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LOCATING MULTIPLE MULTISCALE ACOUSTIC SCATTERERS∗

JINGZHI LI† , HONGYU LIU‡ , AND JUN ZOU§

Abstract. We develop three inverse scattering schemes for locating multiple multiscale acoustic
scatterers in a very general and practical setting. For all of the three locating schemes, only one single
far-field measurement is used. The number of the multiple scatterer components may be unknown,
and each scatterer component is allowed to be an inhomogeneous medium with an unknown content
or an impenetrable obstacle of sound-soft, sound-hard, or impedance type. Moreover, the scatterers
could be multiscale; i.e., some scatterers may be of regular size, and some others may be of small
size in terms of the wavelength of the detecting acoustic wave. If a scatterer component is of
regular size, it is required that its shape (not necessarily its orientation, size, and location) should
be from an admissible class which is known in advance. The locating schemes are based on some
novel indicator functions and are computationally cheap and robust against the measurement noise.
Rigorous mathematical justifications are provided for each scheme, and numerical experiments are
presented to demonstrate its robustness and effectiveness.

Key words. inverse scattering, locating, multiscale acoustic scatterers, single far-field measure-
ment, indicator functions
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1. Introduction. In this work we are concerned with inverse scattering prob-
lems, which arise in noninvasive detecting, imaging, and remote sensing by acoustic
waves. In practical applications, some unknown or inaccessible objects might be lo-
cated in an otherwise homogeneous space. Each inhomogeneous object is referred
to as a scatterer. One sends certain detecting wave fields and measures the scat-
tered/perturbed wave fields produced by the scatterer to infer some knowledge about
the scatterer. The inverse scattering problem has been playing a critical role in many
areas of science and technology, such as radar and sonar, nondestructive testing, re-
mote sensing, geophysical exploration, and medical imaging; see [11, 12, 18, 19, 22,
26, 37, 42, 43] and the references therein. Before we proceed to discuss the new results
in this work, we first present the mathematical formulation of the inverse scattering
problem.

We shall always take the detecting wave field to be a time-harmonic plane wave
of the form

(1.1) ui(x; d, k) := eikx·d, x ∈ R
N ,

where N = 2 or 3, and k ∈ R+ and d ∈ SN−1 denote the wave number and the incident
direction, respectively. Consider a bounded C2 domain Ω in RN , which supports
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928 JINGZHI LI, HONGYU LIU, AND JUN ZOU

an inhomogeneous acoustic scatterer, and it is assumed that RN\Ω is connected.
Depending on the acoustic materials of the scatterer, it could be either a medium or
an obstacle. If Ω is an inhomogeneous medium, then it is characterized by a positive
C1 function n(x) such that ‖n(x)− 1‖L∞(Ω) > 0 for x ∈ Ω, and n(x) is known as the
refractive index function of the medium. The direct scattering problem corresponding
to the medium (Ω;n) is described by the Helmholtz equation:

(1.2) Δu(x) + k2(1 + (n2(x)− 1)χΩ)u(x) = 0 for x ∈ RN ,

where u is the total wave field, formed by the incident wave ui and the scattered wave
us, namely,

(1.3) u(x) := ui(x) + us(x) for x ∈ RN .

The scattered wave us(x) should satisfy the physical Sommerfeld radiation condition,

(1.4) lim
|x|→∞

|x|(N−1)/2

(
∂us(x)

∂|x| − ikus(x)

)
= 0,

which holds uniformly in all directions x̂ := x/|x|, x ∈ RN . If Ω is an obstacle, then
the wave field cannot penetrate and the direct scattering problem is described by

(1.5) Δu(x) + k2u(x) = 0 for x ∈ RN\Ω,

where u is again the total field, u(x) = ui(x)+us(x) for x ∈ RN\Ω, and us satisfies the
Sommerfeld radiation condition (1.4). In addition, we should complement the obstacle
scattering problem with either one of the following three boundary conditions:

(1.6) u = 0 on ∂Ω;
∂u

∂ν
= 0 on ∂Ω;

∂u

∂ν
+ iλu = 0 on ∂Ω,

corresponding, respectively, to the case when the obstacle is of sound-soft, sound-
hard, and impedance type. In (1.6), ν is the outward unit normal vector to ∂Ω, and
λ ∈ C(∂Ω) (λ > 0) stands for a surface impedance. We refer the reader to [35, 38, 39]
for the existence of a uniqueH1

loc-solution to the medium scattering system (1.2)–(1.4),
or the obstacle scattering system (1.3)–(1.6). Particularly, us admits the following
asymptotic expansion as |x| → +∞ (cf. [22, 39]):

(1.7) us(x) =
eik|x|

|x|N−1
2

ak(x̂, d) +O
(

1

|x|N+1
2

)
,

where ak(x̂, d) is often called the far-field pattern or the scattering amplitude, and
x̂ ∈ SN−1 is known as the observation angle/direction, while k and d are the wave
number and incident direction of the incident plane wave.

The inverse problems that we shall consider in this work are to recover the scat-
terer, namely, (Ω, n) if it is a medium, (Ω, λ) if it is an obstacle of impedance type,
or Ω if it is a sound-soft or sound-hard obstacle, by the knowledge of the far-field
pattern ak(x̂, d). If one introduces an operator F which maps the scatterer to the
corresponding far-field pattern, the inverse scattering problem can be formulated as
the operator equation

(1.8) F(O) = ak(x̂, d), k ∈ R+, x̂, d ∈ S
N−1,
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LOCATING MULTISCALE ACOUSTIC SCATTERERS 929

whereO represents (Ω, n), (Ω, λ), or Ω, depending on the type of the concerned inverse
problem. It is widely known that the operator equation (1.8) is nonlinear and ill-posed
(cf. [22]). In (1.8), ak(x̂, d) is given by the measurement data, which are usually
recorded by some physical apparatus. The data shall be called a single measurement
if ak(x̂, d) is given for a fixed k ∈ R+ and a fixed d ∈ S

N−1, but for all x̂ ∈ S
N−1. That

is, for a single far-field measurement, one collects the far-field data in every possible
observation direction by sending a single detecting plane wave. If multiple detecting
plane waves are used, e.g., many different d’s or k’s are used, then the corresponding
scattering data shall be referred to as multiple measurements. We note that as ak(·, d)
is an analytic function on the unit sphere, it is known on the whole sphere as long as
it is known on any open subset of the unit sphere by the analytic continuation.

In this work, we develop three novel numerical reconstruction schemes for the
aforementioned inverse acoustic scattering problems, more specifically, for locating
multiple scatterers by using the far-field data. These methods have several salient
and promising features. First, all three locating schemes make use of only a single
far-field measurement. As is well known, the inverse scattering method with a sin-
gle far-field measurement is extremely challenging, with very limited theoretical and
numerical advances available. We refer the reader to [34, 36, 37] for the related back-
grounds and existing progress in the literature. Second, our methods work in very
general and practical settings. There might be multiple scatterer components of an
unknown number, and each scatterer component could be an inhomogeneous medium
with an unknown content or an impenetrable obstacle of sound-soft, sound-hard, or
impedance type. Moreover, the scatterers could be of multiple scales, which may in-
clude simultaneously both components of regular size and small size compared with
the wavelength of the detecting acoustic wave. If a scatterer component is of regular
size, its shape (not necessarily its orientation, size, and location) is required to belong
to an admissible class, which is known in advance. But the admissible class may con-
tain many different reference scatterers. Furthermore, some reference scatterers may
appear more than once in the target object, but some others might not show up. The
reference scatterers might be rotated and scaled in the target object. Third, the new
locating schemes are of a direct nature. They are based on some indicator functions,
whose evaluations do not involve any inversions, so they are computationally very
efficient and also very robust to measurement noise. For each scheme, both rigorous
theoretical justifications and numerical experiments are provided.

Our study follows in spirit that of the locating methods that were recently pro-
posed in [30] and [31] for electromagnetic (EM) scattering problems governed by the
time-harmonic Maxwell equations. The methods in [30] and [31] are based on two
imaging functionals, respectively, for locating small-size and regular-size EM media
or perfectly conducting (PEC) obstacles. A local resampling technique was developed
in [31] to concatenate the two imaging functionals for locating multiscale EM scatter-
ers. In this work we shall develop three schemes, Schemes I, II, and III, for locating
small-size, regular-size, and multiscale acoustic scatterers, respectively. Due to the
distinct physical nature of the acoustic scattering problems, some new ingredients
and techniques are needed. In defining the imaging functional of locating small EM
scatterers in [30], only the EM monopoles are involved. However, the acoustic scatter-
ing from small scatterers exhibit more complicated behaviors. In order to obtain the
imaging functional for Scheme I that works independently of the physical properties
of the underlying acoustic objects, both the acoustic monopole and dipoles should
be incorporated (see definition (2.9) in the next section). For locating regular-size
scatterers, we present our acoustic study in a much more comprehensive manner than
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930 JINGZHI LI, HONGYU LIU, AND JUN ZOU

that in [30] and [31] for the EM case. Indeed, the regular-size EM scatterers were all
assumed in [30] and [31] to be PEC obstacles, while the regular-size scatterers can
be both inhomogeneous media and impenetrable obstacles of different kinds in the
current acoustic case. Finally, in order to concatenate Schemes I and II to obtain
Scheme III for locating multiscale acoustic scatterers, a local tuning technique is pro-
posed. The local tuning technique generalizes the local resampling technique proposed
in [31]. In fact, the local resampling technique was only used for tuning the locations
of scatterers, whereas the local tuning technique here can be used for adjusting the
orientations, scales as well as locations; see more discussions in section 4. The local
tuning technique concatenates Schemes I and II in a nice manner to produce Scheme
III, which can be used for locating multiscale acoustic scatterers in a very general and
practical setting. It is noted that the local tuning technique can be directly extended
to strengthen the method proposed in [31] for locating multiscale EM scatterers to
enable it to work in a more general setting as considered here.

We would like to point out that many numerical reconstruction methods have
been developed for inverse scattering problems in various scenarios, such as the linear
sampling method, factorization method, MUSIC-type methods, time reversal, and
topological-optimization-type methods; we refer the reader [1, 4, 5, 6, 7, 8, 9, 10, 11,
12, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 27, 28, 40, 41, 42, 43] and the references
therein for these methods and some other related developments. Compared with
most of the existing methods, which rely on multiple scattered field measurements,
the methods developed in this work are new and more general in the sense that
they combine all of the following features: only one single far-field measurement is
used; the scatterers are allowed to be a multiscale mixed set of inhomogeneous media
and impenetrable obstacles; rigorous mathematical justifications are established under
general settings; some iterative-type refining and local tuning strategies are introduced
for quantitatively improving the reconstructions. More relevant discussions on the
comparisons of our method with others are provided in sections 2 and 3.

The rest of this paper is organized as follows. In sections 2, 3, and 4, we shall
develop Schemes I, II, and III for locating multiple small-size scatterers, multiple
regular-size scatterers, and multiple multiscale scatterers, respectively. For each of
the three schemes, rigorous mathematical justifications and numerical results are also
provided.

2. Locating small scatterers. Throughout the rest of the paper, we assume
the incident acoustic wave number k = O(1). That is, the wavelength of the incident
plane wave is given by λ = 2π/k = O(1), and hence the size of a scatterer can be
expressed in terms of its Euclidean diameter. In this section, we shall develop an
imaging scheme, referred to as Scheme I, to locate multiple small scatterers in terms
of the incident wavelength.

2.1. Scheme I. We first introduce the class of small acoustic scatterers for our
current study. Let l ∈ N, and let Dj , 1 ≤ j ≤ l, be bounded simply connected C2

domains in RN containing the origin. For ρ ∈ R+, we define ρDj := {ρx |x ∈ Dj}
and set

Ωs
j = zj + ρDj , zj ∈ R

N , 1 ≤ j ≤ l.

Each Ωs
j is referred to as a small scatterer component. If it is sound-soft or sound-

hard, we further write it, respectively, as

(2.1) Ωs,s
j := zj + ρDs

j and Ωs,h
j := zj + ρDh

j .
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If Ωs
j is of impedance type, we let λj be the surface impedance on ∂Ωs

j and denote
this by

(2.2) (Ωs
j ;λj) := Ωs,i

j = zj + ρDi
j ,

where

(2.3) Di
j := (Dj ;λj(·+ zj)) and ρDi

j =

(
ρDj;λj

(
·
ρ
+ zj

))
.

If Ωs
j is an inhomogeneous medium, we let nj be its refractive index and denote this

by

(2.4) (Ωs
j ;nj) := Ωs,m

j = zj + ρDm
j ,

where

(2.5) Dm
j := (Dj ;nj(·+ zj)) and ρDm

j :=

(
ρDj ;nj

(
·
ρ
+ zj

))
.

In what follows, we set

(2.6) Ωs,t :=

lt⋃
j=1

Ωs,t
j , t = s, h, i, or m,

where lt, ρ, and t denote, respectively, the number of components in the scatterer
Ωs,t, the relative size of each component in Ωs,t, and the type of the scatterer, which
can be sound-soft, sound-hard, of impedance type, or a medium. For Ωs,t

j introduced
in (2.6), we shall impose the following qualitative assumptions:

(2.7) ρ � 1 and L = min
1≤j,j′≤lt,j �=j′

dist(zj , zj′) � 1 .

These conditions mean that the relative size of each scatterer component is small
compared with the wavelength of the detecting/incident wave, and all the components
must be well separated in the case of multiple components. It is noted that ρ and
L in (2.7) should be different with different types of scatterer components; see also
Remark 2.1 at the end of this section. But we will always use the same ρ and L for
ease of notation.

In what follows, we develop Scheme I to locate the multiple components of Ωs,t

introduced in (2.6). The imaging scheme works in a very general and practical setting.
First, we assume very little a priori knowledge of the scatterer. Both its type and the
number of the components, i.e., t and lt, are not required to be known in advance.
Second, if the scatterer is a medium or of impedance type, the refractive indices or the
surface impedances of its components are not required to be known a priori. Third,
in a certain generic situation, the underlying scatterer Ωs,t could be composed of
mixed-type components; namely, some of its components could be media while the
others are obstacles of different type. We shall give some more remarks about this
point at the end of this section. Finally, we would like to point out that our numerical
experiments could speak a bit more about the qualitative assumptions (2.7): Scheme I
can produce satisfactory reconstructions, as long as the size of the scatterer is smaller
than half of the detecting wavelength while the distance between any two different
components is bigger than half of the detecting wavelength. Nevertheless, in the
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932 JINGZHI LI, HONGYU LIU, AND JUN ZOU

extreme situation where the distance between two scatterer components is smaller
than half of the detecting wavelength, Scheme I can still produce some qualitative
reconstruction of the profile of the two scatterers, but it may not be able to clearly
separate them; we refer the reader to Figure 4.4 in [30] for reconstructing two nearby
EM scatterers, and Scheme I produces similar reconstructions for the current acoustic
case.

We are now ready to present our first locating scheme. To begin with, we let

(2.8) a(x̂; Ωs,t) := ak(x̂, d; Ω
s,t), x̂ ∈ S

N−1,

denote the scattering amplitude of Ωs,t in (2.6) due to a single incident plane wave
eikx·d with fixed k ∈ R+ and d ∈ SN−1. Then we introduce the following real-valued
index function I1(z) for z ∈ RN :
(2.9)

I1(z) :=
1

‖a(x̂; Ωs,t)‖2
L2(SN−1)

1∑
n=0

n∑
p=−n

∣∣∣∣〈a(x̂; Ωs,t), eik(d−x̂)·zY p
n (x̂)

〉
L2(SN−1)

∣∣∣∣2,
where 〈u, v〉L2(SN−1) =

∫
SN−1 u · v ds(x̂). In (2.9), Y p

n (x̂) for n ∈ N ∪ {0} and p =
−n, . . . , n are the spherical harmonics which form a complete orthonormal system in
L2(SN−1) (cf. [22]). It is emphasized that there is no harmonic function Y 0

1 (x̂) in
the two-dimensional case, so it should be removed from the summation in (2.9) in
defining I1(z). The next theorem about the indicating behavior of I1(z) is the crux
of developing our Scheme I.

Theorem 2.1. Let Ωs,t and I1(z) be described as in (2.6) and (2.9), respectively.
Set

Mj :=
‖a(x̂; Ωs,t

j )‖2L2(SN−1)

‖a(x̂; Ωs,t)‖2
L2(SN−1)

, j = 1, . . . , lt.

Then the following asymptotic expansion holds:

(2.10) Mj = M0
j +O

(
1

L
+ ρN−2(ln ρ)N−3

)
, j = 1, . . . , lt,

where M0
j is a positive number independent of L and ρ. Moreover, there exists an

open neighborhood of zj, neigh(zj), 1 ≤ j ≤ lt, such that

(2.11) I1(z) ≤ M0
j +O

(
1

L
+ ρN−2(ln ρ)N−3

)
for z ∈ neigh(zj),

where the equality holds only at z = zj. That is, zj is a local maximizer of I1(z) in
neigh(zj).

In order to prove Theorem 2.1, we first present two crucial lemmas.
Lemma 2.1. Let Ωs,t and a(x̂; Ωs,t) be given in (2.6) and (2.8), respectively.

Then it holds that
(2.12)

a(x̂; Ωs,t) = a

⎛⎝x̂;

lt⋃
j=1

Ωs,t
j

⎞⎠= a

⎛⎝x̂;

lt⋃
j=1

(zj + ρDt
j)

⎞⎠= lt∑
j=1

eik(d−x̂)·za(x̂; ρDt
j)+O

(
1

L

)
.

Proof. First, one has

(2.13) a(x̂; Ωs,t) = a

⎛⎝x̂;

lt⋃
j=1

(zj + ρDt
j)

⎞⎠ =

lt∑
j=1

a(x̂; zj + ρDt
j) +O

(
1

L

)
,
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which was proved in [32] when Ωs,t is a sound-soft obstacle. Following a similar
argument, one can demonstrate (2.13) when Ωs,t is a sound-hard or an impedance
obstacle, or an inhomogeneous medium. On the other hand, it is straightforward to
verify that

ak(x̂, d; zj + ρDt
j) = eik(d−x̂)·zjak(x̂, d; ρDt

j),

which together with (2.13) readily gives (2.12).
The results in the following lemma can be found in [11, 23, 24, 29, 33].
Lemma 2.2. Let D be a bounded simply connected C2 domain containing the

origin, and let ρDt be a scatterer of type t = s, h, i, or m, as described in (2.1)–(2.5).
Then there exists ρ0 ∈ R+ such that for ρ < ρ0,

(2.14) ak(x̂, d; ρD
t) = c0E(ρ)Y 0

0 (x̂) +O(ρN−2(ln ρ)N−3E(ρ)), t = s, i, or m,

where c0 is constant depending only on D, k, d, and t, but independent of ρ. In (2.14),

E(ρ) := ρN−2(ln ρ)N−3 when t = s; ρN−1 when t = i; ρN when t = m.

In the case when t = h, we have

(2.15) ak(x̂, d; ρD
h) = ρN

1∑
n=0

n∑
p=−n

cpnY
p
n (x̂) +O(ρN+1),

where the coefficients cpn are constants depending only on D, k, d, but independent of
ρ, and Y 0

1 (x̂) should be removed from the summation in (2.15) in the two-dimensional
case.

Proof of Theorem 2.1. We first consider the three-dimensional sound-hard case.
By Lemmas 2.1 and 2.2 we can easily see that

a(x̂; Ωs,h) =

l∑
j=1

a(x̂; Ωs,h
j ) +O

(
1

L

)

=

lh∑
j=1

eik(d−x̂)·zj
[
ρ3

1∑
n=0

n∑
p=−n

cpn,jY
p
n (x̂) +O(ρ4)

]
+O

(
1

L

)
.

(2.16)

Next, without loss of generality, we only consider the indicating behavior of I1(z) in
Bρ(z1), a ball of radius ρ centered at z1. Clearly, we have

(2.17) |zj − z| ≥ L � 1 for z ∈ Bρ(z1) and j = 2, 3, . . . , lh .

Hence, by using (2.16) and (2.17) one can show by direct calculations that∣∣∣∣〈a(x̂; Ωs,t), eik(d−x̂)·zY p′
n′ (x̂)

〉
L2(S2)

∣∣∣∣
= ρ3

∣∣∣∣∣∣
〈
eik(d−x̂)·z1

1∑
n=0

n∑
p=−n

cpn,1Y
p
n (x̂), e

ik(d−x̂)·zY p′
n′ (x̂)

〉
L2(S2)

+O
(
1

L
+ ρ

)∣∣∣∣∣∣
≤ ρ3

(
|cp

′
n′ |+O

(
1

L
+ ρ

))
for z ∈ Bρ(z1), n′ = 0, 1, q′ = −n′, . . . , n′ ,

(2.18)

D
ow

nl
oa

de
d 

02
/2

8/
24

 to
 1

37
.1

89
.4

9.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

934 JINGZHI LI, HONGYU LIU, AND JUN ZOU

where we have used (2.17) and the decaying property of oscillatory integrals for the
equality relation, and the orthogonality of spherical harmonics and the Cauchy–
Schwarz inequality for the inequality relation. Furthermore, due to the Cauchy–
Schwarz inequality, one can verify that the equality in the last estimate of (2.18)
holds only at z = z1. On the other hand, we have

(2.19) ‖a(x̂; Ωs,t)‖2L2(S2) = ρ6
l∑

j=1

(
1∑

n=0

n∑
p=−n

|cpn,j |2 +O
(
1

L
+ ρ

))
.

By (2.18)–(2.19), it is straightforward to verify the statement of the theorem by taking

M0
1 =

∑1
n=0

∑n
p=−n |c

p
n,1|2∑l

j=1

∑1
n=0

∑n
p=−n |c

p
n,j|2

.

The other cases with t = s, i, and m can be proved by following an argument
similar to the above case with t = h, and using Lemmas 2.1 and 2.2.

Using Theorem 2.1, we are now ready to formulate our first imaging scheme of
locating multiple small scatterer components.

Scheme I

(1) For an unknown scatterer Ωs,t in (2.6), collect the far-field data by sending a
single incident plane wave eikx·d with fixed k and d.

(2) Select a sampling region with a mesh Th containing Ωs,t.
(3) For each sampling point z ∈ Th, compute the index value I1(z).
(4) Locate all the significant local maxima of I1(z) on Th, which represent the loca-

tions of the scatterer components.

Remark 2.1. As it can be seen from Theorem 2.1, the indicating behavior of
I1(z) is independent of the type of the underlying scatterer, which can be an obstacle
or an inhomogeneous medium. Indeed, Scheme I can be extended to a much more
general situation where the underlying scatterer Ωs might be composed of mixed-
type scatterers from different Ωs,t for t ∈ {s, h, i,m}. We illustrate the situation by
taking a special example, say, Ωs consists of two components, a sound-soft Ωs

1 and a
sound-hard Ωs

2 in three dimensions. Suppose that the relative sizes of Ωs
1 and Ωs

2 are,
respectively, ρ1 and ρ2. According to Lemma 2.2, the scattering strength due to Ωs

1

is of order ρ1, whereas that due to Ωs
2 is of order ρ32. If ρ1 ≈ ρ2, then ρ32 � ρ1, and

hence the scattering information from the sound-hard component is annihilated in the
scattering data due to the sound-soft component. In this case, one cannot expect a
reasonable locating by using Scheme I. However, if ρ32 ∼ ρ1, then it is straightforward
to verify that the local maximum behavior in Theorem 2.1 holds for the locations of
the two mixed-type scatterer components; hence Scheme I works to locate both of
them. This observation holds for the general case with multiple scatterer components
of different types. As long as the scattering strengths from different components are
comparable, Scheme I is effective in locating all of them.

Remark 2.2. In [40], an orthogonality sampling method was proposed where
the indicator function is related to our indicator function I1(z) in (2.9). Indeed, if
only a single far-field measurement is used, the indicator function in [40] actually
corresponds to the first term in the sum defining I1(z) in (2.9). It can be easily
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(a) (b)

Fig. 1. True scatterer components in (a) Example 1 and (b) Example 2. (Color available online.)

verified from Lemma 2.2 and the proof of Theorem 2.1 that if the underlying scatterer
is sound-soft, then the two indicator functions produce the same local maximum
behavior. However, if one wants to produce an indicator function for locating a small-
size scatterer independent of the physical properties of its components as discussed in
the previous remark, then both the acoustic monopole and dipoles should be involved.
As the orthogonality sampling method and topological derivative-based approaches
(cf. [11] and [25]) are closely related, similar observations can be made for the latter
approaches.

2.2. Numerical experiments. In this subsection, we present some numerical
tests to verify the applicability of Scheme I in both two and three dimensions. In all
the tests, the exact far-field data are obtained by solving the forward equation (1.2) or
(1.5) using the quadratic finite elements on a truncated circular (two-dimensional) or
spherical (three-dimensional) domain enclosed by a PML layer. The forward equation
is solved on a sequence of successively refined meshes till the relative error of two suc-
cessive finite element solutions between the two adjacent meshes is below 0.1%. Then
the scattered data are transformed into the far-field data by employing the Kirchhoff
integral formula on a closed circle (two-dimensional) or surface (three-dimensional)
enclosing the scatterer. For scatterers of small size, we always add to the exact far-
field data a uniform noise of 5% and use it as the measurement data in our numerical
tests.

Example 1. The true scatterer consists of three components, a sound-soft square
component (shown in Figure 1(a) in red) with side length 0.2 located at (−1, 2), a
sound-hard circular component (in white) with radius 0.5 located at (1.5, 0), and a
medium square component (in yellow) with side length 0.2 located at (−2, −1.5).

We set the wave number k to be 3 and choose the incident direction d = (1, 0),
namely, from left to right. The detecting wavelength is larger than the sizes of all the
components. Figure 2(a) shows the indicating behavior using the indicator function
(2.9) of Scheme I, and the three components of the unknown scatterer are located
very well using a single detecting plane wave field. By further increasing the wave
number k to be 6 and adopting a different incident direction d = (0, 1), namely, from
bottom to top, we find that each component of the scatterer is highlighted as a local
maximum, as shown in Figure 2(b). It is pointed out that Scheme I applies to such
a complex scenario with scatterer components of mixed types when the scattering of
each component is comparable, which implies that the size of the sound-hard compo-
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(a) k = 3, d = (1, 0) (b) k = 6, d = (0, 1)

Fig. 2. Imaging of the scatterer components in Example 1 by Scheme I.
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k = 9, d = (1, 0) k = 9, d = (1, 1) k = 9, d = (0, 1)

Fig. 3. Imaging of scatterer components in Example 2 by Scheme I.

nent should be relatively larger than those of its sound-soft and medium ones in light
of Remark 2.1.

Example 2. The true scatterer consists of two sound-hard circular disks of radius
0.1, located at (−1, 0), (1, 0) as shown in Figure 1(b).

Through this example, we show that Scheme I is totally independent of incident
directions. It is found that we can always locate this pair of scatterer components
with only one measurement data from an arbitrary incident direction. For instance,
we show the cases when k = 9 but d = (1, 0), (1, 1), and (0, 1) in Figure 3.

Example 3. We further try a complex scatterer in three dimensions. The wave
number of the incident wave field is set to be k = 5. The true scatterer (see Fig-
ure 4(a)) consists of three components, namely, a sound-soft cube (in red) with side
length 0.2 centered at (−1, 0, 1.5), a sound-hard sphere (in green) with radius 0.2
centered at (2, 0, 0), and a medium cube (in blue) with side length 0.1 centered at
(−1.5, 0, −1.5).

The resulting indicator function value distribution is plotted on a pair of orthog-
onal slice planes x = 0 and y = 0 in Figure 4(b). As one can see, three scatterer
components are well located, and their positions are visualized in the highlighted part
(local maxima). Clearly, the positions of the respective detected components match
quite well those of the exact components.

In summary, we have observed from Examples 1–3 that Scheme I is able to locate
multiple small scatterer components of an unknown number robustly and efficiently.
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(a) (b)

Fig. 4. (a) True scatterer components in Example 3. (b) Imaging of the scatterer components
in Example 3 by Scheme I.

3. Locating scatterers of regular size.

3.1. Scheme II. In this section, we consider the locating of multiple scatterers
of regular size. We first fix some notation that shall be used throughout the rest of
the paper. Let G be a bounded simply connected Lipschitz domain in Rn containing
the origin, and U ∈ SO(N) a rotation matrix in R

N , and we define

(3.1) ΠUG := UG = {Ux |x ∈ G}.

We also introduce the scaling operator as follows: for any r ∈ R+,

(3.2) ΛrG := rG = {rx |x ∈ G} .

For any domain Ω of the form Ω := z + ΛrΠUG, we shall write the quartet Ω :=
(G; z, r, U) and call z, r, and U, respectively, the location, the scale, and the orienta-
tion of Ω relative to G. In our subsequent study, G could be a sound-soft, sound-hard,
or impedance-type obstacle, or an inhomogeneous medium, and we shall write corre-
spondingly Gt with t = s, h, i, or m, and Ωt = (Gt; z, r, U). For ease of exposition, we
always assume that the corresponding surface impedance λ or the refractive index n
is a constant in the case when G is an impedance obstacle or a medium. Next, we let
θ ∈ R+ such that θ � 1, and we let T1 be a suitably chosen finite index set, such that
{Uj}j∈T1 is a θ-net of SO(N). That is, for any rotation matrix U ∈ SO(N), there
exists j ∈ T1 such that ‖Uj − U‖ ≤ θ. We define

(3.3) ΠθG := {ΠUjG}j∈T1 .

In a similar manner, for Λr with r ∈ [R0, R1], we let τ � 1 and let T2 be a suitably
chosen finite index set such that {rj}j∈T2 is a τ -net of [R0, R1]. Define

(3.4) ΛτG = {ΛjG}j∈T2 .

With the above preparations, we are now ready to introduce the multiple scat-
terers of regular size for our subsequent study. Let lt ∈ N ∪ {0}, t = s, h, i, or m, and
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938 JINGZHI LI, HONGYU LIU, AND JUN ZOU

let Gj , j ∈ N, be a bounded simply connected Lipschitz domain in Rn containing the
origin. We write

At = {Gt
j}ltj=1, t = s, h ; Ai = {Gi

j}lij=1 = {(Gi
j , λj)}lij=1;(3.5)

Am = {Gm
j }lmj=1 = {(Gm

j , nj)}lmj=1 ; A =
⋃

t=s,h,i,m

At := {Gj}l
′:=ls+lh+li+lm
j=1 .(3.6)

Let l ∈ N and set

(3.7) Ωr =
l⋃

j=1

Ωr
j , Ωr

j := (Σj ; zj, rj , Uj) with Σj ∈ A , j = 1, . . . , l.

For Ωr introduced in (3.7), we assume that

(3.8) rj ∈ [R0, R1], R0 ≈ 1, R1 ≈ 1, and L = min
1≤j,j′≤l,j �=j′

dist(zj, zj′) � 1.

Ωr represents the multiple scatterers of regular size in our current study, and we
shall develop Scheme II to locate all the multiple components. We assume that the
admissible class A is known in advance. In the physical situation, this means that
Ωr might be composed of multiple regular-size components of an unknown number,
and each component could be from a different type: obstacles of different types or
a medium. If the scatterer component is an obstacle (sound-soft, sound-hard, or
impedance type), then its shape must be from a known admissible class. Moreover,
the surface impedance of an impedance-type component must also be known a priori.
If the scatterer is a medium, then both its shape and content should be known from the
admissible class. It is emphasized that the number of admissible scatterers, namely,
l′ in A , and the number of the unknown scatterer components, namely, l in Ωr,
are not necessarily the same. This means that a certain shaped admissible scatterer
might appear more than once or does not appear in Ωr. For the regular-size multiple
scatterers Ωr described above, we shall develop Scheme II to determine the location,
the size/scale, and the orientation of each of its components, by using a single far-field
measurement, i.e., a(x̂; Ωr) := ak(x̂, d; Ω

r) with fixed k ∈ R+ and d ∈ SN−1.
In order to present our Scheme II, we first augment the admissible class A as

(3.9) Ã = ΠθΛτA =

l′⋃
j=1

{ΠθΛτGj} := {G̃j}l
′′
j=1.

We shall make the following two assumptions about the augmented admissible class Ã :
(i) ak(x̂, d; G̃j) �= ak(x̂, d; G̃j′ ) for j �= j′ and 1 ≤ j, j′ ≤ l′′, x̂ ∈ SN−1;

(ii) ‖ak(x̂, d; G̃j)‖L2(SN−1) ≥ ‖ak(x̂, d; G̃j′)‖L2(SN−1) for j < j′ and 1 ≤ j, j′ ≤ l′′.
Assumption (ii) can be fulfilled by reordering if necessary. For assumption (i), we recall
the following well-known conjecture in the theory of the inverse acoustic scattering
problem:

(3.10) ak(x̂, d;G) = ak(x̂, d; G̃) if and only if G = G̃,

where G and G̃ are two obstacles, with k and d fixed. Formula (3.10) states that
a single far-field measurement can uniquely determine an acoustic obstacle. There
is a widespread belief that (3.10) holds true, but there is only limited progress in
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the literature (cf. [34, 36, 37]). Clearly, if (3.10) holds true, and if Ã contains only
obstacle scatterers, assumption (ii) is always fulfilled. On the other hand, (3.10)
does not hold true in general for inhomogeneous medium scatterers; hence if there

are medium scatterers presented in Ã , assumption (ii) cannot always be fulfilled.

Nevertheless, since Ã is known, assumption (ii) can always be verified in advance.
Now we introduce the following l′′ indicator functions for identifying the multiple

scatterers of Ωr in (3.7):

(3.11) Ij2(z) =

∣∣∣∣〈a(x̂; Ωr), eik(d−x̂)·za(x̂; G̃j)〉L2(SN−1)

∣∣∣∣
‖a(x̂; G̃j)‖2L2(SN−1)

, G̃j ∈ Ã , j = 1, 2, . . . , l′′.

Next, we present a key theorem on the indicating behavior of these indicator functions,
which forms the basis of our Scheme II.

Theorem 3.1. Suppose that G̃1 ∈ Ã is of the following form:

G̃1 = (Gj0 ; rp0 , Uq0) = ΠUq0
Λrq0

Gj0 , Gj0 ∈ A , Uq0 ∈ T1, rp0 ∈ T2.

Suppose that in Ωr there exists J0 ⊂ {1, 2, . . . , l} such that for j ∈ J0, the component
Ωr

j = (Σj ; zj, rj , Uj) satisfies

(3.12) (i) Σj = Gj0 ; (ii) ‖Uj − Uq0‖ ≤ θ; (iii) ‖rj − rp0‖ ≤ τ,

whereas for j ∈ {1, 2, . . . , l}\J0, at least one of the conditions in (3.12) is not fulfilled
by the scatterer component Ωr

j . Then for each zj, j = 1, 2, . . . , l, there exists an open
neighborhood of zj, neigh(zj), such that the following hold:

(i) If j ∈ J0, then

(3.13) I12 (z) ≤ 1 +O
(
1

L
+ θ + τ

)
∀ z ∈ neigh(zj).

Moreover, the equality holds in the above relation only when z = zj. That is,
zj is a local maximum point for I12 (z).

(ii) If j ∈ {1, 2, . . . , l}\J0, then there exists ε0 > 0 such that

(3.14) I12 (z) ≤ 1− ε0 +O
(
1

L
+ θ + τ

)
∀ z ∈ neigh(zj).

In order to prove Theorem 3.1, we first derive a key lemma as follows.
Lemma 3.1. Let G be a bounded simply connected domain in RN containing the

origin, which supports an acoustic scatterer Gt, t = s, h, i, or m. Then we have

(3.15) ak(x̂, d; ΠUG
t) = ak(U

T x̂, UTd;G) for U ∈ SO(n)

and

(3.16) ak(x̂, d; ΛrG
t) = rakr(x̂, d;G) for r ∈ R+ .

Proof. Equations (3.15) and (3.16) can be readily verified by a change of variables
in the corresponding scattering systems.
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Proof of Theorem 3.1. First it follows by Lemma 2.1 that

ak(x̂, d; Ω
r) = ak

⎛⎝x̂, d;

l⋃
j=1

Ωr
j

⎞⎠ =

l∑
j=1

ak(x̂, d; Ω
r
j) +O

(
1

L

)

=

l∑
j=1

ak(x̂, d; (Σj ; zj, rj , Uj)) +O
(
1

L

)

=
l∑

j=1

akrj (U
T
j x̂, UT

j d; Σj)e
ik(d−x̂)·zj +O

(
1

L

)
.

(3.17)

Then by (3.12) and Lemma 3.1, we have that for j0 ∈ J0,

akrj (U
T
j x̂, UT

j d; Σj) = akrp0 ((Uq0)
T x̂, (Uq0)

T d;Gj0)e
ik(d−x̂)·z +O(θ + τ)

= ak(x̂, d; G̃1) +O(θ + τ).
(3.18)

Hence we obtain using (3.17) and (3.18) that

(3.19) a(x̂; Ωr) =
∑
j∈J0

a(x̂; G̃1)e
ik(d−x̂)·zj +

∑
j∈{1,...,l}\J0

a(x̂; Ωr
j) +O

(
1

L
+ θ + τ

)
.

For j0 ∈ J0, by (3.19) we can show that for z ∈ neigh(zj0),∣∣∣〈a(x̂; Ωr), ek(d−x̂)·za(x̂; G̃1)〉L2(SN−1)

∣∣∣
=
∣∣∣〈a(x̂; G̃1)e

ik(d−x̂)·zj0 , eik(d−x̂)·za(x̂; G̃1)〉L2(SN−1)

∣∣∣+O
(
1

L
+ θ + τ

)
≤ ‖a(x̂; G̃1)‖2L2(SN−1) +O

(
1

L
+ θ + τ

)
.

(3.20)

For the equality relation in (3.20), we have made use of the Riemann–Lebesgue lemma
about oscillatory integrals by noting |zj − z| ≥ L � 1 for 1 ≤ j ≤ l, j �= j0, and
z ∈ neigh(zj0) by means of (3.8). For the last relation in (3.20), we have applied
the Cauchy–Schwarz inequality, and it is easily seen that the equality holds only at
z = zj0 . These observations clearly imply (3.13) for z ∈ neigh(zj0) and j0 ∈ J0. On

the other hand, by a similar argument, together with assumption (i) on Ã , we can
directly verify that

(3.21) I12 (zj) < 1 +O
(
1

L
+ θ + τ

)
, j ∈ {1, 2, . . . , l}\J0,

which readily implies (3.14).
Based on Theorem 3.1, we are now ready to formulate Scheme II for locating the

multiple scatterer components of regular size in Ωr successively.

D
ow

nl
oa

de
d 

02
/2

8/
24

 to
 1

37
.1

89
.4

9.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOCATING MULTISCALE ACOUSTIC SCATTERERS 941

Scheme II

(1) For the admissible scatterer class A in (3.6), formulate the augmented admissible

class Ã as that given in (3.9).
(2) Collect in advance the far-field patterns associated with the admissible reference

scatterer space Ã corresponding to a single incident plane wave eikx·d with fixed

k and d, and reorder Ã if necessary so that assumptions (i) and (ii) are satisfied.
(3) For an unknown scatterer Ωr in (3.7), collect the far-field data corresponding to

the single incident plane wave as specified in (2).
(4) Select a sampling region with a mesh Th containing Ωr.
(5) Set j = 1.
(6) For each sampling point z ∈ Th, compute the index value Ij2(z).

(7) Locate all those significant local maxima of Ij2(z) satisfying Ij2(z) ≈ 1 for the

scatterer components of the form z + G̃j .

(8) Remove all the sampling points inside those Nid identified components z + G̃j

found in (7) from Th. Subtract the individual far-field patterns associated with
those already reconstructed components in (7) and their respective identified lo-
cations zj from the far field as follows:

(3.22) a(x̂; Ωr) := a(x̂; Ωr)−
Nid∑
j=1

eik(d−x̂)·zja(x̂; G̃j).

Note that the updated far-field pattern in (3.22) is still denoted by a(x̂; Ωr), which
will be further checked by subsequent reference components in (3.11).

(9) If j = l′′, i.e., the maximum number of the unknown component reaches, then
stop the reconstruction; otherwise, set j := j + 1 and go to (6).

Remark 3.1. In (3.7), it is assumed that the admissible class A contains ex-
actly the base scatterer Σj of the unknown scatterer component Ωr

j in Ωr. However,

our Scheme II relies on the augmented admissible class Ã , which may contain only
an approximate scatterer configuration to the target scatterer component Ωr

j in Ωr.
Hence, if the admissible class A contains only an approximate base scatterer to Σj

of the unknown scatterer component Ωr
j in Ωr, Scheme II would still work, and in

fact, it can be easily justified from the proof of Theorem 3.1. This point will also be
illustrated by our numerical experiments in Example 5 in subsection 3.2.

Remark 3.2. The introduction of a known admissible class A in our algorithm is
related to the dictionary matching algorithms that have been recently investigated in
a series of works by Ammari and his collaborators [2, 3, 13], where some a priori known
base shapes form a dictionary for the reconstruction. We also note that comparable
indicator functions are used in a recent work [15] for reconstructing the acoustic
scatterers at small scale and regular scale, respectively.

3.2. Numerical experiments. We proceed now with some numerical tests us-
ing Scheme II to detect multiple scatterer components of regular size. The synthetic
far-field data is generated in the same manner as stated in section 2.2; then a uniform
noise of 3% is added to the synthetic data.

Two geometries will be considered for the scatterer components in our numerical
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Fig. 5. Basic scatterer components: a reference kite with first four orientations.
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Fig. 6. Basic scatterer components: a reference peanut with four orientations.

tests. They are characterized by the following two-dimensional parametric curves:

Peanut : {(x, y) : x =
√
3 cos2(s) + 1 cos(s), y =

√
3 cos2(s) + 1 sin(s), 0 ≤ s ≤ 2π},

Kite : {(x, y) : x = cos(s) + 0.65 cos(2s)− 0.65, y = 1.5 sin(s), 0 ≤ s ≤ 2π}.

These will be denoted by P and K, respectively. The candidate data set Ã includes
the far-field data of both reference components P and K and is further lexicograph-
ically augmented by a collection of a priori known orientations and sizes. More pre-
cisely, the augmented data set is obtained by rotating P and K in the x-y plane every
45 degrees, as shown in Figures 5 and 6, respectively, and by scaling P and K by 1

2 ,
1, and 2.

For imaging of regular-size scatterers, we adopt a technique from image contrast
enhancement by increasing the order of power of the indicator function Ij2(z); namely,

(Ij2(z))
α is employed as the indicator, where α is taken in our experiments to be 2, 3,

or 4. This contrast-enhancing technique helps keep the maxima around 1 and reduces
significantly the potential region where multiple scattering happens.

As we recall, Scheme II will locate all the components, one by one, by computing
an index function for each reference object in the augmented admissible class, which
tells the shapes, orientations, and scales of all potential components.

Example 4. The true scatterer consists of two components, a medium kite located
at (−5, 5) and a medium peanut located at (5, −5); see Figure 7. The wave number
of the incident field and the incident direction are set to be k = 5 and d = (1, 1)/

√
2.

In the first stage, the reference peanut component is first chosen to be located,
based on the reordering of the magnitudes of the far-field patterns of all the reference
scatterer components. We plot in Figure 8 the indicator function value distribution
by testing reference data associated with four orientations. It clearly indicates the
right position of the peanut when the orientation angle of the peanut is 90 degrees
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Fig. 7. True scatterer components in Example 4.
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Fig. 8. Example 4. From left to right in the top row: Imaging of the indicator function value
distribution by testing the reference far-field data of the basis peanut (k = 5) at four orientations
of 0, 45, 90, and 135 degrees, respectively; (a) a superimposed image of the four indicating im-
ages by taking the maximum of four indicator functions pointwise; (b) reconstruction of the peanut
component.

and there is a local maximum close to the unity, which implicitly gives hints about the
scatterer’s shape, orientation, and scale by incorporating the relevant message carried
in the reference data. In Figure 8(a), we plot a superimposed image of the indicat-
ing value distribution of the four aforementioned images by taking the maximum of
four indicator function values pointwise. After obtaining the position of the peanut
component, it is now possible to identify the first unknown scatterer component in
Figure 8(b).

Once the peanut component is found, then we proceed by subtracting the far-
field contribution of the detected peanut component from the total far-field pattern.
We can then find the kite’s position reasonably well; see Figure 9. We see that only
the configuration with 45 degrees maximizes the indicator function to achieve nearly
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Fig. 9. Example 4. From left to right in the first two rows: imaging of the indicator function
value distribution by testing the reference far-field data of the basis kite (k = 5) at eight orientations
of 0, 45, 90, 135, 180, 225, 270, and 315 degrees, respectively; (a) a superimposed image of the eight
indicating images by taking the maximum of eight indicator functions pointwise; (b) reconstruction
of the kite component.

the unity and indicates the position of the detected kite component very clearly. In
Figure 9(a), we plot a superimposed image of maximizing the eight aforementioned
image values. After obtaining the position of the kite component, it is now possible
to identify the second unknown scatterer component in Figure 8(b) by combining the
information carried implicitly in the reference data, which tells us not only the shape
of the scatterer but also its size and orientation.

Example 5. To further study the reliability of our locating scheme from a generic
admissible reference class, we keep the admissible class unchanged but perturb point-
wisely the parametric forms of the true scatterers P and K by 5% uniform noise with
respect to their centers, as shown in Figure 10. Now the admissible set is only an
approximate class to describe the scatterer components.

Scheme II is repeated for such an interesting setting. The measured far-field
pattern is first compared with the reference peanut data set according to (3.11). The
highlighted red dot as shown in Figure 11 when the orientation is 90 degrees tells us the
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Fig. 10. Perturbed scatterer components (left) and their respective zoomed-in images (middle
and right) in Example 5.
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Fig. 11. Example 5. From left to right: imaging of the indicator function value distribution by
testing the reference far-field data of the basis kite (k = 5) at the first four orientations of 0, 45,
90, and 135 degrees, respectively; the highlighted red dot reveals the reconstruction of the perturbed
peanut component at the orientation of 90 degrees.
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Fig. 12. Example 5. From left to right: imaging of the indicator function value distribution
by testing the reference far-field data of the basis peanut (k = 5) at four orientations of 0, 45, 90,
and 135 degrees, respectively. The highlighted red dot reveals the reconstruction of the perturbed kite
component at the orientation of 45 degrees.

rough position. Compared with Figure 8, there exist some small ripples in the contour
plots in Figure 11 which are rather weak and do not affect the locating accuracy.
Those weak ripples can be understood as some additional noise caused by the small
geometric difference between the unknown components and their approximate class.

After subtracting the corresponding far-field pattern detected in the first step, we
proceed with locating the perturbed kite components. The indicating contour plots
associated with the first four orientations are shown in Figure 12. Except for some
oscillating ripples, the correct position of the perturbed kite component can be well
located by the red dot when the orientation is 45 degrees.
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4. Locating scatterers of multiple scales.

4.1. Scheme III. In this section, we consider locating multiple scatterers of
multiple scales of the form

(4.1) Ωm = Ωs,t ∪ Ωr,

where Ωs,t is the scatterer of small size described in section 2.1 (cf. (2.6)–(2.7)) and
Ωr is the scatterer of regular size described in section 3.1 (cf. (3.7)–(3.8)). In addition
to the respective assumptions on the small-scale scatterer components of Ωs,t and
the regular-scale scatterer components of Ωr in sections 2.1 and 3.1, we shall further
assume that

(4.2) L = dist(Ωs,t,Ωr) � 1.

By Lemma 2.1, one has

(4.3) ak(x̂, d; Ω
m) = ak(x̂, d; Ω

s,t) + ak(x̂, d; Ω
r) +O

(
1

L

)
.

On the other hand, by Lemma 2.2 and (2.16), one further sees that

(4.4) |ak(x̂, d; Ωs,t)| � |ak(x̂, d; Ωr)|.

Hence we know

(4.5) ak(x̂, d; Ω
r) ≈ ak(x̂, d; Ω

m).

Therefore, it is natural to locate the scatterers Ωm of multiple scales in a two-stage
manner as follows. First, by (4.5), one uses ak(x̂, d; Ω

m) as the far-field data for
Scheme II to locate the regular-scale scatterers in Ωr; that is, one can (approximately)
find

(4.6) Ωr
j = (Σj ; zj, rj , Uj) with Σj ∈ A , j = 1, . . . , l.

Second, after locating Ωr
j , one can calculate that

(4.7) ak(x̂, d; Ω
s,t) ≈ ak(x̂, d; Ω

m)− ak(x̂, d; Ω
r).

Then, using the far-field data obtained above to Scheme I, one can locate the multiple
small-scale scatterers in Ωs,t. However, we would like to emphasize the following two
facts: first, the size contrast between Ωr and Ωs,t cannot be too sharp, since otherwise
by (4.4) and (4.5), the scattering information of Ωs,t might be overwhelmed by that
of Ωr; second, one should have fine reconstructions of Ωr

j ’s in the first stage. Indeed,
in the first-stage reconstruction, instead of (4.6), one has

(4.8) Ω̂r
j := (Σj ; ẑj, r̂j , Ûj) ≈ (Σj ; zj , rj , Uj), Σj ∈ A , j = 1, . . . , l,

where ẑj , r̂j , and Ûj are, respectively, approximations to zj , rj , and Uj . Hence, by
(4.7), the far-field data used in the second stage of the reconstruction is

(4.9) ak(x̂, d; Ω
s,t) ≈ ak(x̂, d; Ω

m)− ak(x̂, d; Ω
r) + (ak(x̂, d; Ω

r
j)− ak(x̂, d; Ω̂

r
j)).

If the reconstructed scatterer (Σj ; ẑj , r̂j , Ûj) is not close enough to the true scatterer

(Σj ; zj , rj , Uj), the error produced by ak(x̂, d; Ω
r
j)− ak(x̂, d; Ω̂

r
j) would dominate over

the weak scattering from Ωs,t. In order to overcome this error-sensitivity problem,
we propose the following local tuning technique to be incorporated into the above
two-stage reconstruction of Ωm.
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Local tuning technique. Let {Uj}j∈T1 and {rj}j∈T2 be the two given sets of
rotations and scalings, and let Th be the sampling mesh introduced in section 3.1, and
let (Σj ; ẑj, Ûj , r̂j), j = 1, . . . , l, be the reconstructed scatterers described above. For

a properly chosen δ ∈ R+, let N j
1 , N

j
2 , and N j

3 be, respectively, δ-neighborhoods of

ẑj , Ûj, and r̂j , j = 1, . . . , l. Letting {Th′ , {Uj}j∈T ′
1
, {rj}j∈T ′

2
} be an arbitrary refined

mesh of {Th ∩ N j
1 , {Uj}j∈T1 ∩ N j

2 , {rj}j∈T3 ∩ N j
3 }, then we call

(4.10)
̂̂
Ωr

j := (Σj ; ̂̂zj , ̂̂rj , ̂̂U j) for ̂̂zj ∈ Th′ , ̂̂rj ∈ {rj}j∈T ′
2
,
̂̂
U j ∈ {Uj}j∈T ′

1

a local tuneup of Ω̂r
j = (Σj ; ẑj, r̂j , Ûj) relative to {Th′ , {rj}j∈T ′

2
, {Uj}j∈T ′

1
} for j =

1, 2, . . . , l.
Now we define

(4.11)
̂̂
Ωr :=

l⋃
j=1

̂̂
Ωr

j ,

where each
̂̂
Ωr

j is a local tuneup relative to
{
Th′ , {rj}j∈T ′

2
, {Uj}j∈T ′

1

}
for j = 1, 2, . . . , l.

We call
̂̂
Ωr a local tuneup of Ω̂r relative to {Th′ , {rj}j∈T ′

2
, {Uj}j∈T ′

1
} for j = 1, 2, . . . , l.

With the above preparations, the local tuning can be proceeded as follows:

For each local tuneup
̂̂
Ωr, we compute

(4.12) âk(x̂, d) := ak(x̂, d; Ω
m)− ak(x̂, d;

̂̂
Ωr),

then apply the resulting far-field data to Scheme I. By running through all the local
tuneups relative to

{
Th′ , {rj}j∈T ′

2
, {Uj}j∈T ′

1

}
according to the above procedure, one

can locate all the clustered local maximum points on Th, which represents the locations
of the small scatterer components of Ωs,t.

By using the local tuning technique, one can not only locate the small-size scat-
terers components of Ωs,t, but also improve the reconstruction of the regular-size

scatterers. Indeed, it can be easily seen that the local tuneup,
̂̂
Ωr, which is used in

the local tuning that can produce the clustered local maximum points for Scheme I,
is a more accurate updating of the reconstruction Ω̂r.

In summary, we are now ready to formulate Scheme III for locating the multiple
multiscale scatterers of Ωm in (4.1).

Scheme III

(1) Collect a single far-field measurement ak(x̂, d; Ω
m) corresponding to Ωm = Ωs,t ∪

Ωr in (4.1).
(2) Select a sampling region with a mesh Th containing Ωm.
(3) Let Ωr be given as in (3.7). Apply Scheme II with ak(x̂, d; Ω

m) as the far-field
data and locate the rough scatterer components of Ωm,

(4.13) Ω̂r
j = (Σj ; ẑj , r̂j , Ûj), Σj ∈ A , j = 1, . . . , l,

where ẑj ∈ Th, r̂j ∈ {rj}j∈T2 and Ûj ∈ {Uj}j∈T1 (cf. section 3.1).

(4) Apply the local tuning technique as stated below to update Ω̂r
j , j = 1, . . . , l, and

locate the small-scale components of Ωs,t.
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0◦ 45◦ 90◦ 135◦

Fig. 13. Basic scatterers: peanut (multiscale).

(a) For each reconstructed Ω̂r
j in (4.13), formulate the refined local sampling

meshes Th′ , {rj}j∈T ′
2
, and {Uj}j∈T ′

1
, j = 1, 2, . . . , l.

(b) For a local tuneup given in (4.10)–(4.11), calculate the far-field pattern âk(x̂, d)
according to (4.12).

(c) Using âk(x̂, d) obtained in (b) as the far-field data, apply Scheme I to locate
the significant local maximum points on Th\ ∪l

j=1 N
j
1 .

(d) Repeat (b) and (c) for all possible local tuneups relative to {Th′ , {rj}j∈T ′
2
,

{Uj}j∈T ′
1
}. The clustered local maximum points on Th\ ∪l

j=1 N j
1 are the

positions corresponding to the scatterer components of Ωs,t.

(e) Update Ω̂r to the local tuneup
̂̂
Ωr which generates the clustered local maxi-

mum points in (d).

Remark 4.1. By concatenating Schemes I and II with the local tuning tech-
nique, Scheme III can effectively locate multiple multiscale scatterers. For practical
considerations, one can easily see from our discussions that as long as the scattering
strengths from the small scatterer components of Ωs,t are more significant than the
measurement noise involved, Scheme III can produce reasonable reconstructions for
multiple multiscale scatterers.

4.2. Numerical experiments. In this subsection, we test some three-dimen-
sional multiscale imaging problem using Scheme III. The wave number k is chosen to
be 5, and the incident direction is d = (0, 0, −1). The synthetic data are obtained for
the revolving solids of the two-dimensional shapes K and P along the x-axis, which
are still denoted by K and P without ambiguities. As for each reference component,
we rotate it every 90 degrees in the x-y, y-z, and z-x planes; see, e.g., four different
orientations of the peanut in the z-x plane as shown in Figure 13. Three different
sizes of the reference components are tested, namely, scaled by a factor of 0.3, 1, and
1.5, respectively.

Example 6. We consider a three-dimensional multiscale scatterer consisting of two
components, a small sound-hard kite scaled by a factor 0.3 located at (−5, 0, 5), and
a large sound-hard peanut with no scaling and located at (5, 0, −5); see Figure 14.

In the first stage, we extract the information of the regular-size component using
the indicator function of Scheme II by computing the inner product with a priori
known far-field patterns associated with those reference scatterer components with
different orientations and sizes. We can find the approximate position of the larger
peanut component of regular size when the reference scatterer is at its upright position;
see Figure 15(a).
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True scatterer x-y plane y-z plane x-z plane

Fig. 14. True scatterer components in Example 6.

(a) (b)

Fig. 15. (a) Imaging of the three-dimensional multiscale scatterer in the first stage. (b) A local
resampling mesh.

Fig. 16. Example 6. Indicating behavior of local resampling technique. From left to right:
imaging of indicator function value distribution at the sampling points (4.8, 0, −5), (4.9, 0, −5),
and (5, 0 ,−5), respectively.

Next, we adopt the local tuning (resampling) technique discussed in section 4.1
to search a small cubic mesh around the rough position of the peanut determined by
the local maximum, which is shown in Figure 15(b).

In the final stage, the location of the smaller component can be obtained by
performing a local searching of each grid point in the cubic mesh. In Figure 16, as
the search grid points approach gradually from (4.8 , 0 ,−5) to (5 , 0 ,−5) (from left
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Fig. 17. Example 6. Left: local sampling procedure at the sampling points (−4.8, 0, 5),
(−4.9, 0, 5), and (5, −5), respectively. Right: Imaging of the position of the reconstructed kite
component.

to right), the value distribution of the indicator function in Scheme I displays an
interesting change of the highlighted position. In the right plot of Figure 16, the red
dot indicates an approximate position of the smaller kite component, which agrees
with the exact one very well. In such a way, the smaller sound-hard kite could be
positioned, and it helps us fine-tune the position of the peanut and update it to be
around (5 , 0 ,−5). They could now be well approximated in Figure 17 by combining
the relevant shape, scale, and size information hidden in the reference data.
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