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Abstract. We study an inverse problem associated with an eddy current model. We first address
the ill-posedness of the inverse problem by proving the compactness of the forward map with respect
to the conductivity and the nonuniqueness of the recovery process. Then by virtue of nonradiating
source conceptions, we establish a regularity result for the tangential trace of the true solution on
the boundary, which is necessary to justify our subsequent mathematical formulation. After that, we
formulate the inverse problem as a constrained optimization problem with an appropriate regulariza-
tion and prove the existence and stability of the regularized minimizers. To facilitate the numerical
solution of the nonlinear nonconvex constrained optimization, we introduce a feasible Lagrangian
and its discrete variant. Then the gradient of the objective functional is derived using the adjoint
technique. By means of the gradient, a nonlinear conjugate gradient method is formulated for solving
the optimization system, and a Sobolev gradient is incorporated to accelerate the iterative process.
Numerical examples are provided to demonstrate the feasibility of the proposed algorithm.

Key words. inverse eddy current, regularity, ill-posedness, stability, Lagrangian, adjoint prob-
lem
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1. Introduction. Eddy current inversion is a challenging mathematical and nu-
merical process, but it is one of the most popular nondestructive detection techniques.
The inversion technique has attracted great attention in various important applica-
tions, such as geophysical prospecting, flaw detection, safety inspection, and biomed-
ical imaging [1, 2, 3, 14, 19, 20, 23, 25]. The eddy current method is based on the
low frequency approximation of Maxwell’s equation and is much more sensitive to the
conductivity of materials when compared with the inversion by using the full elec-
tromagnetic Maxwell system. There are two advantages to using the low frequency
electromagnetic data in detection. First, a low frequency electromagnetic wave can
penetrate deeply in the lossy medium such as a metal structure and the earth. It is
well known that the intensity of an electromagnetic wave will decay exponentially in
lossy medium with respect to the penetration depth, and the intensity of a higher
frequency wave will decay faster [16]. Second, the forward problem needs to be solved
repeatedly in most inversion methods. While the full Maxwell’s equations are diffi-
cult to solve numerically and efficiently themselves, the eddy current approximation of
Maxwell’s equations is a diffusion equation which can be solved with fast algorithms
[7, 15]. Therefore, the eddy current inversion method is widely used in nondestructive
testing [20, 22] and geophysical prospecting [14, 25].
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1468 JUNQING CHEN, YING LIANG, AND JUN ZOU

Most inverse problems are known to be ill-posed. We will study two important
questions before we formulate our inverse model, i.e., the uniqueness and stability
of the recovery. The analyses of these basic issues are very different with differ-
ent inverse problems; see, e.g., [13] for the time domain inverse Maxwell problem,
[9] for the parameter identification problem with elliptic systems, and [1, 5, 23] for
inverse Maxwell’s source problems and inverse eddy current source problems. To
the best of our knowledge, the uniqueness and stability analysis of the inverse eddy
current problem have not been studied yet. We shall investigate these two funda-
mental issues, then formulate and analyze the underlying constrained optimization
problem as well as to propose some numerical method for the minimization. We start
with the well-posedness of the forward eddy current problem and establish a regu-
larity result for the tangential trace of the true solution on the boundary by virtue
of nonradiating source conceptions. This regularity is important to justify our us-
age of an appropriate selected misfit functional. We then prove the compactness of
the forward operator mapping the conductivity to the electric field and study the
nonuniqueness of the inverse eddy current problem. With these preparations, we
will formulate the ill-posed eddy current inverse problem into a nonlinear and non-
convex constrained minimization with an appropriate regularization and show the
existence and stability of the regularized minimizers. To facilitate the numerical so-
lution of the nonlinear nonconvex optimization constrained with the complex-valued
eddy current model, we introduce a feasible Lagrangian and its discrete variant in
terms of both real and imaginary parts of the constrained PDE. Then we derive
the gradient of the objective functional with the adjoint technique. For solving the
nonlinear PDE constrained optimization, we formulate a nonlinear conjugate gra-
dient (NLCG) method, with the step size for the descent direction computed by a
quadratic approximation to the state field. As the usual NLCG method converges
very slowly, we incorporate a Sobolev preconditioner to improve the NLCG itera-
tion.

The outline of the paper is as follows. In section 2, we introduce the forward eddy
current problem, present the well-posedness of the forward problem, and prove the
regularity of the tangential trace of the true solution. In section 3, an inverse prob-
lem with a well-defined misfit functional is formulated and the ill-posedness of the
inversion problem is investigated. Then we add a regularization term to the optimiza-
tion objective functional and prove the existence and stability of the minimizers. In
section 4, we first introduce a Lagrangian associated with the regularized optimiza-
tion problem, then introduce the gradient of the objective functional with adjoint
technique, and further study the properties of the adjoint state equation. Moreover,
the finite element discretization of the optimization problem is also formulated and
studied in the same section, and a nonlinear conjugate gradient method is proposed
for the optimization system. We show some numerical examples in section 5 to illus-
trate the feasibility of the proposed algorithm and present some concluding remarks in
section 6.

2. The forward problem. In this section, we introduce the forward model for
eddy current inversion and present some necessary preliminaries. The eddy current
equation is the low frequency approximation of Maxwell’s equation. As we mentioned
in the introduction, the eddy current field can penetrate deeply in conducting ma-
terials. Moreover, as an electromagnetic method, this method can distinguish the
conductor (metal, water) from the insulator (oil, rock) and is an important modality
in nondestructive detection. The eddy current problem has been studied extensively
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Fig. 1. The geometric setting of the problem.

in the literature [24]. The governing equations for the forward problem read{
∇×E = iωµH in R3,
∇×H = σ′E + Js in R3,

where E, H are electric and magnetic fields, respectively, µ is the magnetic perme-
ability, σ′ is the conductivity of the medium, and Js is the source current. While the
equations hold in the whole space R3, we consider the problem in a bounded domain
Ω ⊂ R3 as in many applications and theories, and boundary conditions are specified
later to form a well-posed problem.

Now we start with some assumptions for the further consideration of the eddy
current model. In the rest of this paper, we concentrate on the electric acquisition
case, that is, the measurement data is collected for the tangential components of the
electric field on Γ, part of the boundary ∂Ω. We assume that Ω is a convex domain,
with a piecewise smooth boundary and a simply connected subdomain Ω0 occupied
by air, hence the conductivity σ′ vanishing in Ω0. Then by the electrical Gauss’ law,
we have that

(2.1) ∇ · (εE) = 0 in Ω0,

where ε is the electric permittivity in the air and is reasonably assumed to be a
constant. A typical geometric setting of the problem in a two-dimensional (2D)
cross-section is shown in Figure 1, where Ω = Ω0 ∪Ω1 ∪Ω2. The material parameter
is a different function at each subdomain. We write the conductivity σ′(x) in Ω as

σ′(x) = σ0 + σ(x),

where σ0 is the constant background conductivity which is supported in Ω1 ∪Ω2 and
known a priori. σ(x) is the abnormal conductivity. Both σ(x) and its support Ω2 are
unknown and are our target to recover simultaneously. We shall write Ω \ Ω0 as Ωc,
and then σ0 + σ(x) is supported in Ωc. We further assume that σ(x) is compactly
supported in Ωc. The interface between Ω0 and Ωc is denoted by Γ0c and assumed
to be a simply connected Lipschitz polyhedral surface, with both domains Ω0 and Ωc
being polyhedrons and simply connected. In our subsequent study, µ is assumed to
be piecewise constant physically, and the source Js is compactly supported in Ω0, and
∇ · Js = 0.
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1470 JUNQING CHEN, YING LIANG, AND JUN ZOU

2.1. The E-based eddy current model and its inverse problem. By elim-
inating H in the eddy current equations, we derive the electric field system

(2.2)

{
∇× (µ−1∇×E)− iω(σ0 + σ)E = iωJs in Ω ,

∇ · (εE) = 0 in Ω0 ,

which are complemented by the interface conditions

(2.3) [µ−1n×∇×E] = 0, [n×E] = 0 on Γ0c ∪ ∂Ω2

and the boundary conditions

(2.4) n×∇×E = 0 on Γ ; n ·E = 0 on Γ ; n×E = 0 on ΓD = ∂Ω \ Γ .

Here and in what follows, n denotes the outward normal on ∂Ω. We add a divergence
free equation in the system (2.2) to ensure the uniqueness of the solution since σ′ = 0
in Ω0. The piecewise constant ε is the electric permittivity in Ω0. The divergence free
condition makes the field E an electric field in domain Ω0. The surface Γ is where
we measure the data, i.e., the tangential components n×E of the electric field. The
inverse eddy current problem of our interest is formulated as follows:

Given the observation data n × Eobs on the measurement surface Γ, recover the
conductivity distribution σ(x) and its support Ω2.

2.2. The weak formulation and regularity of the solution. For the varia-
tional formulation of the electric field problem (2.2) and its well-posedness, we intro-
duce the Sobolev spaces,

HΓ(curl; Ω) =
{
u ∈ L2(Ω)3

∣∣ ∇× u ∈ L2(Ω)3, n× u = 0 on ΓD
}
,

H1
Γ(Ω0) =

{
v ∈ L2(Ω0)

∣∣ ∇v ∈ L2(Ω0)3, v|∂Ω0\Γ = 0
}
,

Y =
{
u ∈ HΓ(curl; Ω)

∣∣ (εu,∇φ) = 0 ∀φ ∈ H1
Γ(Ω0)

}
,

and the tangential trace space of HΓ(curl; Ω) on Γ,

H−1/2(Div; Γ) =
{
f ∈ H−1/2(Γ)3

∣∣ ∃ u ∈ HΓ(curl; Ω) such that n× u = f
}
,

or equivalently [18],

H−1/2(Div; Γ) =
{
f ∈ H−1/2(Γ)3

∣∣ n · f = 0 a.e. on Γ; Divτ f ∈ H−1/2(Γ)
}
.

Here Divτ is the surface divergence operator which will be formally defined on a
smooth surface in section 4. We define a sesquilinear form a : HΓ(curl; Ω) ×
HΓ(curl; Ω)→ C as

(2.5) a(E,F) =

∫
Ω

µ−1∇×E · ∇ × F− iω(σ + σ0)E · Fdx ∀E,F ∈ HΓ(curl; Ω),

where F denotes the vector-valued complex conjugate of F. Then the weak formula-
tion of problem (2.2) is as follows: Find E ∈ Y such that

(2.6) a(E,F) = iω

∫
Ω

Js · Fdx ∀F ∈ Y.

The following lemma implies the well-posedness of the problem (2.6).
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INVERSE EDDY CURRENT PROBLEM 1471

Lemma 2.1. The problem (2.6) has a unique solution E ∈ Y.

Proof. The uniqueness is due to the fact that sesquilinear form a(·, ·) is coercive
in space Y. The proof of coercivity is similar to [7]. For completeness, we sketch a
proof here. For any E ∈ Y, n × E|Γ0c

∈ H−1/2(Div; Γ0c) [6]. Let HΓ(curl; Ω0) =
{u ∈ H(curl; Ω0) | n×u = 0 on ∂Ω0 \Γ}. By the Lax–Milgram theorem, there exists
a unique B ∈ H(curl; Ω0), n×B = 0 on ΓD, n ·B = 0 on Γ, and n×B = n×E on
Γ0c, such that∫

Ω0

∇×B · ∇ × udx+

∫
Ω0

εB · udx = 0 ∀u ∈ HΓ(curl; Ω0).

By the trace theorem,

‖B‖H(curl;Ω0) ≤ C‖n×B‖H−1/2(Div;Γ0c) = C‖n×E‖H−1/2(Div;Γ0c) ≤ C‖E‖H(curl;Ωc).

Moreover, we have

∇ · εB = 0 and ∇ · ε(E−B) = 0 in Ω0

and n× (E−B) = 0 on ∂Ω0 \ Γ and n · (E−B) = 0 on Γ. Then we know

‖E−B‖L2(Ω0) ≤ C‖∇ × (E−B)‖L2(Ω0),

and furthermore,

‖E‖L2(Ω0) ≤ C(‖E−B‖L2(Ω0) + ‖B‖L2(Ω0))

≤ C(‖∇ ×E‖L2(Ω0) + ‖E‖H(curl;Ωc))

≤ C(‖∇ ×E‖L2(Ω) + ‖E‖L2(Ωc)).

This implies that |a(E,E)| ≥ C‖E‖2H(curl;Ω) for all E ∈ Y.

It is difficult to solve problem (2.6) numerically since it is hard to construct a
conforming finite element space of Y. Therefore we reformulate the weak formulation
(2.6) as a saddle-point problem by introducing a Lagrange multiplier to deal with
the divergence-free condition in domain Ω0. The saddle-point formulation of equation
(2.2) reads as follows: Find (E, φ) ∈ HΓ(curl; Ω)×H1

Γ(Ω0) such that

(2.7)

{
a(E,F) + b(∇φ,F) = iω

∫
Ω

Js · Fdx ∀F ∈ HΓ(curl; Ω),
b(E,∇ψ) = 0 ∀ψ ∈ H1

Γ(Ω0),

where b : HΓ(curl; Ω)×HΓ(curl; Ω)→ C is a sesquilinear form given by

b(E,F) =

∫
Ω0

εE · Fdx ∀E,F ∈ HΓ(curl; Ω).

Lemma 2.2 (uniqueness). There is at most one solution to (2.7).

Proof. We only need to show that E = 0 in Ω and φ = 0 in Ω0 provided Js = 0.
First, we take F as the zero extension of ∇φ from Ω0 to Ω, that is,

F = 0 in Ωc and F = ∇φ in Ω0,

which implies F ∈ HΓ(curl; Ω). We plug F into the first equation of (2.7), along with
Js = 0, to get ∫

Ω0

|∇φ|2dx = 0.
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1472 JUNQING CHEN, YING LIANG, AND JUN ZOU

So ∇φ = 0 in Ω0, and by the boundary condition on ∂Ω0 \Γ, we have φ = 0. Second,
taking F = E, ψ = φ in (2.7), we obtain

a(E,E) =

∫
Ω

µ−1|∇ ×E|2dx− iω
∫

Ωc

(σ + σ0)|E|2dx = 0.

This implies ∇×E = 0 in Ω and E = 0 in Ωc. By the tangential continuity of E, we
know that 

∇×E = 0 in Ω0,
∇ · εE = 0 in Ω0,
n×E = 0 on ∂Ω0 \ Γ,
n ·E = 0 on Γ.

By the assumption, ε is constant in the simply connected domain Ω0. Then there
exists p ∈ H1(Ω0) such that E = ∇p and

∆p = 0 in Ω0,
∂p
∂n = 0 on Γ,
p = C on ∂Ω0 \ Γ

for some constant C. It is easy to know that the unique solution of the above system
is p = C, so E = 0 in Ω0. This completes our proof.

Theorem 2.1. Equation (2.7) has a unique solution (E, φ) ∈ HΓ(curl,Ω) ×
H1

Γ(Ω0) and E satisfies (2.6). Moreover, the following stability estimate holds:

(2.8) ‖E‖H(curl;Ω) + ‖φ‖H1(Ω0) ≤ C‖Js‖L2(Ω)3 ,

where C is a constant independent of E and φ.

Proof. The existence can be established by proving the equivalence between (2.6)
and (2.7). Let E be the solution of (2.6), and then it is clear that E satisfies the
second equation of (2.7). If we can prove that there exists φ ∈ H1

Γ(Ω0) such that E
and φ satisfy the first equation of (2.7), by the uniqueness of a solution to (2.7) we
may conclude the existence of a solution of (2.7).

Now, for any F ∈ HΓ(curl,Ω), we can find a ψ that satisfies∫
Ω0

∇ψ · ∇ξdx =

∫
Ω0

F · ∇ξdx ∀ ξ ∈ H1
Γ(Ω0),

and then ∇ · (F−∇ψ) = 0 in Ω0. Let ψ̃ be an extension of ψ,

ψ̃ =

{
ψ in Ω0,
0 otherwise.

Let A = F−∇ψ̃ ∈ Y. Since ψ̃ is supported in Ω0, we have

a(E,F) + b(∇φ,F) = a(E, A+∇ψ̃) + b(∇φ,A+∇ψ̃)

= a(E, A) + a(E,∇ψ̃) + b(∇φ,A) + b(∇φ,∇ψ)

= a(E, A) + b(∇φ,∇ψ)

= iω

∫
Ω

Js ·Adx+ b(∇φ,∇ψ).
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INVERSE EDDY CURRENT PROBLEM 1473

The right-hand side of the first equation of (2.7) becomes

iω

∫
Ω

Js · Fdx = iω

∫
Ω

Js ·Adx+ iω

∫
Ω0

Js · ∇ψdx.

Let φ ∈ H1
Γ(Ω0) be a solution to the variational system

(2.9) b(∇φ,∇ψ) = iω

∫
Ω0

Js · ∇ψdx ∀ψ ∈ H1
Γ(Ω0).

We know there exists a unique φ satisfying (2.9). Actually φ = 0 because Js is
divergence-free and compactly supported in Ω0. With E, φ satisfying (2.6) and (2.9),
respectively, we have

a(E,F) + b(∇φ,F) = iω

∫
Ω

Js · Fdx ∀F ∈ HΓ(curl,Ω) .

Then (E, φ) is a solution to (2.7). We can now conclude the existence and uniqueness
of a solution to (2.7) by Lemma 2.2. Furthermore, if (E, φ) is a solution to (2.7), we
readily see E is a solution to (2.6).

It is known that the tangential trace space of HΓ(curl,Ω) is H−1/2(Div; Γ) [6],
i.e., n × E|Γ ∈ H−1/2(Div; Γ) for all E ∈ HΓ(curl; Ω). Let n × Eobs be the data
on Γ, and n × E be the corresponding tangential part of the electric field E on Γ
associated with the conductivity σ. Then a direct choice of the misfit of prediction
is ‖n× (Eobs −E)‖H−1/2(Div;Γ). Unfortunately, this trace space is naturally equipped
with the norm

‖f‖H−1/2(Div;Γ) = inf
u∈HΓ(curl,Ω),n×u=fon Γ

‖u‖H(curl,Ω),

which is difficult to realize numerically. It would be very convenient and important
numerically if a computable norm, such as the L2-norm on Γ, can be used for the
recovery process. Next, we demonstrate that the true solution E to the problem (2.2)
indeed has a higher regularity, suggesting to us a computable norm on Γ. For this
purpose, we need a very useful result from [11, Theorem 6.1], as stated below.

Theorem 2.2. Assume that E is the solution to (2.6) with σ = 0, and the source
current satisfies ∇ · Js = 0 and Js ∈ Hs−1(Ωc)

3. Then it holds that

E|Ω0 ∈ Hτ (Ω0) ∀τ < τ0 = min{τ0
1 , τ2 + 1, s+ 1},

E|Ωc ∈ Hτ (Ωc) ∀τ < τc = min{τ c1 , τ2 + 1, s+ 1},

where τ0
1 , τ

c
1 , τ2 represent the edge and corner singularities on interface Γ0c and s

represents the regularity of source Js.

Remark 2.1. Applying Theorem 2.2 to our current setting, we can easily check
from the definitions of τ0

1 , τ c1 , and τ2 in [11] that τ0
1 > 1/2, τ c1 > 1/2, τ2 > 0, s = 1

by noting the facts that Γ0c is a Lipschitz polyhedral interface, σ0 is a constant, and
Js ∈ L2(Ωc). Therefore, we have that τ0 > 1/2, τc > 1/2.

For the convenience of the subsequent analysis, we shall write E(σ) for the solution
to (2.2) to emphasize its dependence on the conductivity σ.

Theorem 2.3. Assuming that Ω0 and Ωc are polyhedral domains and Ω is convex,
σ0 is a constant in Ωc, and Eobs is the solution to (2.2) with the exact conductivity
σ0 + σe, then for any σ we have

(2.10) (E(σ)−Eobs)|Ω0 ∈ H1/2(Ω0).
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1474 JUNQING CHEN, YING LIANG, AND JUN ZOU

Proof. It follows from (2.2) that

∇× (µ−1∇×E(σ))− iω(σ0 + σ)E(σ) = iωJs,

∇× (µ−1∇×Eobs)− iω(σ0 + σe)E
obs = iωJs,

from which we can easily deduce

(2.11) ∇× (µ−1∇× (E(σ)−Eobs))− iωσ0(E(σ)−Eobs) = Je,

where Je = iωσE(σ)− iωσeEobs. For Je, we have the following decomposition,

Je = J0 +∇φ,

where∇·J0 = 0 and ∆φ = ∇·Je, φ ∈ H1
0 (Ωc). Then we let E(σ)−Eobs = Er+Eφ and

Er, Eφ satisfy the following two systems, respectively, with the interface conditions
(2.3) and boundary conditions (2.4), i.e.,{

∇× (µ−1∇×Er)− iωσ0Er = J0 in Ω,
∇ · εEr = 0 in Ω0,

and {
∇× (µ−1∇×Eφ)− iωσ0Eφ = ∇φ in Ω,

∇ · εEφ = 0 in Ω0.

By the assumption on Ω0 and Ωc, we know that Γ0c is a Lipschitz interface. With the
help of Theorem 2.2, we find that Er|Ω0 ∈ H1/2(Ω0). As for Eφ, with the arguments
in Theorem 3.1 of section 3, we know that ∇φ is a nonradiating source, and then
Eφ|Ω0

= 0. Then we complete the proof by noting that E(σ)−Eobs = Er on Ω0.

Theorem 2.3 implies that the regularity of the solution to (2.6) in subdomain Ω0

is higher than the global regularity. With this result, we further derive the following
estimate.

Lemma 2.3. With the same assumptions and notation as in Theorem 2.3, we have
the estimate

‖E(σ)−Eobs‖H1/2(Ω0) ≤ C‖Je‖L2(Ωc),

where C is independent of σ.

Proof. Recall the definition of Er and Eφ in the proof of Theorem 2.3. Let us
introduce

X(Ω) =
{
u ∈ HΓ(curl,Ω); ∇ · u|Ω0

∈ L2(Ω0),∇ · u|Ωc
∈ L2(Ωc),n · u = 0 on Γ,n · u|Ωc = 0 on Γ0c

}
,

equipped with the graph norm

‖u‖X = (‖u‖2H(curl,Ω) + ‖∇ · u‖2L2(Ω0) + ‖∇ · u‖2L2(Ωc)
)1/2.

Then by Theorem 2.2, X(Ω) is embedded in H1/2(Ω0). It is direct to verify that
Er ∈ X(Ω) and hence

‖Er‖H1/2(Ω0) ≤ C(‖Er‖2H(curl,Ω) + ‖∇ ·Er‖2L2(Ω0) + ‖∇ ·Er‖2L2(Ω0))
1/2.

Since Eφ = 0, ∇ · εEr = 0 in Ω0, ∇ · σ0Er = 0 in Ωc, and ε and σ0 are constants, we
have with the help of the estimate (2.8) that

‖E(σ)−Eobs‖H1/2(Ω0) = ‖Er‖H1/2(Ω0) ≤ C‖Er‖H(curl,Ω) ≤ C‖Je‖L2(Ωc)3 .
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3. Ill-posedness of the inverse problem. In this section, we investigate the
ill-posedness of the eddy current inverse problem. We know the solution (E, φ) ∈
HΓ(curl; Ω)×H1

Γ(Ω0) to problem (2.7) depends on the conductivity σ0 + σ(x). But
in the setting of our inverse problem, σ0 is known, so we shall write E(σ) to emphasize
its dependence on σ. The ill-posedness of the eddy current inverse problem is basically
determined by the nature of the forward operator E(σ).

3.1. Compactness of the forward operator n × E(σ). We first present
a result about the continuity of n × E(σ). For convenience, we introduce the set
K = {σ ∈ H1

0 (Ωc)
∣∣ t1 ≤ σ ≤ t2 a.e. in Ωc}.

Lemma 3.1. For any sequence {σn} ⊂ K such that σn → σ∗ in L2(Ωc) as n→∞,
it holds that

(3.1) lim
n→∞

‖n× (E(σn)−E(σ∗))‖L2(Γ)3 = 0.

Proof. By definition, (E(σn), φ(σn)) and (E(σ∗), φ(σ∗)) are the solutions to (2.7)

with σ replaced by σn and σ∗, respectively. Then letting Ên = E(σn) − E(σ∗) and

φ̂n = φ(σn) − φ(σ∗), it is easy to check that (Ên, φ̂n) satisfies (2.7) with σ∗ and
(σn − σ∗)E(σn) in place of σ and Js, respectively.

Then from Theorem 2.1 we can deduce that

‖Ên‖H(curl;Ω) + ‖φ̂n‖H1(Ω0) ≤ C‖(σn − σ∗)E(σn)‖L2(Ω)3 .

With the same argument as in Lemma 2.3, we know Ên|Ω0
∈ H1/2(Ω0), and hence

‖Ên‖H1/2(Ω0) ≤ C‖(σn − σ∗)E(σn)‖L2(Ωc)3 .

Now, let B satisfy that ∇ × (µ−1∇ × B) = iωJs, and ∇ · εB = 0 in Ω and
the boundary condition (2.4). Then we know B ∈ H1(Ω) from [4]. With the same
arguments as in Theorem 2.3, we can find that E(σn)−B ∈ H1/2(Ω0). This implies
E(σn) ∈ H1/2(Ω0) and n × E(σn) ∈ L2(Γ0c). Therefore we know E(σn) satisfies a
Maxwell equation in Ωc with n×E(σn) = 0 on ΓD ∩ ∂Ωc and n×E(σn) ∈ L2(Γ0c).
Then applying [12, Theorem 7.1]) to E(σn), with σn ∈ K here, we conclude that E(σn)
lies in Hδ in Ωc for some 0 < δ < 1. This further implies that E(σn) ∈ Lp(Ωc) for
p = 6/(3− 2δ) by the Sobolev embedding theorem. Then it follows by the Cauchy–
Schwarz inequality that

‖Ên‖H1/2(Ω0) ≤ C‖(σn − σ∗)‖Lq(Ωc)‖E(σn)‖Lp(Ωc)3 ,

where q = 3
δ and 1

p + 1
q = 1

2 . Noting that σn ∈ K and σn → σ∗ in L2(Ωc), we know
that t1 ≤ σ∗ ≤ t2 a.e. in Ωc, and then we can derive

(3.2)

∫
Ωc

|σn − σ∗|qdx ≤ |t2 − t1|q−2

∫
Ωc

|σn − σ∗|2dx ,

and therefore ‖σn − σ∗‖Lq(Ωc) → 0. On the other hand, it follows from [12, Theorem
7.1] that

‖E(σn)‖Hδ(Ωc)
≤ C(‖E(σn)‖2H(curl,Ω) + ‖∇ · εE(σn)‖2L2(Ω0) + ‖∇ · (σ0 + σn)E(σn)‖2L2(Ωc)

)1/2.

Since Js is compactly supported in Ω0, we know from (2.7) that ∇· εE(σn) = 0 in Ω0

and ∇ · (σ0 + σn)E(σn) = 0 in Ωc. By the Sobolev embedding theory and Theorem
2.1 we have

‖E(σn)‖Lp(Ωc)3 ≤ C‖E(σn)‖Hδ(Ωc) ≤ C‖Js‖L2(Ω)3 .
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1476 JUNQING CHEN, YING LIANG, AND JUN ZOU

Using this, we can see from (3.2) that ‖Ên‖H1/2(Ω0) → 0 as n→∞. Now the desired
convergence (3.1) follows from the trace theorem.

By Theorem 2.1, given a parameter σ ∈ H1
0 (Ωc), there exists a solution E(σ) of

(2.7), and E(σ) determines the tangential component n×E(σ) on Γ. In this way one
can define the forward map E(σ) from H1

0 (Ωc) to L2(Γ)3. In the following lemma,
we prove that this implicit map from parameter σ to the tangential field n×E(σ) is
compact, and this implies that the eddy current inverse model that uses the data on
Γ to determine σ is ill-posed.

Lemma 3.2. The map from σ ∈ K to n×E(σ)|Γ ∈ L2(Γ) is compact.

Proof. Let {σn}∞n=1 be a bounded sequence in H1
0 (Ωc). Since H1(Ωc) is compactly

imbedded in L2(Ωc), there is a subsequence, still denoted as {σn}, that converges to
σ∗ in L2(Ωc). By Lemma 2.3, for each σn, (E(σn)−E(σ∗))|Ω0 ∈ H1/2(Ω0)3. Then it
follows from Lemma 2.3 that

‖E(σn)−E(σ∗)‖H1/2(Ω0)3 ≤ C‖(σn − σ∗)E(σ∗)‖L2(Ωc).

From the convergence result in Lemma 3.1, we know that E(σn)|Ω0 → E(σ∗)|Ω0 in
H1/2(Ω0)3. Then by trace theorem, n × E(σn)|Γ → n × E(σ∗)|Γ in L2(Γ)3, which
concludes the compactness.

3.2. Nonuniqueness of the recovery of the conductivity. In this subsec-
tion, we will study the uniqueness of the recovery of conductivity using the data
n×E(σ) on the boundary Γ. Some techniques used here are motivated by the unique-
ness argument in [23] for an inverse source problem. Let E0 be the background field
which satisfies {

∇× (µ−1∇×E0)− iωσ0E0 = iωJs in Ω,
∇ · εE0 = 0 in Ω0

with boundary conditions (2.4).
If we know the exact data n × E(σ) and the background conductivity σ0, the

recovery problem is reduced to determining σ in Ωc given n× (E(σ)−E0) on Γ. By
simple calculation, we know that

(3.3)

{
∇× (µ−1∇× (E(σ)−E0))− iωσ0(E(σ)−E0) = iωσE(σ) in Ω,

∇ · ε(E(σ)−E) = 0 in Ω0,

and E(σ)−E0 satisfies boundary conditions (2.4). Let Je = iωσE(σ). Then it is clear
that Je is supported in Ωc. In the following part of this section, we will consider an
inverse source problem related to (3.3). To be more specific, let E satisfy the equation

(3.4)

{
∇× (µ−1∇×E)− iωσ0E = Je in Ω,

∇ · εE = 0 in Ω0,

and boundary condition (2.4), and the corresponding inverse source problem is

(3.5) given data n×E on Γ, find the source Je supported in Ωc.

To proceed, we denote

W =
{
u ∈ H(curl; Ωc)

∣∣ ∇× (µ−1∇× u) + iωσ0u = 0

in Ωc,n× u = 0 on ∂Ωc \ Γ0c

}
.
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It is easy to find that W is not empty because the boundary value problem ∇× (µ−1∇× u) + iωσ0u = 0 in Ωc,
n× u = 0 on ∂Ωc \ Γ0c,
n× u = η on Γ0c

has a unique solution for any η ∈ H−1/2(Div; Γ0c). Let

L2(Ωc)
3 = W ⊕W⊥.

We know that W⊥ is not trivial either. More precisely, for any v ∈ C∞0 (Ωc), it is
easy to find that ∇× µ−1∇× v − iωσ0v ∈W⊥. The next theorem tells us there are
nonradiation sources satisfying the inverse source problem (3.5).

Theorem 3.1. If Je ∈ W⊥, the corresponding field is denoted by E, and then
n×E = 0 on Γ0c and Γ; in other words, Je is a nonradiating source.

Proof. For any u ∈W , by integration by parts, we have

0 =

∫
Ωc

Je · udx =

∫
Ωc

(∇× (µ−1∇×E)− iωσ0E) · udx

=

∫
Ωc

E · (∇× (µ−1∇× u)− iωσ0u)dx

+

∫
∂Ωc

n× µ−1∇×E · u + µ−1n×E · ∇ × uds.

Since u ∈W , we obtain

(3.6)

∫
Γ0c

n× µ−1∇×E · u + µ−1n×E · ∇ × uds = 0.

For any η ∈ H1/2(Div; Γ0c), let w ∈ HΓ(curl; Ω) be the solution to the following
interface problem: ∇× (µ−1∇×w) + iωσ0w = 0 in Ωc ∪ Ω0,

∇ · εw = 0 in Ω0,
µ−1n×∇×w|Ωc = µ−1n×∇×w|Ω0

+ η on Γ0c

and boundary conditions (2.4). With the similar method in section 2, one can prove
that the above system of equations is well-posed, i.e., for any η ∈ H−1/2(Div; Γ0c),
it has a unique solution w in HΓ(curl; Ω). Furthermore, w 6= 0 in Ωc. If we choose
u = w|Ωc in (3.6), it becomes

0 =

∫
Γ0c

µ−1n×∇×E · u + µ−1n×E · ∇ × uds

=

∫
Γ0c

µ−1n×∇×E ·wds−
∫

Γ0c

µ−1n×∇×w|Ωc ·Eds

=

∫
Γ0c

µ−1n×∇×E ·wds−
∫

Γ0c

µ−1n×∇×w|Ω0
·Eds−

∫
Γ0c

η ·Eds.

Using the fact that n×E = 0 on ΓD and n×∇×w = 0 on Γ, we have

(3.7)

∫
Γ0c

µ−1n×∇×E ·wds−
∫

Γ0c

η ·Eds−
∫
∂Ω0

µ−1n×∇×w ·Eds = 0.
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By integration by parts,∫
∂Ω0

µ−1n×∇×w ·Eds =

∫
Ω0

∇× (µ−1∇×w ·E)− µ−1∇×w · ∇ ×Edx

= −
∫

Ω0

µ−1∇×w · ∇ ×Edx

= −
∫

Ω0

w · ∇ × (µ−1∇×E)dx+

∫
∂Ω0

µ−1n×∇×E ·wds

=

∫
∂Ω0

µ−1n×∇×E ·wds.

Substituting the above results into (3.7), we have∫
Γ0c

η ·Eds = 0.

Then n × E × n = 0 on Γ0c, and this implies that E = 0 in Ω0 and n × E = 0 on
Γ.

With the help of Theorem 3.1, we can give the following theorem about the
nonuniqueness recovery property for the inverse eddy current problem.

Theorem 3.2. With the measurement satisfying n× (E(σ)−E0) 6= 0 on Γ, one
cannot determine σE(σ) uniquely.

Proof. Since n × (E(σ) − E) 6= 0 on Γ, we can conclude that σE(σ) /∈ W⊥ by
Theorem 3.1. Note that σE(σ) ∈ H0(curl; Ωc). If σE(σ) ∈W , we can conclude that
σE(σ) is an homogeneous eigenfunction corresponding to imaginary eigenvalue iωµσ0

in Ωc. It is impossible because the operator ∇ × ∇× is a semipositive operator on
space H0(curl; Ωc). So σE(σ) /∈W and we conclude that

iωσE(σ) = J1 + J2, and J1 ∈W, J2 ∈W⊥, Ji 6= 0, i = 1, 2.

From J2 6= 0, by Theorem 3.1, we finish the proof.

Remark 3.1. We do not know whether the sources belonging toW can be uniquely
determined or not. It does not matter because we know from Theorem 3.2 that there
is always a nonradiation part of σE(σ).

The secondary source term Je = iωE(σ) depends on σ nonlinearly. The following
corollary tells us that when σ is small enough, Je can be approximated by iωE0. Then
Je depends on σ approximately and linearly.

Corollary 3.1. Assume that σ0 is a constant and σ is small enough such that
σ < σm < σ0 for some σm > 0, and then

‖E(σ)−E0‖L2(Ωc)3 ≤ 1

σ0 − σm
‖σE0‖L2(Ωc)3 .

Proof. Let Ê = E(σ) − E0. Multiplying both sides of the first equation in (3.3)
by any F ∈ HΓ(curl; Ω), and using integration by parts, we have∫

Ω

µ−1∇× Ê · ∇ × F− iωσ0Ê · Fdx = iω

∫
Ωc

σE(σ) · Fdx.
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Let F = Ê, and then

‖µ−1/2∇× Ê‖2L2(Ω) − iωσ0‖Ê‖2L2(Ωc)
= iω

∫
Ωc

σE(σ) · Êdx.

So {
σ0‖Ê‖2L2(Ωc)

= −Re
∫

Ωc
σE(σ) · Êdx,

‖µ−1/2∇× Ê‖2L2(Ω) = −ωIm
∫

Ωc
σE(σ) · Êdx.

From the first equality above, we can finish the proof with the following inequality:

σ0‖Ê‖L2(Ωc)3 ≤ ‖σE(σ)‖L2(Ωc)3 ≤ ‖σE0‖L2(Ωc)3 + σm‖Ê‖L2(Ωc)3 .

Remark 3.2. We know that the secondary source Je = iωµσE(σ) = iωµσE0 +

iωµσÊ. When σ is small enough, Corollary 3.1 confirms that the second term is of a
high order of σ. If we drop the higher order term into the right-hand side of (3.3) and
assume that we can uniquely determine the secondary source, then with E0 known
we can uniquely determine σ, except that E0 vanishes. Unfortunately, for the same
reason as in Theorem 3.2, we know that σE0 does not lie in either W or W⊥, so we
cannot determine σE0 completely with the measurement on Γ.

3.3. Regularized inverse problem. Since the eddy current inverse problem is
ill-posed, we take the following regularization to transform the ill-posed problem to a
problem that is at least mathematically stable with respect to the change of the noisy
data for numerical solutions:

(3.8) min
σ∈K

Φα(σ) :=
1

2
‖n× (E(σ)−Eobs)‖2L2(Γ) +

α

2
‖∇σ‖2L2(Ωc)

,

where E(σ) satisfies the constrained equation (2.2) or (2.7), and α is the regularization
parameter.

We first show the existence of the minimizers of the functional Φα(σ).

Theorem 3.3. Under the same assumptions as in Theorem 2.3, there exists a
minimizer σα to Φα(σ) in K.

Proof. The proof is quite standard; see, e.g., [9, 13] for the inverse elliptic and
Maxwell problems. But for readers’ convenience, we give an outline of the proof,
showing the main differences from the current eddy current problem. First, we assume
that {σn} is a minimizing sequence for Φα(σ), i.e.,

lim
n→∞

Φα(σn) = inf
σ∈K

Φα(σ).

By the convergence of {Φα(σn)}, we know that {Φα(σn)} is bounded, and so is
{‖∇σn‖L2(Ωc)}. Therefore {σn} is bounded in H1

0 (Ωc), and there is a subsequence,
still denoted by {σn}, that converges weakly to σα. This weak convergence is actually
strong, due to the compact imbedding of H1(Ωc) in L2(Ωc). For σn and σα, we denote
by (En, φn) and (Eα, φα) the solutions to the following two systems:{

an(En,F) + b(∇φn,F) = iω
∫

Ω
Js · Fdx ∀F ∈ HΓ(curl; Ω),

b(En,∇ψ) = 0 ∀ψ ∈ H1
Γ(Ω0),{

aα(Eα,F) + b(∇φα,F) = iω
∫

Ω
Js · Fdx ∀F ∈ HΓ(curl; Ω),

b(Eα,∇ψ) = 0 ∀ψ ∈ H1
Γ(Ω0),
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where an(E,F) and aα(E,F) are defined by (2.5) but with σ replaced by σn and
σα, respectively. By Lemmas 2.3 and 3.1, the well-posedness of (2.7), and regularity
results in Theorem 2.3, we have

En|Ω0
→ Eα|Ω0

in H1/2(Ω0) ; φn → φα in H1
Γ(Ω0).

Then by the trace theorem, n×En → n×Eα in L2(Γ). Using the strong convergence
of n×En and the weakly lower semicontinuity of Φα(σ), we get

Φα(σα) ≤ lim inf
n→∞

Φα(σn) = inf
σ∈K

Φα(σ) .

We end this section with the stability of the regularized optimization system (3.8),
whose proof can be done by standard arguments, along with some special techniques
in the proof of Theorem 3.3; see, e.g., [9, 13] for the inverse elliptic and Maxwell
problems.

Theorem 3.4. Let {En} be a sequence such that ‖n×En−n×Eobs‖L2(Γ) → 0 as

n→∞ and σn be the minimizer of Φα defined by (3.8) but with the quantity n×Eobs

replaced by n × En, and then {σn} has a subsequence which converges strongly to a
minimizer of Φα in L2(Ωc).

4. Nonlinear conjugate gradient method. In this section, we first introduce
the Lagrangian of the optimization problem (3.8), then derive the gradient of the
objective functional and the Gâteaux derivative of the electric field with respect to
parameter σ. Finally, we formulate a nonlinear conjugate gradient method with an
approximate scheme for step length.

4.1. Lagrangian for the continuous optimization problem. In order to
calculate the gradient of the objective functional Φα with respect to σ, we use the
standard adjoint state technique. We first recast the problem (3.8) into an uncon-
strained optimization by introducing some multipliers to relax the PDE constraint.
Since the system of equations (2.2) and its weak formulation (2.7) are complex-valued,
we relax the constraint in the real and imaginary parts separately to reformulate them
into a real-valued unconstrained optimization. Let E = E1 + iE2, φ = φ1 + iφ2,
iωµJs = f1 + if2 and define ai : HΓ(curl; Ω)×HΓ(curl; Ω)→ R for i = 1, 2 as

a1(E,F) =

∫
Ω

µ−1∇× E1 · ∇ × Fdx+

∫
Ωc

ω(σ0 + σ)E2 · Fdx,(4.1)

a2(E,F) =

∫
Ω

µ−1∇× E2 · ∇ × Fdx−
∫

Ωc

ω(σ0 + σ)E1 · Fdx.(4.2)

By taking the test functions in real function spaces HΓ(curl; Ω) and H1
Γ(Ω0), the

complex-valued system (2.7) becomes the following real-valued system for i = 1, 2:{
ai(E,Fi) + b(∇φi,Fi) =

∫
Ω

fi · Fidx ∀Fi ∈ HΓ(curl; Ω),
b(Ei, ψi) = 0 ∀ψi ∈ H1

Γ(Ω0) .
(4.3)

Accordingly, we rewrite Φα(σ) in (3.8) as Φα(E, σ), that is,

Φα(E, σ) =
1

2

(
‖n× (E1 − Eobs1 )‖2L2(Γ) + ‖n× (E2 − Eobs2 )‖2L2(Γ)

)
+
α

2
‖∇σ‖2L2(Ωc)

,

where Eobs1 and Eobs2 are the real and imaginary parts of E, respectively. Now we use
Σ to denote the product space HΓ(curl,Ω) ×HΓ(curl,Ω) ×H1

Γ(Ω0) ×H1
Γ(Ω0), and
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INVERSE EDDY CURRENT PROBLEM 1481

then we can define a Lagrangian functional L from Σ× Σ×K to R:

L((E1,E2, φ1, φ2), (F1,F2, ψ1, ψ2), σ)

= Φα(E, σ) +

2∑
i=1

(
ai(E,Fi) + b(∇φi,Fi)−

∫
Ω

f1 · Fidx+ b(Ei, ψi)

)
,(4.4)

where real functions F1,F2, ψ1, ψ2 are Lagrange multipliers. Using the adjoint state
technique, we can deduce that

(4.5)
∂L

∂σ
(σ̃) = α

∫
Ωc

∇σ · ∇σ̃dx− ω
∫

Ωc

(E1 · F2 − E2 · F1)σ̃dx ∀ σ̃ ∈ H1
0 (Ωc),

where E1,E2 and F1,F2 are the solutions of the following systems:

∂L

∂(F1,F2, ψ1, ψ2)
((F̃1, F̃2, ψ̃1, ψ̃2)) = 0 ∀ (F̃1, F̃2, ψ̃1, ψ̃2) ∈ Σ,(4.6)

∂L

∂(E1,E2, φ1, φ2)
((Ẽ1, Ẽ2, φ̃1, φ̃2)) = 0 ∀ (Ẽ1, Ẽ2, φ̃1, φ̃2) ∈ Σ.(4.7)

We can easily check that (4.6) is exactly the state system (4.3), while (4.7) yields its
adjoint-state system

(4.8){
aj(F̂, Ẽi) + b(∇ψi, Ẽi) =

∫
Γ

∆Ei · Ẽids ∀ Ẽi ∈ HΓ(curl,Ω), j = 2, 1 for i = 1, 2,

b(Fi, φ̃i) = 0 ∀ φ̃i ∈ H1
Γ(Ω0), i = 1, 2,

where ∆Ei = n× (Eobsi − Ei)× n for i = 1, 2, and F̂ = F2 + iF1.
Let (E, φ1, φ2) be the solution of system (4.3) and φ = φ1 + iφ2, and then (E, φ)

solves the system

(4.9)

{
a(E, F̃) + b(∇φ, F̃) =

∫
Ω

(f1 + if2) · F̃dx ∀ F̃ ∈ HΓ(curl,Ω),

b(E,∇ψ̃) = 0 ∀ ψ̃ ∈ H1
Γ(Ω0).

It is easy to find that (4.9) is equivalent to (2.7) because f1 + if2 = iωµJs.

On the other hand, let (F̂, ψ1, ψ2) be the solution of system (4.8), and let F =

−iF̂ = F1 − iF2, ψ = ψ1 − iψ2. Then we can check that (F, ψ) solves the system
(4.10) {

a(F, Ẽ) + b(∇ψ, Ẽ) =
∫

Γ
n× (Eobs −E)× n · Ẽds ∀ Ẽ ∈ HΓ(curl,Ω),

b(F,∇φ̃) = 0 ∀ φ̃ ∈ H1
Γ(Ω0).

Now we show that the relation (4.5) gives the gradient of Φα(σ) in the weak sense.
To see this, we define g(σ) ∈ L2(Ωc) with

(4.11)

∫
Ωc

g(σ)σ̃dx = α

∫
Ωc

∇σ · ∇σ̃dx+ ω

∫
Ωc

Im(E · F)σ̃dx ∀ σ̃ ∈ H1
0 (Ωc),

and then we have in the weak sense that

(4.12)
∂Φα(σ)

∂σ
= g(σ).

We can solve (4.9), (4.10), and (4.11) to calculate the gradient of the objective func-
tional Φα with respect to σ.
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1482 JUNQING CHEN, YING LIANG, AND JUN ZOU

4.2. Adjoint-state equations. The adjoint system of equations (4.10) looks
similar to the state system (4.9) formally, but they are quite different in terms of
their corresponding differential equations, which below we derive explicitly and explain
their main differences. To do so, for the solution (F, ψ) to (4.10), we can derive by
integration by parts that∫

Ω

(∇× (µ−1∇× F)− iω(σ0 + σ)F) · Ẽdx+

∫
Ω0

ε∇ψ · Ẽdx−
∫

Γ

µ−1n×∇× F · Ẽds

=

∫
Γ

(n× (Eobs −E)× n) · Ẽds.

On the other hand, for any function φ ∈ H1
Γ(Ω0), we extend it to Ω by zero, and then

choosing Ẽ = ∇φ in (4.10), we obtain∫
Ω0

ε∇ψ · ∇φdx =

∫
Γ

n× (Eobs −E)× n · ∇φds.

This gives the corresponding differential equation for ψ:

(4.13)


∇ · (ε∇ψ) = 0 in Ω0,

ε∂ψ∂n = Divτ (n× (Eobs −E)× n) on Γ,
ψ = 0 on ∂Ω0 \ Γ.

If we choose Ẽ ∈ HΓ(curl,Ω) and n× Ẽ = 0 on Γ, then F needs to satisfy

∇× (µ−1∇× F)− iω(σ0 + σ)F + εψ = 0 in Ω.

If we choose n× Ẽ 6= 0 on Γ, we can derive the following boundary condition that F
needs to satisfy:

µ−1n×∇× F = −n× (Eobs −E)× n on Γ.

Together with the second equation in (4.10), we have derived the system of differential
equations for the solution F to (4.10):

(4.14)


∇× (µ−1∇× F)− iω(σ0 + σ)F = −ε∇ψ in Ω,

∇ · εF = 0 in Ω0,

µ−1n×∇× F = −n× (Eobs −E)× n on Γ,
n · F = 0 on Γ,

n× F = 0 on ΓD.

This, along with (4.13), provides the differential equations of the solution (F, ψ) to
(4.10).

Now we study a special case when Divτ (n× (Eobs −E)× n) = 0 on Γ. Then we
know ψ = 0 from (4.13), and (4.14) reduces to

(4.15)


∇× (µ−1∇× F)− iω(σ0 + σ)F = 0 in Ω,

∇ · εF = 0 in Ω0,

µ−1n×∇× F = −n× (Eobs −E)× n on Γ,
n · F = 0 on Γ,

n× F = 0 on ΓD.
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INVERSE EDDY CURRENT PROBLEM 1483

By the definition of the surface divergence [6, 18], we have

(4.16) Divτ (n× (Eobs −E)× n) = −n · ∇ × ((Eobs −E)× n)|Γ.

Using the relation that ∇× (u × v) = u(∇ · v) − (u · ∇)v + (v · ∇)u − v(∇ · u) for
all u,v and the normal n = (0, 0, 1) of Γ in our case, we get

∇× ((Eobs −E)× n) = (n · ∇)(Eobs −E)− n(∇ · (Eobs −E)).

Assuming Eobs is the solution to system (2.2) with the true conductivity, we then
have ∇ · (Eobs −E) = 0 in Ω0. This leads to

∇× ((Eobs −E)× n) = (n · ∇)(Eobs −E).

Therefore we deduce from (4.16) that

Divτ (n× (Eobs −E)× n) = −n · (n · ∇)(Eobs −E)|Γ
= −(n · ∇)(Eobs −E) · n|Γ

= −∂((Eobs −E) · n)

∂n
.

We know that the above relation is valid for any constant vector n. For the current
case with n = (0, 0, 1) and ε being a constant on Γ, the above derivation can be
simplified. Let Ex,Ey,Ez be the components of E along the x, y, z-axis, respectively,
and then

Divτ (n× (Eobs −E)× n) =
∂(Eobs −E)x

∂x
+
∂(Eobs −E)y

∂y
= −∂(Eobs −E)z

∂z
.

So the condition that Divτ (n× (Eobs −E)× n) = 0 is equivalent to

∂(Eobs −E)z
∂z

= 0 on Γ.

In general, the condition that Divτ (n× (Eobs −E)×n) = 0 is not true, so we do
not have ψ = 0. Comparing with (2.2), we can see that the adjoint equation has a

special source ε∇ψ, where ψ solves (4.13). Provided that Divτ (n× (Eobs −E)×n) ∈
H−1/2(Γ), (4.13) is well-posed, and hence the adjoint system (4.10) is well-posed, due
to the well-posedness of (2.7).

Remark 4.1. Generally speaking, if Eobs − E ∈ HΓ(curl; Ω), we have that n ×
(Eobs−E)×n ∈ H−1/2(Curl; Γ), the dual space of H−1/2(Div; Γ) [6]. Then Divτ (n×
(Eobs−E)×n) may not belong to H−1/2(Γ). But with the discussion of the regularity
in section 2 and the fact that Γ is part of the boundary of a convex domain, we have
that n× (Eobs −E)× n ∈ L2(Γ) and Divτ (n× (Eobs −E)× n) ∈ H−1/2(Γ).

4.3. Gâteaux derivative of the electric field E. In this subsection we derive
the Gâteaux derivative of the electric field with respect to the conductivity σ. The
derivative is needed to compute at each iteration of the nonlinear conjugate gradient
algorithm (cf. subsection 4.5).

For any σ ∈ K, we write σ = σa + σb with σa, σb ∈ K and decompose the
corresponding solution E(σ) to the system (2.2) as E = E0 + E1 + E2, where E0 :=
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1484 JUNQING CHEN, YING LIANG, AND JUN ZOU

E0(σ0 + σa), E1 := E1(σ0 + σa;σb), and E2 := E2(σ0 + σ;σb) solve the following
systems, respectively, along with boundary conditions (2.4):

(4.17)

{
∇× (µ−1∇×E0)− iω(σ0 + σa)E0 = iωJs in Ω,

∇ · εE0 = 0 in Ω0,{
∇× (µ−1∇×E1)− iω(σ0 + σa)E1 = iωµσbE0 in Ω,

∇ · εE1 = 0 in Ω0,{
∇× (µ−1∇×E2)− iω(σ0 + σ)E2 = iωµσbE1 in Ω,

∇ · εE2 = 0 in Ω0 .

With the help of Lemma 3.1, we know that ‖E1(σ0 +σa;σb)‖H(curl;Ω) ≤ C‖σb‖Lq(Ωc)
for small σb with q = 3

δ , and a simple integration by parts gives the following estimate
of E2:

‖E2‖H(curl;Ω) ≤ C‖σb‖Lq(Ωc)‖E1‖Lp(Ω) ≤ C‖σb‖2Lq(Ωc).

This leads to

lim
‖σ‖Lq(Ωc)→0

‖E(σ0 + σ)−E0(σ0 + σa)−E1(σ0 + σa;σb)‖H(curl;Ω)

‖σ‖Lq(Ωc)
= 0 ,

and hence we know E1(σ0 + σa;σb) gives the Gâteaux derivative of E along the
direction σb at σ0 + σa. Since E1 depends on σb linearly, we have for given σb and
small γ that

(4.18) E(σ0 + σa + γσb) = E0(σ0 + σa) + γE1(σ0 + σa;σb) + o(|γ|‖σb‖Lq(Ωc)).

We note that the first two terms in the right-hand side above are the linear approxi-
mation of the electric field E(σ0 + σa + γσb). With this approximation, let

(4.19) Ψ(γ) =
1

2
‖n× (E0 + γE1 −Eobs)‖2L2(Γ) +

α

2
‖∇(σa + γσb)‖2L2(Ωc)

,

and we have
Φα(E, σ0 + σa + γσb) = Ψ(γ) + o(|γ|‖σb‖Lq(Ωc)).

It is easy to find that Ψ(γ) is a quadratic function with respect to γ, which we use to
help us compute the descent step size in our iterative Algorithm 4.1.

4.4. Finite element discretization of the minimization problem. In this
section we discuss the edge element approximation of the optimization system (3.8).
For this purpose, we partition the domain Ω into a set of tetrahedral elements Mh,
with each element K ∈ Mh lying completely in Ωc or Ω0. Let M0

h and Mc
h be the

unions of elements contained in Ω0 and Ωc, respectively. Then we define the Nédélec
edge element space

Xh =
{
uh ∈ HΓ(curl; Ω)

∣∣ uh|K = aK + bK × x, aK , bK ∈ R3
}
,

and Uh ⊂ H1
Γ(Ω0) and Vh ⊂ H1

0 (Ωc) are the standard continuous piecewise linear
finite element spaces overM0

h andMc
h, respectively. For ease of presentation, we use

the notation Σh = Xh×Xh×Uh×Uh and Kh = Vh ∩K in what follows. With these
preparations, we propose the approximation of the optimization (3.8):

(4.20) min
σh∈Kh

Φα(σh) =
1

2
‖n× (Eh(σh)−Eobs)‖2L2(Γ) +

α

2
‖∇σh‖2L2(Ωc)

,
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where Eh(σh) solves

(4.21)

{
ah(Eh,Fh) + b(∇φh,Fh) = iω

∫
Ω

Js · Fhdx ∀Fh ∈ Xh,
b(Eh,∇ψh) = 0 ∀ψh ∈ Uh,

where ah is given by the sesquilinear operator ah(E,F) =
∫

Ω
µ−1∇× Eh · ∇ × Fh −

iω(σ0 + σh)Eh · Fhdx for all E, F ∈ Xh. By writing the space

Yh =
{
uh ∈ Xh

∣∣ b(uh,∇φh) = 0 ∀φh ∈ Uh
}
,

we know (4.21) is a saddle-point problem that is equivalent to the problem Eh ∈ Yh

satisfying

(4.22) ah(Eh,Fh) = iω

∫
Ω

Js · Fhdx ∀Fh ∈ Yh.

We can easily see that Yh is not a subspace of Y, so we cannot deduce the well-
posedness of (4.22) from that of the continuous weak problem (2.6). Instead the
well-posednss of (4.22) can be achieved from that of (2.7) by using the fact that Σh is
a subspace of Σ and following the arguments in [7, 8] for the magneto-static problem
and field/circuit coupling problem.

Similarly to the proof of Theorem 3.3, we have the following existence.

Theorem 4.1. There exists at least one minimizer to the discrete optimization
problem (4.20).

Now we introduce a discrete Lagrangian on Σh×Σh×Kh associated with (4.20).
To do so, we first define ai,h(·, ·) for i = 1, 2 to be the same bilinear form as ai(·, ·)
defined in (4.1)–(4.2), but with σ replaced by σh. Then we define the discrete La-
grangian as

L((Eh, φh), (Fh, ψh), σh)

= Φα(Eh, σh) +

2∑
i=1

(
ai,h(Ei

h,F
i
h) + b(∇φih,Fih)−

∫
Ω

f1 · Fihdx+ b(Eih, ψ
i
h)

)
.

Let gh(σh) := ∂Φα(σh)
σh

, and then we can derive a similar relation to the continuous

one (4.11),

(4.23)

∫
Ωc

ghσ̃hdx = α

∫
Ωc

∇σh · ∇σ̃hdx− ω
∫

Ωc

(E1
h · F2

h − E2
h · F1

h)σ̃hdx ∀ σ̃h ∈ Vh,

where Eh = E1
h+iE2

h and F̂h = F2
h+iF1

h solve the following state and adjoint systems,
respectively,{

ai,h(Eh, F̃
i
h) + b(∇φih, F̃ih) =

∫
Ω

f1 · F̃ihdx ∀ F̃ih ∈ Xh, i = 1, 2,

b(Eih, ψ̃
i
h) = 0 ∀ ψ̃ih ∈ Uh, i = 1, 2,

(4.24)


aj,h(F̂, Ẽih) + b(∇ψih, Ẽih) =

∫
Γ

n× (Eobs
i − Eih)× n · Ẽ1

hds

∀ Ẽih ∈ Xh, j = 2, 1 and i = 1, 2,

b(Fih, φ̃
i
h) = 0 ∀ φ̃ih ∈ Uh, i = 1, 2.

(4.25)

If we write φh = φ1
h + iφ2

h, Fh = F1
h− iF2

h, ψh = ψ1
h− iψ2

h, then (4.24)–(4.25) are just
the discrete versions of (4.3)–(4.8), with their corresponding complex-valued systems
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1486 JUNQING CHEN, YING LIANG, AND JUN ZOU

given by {
ah(Eh, F̃h) + b(∇φh, F̃h) =

∫
Ω

(f1 + if2) · F̃hdx ∀ F̃h ∈ Xh,

b(Eh,∇ψ̃h) = 0 ∀ ψ̃h ∈ Uh,
(4.26)

{
ah(Fh, Ẽh) + b(∇ψh, Ẽh) =

∫
Γ

n× (Eobs −Eh)× n · Ẽhds ∀ Ẽh ∈ Xh,

b(Fh,∇φ̃h) = 0 ∀ φ̃h ∈ Uh.

(4.27)

In addition, we can see that (4.23) can be simplified as

(4.28)

∫
Ωc

ghσ̃hdx = α

∫
Ωc

∇σh · ∇σ̃hdx+

∫
Ωc

ωIm(Eh · Fh)σ̃hdx ∀ σ̃h ∈ Vh.

4.5. A nonlinear conjugate gradient method. With the derivations in the
previous subsections, we can now formulate the following nonlinear conjugate gradient
algorithm for solving the discrete optimization problem (4.20).

Algorithm 4.1 (NLCG method). Given the observation data n × Eobs on Γ,
the background medium σ0, the initial guess σ0

h, set k = 0.
1. Solve problem (4.26) with σh = σkh to get Ek

h and φkh.
2. Solve problem (4.27) with σh = σkh to get Fkh and ψkh.
3. Solve problem (4.28) to get the gradient gkh.
4. Update the descent direction dk = −gkh + βkdk−1, with the step size βk com-

puted by

βk =


‖gkh‖

2
L2(Ωc)

‖gk−1
h ‖2

L2(Ωc)

for k > 0,

0 for k = 0.

5. Solve problem (4.17) with σa = σkh and σb = dk for the solution Eg
h.

6. Compute

γk = −
∫

Γ
<((Ek

h −Eobs)× n · (Eg
h × n))ds+ α(∇σkh,∇dk)Ωc

‖Eg
h × n‖2L2(Γ) + α‖∇dk‖2L2(Ωc)

.

7. Update σk+1
h = σkh + γkdk; set k := k + 1 and go to step 1 until convergence

is achieved.

We note that the step size γk in step 6 above is not calculated by the exact line
search algorithm, but it is simply computed by using the quadratic approximation of
the objective function Φα at σ0 + σkh along direction dk, namely, the real quadratic
function Ψ(γ) in (4.19) with σa = σkh, σb = dk.

4.6. Sobolev gradient. We recall that we have defined and used the weak
gradient of the objective functional (4.20) in (4.23) or (4.28) that approximates the
continuous gradient in (4.11). It appears that the nonlinear conjugate Algorithm 4.1
converges very slowly for our nonlinear eddy current inverse problem, similarly to its
behavior for most other nonlinear inverse problems. Next, we introduce a Sobolev
gradient to help improve the convergence as was done in [17]. We can easily see that
the weak gradient g(σ) in (4.11) is just the weak gradient of the objective functional
in the L2 sense. Now we define a Sobolev gradient of the functional in the H1 sense,
namely, to find an element gS(σ) ∈ H1

0 (Ωc) satisfying

(4.29)

∫
Ωc

∇gS(σ) · ∇ψ + gS(σ)ψdx =

∫
Ωc

g(σ)ψdx ∀ψ ∈ H1
0 (Ωc),
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which is the weak formulation of the elliptic eproblem{
−∆gS(σ) + gS(σ) = g(σ) in Ωc,

gS(σ) = 0 on ∂Ωc.

This suggests to us to compute the Sobolev gradient gSh in the third step of Algo-
rithm 4.1 by solving the following equation:∫

Ωc

∇gSh · ∇σ̃h + gSh σ̃hdx

= α

∫
Ωc

∇σh · ∇σ̃hdx− ω
∫

Ωc

(E1
h · F2

h −E2
h · F1

h)σ̃hdx ∀ σ̃h ∈ Vh.(4.30)

This can be solved very efficiently by many existing preconditioning-type iterative
methods.

5. Numerical experiments. In this section, we present some numerical ex-
amples to illustrate the efficiency of Algorithm 4.1. We take the computational
domain Ω = [−2, 2] × [−2, 2] × [−2, 0.2], with the nonconducting subregion Ω0 =
[−2, 2] × [−2, 2] × [0, 0.2] (where the conductivity σ0 vanishes) and the conducting
subregion Ωc = [−2, 2] × [−2, 2] × [−2, 0]. The state and adjoint state equations in-
volved are solved with edge element methods. We implement the algorithm using the
parallel hierarchical grid platform (PHG) [21]. The numerical examples are carried
out using an Apple laptop with Intel i7 8750h CPU and 16G memory. The data
n×Eobs is generated by the edge element method [7] and can be written as

n×Eobs(x)|Γ = n×
∑
e∈EΓ

(Re + iIe)Φe(x),

where EΓ is the union of all edges of the meshMh on the measurement surface Γ (i.e.,
the plane z = 0.2), Re and Ie are the degrees of freedom on the edge e for real and
imaginary parts of the electric field with exact abnormal conductivity, respectively,
and Φe(x) is the edge element basis function associated with edge e. To test the
algorithm with noisy data, we generate the noisy data by adding the noise in the form

n×Eobs(x)|Γ = n×
∑
e∈EΓ

(Re + iIe)(1 + δξ)Φe(x),

where δ is the noise level, and ξ is a uniformly distributed random variable in [−1, 1].
In all examples we choose the source Js as (∇ · Js = 0)

Js = ∇×
9∑

i,j=1

δ(x− xij)e1,

where e1 is the unit vector along the x-axis and xij = (−2.0 + 0.4 ∗ i,−2.0 + 0.4 ∗
j, 0.1), i.e., there are 81 point sources on plane z = 0.1. We assume the background
conductivity σ0 = 1.0 in Ωc = Ω1 ∪ Ω2. By this setting, we apply Algorithm 4.1 to
recover the abnormal conductivity σ with the data on boundary Γ. We always choose
the initial guess 0 in the NLCG algorithm and take the parameters ε = 1.0, µ =
1.0, ω = 0.79, and the regularization α = 10−6 unless it is specified otherwise.

5.1. Example 1. In this example, the domain with abnormal conductivity is
Ω2 = [−0.4, 0.4] × [−0.4, 0.4] × [−1.2,−0.4], where the exact abnormal conductivity
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Fig. 2. The recovery of σ after 100 iterations (upper left) and 200 iterations (upper right). The
lower two pictures are the corresponding isosurfaces of the recovered σ with isovalue 0.35.
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Fig. 3. The recovery of σ after 20 iterations (left) and the convergence history (right).

is given by σ = 1.0, and σ vanishes in Ω1. That is, the exact conductivity σ0 + σ is
constant 0.0, 1.0, and 2.0 in Ω0, Ω1, and Ω2, respectively.

The total degrees of freedom of the edge elements are 213,128. First, we use the
L2 gradient of the objective functional in Algorithm 4.1, and the recovery results are
shown in Figure 2, where the left and right pictures give the results in 100 and 200
iterations, respectively. We can find that the recovery is closer to the exact conduc-
tivity with more iterations. The recovery result by Algorithm 4.1 using the Sobolev
gradient is given in the left of Figure 3 (20 iterations), with the convergence history of
the nonlinear CG algorithm by the L2 and Sobolev gradients, respectively, in the right
of Figure 3. We notice that the algorithm with the Sobolev gradient converges much
faster. The recovered conductivity by using the Sobolev gradient with 20 iterations
is very close to the result with 200 iterations by using the L2 gradient. We also show
the recovery results of the algorithm with different α; see Figure 4. We find that the
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INVERSE EDDY CURRENT PROBLEM 1489

Fig. 4. The recovery results after 20 iterations, with α = 10−4, 10−5, 10−6, and 10−8 from left
to right, top to bottom. The same color represents the same value of σ in all the pictures.

recovery results with α = 10−6 and 10−8 are quite similar and are both much more
improved than the result with α = 10−5, while the result with α = 10−4 is very poor.
We have observed similar reconstructions in most of our numerical simulations, so
we shall report only the results with the regularization parameter α = 10−6 for all
subsequent examples.

5.2. Example 2. In this example, we consider the case with two abnormal sub-
domains, Ω21 and Ω22. We take Ω21 = [−1.2,−0.4]×[−0.4, 0.4]×[−1.2,−0.4], with the
exact abnormal conductivity σ = −0.9, and Ω22 = [0.4, 1.2]×[−0.4, 0.4]×[−1.2,−0.4],
with the exact abnormal conductivity σ = 1.0. To be more specific,

σ0 + σ =


0 in Ω0,

1.0 in Ω1,
0.1 in Ω21,
2.0 in Ω22.

The total degrees of freedom of the edge elements of the state and adjoint equations are
266,690. In this example, we show the recovery results only for the Sobolev gradient
defined by (4.30). The left and right pictures of Figure 5 present the recovery results
in 100 and 200 iterations, respectively. We can see that two abnormal objects are well
separated and recovered.

Figure 6 shows the recovered conductivity with the noisy data: the left picture
with the noise level δ = 0.1% and the right picture with δ = 0.4%, for both of
which the regularization parameter is taken to be α = 10−4 and 100 iterations are
conducted.
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Fig. 5. The recovered σ after 100 iterations (upper left) and 200 iterations (upper right). The
lower two pictures are the isosurfaces of the recovered σ with isovalues 0.35 (lower left) and −0.35
(lower right). The small cubes are the real locations of the two anomalies.

Fig. 6. Recovery results after 100 iterations with noisy data; the noise level is 0.1% (upper left)
and 0.4% (upper right). The lower two pictures are the isosurfaces of recovered σ with isovalues
0.20 (lower left) and −0.25 (lower right).
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6. Concluding remarks. We have studied an ill-posed eddy current inversion
problem mathematically and numerically. We have first investigated the ill-posedness
of the inverse eddy current problem, by showing the compactness of the forward
operator mapping the conductivity parameter to the tangential trace of the electric
field, and the nonuniqueness of the inverse problem. For the nonlinear regularized
minimization formulation of the inverse problem, we have explored the existence and
stability of the minimizers and the optimality system of its Lagrange formulation in
terms of the real and imaginary parts of the PDE constraints, as well as the finite
element approximation of the nonlinear regularized minimization system. A nonlinear
conjugate gradient method is formulated for solving the discrete nonlinear constrained
optimization problem, with its step sizes updated very effectively by a quadratic ap-
proximation of the objective function, and a Sobolev gradient introduced to effectively
accelerate the iteration. Numerical examples have shown the feasibility and effective-
ness of the reconstruction algorithm, which can clearly recover the locations and sizes
of separated inclusions in the noisy case.

Acknowledgment. The authors are very grateful to two anonymous referees for
many instructive and helpful comments.
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