfitnu for j \geq 0,

with

cj =

\int 
\partial D

\sum j+2
m=2K

\ast 
\partial D,m[\varphi j+2 - m](x) - 

\sum j
m=1(\tau /cp)

m\bfitnu \cdot Sp
\partial D,m[\bfitvarphi j - m](x)ds(x)\int 

\partial D
\bfitnu \cdot Sp

\partial D,0[\bfitnu ]ds(x)
.

We remark here that when calculating \Phi in (4.17), one should first calculate cj to
obtain \bfitvarphi j and then calculate \varphi j+2 for j = 0, 1, 2, . . . , since \varphi 0, \varphi 1 \in span\{ S - 1

\partial D,0[1]\} .
Hence one has that

\scrA (\omega , \delta )[\Phi ]1 = 0,

\scrA (\omega , \delta )[\Phi ]2 =\delta \bfitnu 

\infty \sum 
j=0

\tau 2kj
j\sum 

i=0

S\partial D,i[\varphi j - i] +
k2\tau 2

c2p

\infty \sum 
j=0

\biggl( 
k\tau 

cp

\biggr) j j+2\sum 
i=2

R1,i[cj+2 - i\bfitnu ]

+
\mu 

\lambda + 2\mu 

\infty \sum 
j=0

\biggl( 
k\tau 

cp

\biggr) j j\sum 
i=0

(R2,i  - 2R1,i)[cj - i\bfitnu ],

where \scrA (\omega , \delta )[\Phi ]i denotes the ith component of the vectorial function \scrA (\omega , \delta )[\Phi ] and
the operators Ri,j with i = 1, 2 and j \geq 0, are defined as in (3.16). Thus, if (4.15) is
solvable, one can conclude that

\| \scrA (\omega , \delta )[\Phi ](x)\| \scrH = \scrO (\delta km+1) +\scrO (\mu km+1) +\scrO (km+3).

Remark 4.5. It is noted that if (4.15) is solvable, then one should have

k =
\sqrt{} 
\scrO (\delta ) +\scrO (\mu )

and

(4.18) R2,i[\bfitnu ] = \psi i\bfitnu for 0 \leq i \leq m,

with \psi i \in L2(\partial D). The identities (4.18) are unobjectionably reasonable, as explained
in Remark 4.1.
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Remark 4.6. Proposition 4.1 is a special case of Proposition 4.2 with m = 0.
Indeed, even though (4.15) could be solved for m > 0, it is enough to solve (4.15)
with m = 0, namely (4.8) in Proposition 4.1, to obtain the resonant frequency. This
is because it gives the leading-order term of the resonant frequency. As discussed in
Remark 4.4, by solving an equation here we actually mean to solve the corresponding
optimization problem (4.14).

Remark 4.7. If (4.15) is solvable form = \infty , then the function \Phi defined in (4.17)
belongs to the kernel of the operator \scrA (\omega , \delta ); namely the condition (3.9) is fulfilled. In
this case, condition (4.18) signifies that \bfitnu should be an eigenfunction of the operator
K\omega ,\ast 

\partial D . In fact, this is the case when the domain D is a ball. In [15, 16], it was proved
that \bfitnu is an eigenfunction of the operator K\omega ,\ast 

\partial D , namely

(4.19) K\omega ,\ast 
\partial D [\bfitnu ] = \chi 1\bfitnu , x \in \partial D,

where

\chi 1 =
4i\mu Rkp
(\lambda + 2\mu )

j1(kpR)h1(kpR) - iR2k2pj1(kpR)h0(kpR) - 
1

2
,

with R being the radius of the ball D, and jn(| x| ) and hn(| x| ) respectively denoting
the spherical Bessel function and spherical Hankel function of the first kind and of
order n. Moreover, \bfitnu is also an eigenfunction of the operator S\omega 

\partial D, namely

S\omega 
\partial D[\bfitnu ](x) =

 - iR2kp
(\lambda + 2\mu )

h1(kpR)j1(kpR)\bfitnu , x \in \partial D.(4.20)

It was also proved in [24] that

(4.21) Sk
\partial D[1](x) =  - ikR2h0(kR)j0(kR), x \in \partial D,

and

(4.22) Kk,\ast 
\partial D [1](x) =

1

2
 - ik2R2j\prime 0(kR)h0(kR), x \in \partial D.

Following the asymptotic expansions for the functions jn(| x| ) and hn(| x| ), n = 0, 1,
with | x| \ll 1 (cf. [13]), one can obtain the expressions of S\partial D,i[1], R1,i[\bfitnu ], and R2,i[\bfitnu ]
for i \geq 0, respectively. Next we only present the first few terms:

\delta \tau 2 +
4

3
\mu  - ik

\biggl( 
3\tau 3\delta + 4\tau \mu 

3
\surd 
\lambda + 2\mu 

\biggr) 
 - k2

\biggl( 
1

3
\tau 2 +

1

6
\tau 2\delta 

\biggr) 
+ k3

i\tau 3\delta 

6
\surd 
\lambda + 2\mu 

+ \cdot \cdot \cdot .

One can readily see that (4.15) is reduced to solving a polynomial equation with
respect to k of an infinity order. By a truncation and approximation, we solve the
following equation:

(4.23) \delta \tau 2 +
4

3
\mu  - ik

\biggl( 
3\tau 3\delta + 4\tau \mu 

3
\surd 
\lambda + 2\mu 

\biggr) 
 - k2

\biggl( 
1

3
\tau 2 +

1

6
\tau 2\delta 

\biggr) 
= 0,

whose roots are given by

(4.24) kd3\pm =
\pm 
\sqrt{} 
(3\tau 2\delta + 4\mu )(4(\lambda + \mu ) - 3\tau 2\delta ) - (3\tau 2\delta + 4\mu )i

2\tau 
\surd 
\lambda + 2\mu 

.

One can verify directly that the root (4.12) is the positive part of the roots (4.24),
neglecting the infinitesimal part. In fact, the critical values obtained in (4.24) exhibit
excellent accuracy for the resonant frequencies; see Remarks 5.1 and 5.2 in what
follows.
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5. Minnaert resonances in two dimensions. In this section, we derive the
Minnaert resonances for the system (3.6) in two dimensions when the domain D is a
unit disk. The extension of the low-frequency analysis from three dimensions to two
dimensions is technically not straightforward. A major difficulty comes from the fact
that the asymptotic expansions of the fundamental solutions Gk(x) in two dimensions
and three dimensions defined in (2.8) are of a different nature. In fact, the expansion of
the fundamental solution Gk(x) in three dimensions is the summation of \varphi j(x)k

j with
j = 0, 1, . . . . However, in two dimensions the asymptotic expansion is the summation
of \phi (x)(cj + ln(k))kj , with j = 0, 1, . . . (cf. [2]), which significantly increases the
complexity of solving the counterpart equation (3.9) in the two-dimensional case.
Hence, for this technical reason, we shall only derive the Minnaert resonances for the
system (3.6) in two dimensions for a disk domain D. Indeed, as can be seen from
Theorem 5.1, even though the domain D is a disk in two dimensions, one cannot
derive the explicit expression of the resonant frequency.

In what follows, we let Jn(| x| ) and Hn(| x| ) respectively denote the Bessel function
of order n and the Hankel function of the first kind of order n. When the argument
k \ll 1, the functions Jn and Hn, n = 0, 1, enjoy the following asymptotic expansions
(cf. [9]):

(5.1) J0(k) = 1 - k2

4
+
k4

64
+\scrO (k6), J1(k) =

k

2
 - k3

16
+\scrO (k5),

(5.2) H0(k) =
i(\gamma + 2 ln(k))

\pi 
+

i( - 2 + \gamma + 2 ln(k))k2

4\pi 
+\scrO ((1 + ln(k))k3),

and

(5.3) H1(k) =  - 2i

k\pi 
+

i( - 1 + \gamma + 2 ln(k))k

2\pi 
+\scrO ((1 + ln(k))k3),

with \gamma = 2Ec  - i\pi  - 2 ln 2, and Ec being Euler's constant.
By the definition of the strong resonance in (3.9) for the system (3.6), we next

construct a nontrivial solution \Phi such that

(5.4) \scrA (k, \delta )[\Phi ](x) = 0,

where \scrA (k, \delta ) is defined as in (3.8). If the domain D is a unit disk, direction calcula-
tions show that for x \in \partial D,

(5.5) Sk\tau 
\partial D[\bfitnu ](x) = \zeta 1\bfitnu and Kk\tau ,\ast 

\partial D [\bfitnu ](x) = \zeta 2\bfitnu ,

where

\zeta 1 =
 - i\pi 

2(\lambda + 2\mu )
J1(kp)H1(kp),

and

\zeta 2 =
 - i\pi J1(kp)

2(\lambda + 2\mu )
((\lambda + 2\mu )kpH

\prime 
1(kp) + \lambda H1(kp)) - 

1

2
,

with kp = k\tau /
\surd 
\lambda + 2\mu . Moreover, one has that for x \in \partial D (cf. [17]),

(5.6) Sk
\partial D[1](x) = \zeta 3 and Kk,\ast 

\partial D [1](x) = \zeta 4,
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where

\zeta 3 =
 - i\pi 

2
J0(k)H0(k) and \zeta 4 =

1

2
 - i\pi 

2
kJ \prime 

0(k)H0(k).

Hence the nontrivial solution to (5.4) should have the following form:

\Phi =

\biggl( 
b1
b2\bfitnu 

\biggr) 
.

Substituting the last equation into (5.4) yields that

(5.7) Bb = 0,

where

B =

\Biggl( 
1
k2

\bigl( 
 - 1

2 + \zeta 4
\bigr) 

 - \zeta 1
\delta \tau 2\zeta 3

1
2 + \zeta 2

\Biggr) 
and b =

\biggl( 
b1
b2

\biggr) 
with \zeta i, i = 1, 2, 3, 4, defined as in (5.5) and (5.6). To ensure that (5.7) possesses
nontrivial solutions, the determinant det(B) of the matrix B should vanish. Through
some straightforward but rather tedious calculations and with the help of the asymp-
totic expressions in (5.1), (5.2), and (5.3), we can obtain

det(B) =
1

k2

\biggl( 
 - 1

2
+ \zeta 4

\biggr) \biggl( 
1

2
+ \zeta 2

\biggr) 
+ \delta \tau 2\zeta 1\zeta 3

=  - (\gamma + 2 ln(k))

\biggl( 
(\mu + \delta \tau 2)

4(\lambda + 2\mu )
+
k2\tau 2\lambda (\gamma + 2 ln(k\tau /

\surd 
\lambda + 2\mu ))

16(\lambda + 2\mu )2

\biggr) 
+ o(\mu (\gamma + ln(k))) + o(\delta (\gamma + ln(k))) + o(k2(\gamma + ln(k))),

where \gamma is defined as in (5.2). Hence, we readily come to the following conclusion.

Theorem 5.1. Consider the system (3.6) in two dimensions with D being a cen-
tral disk. If the parameters are chosen according to (3.5), then strong resonance
occurs. Moreover, the leading-order terms of the resonant frequencies are given by the
roots of the following equation:

(5.8) (\gamma + 2 ln(k))

\biggl( 
(\mu + \delta \tau 2)

4(\lambda + 2\mu )
+
k2\tau 2\lambda (\gamma + 2 ln(k\tau /

\surd 
\lambda + 2\mu ))

16(\lambda + 2\mu )2

\biggr) 
= 0,

where \tau and \gamma are as given in (3.3) and (5.2), respectively.

Remark 5.1. The method used above in deriving the resonances in two dimensions
can be applied to three dimensions as well when the domain D is a central ball. From
(4.19) to (4.22), in a similar manner one can calculate the determinant of the matrix
B in three dimensions and determine the critical values k such that

det(B) = 0

holds to ensure the occurrence of the strong resonance.

Remark 5.2. There exist critical values k such that det(B) vanishes in both two
and three dimensions; that is, strong resonance occurs. Since the expression of det(B)
is nonlinear with respect to k, we can resort to computational algorithms to determine
these critical values, namely resonant frequencies. Next, for illustrations, we conduct
some numerical experiments to find out these critical values. We denote by kb2 and
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Table 1
The critical values of kb2, kd2, kb3, and kd3+ with positive real parts.

i = 2 i = 3 i = 4

kb2 0.110087 - 0.040732i 0.030796 - 0.007347i 0.008681 - 0.001513i

kd2 0.109963 - 0.040294i 0.030790 - 0.007341i 0.008681 - 0.001513i

kb3 0.262065 - 0.034521i 0.083584 - 0.003495i 0.026454 - 0.000349i

kd3+ 0.262296 - 0.034655i 0.083592 - 0.003496i 0.026455 - 0.000349i

kb3 the critical values by directly solving the equation det(B) = 0 in two and three
dimensions, respectively. As comparisons, we also calculate kd3+ defined in (4.24) and
solve (5.8). The root of (5.8) is denoted by kd2. The parameters in our numerical
experiments are chosen as follows:

\lambda = 1, \tau = 1, \mu = \delta = 10 - i, i = 2, 3, 4.

Moreover, the bubble D is a unit disk in \BbbR 2 and a unit ball in \BbbR 3. We remark that
the case i = 3 almost indicates the experiment in [11]. The corresponding values,
kb2, kd2, kb3, and kd3+ with positive real parts, are presented in Table 1. From Table
1, one can conclude that there indeed exist critical values k such that det(B) = 0
in both two and three dimensions. Moreover, the roots of (4.23) and (5.8) exhibit
excellent accuracy agreement with the resonant frequencies. Finally, we would like to
point out that the negative imaginary parts in the values computed in Table 1 are a
physically reasonable requirement (cf. [2]).

6. Concluding remarks. We have studied the Minnaert resonances for bubble-
elastic structures. By delicately and subtly balancing the acoustic and elastic parame-
ters as well as the geometry of the bubble, we have shown that the Minnaert resonance
can (at least approximately) occur for rather general constructions. Our study opens
up a new direction for the mathematical investigation on bubbly elastic mediums with
many potential developments. In the present paper, we have considered only the case
that a single bubble is embedded in a soft elastic material. It would be interesting to
consider the case with multiple bubbles as well as the corresponding application to the
effective realization of elastic metamaterials. Moreover, we have investigated only the
case that the resonance is mainly caused by the p-wave, but it would be interesting
to investigate more general bubbly elastic structures with more general resonances
as well as their applications in elastic metamaterials (cf. [23, 25]). We shall consider
these and other related topics in our forthcoming work.
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