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PHASED AND PHASELESS DOMAIN RECONSTRUCTIONS
IN THE INVERSE SCATTERING PROBLEM VIA SCATTERING

COEFFICIENTS∗

HABIB AMMARI†, YAT TIN CHOW‡ , AND JUN ZOU§

Abstract. In this work we first review the (phased) inverse scattering problem and then pursue
the phaseless reconstruction from far-field data with the help of the concept of scattering coefficients.
We perform sensitivity, resolution, and stability analysis of both phased and phaseless problems and
compare the degree of ill-posedness of the phased and phaseless reconstructions. The phaseless
reconstruction is highly nonlinear and much more severely ill-posed. Algorithms are provided to
solve both the phased and the phaseless reconstructions in the linearized case. Stability is studied by
estimating the condition number of the inversion process for both the phased and the phaseless cases.
An optimal strategy is suggested to attain the infimum of the condition numbers of the phaseless
reconstruction, which may provide an important guidance for efficient phaseless measurements in
practical applications. To the best of our knowledge, the stability analysis in terms of condition
numbers is new for the phased and phaseless inverse scattering problems and is very important to
help us understand the degree of ill-posedness of these inverse problems. Numerical experiments are
provided to illustrate the theoretical asymptotic behavior, as well as the effectiveness and robustness
of the phaseless reconstruction algorithm.
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1. Introduction. The inverse scattering problems are well known to be severely
ill-posed. It has widespread applications in, e.g., oil/crack detection, target identifi-
cation, geophysical prospection, nondestructive testing, medical imaging, and physi-
ological measurement [3, 4, 11, 19, 32, 33, 34, 42, 43, 44, 45, 46, 50, 51]. Due to their
applications, inverse scattering problems have attracted much attention, and many nu-
merical algorithms have been developed over recent decades for phased reconstruction
problems, e.g., time-reversal multiple signal classification methods [24, 38], contrast
source inversion methods [2, 3, 4, 44, 45, 46, 47], the continuation method [10], the
subspace-based optimization method [15, 16], linear sampling or probing methods
[17, 31, 41], the parallel radial bisection method [35], direct sampling methods [22],
multilevel sampling methods [30, 36], etc.

However, in many areas of applied sciences it is very difficult and expensive to
obtain the phased data of the scattered field, while the phaseless data is much easier to
acquire. In addition, the phase of the field is more easily polluted by the noise than the
amplitude in many practical situations. For instance, the measurement of the phase
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is extremely difficult when the working frequency is beyond tens of gigahertz, and one
cannot expect a good accuracy of the phase measurement [33, 34, 42]. This motivates
the phaseless reconstructions and attracts huge attention from both the physics and
the mathematics communities. Nonetheless, the phaseless reconstruction is yet much
more severely ill-posed than the phased reconstruction; in particular, it appears to be
impossible to recover the location of an obstacle only from the modulus of the far-
field pattern owing to the fact that it is invariant under translations [29]. In spite of
this drastic difficulty, several approaches have been proposed in the literature for the
phaseless medium reconstruction in optics, acoustics, and electromagnetics, e.g., the
phaseless data multiplicative regularized contrast sources inversion method [32, 52]
and several other methods [14, 18, 21, 33, 34, 42, 53]. Also, the phaseless acoustic
(sound-soft) obstacle reconstruction was studied in [23], where the reconstruction is
split into two parts: the shape reconstruction from the phaseless data and the location
of the obstacle from a few phased measurements. Theoretically, the uniqueness of a
phaseless scattering reconstruction was established in [25, 26], while the phaseless
measurements were connected to the Radon transform of the potential under the
Born approximation [28], and a new numerical method was proposed in [27] for the
phaseless problem using this connection to the Radon transform. Novikov [39, 40] also
introduces reconstruction procedures for the phaseless inverse scattering problems.
There are also other works which address both the theoretical and the algorithmic
aspects of problems related to phaseless reconstruction of a function or vector, where
the phase of a function or vector is recovered from the modulus of its evaluation of
a special family of functionals [13, 20, 37], e.g., the coefficients of a Cauchy wavelet
transform.

In this work, we study both the phased and the phaseless shape reconstructions
from the far-field data of an acoustic medium scattering problem, which is modeled
by the following Helmholtz equation:

Δu+ k2(1 + q(x))u = 0 in R
2,(1.1)

where u is the total field, q(x) ≥ 0 is the contrast of the medium, and k is the wave
number.

Suppose that D is an inclusion contained inside a homogeneous background
medium, and it is an open bounded connected domain with a C1,α-boundary for
0 < α < 1. We consider the contrast q of the form

(1.2) q(x) = ε∗χD(x),

where χD is the characteristic function of D and ε∗ > 0 is a constant. The Helmholtz
system (1.1) is often complemented by the physical outgoing Sommerfeld radiation
condition: ∣∣∣∣ ∂

∂|x|u
s − ikus

∣∣∣∣ = O(|x|− 3
2 ) as |x| → ∞ ,(1.3)

where us := u − ui is the scattered field and ui is the incident wave. Now we can
see that the solution u to the system (1.1)–(1.3) represents the total field due to the
scattering from the inclusion D corresponding to the incident ui. Then the phased
reconstruction is to recover the shape of D from the phased measurements of either
the scattered field or the far-field, while the phaseless reconstruction is to recover the
shape of D from only the magnitude of the scattered field or the far-field.
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We shall analyze the sensitivity, resolution, and stability of both the phased and
the phaseless reconstructions in the linearized cases under certain measurement strate-
gies and compare the major differences between these two reconstructions. With the
help of these analyses, we will propose an efficient measurement method which leads
to a well-posed inversion process of the phaseless reconstruction. As demonstrated
by our early works [6, 8, 9], the scattering coefficients provide a powerful and efficient
tool for shape classification of a target domain, and this concept will also persist in
this work to help us establish stable reconstruction algorithms and their analysis.

We start by recalling the phased reconstruction in the linearized case so as to pro-
vide important insight into the highly nonlinear phaseless reconstruction problems.
Within this framework, we shall provide a resolution analysis on numerical reconstruc-
tion with phased data in terms of signal-to-noise ratio and then propose algorithms
for shape reconstructions with the phased measurement. Another major focus of this
work is the stability of the phaseless reconstruction, for which we will provide an
efficient algorithm and estimate the condition number of the phaseless inversion pro-
cess. We are able to establish a sharp upper bound for the infimum of the condition
numbers of the inversion process over all phaseless measurement strategies for a given
target resolution and hence propose an optimal modulus measurement method. A
similar analysis is carried out for the phased reconstruction to allow a clear compari-
son between the phased and phaseless reconstructions. To the best of our knowledge,
our stability estimates in terms of condition numbers are completely new to inverse
medium scattering problems and appear to be a very important and effective novel
tool to help us better understand the degree of ill-posedness and stability of both the
phased and the phaseless reconstructions.

The remaining part of the work is organized as follows. In section 2, we review
the concept of scattering coefficients and obtain several important results, which will
be of crucial importance to connect the scattering coefficients to both the phased and
the phaseless reconstructions and to help us develop efficient algorithms and their
analysis. Then we move on to the sensitivity analysis of the phased measurement
data in section 3, which will also give a link-up between the phaseless data and
information about the shape of the domain. An important comparison is provided
in section 3 for the similarities and differences between the phased and phaseless
reconstructions. A phased reconstruction algorithm in the linearized case is then
proposed in section 4, also with a clear resolution analysis of the algorithm. This
resolution analysis is very helpful for us to understand the corresponding resolution
constraint in the phaseless reconstruction. Next, we introduce our phaseless recovery
problem in section 5 and provide a phaseless shape reconstruction algorithm in section
6. A stability analysis is performed for our new phaseless reconstruction algorithm
in section 7. Optimal strategies for minimizing the condition number of the inversion
process and analysis of the differences between the ill-posed natures of the phased
and phaseless reconstructions are also given. Numerical experiments are presented in
section 8 to confirm the theoretical estimates of the condition number of our inversion
process and illustrate the effectiveness and robustness of our newly proposed phaseless
recovery algorithm. We emphasize that, although our analyses are performed only for
two dimensions, similar results and analysis can be extended to higher dimensions as
well.

2. Revisit to the concept of scattering coefficients and its sensitivity
analysis. In this section, we recall the definition of the scattering coefficient [5, 6, 8]
and provide some useful results about sensitivity analysis for our subsequent shape
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reconstruction. To do so, we first introduce some useful notation [6, 8]. Let Φk be
the fundamental solution to the Helmholtz equation

(Δ + k2)Φk(x) = δ0(x),(2.1)

where δ0 is the Dirac mass at 0, with the outgoing Sommerfeld radiation condition∣∣∣∣ ∂

∂|x|Φk − ikΦk

∣∣∣∣ = O(|x|− 3
2 ) as |x| → ∞ .

Then Φk can be written in terms of the Hankel function H
(1)
0 of the first kind of order

zero:

Φk(x) = − i

4
H

(1)
0 (k|x|) .(2.2)

Given an incident field ui satisfying the homogeneous Helmholtz equation

Δui + k2ui = 0 ,(2.3)

the solution u to (1.1) and (1.3) can be represented by the Lippmann–Schwinger
equation as

u(x) = ui(x)− ε∗k2
∫
D

Φk(x− y)u(y)dy , x ∈ R
2 ,(2.4)

and the scattered field is given by

us(x) = −ε∗k2
∫
D

Φk(x− y)u(y)dy , x ∈ R
2 .(2.5)

Throughout this work, we shall focus on the plane incident wave ui of the form eikd̂·x

with a unit vector d̂.
In what follows, we shall often use the following single-layer potential:

Sk
∂D[φ](x) =

∫
∂D

Φk(x− y)φ(y) ds(y) , φ ∈ L2(∂D);(2.6)

then the scattering coefficients are defined as follows [6, 8].

Definition 2.1. For n,m ∈ Z, the scattering coefficients Wnm(D, ε∗, k) are de-
fined by

(2.7) Wnm(D, ε∗, k) =
∫
∂Ω

Jn(krx) e
−inθxφm(x) ds(x) ,

where x = rx(cos θx, sin θx) is in polar coordinates, Jn denotes the Bessel functions of
the first kind, and the weight function φm ∈ L2(∂D) is such that the pair (φm, ψm) ∈
L2(∂D)× L2(∂D) satisfies the following system of integral equations:{

Sk
√
ε∗+1

∂D [φm](x)− Sk
∂D[ψm](x) = Jm(krx)e

imθx ,
∂
∂νS

k
√
ε∗+1

∂D [φm](x) |− − ∂
∂νS

k
∂D[ψm](x) |+= ∂

∂ν (Jm(krx)e
imθx).

(2.8)
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Here + and − in the subscripts indicate, respectively, the limits from outside D
and inside D to ∂D along the normal direction, and ∂/∂ν denotes the outward normal
derivative.

The scattering coefficients Wnm(D, ε∗, k) are basically the Fourier coefficients of
the far-field pattern (a.k.a. the scattering amplitude), which is a 2π-periodic function

in two dimensions [5, 6, 8]. For the incident field eikd̂·x with a unit vector d̂, we have

(u− ui)(x) = ie−πi/4 eik|x|√
8πk|x|A∞(d̂, x̂, k) +O(|x|− 3

2 ) as |x| → ∞,

where x̂ = x/|x| = (cos θx, sin θx) and d̂ = (cos θd, sin θd) are in polar coordinates, and

A(θd, θx, k) := A∞(d̂, x̂, k) is the so-called far-field pattern. The following results can
be found in [5, 6, 8].

Theorem 2.2. Let Fθd,θx [A(θd, θx, k)](m,n) be the (m,n)th Fourier coefficient of
the far-field pattern A(θd, θx, k) of a general domain D with the background wave-
number k; then it holds that

Wnm(D, ε∗, k) = i(n−m)Fθd,θx [A(θd, θx, k)](−m,n),(2.9)

or equivalently,

A(θd, θx, k) =
∑

m,n∈Z

i(m−n)e−imθdeinθxWnm(D, ε∗, k) .(2.10)

The following result is a direct consequence of Corollary 7.1 in [6].

Theorem 2.3. When the contrast ε∗ is small, it holds, for a general domain D,
that

Wnm(D, ε∗, k) = ε∗k2
∫
D

Jn(kr)Jm(kr)ei(n−m)θ dx+O(ε∗2) .(2.11)

The expression can be simplified in the special case when the domain is a circular
shape B := BR(0) as

Wnm(B, ε∗, k) = 2πε∗δnmk2
∫ R

0

[Jn(kr)]
2rdr +O(ε∗2),(2.12)

where δnm is the Kronecker delta.

We remark that the integral appearing in (2.12) can be calculated explicitly as a
Lommel integral, and this fact will become very helpful in section 3.

Before going to the discussion about the phased and phaseless reconstructions,
we shall first provide a sensitivity estimate of the scattering coefficient under a per-
turbation of an open ball B, which is important for our subsequent analysis about
the resolution of both the phased and the phaseless reconstructions. Our sensitiv-
ity analysis is performed by examining the variational derivative along a direction
h ∈ C1(∂B) on ∂B, and we refer to this as a linearization process.

Now, let ν(x) be the outward unit normal to ∂B, and let D := Bδ be a δ-
perturbation of B along the variational direction h ∈ C1(∂B) with ||h|| = 1:

∂Bδ := {x̃ = x+ δh(x)ν(x) : x ∈ ∂B} ;(2.13)
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then we can write the difference between the integrals over the domains B and Bδ for
an L1 function f :∫

Bδ

f(x)dx −
∫
B

f(x)dx = δ

∫
∂B

f(x)h(x) ds(x) +O(δ2) .

Now it follows from this and (2.11) that

Wnm(Bδ, ε∗, k)−Wnm(B, ε∗, k)

= ε∗k2
∫
Bδ

⋃
B\Bδ

⋂
B

sgn(h)Jn(kr)Jm(kr)ei(n−m)θ dx+O
(
ε∗δ2 + ε∗2

)
= ε∗δk2

∫
∂B

h(x)Jn(kr)Jm(kr)ei(n−m)θ dx+O
(
ε∗δ2 + ε∗2

)
= ε∗Rδk2Jn(kR)Jm(kR)

∫ 2π

0

h(θ)ei(n−m)θ dθ +O
(
ε∗δ2 + ε∗2

)
= 2πRk2ε∗δJn(kR)Jm(kR)F[h](n−m) + +O

(
ε∗δ2 + ε∗2

)
,

where F[h](n−m) stands for the (n−m)th Fourier coefficient of the perturbation h
in the argument θ.

If we further require that the magnitude of δ is larger than ε∗ in a way such that
δ = (ε∗)α for some 0 < α < 1, then we arrive at the following result by some argument
similar to that in [5].

Theorem 2.4. Let D := Bδ be a δ-perturbation of B := BR(0) as defined in
(2.13); then it holds for δ = (ε∗)α with 0 < α < 1 that

Wnm(Bδ, ε∗, k)−Wnm(B, ε∗, k)
= 2πRk2(ε∗)1+αJn(kR)Jm(kR)F[h](n−m) +O(ε∗)2.(2.14)

3. Sensitivity analysis of the phased measurement data. In this section,
we shall develop a sensitivity analysis of the phased measurement of the far-field data
based on the result for the scattering coefficients in Theorem 2.4. This shall help us
provide a crucial expression between the phaseless measurement of the far-field data
(i.e., only its magnitude) and the shape D.

Suppose that D := Bδ is a δ-perturbation of B := BR(0) along the variational
direction h ∈ C1(∂D) with ||h|| = 1 as described earlier. Then it follows from (2.10),
(2.12), and (2.14) that

A∞(θ, θ̃, k)

=
∑

n,m∈Z

in−meinθe−imθ̃Wnm(Bδ, ε∗, k)

= 2πε∗k2
∑
l∈Z

eil(θ−θ̃)

∫ R

0

[Jl(kr)]
2rdr

+ 2πR (ε∗)1+αk2
∑
n,l∈Z

ileilθ̃ein(θ−θ̃)Jn(kR)Jn−l(kR)F[h](l) +O(ε∗)2 .

Although the above expression looks quite complicated, it can be greatly simplified
by some well-known properties of the Bessel functions. In fact, using the following
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form of Graf’s addition formula [48],

∞∑
n=−∞

Jn(x)Jn−l(y)e
inθ

= (−1)l
(
x− y exp(−iθ)
x− y exp(iθ)

)l/2

Jl

(√
x2 + y2 − 2xy cos(θ)

)
(3.1)

for x, y > 0 and x �= y, and the well-known property for the second Lommel integral,∫ R

0

[Jl(kr)]
2rdr =

R2

2
[Jl(kR)

2 − Jl−1(kR)Jl+1(kR)] ,(3.2)

we can significantly simplify the above expression of the far-field pattern as

A∞(θ, θ̃, k) = πR2ε∗ k2
∑
l∈Z

eil(θ−θ̃)[Jl(kR)2 − Jl−1(kR)Jl+1(kR)]

+ 2πR (ε∗)1+α k2
∑
n,l∈Z

ileilθ̃ein(θ−θ̃)Jn(kR)Jn−l(kR)F[h](l) +O(ε∗)2

= πR2ε∗k2[J0(2kR sin((θ̃ − θ)/2)) − J2(2kR sin((θ̃ − θ)/2))]

+2πR (ε∗)1+αk2
∑
l∈Z

(−i)leil(θ̃+θ)/2Jl(2kR sin((θ̃ − θ)/2))F[h](l) +O(ε∗)2 .(3.3)

An interesting point to note is that the constants πR2 and 2πR in front of the two
terms ε∗ and (ε∗)1+α are, respectively, the volume and surface area of the open ball
of radius R.

Summarizing the above discussions, we come directly to the following theorem.

Theorem 3.1. If δ = (ε∗)α for 0 < α < 1, then

A∞(θ, θ̃, k)

= πR2ε∗k2PR(θ, θ̃, k) + 2πR (ε∗)1+αk2〈F[h], SR(θ, θ̃, k)〉l2(C) +O(ε∗)2,(3.4)

where PR(θ, θ̃, k) represents the quantity

PR(θ, θ̃, k) := J0(2kR sin((θ̃ − θ)/2))− J2(2kR sin((θ̃ − θ)/2))(3.5)

and SR(θ, θ̃, k) ∈ l2(C) is a vector given by

SR(θ, θ̃, k)l := ile−il(θ̃+θ)/2Jl(2kR sin((θ̃ − θ)/2)) .(3.6)

With the above estimate of the far-field pattern, we can calculate the expression
of the magnitude of the far-field pattern, namely |A∞(θ, θ̃, k)|, by

|A∞(θ, θ̃, k)|2 − π2R4(ε∗)2k4
(
PR(θ, θ̃, k)

)2
4π2R3(ε∗)2+αk4PR(θ, θ̃, k)

= Re〈F[h], SR(θi, θ̃, k)〉l2(C) +O(ε∗)1−α

= 〈F[h], SR(θ, θ̃, k)〉l2(R2) +O(ε∗)1−α .(3.7)

Due to its great importance for the subsequent phased and phaseless reconstructions,
we state it in the following corollary.
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Corollary 3.2. For δ = (ε∗)α, for 0 < α < 1 it holds that

〈F[h], SR(θ, θ̃, k)〉l2(R2)

=
|A∞(θ, θ̃, k)|2 − π2R4(ε∗)2k4

(
PR(θ, θ̃, k)

)2
4π2R3(ε∗)2+αk4PR(θ, θ̃, k)

+O(ε∗)1−α .(3.8)

One interesting observation is that PR(θ, θ̃, k) and SR(θ, θ̃, k) become very simple

for θ = θ̃:

PR(θ, θ, k) = 1 , SR(θ, θ̃, k)l = δl0 .(3.9)

And the expression for the far-field pattern is simplified to

A∞(θ, θ, k) = πR2ε∗k2 + 2πR (ε∗)1+αk2F[h](0) +O(ε∗)2,(3.10)

which illustrates that the direct backscattering data A∞(θ, θ, k) may only provide
the information about the area and volume of the inclusions but not the first order
perturbation.

We end this section with an important remark about some similarities and dif-
ferences between the phased and phaseless reconstructions in the linearized case. We
see from (3.4) that

〈F[h], SR(θ, θ̃, k)〉l2(C) = A∞(θ, θ̃, k)− πR2ε∗k2PR(θ, θ̃, k)

2πR2(ε∗)1+αk2
+O(ε∗)1−α ,(3.11)

which might be comparable to Corollary 3.2 above. However, we do see several differ-
ences here. First, we obtain an approximate value of 〈F[h], SR(θ, θ̃, k)〉l2(C) with the
phased measurements in the linearized case, while we obtain an approximate value
of 〈F[h], SR(θ, θ̃, k)〉l2(R2) with the phaseless measurements, which is the projection
of the original complex inner product to the real part. Therefore, we can regard the
linearized phaseless reconstruction as a “half-dimension” analogy of the linearized
phased reconstruction. Second, in the phased reconstruction, the denominator of the
right-hand side of (3.11) does not involve the division of the term PR(θ, θ̃, k), whereas
in the phaseless reconstruction the division of the term is involved (cf. (3.8)). Both dif-
ferences make the phaseless reconstruction more ill-posed than the phased one. These
differences will be clearly elaborated in section 7.3. As the last point, it is well known
that the phaseless reconstruction is not unique in the sense that any translation of
the inclusion yields the same phaseless measurement. But this is not reflected from
the above equation, as we have assumed the inclusion is in the center for the sake of
exposition.

4. A phased reconstruction algorithm in the linearized case. In this
section, we provide a reconstruction algorithm for the phased measurement in the
linearized case using the concept of the scattering coefficients and then a resolution
analysis of this algorithm.

4.1. An algorithm for phased reconstruction. We recall that ε∗ is the con-
trast of the inclusion D (cf. (1.2)) and the perturbation parameter δ of D is of the
order δ = (ε∗)α for 0 < α < 1. Then, motivated by the results in Theorems 2.2 and
2.4, we come to the following reconstruction algorithm in the linearized case.
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Algorithm 1. Given the measurement Ameas
∞ (θ, θ̃, k).

1. Compute Wmeas
nm from the Fourier transform as in (2.9) for −N < n,m < N .

2. Find R, ε∗ from the following minimization problem:

min
R, ε∗

∑
−N<n<N

∣∣Wmeas
nn − πR2ε∗k2[Jl(kR)

2 − Jl−1(kR)Jl+1(kR)]
∣∣2 .(4.1)

3. Compute from (2.14) the estimator (δ F[h])est of the product of magnitude δ
and Fourier coefficients F[h] of the perturbation h for l �= 0:

(δ F[h])est :=
1

2N − l

∑
m−n=l,−N<n,m<N

Wmeas
nm −Wnm(B, ε∗, k)

2πRε∗k2Jn(kR)Jm(kR)
.(4.2)

Two remarks are in order. First, regarding the nonlinear squared minimization
(4.1), a direct application of the descent-type/Newton-type algorithmmay get trapped
in local minima. But noting that the terms in the squared nonlinear functions involv-
ing R and ε∗ have closed forms in terms of Bessel functions, their evaluations are
direct. In view of the fact that this is only a two-dimensional optimization problem
over (R, ε∗) where R, ε∗ are both small, one can perform the optimization by a direct
exhaustion of the values (R, ε∗) over a grid of small mesh size. The approximate
minimizers can be further refined by a descent-type/Newton-type iteration.

Second, we remark that the reconstruction formula (4.2) is similar to the one
(5.3) in [5]. Indeed, considering (3.26) in [5] with a contrast ε∗, the Fourier coeffi-
cients of any perturbation h of B = BR(0) can be recovered by an inversion of the
operator A(ε∗) as defined in (4.62) in [5] (after a normalization of its wave num-
ber k to k = 1). However, the coefficients of the matrix A(ε∗), i.e., C(ε∗, n,m)
defined in (3.27) in [5], are given only in terms of resolvent operators, and there-
fore their explicit expressions are not available. The inversion formula (5.3) in [5]
is hence inconvenient for a direct usage. Nonetheless, for a small contrast ε∗, we
know now from Theorem 2.4 an explicit approximation of coefficients C(ε∗, n,m) as
C(ε∗, n,m) ≈ 2πRk2(ε∗)1+αJn(kR)Jm(kR). Therefore, (4.2) can be regarded as an
easy-to-use approximation of the inversion formula (5.3) of the operator A(ε∗) de-
scribed in [5] when the contrast ε∗ is small.

4.2. Resolution analysis with respect to signal-to-noise ratio. In this
subsection, we perform a resolution analysis of Algorithm 1 in the previous section,
which applies also to other reconstruction process derived from (3.11), since the above
algorithm is just a Fourier-transformed version of (3.11). Resolution analysis of the
above reconstruction with respect to the signal-to-noise ratio (SNR) can be conducted
following the spirit of the work [7].

In what follows, we assume the following noise model for the far-field pattern:

(4.3) Ameas
∞ (θi, θ̃j , k) := A∞(θi, θ̃j , k) +N(θi, θ̃j , k),

where pairs {(θi, θ̃j)}Mi,j=1 represent the M incident and receiving angles of the mea-

surement evenly distributed on the circle (whereM is very large) and (N(θi, θ̃j , k))
M
i,j=1

is modeled as, for any fixed value of k, a complex circular symmetric Gaussian white
noise vector with variance:

(4.4) E[|N(θi, θ̃j , k)|2] = σ2k4 .

Here σ represents the noise magnitude and the noise term is assumed to have a
variance of quadratic growth with respect to k4, as it is direct from (2.10) and (2.11)
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to see that the magnitude of Ameas
∞ (θi, θ̃j , k) grows at most in the order of k2 as k

grows.
From the well-known fact that any orthogonal transformation of a Gaussian white

random vector will result in another Gaussian white random vector, we arrive at, after
taking the discrete Fourier transform in the variables θ and θ̃, that the following model
for the scattering coefficient should be in force:

(4.5) Wmeas
nm (Bδ, ε∗, k) =Wnm(Bδ, ε∗, k) + N̂n,m,ε∗ ,

where the noise term N̂n,m,ε∗ is another complex circular symmetric Gaussian random

variable such that its variance E[|N̂n,m,ε∗ |2] (i.e., the power spectrum of the original

random variable N(θi, θ̃j , k)) behaves like

(4.6) E[|N̂n,m,ε∗ |2] = σ2k4 .

Assume a generic pair (k,R) such that k > 1 , R < 1, and kR is not a zero of Jn

for all n. Then, for l �= 0, we obtain from a direct subtraction of (2.14) from (4.2),
together with (4.5), that

F[h](l) = (F[h])est(l) +
σ

(ε∗)1+α
Nl + (ε∗)1−αVl ,

where Vl represents a deterministic approximation error that is of order 1 with respect
to ε such that (ε∗)2Vl constitutes the approximation error term of order O(ε∗)2 in
(2.14), and Nl stands for a random noise term satisfying the following estimate for its
variance with a small R < 1 and large N < M by using (4.6):

E[|Nl|2] = k4

4π2(2N − l)2

∑
m−n=l,−N<n,m<N

k−4R−2[Jn(kR)Jm(kR)]−2

≤ C2
0

(2N − l)2

∑
m−n=l,−N<n,m<N

m2m+1n2n+1

k2(m+n)R2(m+n)+2

≤ C2
0

N4N

R2+4N
,(4.7)

where the first inequality comes from the following asymptotic behavior of the Bessel
function [1]:

Jn(t)

/
1√
2π|n|

(
et

2|n|
)|n|

→ 1(4.8)

as |n| → ∞, and constant C0 is an appropriate constant from this asymptotic estimate.
Assuming further that ε∗ � √

σ and

SNR :=

(
ε∗

σ

)2

,

we get

E[(F[h])est(l)] = F[h](l) +O(ε∗)1−α,

E

[∣∣(F[h])est(l)− E[(F[h])est(l)]
∣∣2] ≤ C2

0

N4N

R2+4N
(SNR)−(1+α/2) ,(4.9)

which enables us to conclude the following result.
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Theorem 4.1. Suppose that k > 1, R < 1, δ = (ε∗)α for 0 < α < 1 and
0 < ε∗ � 1, and the number of measurement points M 
 1. If N < M is selected
such that

C2
0

N4N

R2+4N
< (SNR)

1+α/2
(4.10)

and that F[h](l) (|l| ≤ N) are of order 1, then the lth mode of h can be resolved for
|l| ≤ N with an error of O(ε∗)1−α, i.e.,

E[(F[h])est(l)] = F[h](l) +O(ε∗)1−α,

E

[∣∣(F[h])est(l)− E[(F[h])est(l)]
∣∣2] ≤ 1 .(4.11)

5. Introduction to phaseless reconstruction. Phaseless reconstruction orig-
inates from the physical background that we can usually only measure the magnitude
of some data, for example, the magnitude of the far-field pattern. As briefly ex-
plained in section 1, it is quite difficult and expensive to obtain the phased data in
many physical and engineering applications, and the phase of a measurement is easily
contaminated by noise. On the other hand, the phaseless data is much easier to obtain
and less contaminated in many practical situations. Due to these facts, the phaseless
reconstruction has attracted wide attention.

5.1. Brief history of a general phaseless reconstruction problem. Let us
first give a brief introduction and history of a general phaseless reconstruction. As in
[12], for a given set of m sampling vectors, z1, . . . , zm, we intend to recover a vector
x from some phaseless data. This may be formulated as follows:

Find x such that A(x) = b,(5.1)

whereA : CN → Rm is given byA(x)i = |〈x, zi〉|2. One may consider a convexification
of the problem (5.1) [12]:

Find X ≥ 0 such that A(X) = b ,(5.2)

whereA : HN×N → Rm is given byA(X) = z∗iXzi, which helps reduce the complexity
of solving the problem, as well as provides uniqueness results under some practical
conditions. For instance, this problem is proven to have a high probability such that
it is uniquely solvable up to a unit complex number stably from O(N logN) random
measurements [20]. We remark that a stabilized version of convexification is given by
the following:

(5.3) Find X ≥ 0 such that ||A(X)− b|| ≤ ε||X0||2 .
Another more general form of phaseless reconstruction (which generalizes the

above) comes from recovering the phase of a function/vector from the modulus of its
evaluation by a family of functionals. In a more precise way, let E be a complex vector
space and {Li}i∈I be a family of functionals. Then this phaseless reconstruction reads
as follows:

Find f ∈ E such that |Li(f)| = b .(5.4)

In the case where {Li}i∈I represents the wavelet transform by the Cauchy wavelets,
it was shown in [37] that the modulus of the wavelet transform uniquely determines
the function up to a global phase, and the reconstruction operator is continuous but
not uniformly continuous.
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5.2. Introduction to our phaseless reconstruction problem. The convexi-
fication discussed in section 5.1 is a very interesting approach, but the purpose, frame-
work, and analysis of our phaseless reconstruction here are very different. We aim to
achieve numerical reconstructions of inhomogeneous domains in the linearized case.
We will provide an algorithm for the domain reconstruction from some phaseless far-
field data, estimate the condition number of this reconstruction process, and establish
an upper bound of its infimum over all phaseless measurement strategies. This casts
light on how we can obtain an optimal strategy to perform effective phaseless measure-
ments such that the phaseless inversion process shall be well-posed. For comparison
purposes, a similar analysis technique is also performed on its phased counterpart,
and a comparison between the phased and phaseless reconstructions shall be made.

6. Phaseless domain reconstruction algorithm in linearized cases. In
this section, we provide a new method for the domain reconstruction from the phase-
less far-field data based on our analyses and results in sections 2 and 3. We consider
a finite number ofM measurements of |A(θ, θ̃, k)| at some specific incidence and mea-

surement angles as well as frequencies {(θi, θ̃i, ki)}Mi=1. We would like to remark that

the notation (θi, θ̃i, ki) is used only to allow a larger degree of freedom in choosing the
incidence/measurement angles and the wave-number, not indicating any dependence
among the incidence angles, measurement angles, and wave-numbers.

We first recall from Corollary 3.2 the relation

|A∞(θi, θ̃i, ki)|2 − π2R4(ε∗)2k4
(
PR(θi, θ̃i, ki)

)2
4π2R3(ε∗)2+αk4PR(θi, θ̃i, ki)

= 〈F[h], SR(θi, θ̃i, ki)〉l2(R2) +O(ε∗)1−α ,(6.1)

where PR(θi, θ̃i, ki) ∈ R and SR(θi, θ̃i, ki) ∈ l2(C) are given in (3.5) and (3.6). There-

fore, from a finite number of M measurements |A∞(θi, θ̃i, ki)| (1 ≤ i ≤ M), we

obtain the following linear approximation of 〈F[h], SR(θi, θ̃i, ki)〉 as the measurement
quantities from the phaseless measurements:

〈F[h], SR(θi, θ̃i, ki)〉l2(R2) ≈ |A∞(θi, θ̃i, ki)|2 − π2R4(ε∗)2k4|PR(θi, θ̃i, ki)|2
4π2R3(ε∗)2+αk4PR(θi, θ̃i, ki)

.(6.2)

This is of crucial importance for us to derive an algorithm for the domain reconstruc-
tion from the phaseless far-field measurements.

6.1. Phaseless reconstruction algorithm. We are now ready to introduce
our phaseless reconstruction algorithm. Following Theorem 4.1 from the resolution
analysis for the phased reconstruction in section 3, we can directly infer that the
resolution with respect to SNR in the phaseless reconstruction should not surpass the

Nth Fourier mode, where N satisfies the inequality C2
0N

4N/R2+4N < (SNR)
1+α/2

for some α, where C0 is the constant as in Theorem 4.1. Hence in our reconstruction
algorithm, we may always assume that F[h](l) = 0 for |l| > N for some N and consider
only the inversion of finite-dimensional operators, and the contribution of F[h](l) for
|l| > N to the measurement data can be regarded as noise. Now since h(θ) ∈ R for
all θ, we have the following additional constraints on the Fourier coefficients:

F[h](−l) = F[h](l) .(6.3)
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This set of constraints is very important in our subsequent analysis. We assume again
that the magnitude of the perturbation δ is of the form δ = (ε∗)α for 0 < α < 1,
where ε∗ is the contrast of the inclusion. From Corollary 3.2, we can now suggest the
following phaseless reconstruction algorithm.

Algorithm 2. Given a positive integer N andM measurements of the magnitude
|Ameas∞ (θi, θ̃i, ki)| (1 ≤ i ≤M) of the far-field.

1. Find the pair (R, ε∗) that minimizes the following functional:

∑
1≤i≤M

∣∣∣∣|Ameas
∞ (θi, θ̃i, ki)|2 − π2R4k4ε∗2

(
PR(θi, θ̃i, ki)

)2∣∣∣∣2 ,(6.4)

where the values PR(θi, θ̃i, ki) are computed from (3.5).
2. Compute the following quantities for 1 ≤ i ≤M :

|Ameas
∞ (θi, θ̃i, ki)|2 − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2

4π2R3ε∗2k4PR(θi, θ̃i, ki)
.(6.5)

3. Calculate the estimator (δ F[h])est(l) of the product of magnitude δ and
Fourier coefficient F[h] of the perturbation h for |l| ≤ N by the inversion
of the following system of linear equations:

〈(δ F[h])est, SR(θi, θ̃i, ki)〉l2(R2)

=
|Ameas∞ (θi, θ̃i, ki)|2 − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2

4π2R3ε∗2k4PR(θi, θ̃i, ki)
(6.6)

under the constraints

(F[h])est(−l) = (F[h])est(l) .(6.7)

We remark that the minimization procedure for the function (6.4) can be done
similarly as explained in section 4.1 for (4.1). And the algorithm can provide a stable
inversion and reasonable resolution of the perturbation h only up to at most the Nth

Fourier mode, where N satisfies the inequality C2
0N

4N/R2+4N < (SNR)
1+α/2

for
some α, with constant C0 as in Theorem 4.1 of section 4.

7. Stability of the phaseless domain reconstruction. We are now ready
to discuss the stability of the phaseless reconstruction by estimating the condition
number of this inversion process. Before going into detailed estimates, we shall state
our inversion problem in a more concise manner, which will provide a clear framework
for our subsequent analysis. For this purpose, we first define three operators for a
given pair (N,M) ∈ N, where two of them are linear in nature while the other one is
nonlinear:

1. the componentwise squaring of a vector followed by a subtraction of another
known vector, i.e., the action vi �→ v2i − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2, which
appears in step 2 of Algorithm 2; and we write this nonlinear operator as
F : RM → RM ;

2. the componentwise multiplication of a vector vi �→ 4π2R3ε∗2k4PR(θi, θ̃i, ki) vi,
which appears in step 2 of Algorithm 2; and we will write this linear operator
as L : RM → RM ;
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3. the linear operator v �→ (〈 v , SR(θi, θ̃i, ki)〉l2(R2)

)M
i=1

, which appears in Step 3

of Algorithm 2; and we write this linear operator as T : C2N ⊕{0} ∼= R4N →
RM .

Without loss of generality, we may always choose a radius R such that the zeroth
Fourier coefficient F[h](0) is zero. With these preparations, we can write (6.6) as

(L ◦ T ) [(δ F[h])est] = F (|Ameas
∞ (θi, θ̃i, ki)|) .(7.1)

Then our phaseless inversion problem can be precisely stated as follows: given a value

of SNR, with a number N such that C2
0N

4N/R2+4N < (SNR)1+α/2 for some α, where

C0 is as in Theorem 4.1, we aim to recover the Fourier coefficients δ (F[h]est(l))
N
l=−N ∈

C
2N ⊕ {0} ∼= R

4N from (7.1) with M measurements:

(bi)
M
i=1 := F (|Ameas

∞ (θi, θ̃i, ki)|)
=
(
|Ameas

∞ (θi, θ̃i, ki)|2 − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2
)M
i=1

∈ R
M

subjected to the following extra set of constraints in R
4N as

Re(F[h])est(−l)− Re(F[h])est(l) = 0 , Im(F[h])est(−l) + Im(F[h])est(l) = 0 .

From now on, we denote this set of linear constraints as

C
[
(δ F[h])est

]
= 0 .(7.2)

After this restatement of the phaseless reconstruction problem, we can directly infer
that the stability of the inversion lies in the stability of inversion of the linear operators
L and T in the subspace ker(C) under a certain noise level. Therefore, the aim of this
section is to estimate the condition numbers of the operators T and L in this subspace.
To the best of our knowledge, the stability estimates on condition numbers are novel
for inverse problems, and are very important for us to understand the degree of ill-
posedness and stability of the reconstruction problem, as well as to provide optimal
methods to minimize these two condition numbers by making wise measurements or
regularizations.

7.1. Estimation of the condition number of operator T . We now come
to the estimate of the condition number of operator T . For notational sake, we first
introduce two more operators, ι0 : C → R

2 , z �→ (Re(z), Im(z)), and their liftings on
the linear operators over the corresponding spaces

ι : L(C) ∼= C → L(R2) ∼=M2×2 , z �→
(

Re(z) Im(z)
−Im(z) Re(z)

)
.

And we also use the projection map

πRe :M2×2 →M1×2 ,

(
a b
c d

)
�→ (

a b
)
.

It is easy to check that

[πRe ◦ ι(z̄)] (ι0(w)) = 〈ι0(z), ι0(w)〉R2 = Re(z̄w) .(7.3)

Before we go on to study the stability of the reconstruction problem, we provide
a clear concept and define the condition number of T subjected to the constraint
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Cx = 0, denoted as κ(T, ker(C)), where C : RP → RQ for Q ≤ P is another linear
operator. First, for the sake of exposition, we denote C⊥ as the set of all matrices
E such that its column vectors are linearly independent and span the orthogonal
complement of the row space of C = (C1, C2, . . . , Cn)

T , i.e.,

C⊥ := {(E1, E2, . . . , En) : 〈E1, . . . , En, C1, . . . , Cn〉 = R
P ,

〈E1, . . . , Ej−1, Ej+1, . . . , En, C1, . . . , Cn〉 �= R
P ∀j} .

Now, if we solve the following constraint problem for a given triple (T, b, C),

Find x ∈ R
P such that Tx = b and Cx = 0 ,

or its least-squares formulation,

min
x∈RP

s.t. Cx=0

||Tx− b||22 ,

we are actually parameterizing the kernel ker(C) by an orthogonal complement of
the row space of C and then solve the equation Tx = b under this parameterization
(either in the strict sense or the least-squares sense), i.e., solve for y the equation
(with E ∈ C⊥)

(T ◦ E) y = b

or the least-squares minimization (with E ∈ C⊥)

min
y∈RQ

||(T ◦ E) y − b||22 .

From this definition, one can easily get that the operator T is invertible with its
solution in the subspace Cx = 0 if and only if T ◦ E is invertible. One can also
directly get that if Tx = b and T x̃ = b̃, where x, x̃ ∈ ker(C), then we have the
following estimate:

||y − ỹ||
||y|| ≤ κ(T ◦ E)

||b − b̃||
||b||

for any E ∈ C⊥, where y, ỹ are defined such that Ey = x,Eỹ = x̃. Hence, in order to
study the stability of the inversion process of T in the subspace, we are motivated to
define the condition number of T under the constraint Cx = 0 as

κ(T, ker(C)) := inf{κ(T ◦ E) : E ∈ C⊥} .(7.4)

7.1.1. A measurement strategy for phaseless reconstruction. In this sub-
section, we proceed to develop a good measurement strategy which can minimize the
condition number of operator T and ensure the well-posedness of the inversion con-
cerned.

Indeed, we shall intuitively expect to have a good strategy in choosing the mea-
surement set (θ, θ̃, k) by gazing at the vector SR in (3.6): for a given target resolution

N , one may choose 2kiR sin((θ̃i − θi)/2) such that they attain the m0th local ex-
tremum of Jl for 1 < l < N , i.e., the values of bl,m0 where J ′

l (bl,m0) = 0 for a given

m0. With this particular choice of M sets of measurement data {(θi, θ̃i, ki)}Mi=1 such

that 2kiR sin((θ̃i − θi)/2) ∈ {b1,m0 , b2,m0, . . . , bN,m0}, the operator T is expected to
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be well-conditioned and therefore provide a good set of information for the geometry
of the inclusion. This shall indeed be verified in this subsection.

In what follows, we aim to estimate, for a given resolution N , the infimum over
the condition numbers of all the operators T : R4N → RM subjected to the constraint
Cx = 0, i.e.,

κinf,N := inf

{
κ(T, ker(C)) : {(θi, θ̃i, ki)}Mi=1 ∈ [0.2π]2 × (0,∞) , M ∈ Z

}
,

by appropriately choosing the vectors {(θi, θ̃i, ki)}Mi=1. Indeed, from the following
well-known asymptotic of Jl [1] for all l,

Jl (z) =

√
2

πz
cos

(
z − 2l+ 1

4
π

)
+O(z−3/2) ,(7.5)

we directly have for a fixed l that

bl,m0

/
(4m0 + 2l+ 1)π

4
→ 1(7.6)

as m0 goes to infinity. Therefore, for a given large m0, if we choose (θi, θ̃i, ki) as
the form (θi, θi + π, 4m0+2Ji+1

8R ), where (Ji)
M
i=1 ∈ Z are some integral indices to be

specified later, then we have directly from (7.5) and (7.6) that

SR(θi, θ̃i, ki)l = eilθi

√
16R

π(4m0 + 2Ji + 1)
cos

((
m0 +

Ji − l

2

)
π

)
+O(m

−3/2
0 ) .(7.7)

Let Tm0 be the linear operator T with this specific arrangement of measurements
for a given m0. If we further denote L := T T

m0
Tm0 in the form of a block matrix

(Llm)−N≤l,m≤N, l,m 
=0, then from (7.3) each of the blocks Llm will be the following
2× 2 matrix:

Llm = ι0
[
SR(θi, θ̃i, ki)l

]T
ι0

[
SR(θi, θ̃i, ki)m

]
=

16R

π
ι

[
M∑
i=1

Ll,m,θi

1

4m0 + 2Ji + 1
cos

((
m0 +

Ji − m

2

)
π

)
cos

((
m0 +

Ji − l

2

)
π

)]
+ O(m

−2
0 ) ,

where ι0 and ι are defined as in the beginning of section 7.1, and the matrix Ll,m,θ

has the form

Ll,m,θ =

(
cos (mθ) cos (lθ) cos (mθ) sin (lθ)
cos (mθ) sin (lθ) sin (mθ) sin (lθ)

)
.

For the sake of exposition, we further denote θi = 2πIi/N , where (Ii)
M
i=1 ∈ Z are some

indices to be chosen later.
We are now ready to specify our choice of indices {(Ii, Ji)}Mi=1. In particular, we

let the array {(Ii, Ji)}Mi=1 be such that it enumerates the index set {(I, J) : 1 ≤ I ≤
N, 1 ≤ J ≤ N}, i.e., we haveM = N2. With the above definition, we readily see that

Llm

=
16R

π

N∑
J=1

[
N∑

I=1

L
l,m, 2πI

N

]
1

4m0 + 2J + 1
cos

((
m0 +

J − m

2

)
π

)
cos

((
m0 +

J − l

2

)
π

)
+ O(m−2

0 )

=
16RN

π
δ|l|,|m|

(
1 0
0 sgn(l) sgn(m)

) N∑
J=1

1

4m0 + 2J + 1
cos2

(
(J − m)π

2

)
+ O(m−2

0 ) ,
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where δa,b is the Kronecker delta for any a, b ∈ N.
From the above summation, we can directly infer that

Llm =
16RN

π
δ|l|,|m|

(
1 0
0 sgn(l) sgn(m)

) [N−1
2

]∑
J=0

1

4m0 + 4J + 2 mod2(m) + 1
+O(m−2

0 ) ,(7.8)

where mod2 is the standard mod-2 function and [·] is the floor function. Now, for the

sake of exposition, we denote for given C̃,m0, M̃ a coefficient K
C̃,m0,M̃

as

K
C̃,m0,M̃

:=

M̃∑
J=1

1

4m0 + 1 + 4J + 2C̃
.(7.9)

With this definition, we now hope to approximate K
C̃,m0,M̃

. In fact, from the com-

parison test, we directly arrive at, for any fixed m0, M̃ and any C̃ = 0, 1, that the
following holds:

1

4
log

(
1 +

M̃

m0 + 2

)
≤ KC,m0,M̃

≤ 1

4
log

(
1 +

M̃

m0 + 1

)
.(7.10)

Then we can write

Llm =
16RN

π
δ|l|,|m|Kmod2(m),m0,[

N−1
2 ]

(
1 0
0 sgn(l) sgn(m)

)
+O(m−2

0 ) ,(7.11)

with Kmod2(m),m0,[
N−1

2 ] satisfying estimate (7.10). We may now observe a seemingly

pathological situation: the matrix L is actually not invertible in R4N . However, this
is actually not as pathological as we think it is, because the constraint Cx = 0 comes
in to play a fundamental role. To proceed, we can take a matrix E ∈ C⊥ in the block
form (Elm)−N≤l≤N,l 
=0,1≤m≤N, as follows:

Elm = δ|l|,m

(
1 0
0 sgn(l)

)
.(7.12)

One can easily check that the above block matrix E is indeed in C⊥. Then one can
directly calculate that, for all 1 ≤ l,m ≤ N ,(

ET ◦ L ◦ E)
lm

=
64RN

π
δl,mKmod2(m),m0,[

N−1
2 ]

(
1 0
0 1

)
+O(m−2

0 ) ,(7.13)

which is now invertible. Hence for a fixed N and the choice (θi, θ̃i, ki) of the form
(2πIi/N, 2πIi/N + π, 4m0+2Ji+1

8R ), where {(Ii, Ji)}Mi=1 enumerates through {(I, J) :
1 ≤ I ≤ N, 1 ≤ J ≤ N}, we can directly derive the following estimate for the singular
values of Tm0 :

4
√
RN√
π

√√√√log

(
1 +

[N−1
2 ]

m0 + 2

)
− C̃N

m2
0

≤ smin(Tm0 ◦ E) ≤ smax(Tm0 ◦ E)

≤ 4
√
RN√
π

√√√√log

(
1 +

[N−1
2 ]

m0 + 1

)
+
C̃N

m2
0

,
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where C̃N is a constant only depending on N . Therefore, if we write smax and smin,
respectively, as the largest and smallest singular values, then it follows that

κ(Tm0 ◦ E) =
smax(Tm0 ◦ E)

smin(Tm0 ◦ E)

≤
√√√√log

(
1 +

[N−1
2 ]

m0 + 1

)/
log

(
1 +

[N−1
2 ]

m0 + 2

)
+O(m0

−2).(7.14)

The Taylor series of log(1+x) and
√
a+ x then give rise to the following estimate for

large m0:

κinf,N ≤ κ(Tm0 , ker(C)) ≤ κ(Tm0 ◦ E)

≤
√
m0 + 2

m0 + 1
+O(m−2

0 ) ≤ 1 +O(m−1
0 ) ,(7.15)

where we should remind ourselves that the big-O terms are bounded by a constant only
depending on N . Since m0 is arbitrary, we get for any given N that the infimum of
the condition number κ(T, ker(C)) is given by κinf,N = 1 , and a minimizing sequence

to attain this infimum can be actualized by measurements (θi, θ̃i, ki) as previously
specified as m0 goes to infinity. This implies that we can always make an appropriate
choice of the target resolution N such that the inversion process of T is well-posed.
The above analysis can be summarized into the following theorem.

Theorem 7.1. For a given target resolution N , the infimum κinf,N of the con-
dition number κ(T, ker(C)) defined as in (7.5) over the set of linear operators T is
given by

κinf,N = 1.(7.16)

A minimizing sequence κ(Tm0 , ker(C)), m0 ∈ Z, of this infimum acquires the following
bound:

κ(Tm0 , ker(C)) ≤ 1 +O(m−1
0 )(7.17)

if we make the arrangement of phaseless measurements in the way that the following
equality holds:

(θi, θ̃i, ki) =

(
2πIi/N, 2πIi/N + π,

4m0 + 2Ji + 1

8R

)
,(7.18)

where {(Ii, Ji)}Mi=1 enumerates through {(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N} and m0 is
large; hence N2 phaseless measurements shall be made.

This theorem gives us a very effective strategy of data measurement such that
the phaseless reconstruction process shall be well-posed. In particular, an increase of
m0 in the aforementioned measurement method reduces the condition number of the
inversion process with an order of O(m−1

0 ) according to (7.17).

7.2. Estimation of the condition number of L. From the previous analysis,
we can see that the inversion process of operator T can be made impressively stable
and one can suppress its condition number appropriately. However, this does not
ensure a very stable phaseless inversion process, owing to the fact from (7.1) that the
total inversion process is given by T−1 ◦ L−1.
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Although the action of L is simple and explicit, the inversion process may not be
as simple as one might think. The condition number of L can be directly calculated
as maxi |PR(θi, θ̃i, ki)|/mini |PR(θi, θ̃i, ki)|. Therefore the inversion process becomes

severely ill-posed when some measurement data has a very small value |PR(θi, θ̃i, ki)|,
which in turn pushes up the condition number to an arbitrary magnitude. This causes
the reconstruction process to be very unstable in practice.

However, a very simple regularization technique can get rid of this instability.
Thanks to the fact that PR(θ, θ̃, k) is analytic, its value cannot be zero on an open
neighborhood, and therefore a simple regularization can be performed on the inversion
of L by the operator L−1

α defined as follows:

L−1
α = diag

(
χx>α(|PR(θi, θ̃i, ki)|)[PR(θi, θ̃i, ki)]

−1

+α−1χ
x≤α

(|PR(θi, θ̃i, ki)|) lim
(θ,θ̃,k)→(θi,θ̃i,ki)

PR(θ, θ̃, k)

|PR(θ, θ̃, k)|

)
,(7.19)

where χ
x>α

and χ
x≤α

are the respective characteristic functions on the intervals {x >
α} and {x ≤ α}. With this definition, we come readily to the following simple but
important lemma.

Lemma 7.2. Let L−1
α be defined as in (7.19); then we have

κ(L−1) =
maxi |PR(θi, θ̃i, ki)|
mini |PR(θi, θ̃i, ki)|

, κ(L−1
α ) ≤ 2

α
.(7.20)

We can see from above that κ(L−1) cannot be controlled but κ(L−1
α ) has an upper

bound; therefore, it provides a stable inversion process if α is appropriately chosen.
From (7.1), a stable shape reconstruction process is therefore provided by T−1 ◦

L−1
α . Indeed, the stability estimates (7.17) and (7.20) for the condition numbers of

T−1 and L−1
α subjected to Cx = 0 ensure the stability of this reconstruction method

and provide optimal strategies to lower the degree of ill-posedness for the phaseless
reconstruction problem under the corresponding measurement cases. The stability of
our proposed method will be verified in the numerical experiments. To the best of our
knowledge, these estimates of condition numbers are completely new to the concerned
inverse problems in this work.

7.3. A comparison with the phased reconstruction. As we have remarked
in section 3, together with the fact that any translation of the inclusion yields the same
phaseless measurement, the phaseless reconstruction is not unique in this sense. And
the linearized phased and phaseless reconstructions share some fundamental differ-
ences. From (3.11) or its Fourier-transformed version (Algorithm 1), we see that any
algorithm derived from (3.11) for the phased reconstruction is equivalent to solving

δ (F[h]est(l))
N
l=−N ∈ C2N ⊕ {0} ∼= R4N such that

T̃
[
(δ F[h])est

]
= G(Ameas

∞ (θi, θ̃i, ki)) ,(7.21)

where N satisfies

C2
0

N4N

R2+4N
< (SNR)

1+α/2
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for some α, where C0 is the constant as in Theorem 4.1, and (F[h])est is again subjected
to the constraints

Re(F[h])est(−l)− Re(F[h])est(l) = 0 , Im(F[h])est(−l) + Im(F[h])est(l) = 0 ,

and the operators G and T̃ above are given, respectively, by
1. G : CM → CM , the componentwise affine map of a vector, i.e., the action

vi �→ vi−πR2ε∗k2PR(θi,θ̃i,ki)
2πR2ε∗k2 ;

2. T̃ : C2N → C
M , the linear operator v �→ (〈 v , SR(θi, θ̃i, ki)〉l2(C)

)M
i=1

.

A similar stability analysis for the operator T̃ induced by the phased measure-
ments can be performed on that for the operator T̃ corresponding to the phaseless
reconstruction as in section 7.1.1. Since most of the steps are similar to the pre-
vious analysis for the phaseless reconstruction, we only provide a sketch of the ar-
gument. Again we choose (θi, θ̃i, ki) of the form (2πIi/N, 2πIi/N + π, 4m0+2Ji+1

8R ),

where {(Ii, Ji)}Mi=1 ∈ Z are some integral indices to be specified, and let T̃m0 be the
linear operator T̃ with this specific arrangement of measurement with a given m0.
Denoting L̃ := ι[T̃ ∗

m0
]ι[T̃m0 ], where ι is defined as in the beginning of section 7.1, a

similar argument, along with the fact that ι is an algebra homomorphism, shows for
−N ≤ l,m ≤ N that

L̃lm =
16R

π
ι

[
M∑
i=1

L̃l,m,θi

1

4m0 + 2Ji + 1
cos

((
m0 +

Ji − m

2

)
π

)
cos

((
m0 +

Ji − l

2

)
π

)]
+ O(m

−2
0 ) ,

where each L̃l,m,θi := ei(l−m)θi is invertible. Again, letting the array {(Ii, Ji)}Mi=1

enumerate the index set {(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N}, i.e., M = N2 complex
(phased) measurements, we have

L̃lm

=
16R

π

N∑
J=1

ι

[
N∑

I=1

e2πi(l−m)I/N

]
cos
((
m0 +

J−m
2

)
π
)
cos
((
m0 +

J−l
2

)
π
)

4m0 + 2J + 1
+O(m−2

0 )

=
16RN

π
δl,m

(
1 0
0 1

) N∑
J=1

cos2
(

(J−m)π
2

)
4m0 + 2J + 1

+O(m−2
0 ) .

From here onward, the analysis is the same as in section 7.1.1 to get the same block
matrix E such that for all 1 ≤ l,m ≤ N ,(

ET ◦ L̃ ◦ E
)
lm

=
32RN

π
δl,mKmod2(m),m0,[

N−1
2 ]

(
1 0
0 1

)
+O(m−2

0 ) .(7.22)

Now an argument similar to that in section 7.1.1 is applied to get an identical result
for the phased reconstruction:

κ(T̃m0 , ker(C)) ≤
√
m0 + 2

m0 + 1
+O(m−2

0 ) ≤ 1 +O(m−1
0 ) ,(7.23)

and by tracing all the constants, we can see the constants represented by big-O’s are
of the same magnitude as in the phaseless reconstruction. Therefore the ill-posedness
in inverting T and T̃ is actually of the same order of magnitude using the same set of
measurement angles, and the following result holds.
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Theorem 7.3. For a given target resolution N , condition number κ(T̃m0 , ker(C))
of the operator T̃m0 for m0 ∈ Z can be controlled by

κ(T̃m0 , ker(C)) ≤ 1 +O(m−1
0 )(7.24)

if we make an N2 complex (phased) measurement arrangement:

(θi, θ̃i, ki) =

(
2πIi/N, 2πIi/N + π,

4m0 + 2Ji + 1

8R

)
,(7.25)

where {(Ii, Ji)}Mi=1 enumerates through {(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N}.
Nonetheless, we notice a fundamental difference here between the phased and

phaseless reconstructions. For the phased reconstruction, the matrix L̃ is itself in-
vertible; therefore the constraint Cx = 0 is redundant. However, in the phaseless
reconstruction, this set of constraints is necessary for us to get to a solution in the
inversion process. Therefore, to fully exploit the constraints Cx = 0, it shall be
possible to obtain the same stability estimate for T̃ even if the number of equations
represented by the matrix are cut off by half. There are different ways to realize this,
and we suggest one of them below. We shall not repeat all the details in the argument
again but give only a sketch.

Suppose we choose the set of measurement points (θi, θ̃i, ki) to be(
2πIi/N, 2πIi/N + π, 4m0+2Ji+1

8R

)
, where {(Ii, Ji)}Mi=1 enumerates the index set

{(I, J) : 1 ≤ I ≤ N/2, 1 ≤ J ≤ N}, but we only measure the real part of the

far-field pattern Ameas
∞ (θi, θ̃i, ki). Clearly, we have N2 real (phased) measurements.

From the fact that PR(θi, θ̃i, ki) is real, we have

Re
(
T̃
[
(δ F[h])est

])
= Re

(
G(Ameas

∞ (θi, θ̃i, ki))
)
= G

(
Re(Ameas

∞ (θi, θ̃i, ki))
)
,(7.26)

where G is defined below (7.21). Therefore, by taking only N2 real (phased) mea-
surements, we are actually dropping half of the equations representing measurements
from the imaginary part. Now, in order to distinguish from the previous measurement

setting, we denote the operator with these new measurement events as ˜̃Tm0 for a given
m0.

With this very particular choice of real (phased) measurements, we know from

(7.3) that the matrix ˜̃Tm0 is coincidentally the same as Tm0 . Hence, if we write
˜̃L := ˜̃T T

m0

˜̃Tm0 , then
˜̃L = L. Therefore, with the same E as previously chosen, the

same argument applies for us to get for all 1 ≤ l,m ≤ N that(
ET ◦ ˜̃L ◦ E

)
lm

=
64RN

π
δl,mKmod2(m),m0,[

N−1
2 ] +O(m−2

0 ) .(7.27)

This gives the following result.

Theorem 7.4. An effective choice of only N2 real phased measurement ensures
the following bound for the condition number:

κ( ˜̃Tm0 , ker(C)) ≤ 1 +O(m−1
0 ) .(7.28)

Other ways to fully exploit the constraints Cx = 0 by dropping at most half of
the equations represented by T̃ , such as measuring the projection of complex numbers
by another phase angle other than taking the real part, or taking only a special set
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Fig. 1. Decay of κ(T, ker(C)) with respect to m0.

of undersampling measurements, should be possible, but for the sake of simplicity, we
shall not proceed further.

From the above analysis, we can see that although the structures of T and T̃ are
fundamentally different, they have similar behavior on their condition numbers. Yet
the phaseless reconstruction is still much more ill-posed than the phased counterpart,
owing to the following very simple yet important point. In the phaseless reconstruc-
tion, we also need to invert L by a regularized inversion process L−1

α ; however, in a
phased reconstruction, such an inversion of L is unnecessary. Therefore, instability
imposed by L exists only in the phaseless reconstruction. Considering this fact, the
total regularized inversion of the phaseless reconstruction is still much more ill-posed
than the phased counterpart, having its condition number being 1/α times that of
the phased reconstruction.

8. Numerical experiments. In this section, we will first present numerical
results illustrating some behaviors of the condition number κ(Tm0 , ker(C)) using our
measurement strategy described in section 7.1 and then focus on the inverse problem
of shape reconstruction from the observed magnitude of far-field data.

8.1. Condition number of T subjected to Cx = 0. In what follows, we
observe the behaviors of the condition number κ(Tm0 , ker(C)) using our measurement
strategy given in Theorem 7.3 and check the asymptotic estimate of κ(T ) in the
theorem as m0 grows. With a given m0, we now fix the resolution N = 51 and choose
the wave-numbers k such that k = 4m0+2J+1

8R with R = 0.2 and J = 5, . . . , 10. The
measurement points are the same as stated in Theorem 7.3. We compute the condition
number of the operator T with m0 = 1, . . . , 20. The values of the corresponding
condition numbers are plotted in Figure 1.

We see clearly the drastic decay of the condition number as m0 grows, showing
the effectiveness of increasing stability by the increment of m0. This agrees with the
result we obtained in Theorem 7.3.

8.2. Phaseless reconstruction. We shall now proceed to present several nu-
merical examples to show the performance of the newly proposed reconstruction algo-
rithm, i.e., Algorithm 2 in section 6.1, from phaseless far-field data. In order to attain
the robustness and stability of our algorithm, we approximate the inversion of L in
step 2 by Lα as in section 7.2 for some regularization α described below.

In the following three examples, we consider an infinite homogeneous background
medium with its material coefficient being 1. In each example, an inhomogeneous
inclusionD = Bδ is then introduced as a perturbation of a circular domain B = BR(0)



1022 HABIB AMMARI, YAT TIN CHOW, AND JUN ZOU

for some δ > 0 and its radius R = 0.2 sitting inside the homogeneous background
medium, with its contrast always set to be ε∗ = 0.05.

Given a domain Bδ, we first obtain the observed data of the forward problem,
namely the magnitude of far-field data. In order to generate the far-field data for
the forward problem and the observed scattering coefficients, we use the SIES-master
package developed by Wang [54]. For a fixed wave-number k, we first solve for the
solutions (φm, ψm) of (2.8) for |m| ≤ 50 using the rectangular quadrature rule with
mesh-size s/1024 along the boundary of the target, where s denotes the length of the
inclusion boundary. The scattering coefficients of Bδ of orders (n,m) for |n|, |m| ≤ 50
are then calculated, and the far-field data A(θd, θx, k) is evaluated using (2.10) with
θd, θx ∈ (0, 2π] on a uniform mesh of size N = 50. Then the magnitude of the
far-field pattern |A(θd, θx, k)| is taken for our reconstruction process. In order to
test the robustness of our reconstruction algorithm against the noise, we introduce
some multiplicative random noise in the magnitude of far-field pattern |A(θd, θx, k)|
pointwisely in the form

(8.1) |Ameas(θd, θx, k)|σ = |Ameas(θd, θx, k)|(1 + σ ξ),

where ξ is uniformly distributed between [−1, 1] and σ refers to the relative noise
level. In the following four examples, we always set the noise level to be σ = 5%.

Then we apply our reconstruction algorithm for shape reconstruction with the
noisy phaseless data as T−1 ◦ L−1

α ◦ F following the notation introduced in section
7, where the regularization parameter is chosen as α = 10−3. In view of (7.18), we
make the choice of measurements such that the measured wave-numbers k satisfy
k = 4m0+2J+1

8R with m0 = 10 in all the examples, and J = 5, . . . , 5 + C̃ for some C̃ to
be chosen in each of the examples. The relative error of the reconstruction is defined
by

Relative Error :=
Area ((Dapprox

⋃
D)\(Dapprox

⋂
D))

Area(D)
,(8.2)

where Dapprox is the reconstructed domain of the exact one D. To demonstrate
the effectiveness of our algorithm and illustrate the necessity of a certain number of
measurements angles in the phaseless reconstruction (i.e., to test its resolution limit),
we try three different sets of measurements angles:
Set 1 Full measurement angles (overabundant number of measurements):

((θd)i, (θx)i) = (2πIi/N0, 2πKi/N0) , 1 ≤ Ii,Ki ≤ N0 ,(8.3)

where N0 is always chosen as 50 in all the examples.
Set 2 Transmission measurement angles (critical number of measurements):

((θd)i, (θx)i) = (2πIi/N, 2πIi/N + π + U) , 1 ≤ Ii ≤ N ,(8.4)

where N := min {N : [F(h)](k) = 0 , |k| > N} and h is the perturbation in the
corresponding example and U = (−π

5 ,
π
5 ). In particular, transmission data

refers to the measurement of A(θd, θx, k) where θd = θx + π.
Set 3 Half of transmission measurement angles (insufficient number of measure-

ments):

((θd)i, (θx)i) = (2πIi/[[N/2]], 2πIi/[[N/2]] + π + U) ,

1 ≤ Ii ≤ [[N/2]] ,(8.5)
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Fig. 2. Exact inhomogeneous domain (left) and the contrast of the inclusion (right) in Example 1.

which consists of [[N/2]] measurement angles, where N is the same as previ-
ously mentioned and [[·]] is the ceiling function.

The purpose of introducing an interval U instead of one single point is to increase
numerical stability in reconstruction. We emphasize that Sets 2 and 3 are set up
only to test the resolution limit of our phaseless reconstruction algorithm. We are not
suggesting the necessity to determine min {N : [F(h)](k) = 0 , |k| > N} from h before
utilizing our algorithm. Such information is unnecessary and unavailable in a practical
phaseless reconstruction.

In order to further increase numerical stability using a critical number of mea-
surements (Set 2) and an insufficient number of measurement (Set 3), we further
regularize our inversion process by an L1 regularizer to enforce sparsity in the Fourier
modes of our reconstructed perturbation; i.e., we solve

min
CX=0

||(Lα ◦ T )X− F (|Ameas
∞ (θ, θ̃, k)|)||22 + β||X||1,(8.6)

where β is a regularization parameter that is always chosen as β = 0.05. We perform
the L1 minimization by a standard Bregman iteration [49].

Example 1. In this example, we consider an inhomogeneous domain of a flori-
form shape D = Bδ described by the following parametric form (with δ = 0.1 and
n = 3 ):

(8.7) r = 0.2(1 + δ cos(nθ)) , θ ∈ (0, 2π] ,

which is a perturbation of the domain B = B(0, 0.2); see Figure 2(left) and (right),
respectively, for the shape of the domain and the contrast of the inhomogeneous
medium.

The magnitudes of the far-field pattern for six wave-numbers are used for shape
reconstruction, i.e., C̃ = 5, and the Fourier coefficients of the reconstructed pertur-
bations using the respective measurement sets are shown in Figure 3.

Although there are some deficiencies in the reconstruction of Fourier modes, we
can see from these figures that the Fourier coefficients reconstructed from Set 1 are
largest at |n| = 3 with its magnitude almost between 0.04 and 0.05, which clearly
indicates a strong dominance of δ cos(3θ) with magnitude δ between 0.08 and 0.1 and
corresponds to the signal from the exact inclusion. The reconstruction from Set 2 has
more deficiency, being that the Fourier mode is somehow shifted to δ(cos(3θ)+sin(3θ))
with magnitude δ between 0.02 and 0.025. However, the location of the peak Fourier
mode is still correct. Nonetheless, the reconstruction from Set 3 deviates totally
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Fig. 3. Fourier coefficients of reconstructed perturbations in Example 1; Sets 1 to Set 3 from
left to right; blue: real part; black: imaginary part. Color is available online only.

from the exact solution, indicating its insufficiency in number of measurements to
reconstruct the perturbation. This goes with the theoretical analysis in section 7.1.1.

Now we show in Figure 4(top) the shapes of reconstructed domains, Figure
4(middle) the contrast of the reconstructed media, and Figure 4(bottom) a com-
parison between the reconstructed domains Dapprox and exact domain D using the
values of a sum of characteristic functions χD+χDapprox . The relative L2 errors of the
reconstructions for Set 1 to Set 3 are, respectively, 3.29%, 6.34%, and 11.72%. In
view of the severe ill-posedness of the phaseless reconstruction problem and 5% per-
cent of measurement noise, the reconstructions from Set 1 and Set 2 measurements
are quite reasonable

Example 2. We test another domain of the flori-form shape described by (8.7)
with δ = 0.1 and n = 5. Figure 5(left) and (right) show the shape of the domain and
the contrast of the inhomogeneous medium, respectively.

In this example, the magnitudes of the far-field pattern for 16 wave-numbers are
used for shape reconstruction, i.e., C̃ = 15. The Fourier coefficients of the recon-
structed perturbations using the respective measurement sets are shown in Figure
6.

We can now see that both reconstructions from Set 1 and Set 2 are reasonable
and indicate the correct peak Fourier modes and their magnitudes. It is no surprise
to see that the reconstruction for Set 2 is worse than that for Set 1. However, we can
see that in this particular case, the reconstruction for Set 3 coincidentally collides
with the exact solution after regularization.

In Figure 7(top), (middle), and (bottom), the shapes of reconstructed domains,
the contrast of the reconstructed media, and the comparison between the recon-
structed domains Dapprox and exact domain D (by showing a sum of characteristic
functions χD + χDapprox) are presented, respectively. The relative L2 errors of the
reconstructions for Set 1 to Set 3 are, respectively, 4.91%, 6.94%, and 0.57%. As we
mentioned above, quite surprisingly, the L1 regularizer coincidentally provides a very
good estimate for Set 3.

Example 3. In this last example, we test a domain of more complicated flori-
form shape D = Bδ described by the following parametric form (with δ = 0.1 and
n = 3 ):

(8.8) r = 0.2(1 + δ cos(nθ) + 2δ cos(2nθ)) , θ ∈ (0, 2π] .

The shape of the domain is given in Figure 8(left) and the contrast of the inhomoge-
neous medium in Figure 8(right).

The magnitudes of the far-field pattern for six wave-numbers are used for shape
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Fig. 4. Reconstructed domain and medium in Example 1 and comparison between the exact and
reconstructed domains; Set 1 to Set 3 from left to right; from top to bottom: reconstructed shape,
reconstructed inclusion, and comparison between reconstructed and exact domains.
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Fig. 5. Exact inhomogeneous domain (left) and the contrast of the inclusion in Example 2.

reconstruction, i.e., C̃ = 5, and the Fourier coefficients of the reconstructed pertur-
bations using the respective measurement sets are shown in Figure 9.

In this example, as we can see, the reconstruction from Set 1 is the best, with
both the peak Fourier modes and their magnitudes quite close to the exact one, al-
though with some phase shifts. Reconstruction from Set 2 is still reasonable. The
magnitude of the sixth Fourier modes is closer to the exact one; however, that of the
third mode deviates further from the exact one, and it has more phase shifts. Recon-
struction from Set 3 is the worst, with great deficiency from the exact perturbation,
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Fig. 6. Fourier coefficients of reconstructed perturbations in Example 2; Set 1 to Set 3 from
left to right; blue: real part; black: imaginary part. Color is available online only.
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Fig. 7. Reconstructed domain and medium in Example 2 and comparison between the exact
and reconstructed domains. Set 1 to Set 3 from left to right; reconstructed shape, reconstructed
inclusion, and comparison between reconstructed and exact domains from top to bottom.

considering the fact this reconstruction gives us many modes that do not exist in the
exact perturbation.

In Figure 10(top), (middle), and (bottom), the shapes of reconstructed domains,
the contrast of the reconstructed media, and a comparison between the reconstructed
domains Dapprox and exact domain D are presented, respectively. The relative L2

errors of the reconstructions for Set 1 to Set 3 are, respectively, 11.61%, 13.48%,
and 14.84%. This indicates that the reconstruction for Set 1 is the best, that for
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Fig. 8. Exact inhomogeneous domain (left) and contrast of the inclusion (right) in Example 3.
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Fig. 9. Fourier coefficients of reconstructed perturbations in Example 3; Set 1 to Set 3 from
left to right; blue: real part; black: imaginary part. Color is available online only.

Set 2 is still good, and that for Set 3 is the worst. This goes with the theory we
discussed in section 7.1.1.

The reconstructions for Set 1 (overabundant number of measurements) and Set
2 (critical number of measurements) are quite reasonable, considering the severe ill-
posedness of the phaseless reconstruction problem and a 5% percent measurement
noise.

9. Concluding remarks. In this work we have performed sensitivity, resolu-
tion, and stability analysis of the phased and phaseless reconstructions using the
concept of the scattering coefficients in two dimensions and compared the stability
and the degree of ill-posedness of the phased and phaseless reconstructions in terms of
the condition numbers of the inversion processes. Our approach can be naturally ex-
tended to the three-dimensional case with the help of spherical harmonics to describe
the ill-posedness of phased and phaseless reconstructions. As our proposed recon-
struction method in this work is based on the evaluation of the Fourier coefficients
of the perturbation on a unit circle, it is limited to the reconstructions of star-like
shapes. Nonetheless, considering the fact that the definition of scattering coefficients
is not restricted to star-shape domains, along with the relationship between geomet-
ric motions of the inclusions and algebraic rules of scattering coefficients [6, 8], we
anticipate a possible extension of our method to multiply connected domains as well
as nonstar like shapes, which will be explored in our future work.
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ees for their many insightful and constructive comments and suggestions, which have
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Fig. 10. Reconstructed domain and medium in Example 3 and comparison between the exact
and reconstructed domains; Set 1 to Set 3 from left to right; reconstructed shape, reconstructed
inclusion, and comparison between reconstructed and exact domains from top to bottom.
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