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Summary. We consider two level overlapping Schwarz domain decomposition
methods for solving the finite element problems that arise from discretizations of
elliptic problems on general unstructured meshes in two and three dimensions.
Standard finite element interpolation from the coarse to the fine grid may be
used. Our theory requires no assumption on the substructures that constitute the
whole domain, so the substructures can be of arbitrary shape and of different
size. The global coarse mesh is allowed to be non-nested to the fine grid on
which the discrete problem is to be solved, and neither the coarse mesh nor the
fine mesh need be quasi-uniform. In addition, the domains defined by the fine
and coarse grid need not be identical. The one important constraint is that the
closure of the coarse grid must cover any portion of the fine grid boundary for
which Neumann boundary conditions are given. In this general setting, our algo-
rithms have the same optimal convergence rate as the usual two level overlapping
domain decomposition methods on structured meshes. The condition number of
the preconditioned system depends only on the (possibly small) overlap of the
substructures and the size of the coarse grid, but is independent of the sizes of
the subdomains.
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1. Introduction

Unstructured grids are popular and flexible, since they easily allow for compli-
cated geometries and the resolution of fine scale structure in the solution [1], [19].
However, this flexibility may come with a price. Traditional solvers that exploit
the regularity of the mesh may become less efficient on an unstructured mesh.
Moreover, efficient vectorization and parallelization may require extra care. Thus,
there is a need to adapt and develop current solution techniques for structured
meshes so that they can run as efficiently on unstructured meshes.

In this paper, we present Schwarz methods defined for overlapping subdo-
mains, for solving elliptic problems on unstructured meshes in two and three
space dimensions. These are extensions of existing domain decomposition meth-
ods, constructed in such a way that they can be applied to unstructured meshes,
and still retain their optimal efficiency. These methods are designed to possess
inherent coarse grain parallelism in the sense that the subdomain problems can
be solved independently on different processors.

The theory and methodology of domain decomposition methods for elliptic
problems on structured meshes are quite well developed, see, for example, [23],
[2], [3], [10], [12]. On a structured mesh, most of the existing theories and
algorithms exploit the fact that the space of functions on the coarse mesh is a
subspace of that on the fine mesh. Unfortunately, this property may no longer
hold on an unstructured mesh. Both the theory and the algorithms need to be
developed to accommodate this fact.

In this paper, we continue to develop the theory, begun by Cai [4] and Chan
and Zou [6], of overlapping Schwarz methods for elliptic problems in two and
three dimensions on unstructured meshes. Our main new results are to (1) prove
convergence even when the domains defined by the fine grid,Ω, and the coarse
grid, ΩH , are not identical, for instance, when the coarse grid covers only a
(large) portion of the fine grid, and (2) provide a simple proof of convergence
when standard finite element interpolation from the coarse to fine grid is used
that also holds for non-quasi-uniform triangulations. An important observation is
that to obtain these strong results, in general, any Neumann boundary must be
covered by the coarse grid. As in the earlier work, the subdomains are allowed
to be of arbitrary shapes.

2. The finite element problem

We consider the following self-adjoint elliptic problem:

−
d∑

i ,j =1

∂

∂xi
(aij

∂u
∂xj

) + bu = f , in Ω(1)

with a Dirichlet boundary condition

u = 0, on Γ(2)
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and with a natural boundary condition

d∑
i ,j =1

aij
∂u
∂xj

ni + α u = 0, on ∂Ω \ Γ.(3)

HereΩ ⊂ R
d (d = 2, 3),

(
aij (x)

)
is symmetric, uniformly positive definite,

and is allowed to be piecewise smooth, but has no large jumps over the entire
domain. The functionb(x) ≥ 0 in Ω, α(x) ≥ 0 on ∂Ω, andn = (n1, n2, · · · , nd)
is the unit outer normal of the boundary∂Ω.

By Green’s formula, it is immediate to derive the variational problem corre-
sponding to (1)–(3): Findu ∈ H 1

Γ (Ω) = {v ∈ H 1(Ω); v = 0 onΓ} such that

a(u, v) = f (v) ∀ v ∈ H 1
Γ (Ω)(4)

with

a(u, v) =
∫
Ω

( d∑
i ,j =1

aij
∂u
∂xj

∂v

∂xi
+ b uv

)
dx +

∫
∂Ω\Γ

α uv ds,(5)

f (v) =
∫
Ω

f v dx.(6)

We will solve the above variational problem (4) by the finite element method.
Suppose we are given a family of triangulations{T h} on Ω. We will not
discuss the effects of approximatingΩ but always assume in this paper that
the triangulations{T h} of Ω are exact. So we haveΩ = Ωh ≡ ∪τ∈T hτ . Let
h = h = maxτ∈T h hτ , hτ = diam τ , h = minτ∈T h hτ , ρτ = the radius of the
largest ball inscribed inτ . Then we sayT h is shape regularif it satisfies

sup
h

max
τ∈T h

hτ
ρτ

≤ σ0 ,(7)

and we sayT h is quasi-uniformif it is shape regular and satisfies

h ≤ γ h ,(8)

with σ0 and γ fixed positive constants; see Ciarlet [8]. In the paper, we only
assume that the elements are shape regular, but not necessarily quasi-uniform.

Let V h be a piecewise linear finite element subspace ofH 1
Γ (Ω) defined on

T h with its basis denoted by{φh
i }n

i =1, andOi =suppφh
i . Later we will use the

following simple observations: ifT h is shape regular, then there exist a positive
constantC and an integerν, both depending only onσ0 appearing in (7) and
independent ofh, so that, fori = 1, 2, · · · , n,

diamOi ≤ C hτ , ∀ τ ⊂ Oi ,(9)

card{τ ∈ T h; τ ⊂ Oi } ≤ ν.(10)

Our finite element problem is: Finduh ∈ V h such that
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a(uh, vh) = f (vh) ∀ vh ∈ V h.(11)

The corresponding linear system is

Au = f(12)

with A = ( a(φh
i , φ

h
j ) )n

i ,j =1 being the corresponding stiffness matrix.
Because of the ill-conditioning of the stiffness matrixA, our goal is to con-

struct a good preconditionerM for A by domain decomposition methods to be
used in conjunction with the preconditioned conjugate gradient method.

As usual, we decompose the domainΩ into p nonoverlapping subdomains
Ωi such thatΩ = ∪p

i =1Ω i , then extend each subdomainΩi to a larger oneΩ′
i

such that the distance between∂Ωi and∂Ω′
i is bounded from below byδi > 0.

We denote the minimum of allδi by δ. We assume that∂Ω′
i does not cut through

any elementτ ∈ T h. For the subdomains meeting the boundary we cut off the
part of Ω′

i that is outside ofΩ. No other assumptions will be made on{Ωi }
in this paper except that any pointx ∈ Ω belongs to only a finite number of
subdomains{Ω′

i }. This means that we allow eachΩi to be of quite different size
and shape from other subdomains. We define the subspaces ofV h corresponding
to the subdomains{Ω′

i }, i = 1, 2, · · · , p, by

V h
i = {vh ∈ V h; vh = 0 on (Ω \Ω′

i ) ∪
(
∂Ω \ (∂Ω ∩ ∂Ω′

i )
)}.(13)

For interior subdomains, and those adjacent to only a Dirichlet boundary,

V h
i = V h ∩ H 1

0 (Ω′
i ).(14)

To develop a two level method, we also introduce a coarse gridT H , which
forms a shape regular triangulation ofΩ, but has nothing to do withT h, i.e.,
none of the nodes ofT H need to be nodes ofT h. In general,ΩH /= Ω. Let
H be the maximum diameter of the elements ofT H , andΩH = ∪τH∈T H τH .
Moreover, letΓH denote the portion of the boundary∂ΩH to which we will apply
Dirichlet boundary conditions. (If the original problem is not pure Neumann, we
require that the measure ofΓH be at least the order of one coarse element size.)

By V H we denote a subspace ofH 1
ΓH (ΩH ) consisting of piecewise polyno-

mials defined onT H ; by {ψH
i }m

i =1 we denote its basis functions related to the
nodes{qH

i }m
i =1. Let OH

i = suppψH
i . We note thatV H need not necessarily be

piecewise linear; for example, it may be defined by bilinear (2-D), trilinear (3-D),
or higher order elements. Thus we do not necessarily have the usual condition:
V H ⊂ V h. We need to impose one important constraint on the coarse grid:

(A1): ∂Ω \ Γ ⊂ ΩH ,

i.e., the coarse grid covers all of the Neumann boundary, (see Fig. 1).
For technical reasons, we make two further, less restrictive assumptions on

the coarse grid:

(A2): τH ∩Ω /= ∅ for all τH ∈ T H ,
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Fig. 1. Non-matching coarse grid

i.e., no coarse grid element lies completely outside the fine grid. For the com-
plementary setΩ \ΩH , let S be the set of all verticesqH

i of ΩH , and letBp(r )
be a ball centered at the pointp with radiusr . We assume that

(A3): Ω \ΩH ⊂ ∪qH
i ∈S BqH

i
(diam OH

i ) ,

namely, the coarse grid must cover a significant part of the fine grid.
To overcome the difficulty thatV H 6⊂ V h, in both the theory and the algo-

rithms, we need a way of mapping values fromV H to V h. For the coarse space
to be effective, this mapping must possess the properties ofH 1-stability andL2

optimal approximation; see Chan and Zou [6] and Mandel [18]. In this paper
we mainly consider two such mappings. The first is the standard finite element
interpolationΠh defined in terms of the fine grid basis functions{φh

i }n
i =1. The

second is the local,L2-like projection,Rh used in Chan and Zou [6].
Throughout the paper, we use|| · ||m,Ω and | · |m,Ω to denote the norm and

semi-norm of the usual Sobolev spaceH m(Ω) for any integerm ≥ 0. In addition,
||·||m,r ,Ω and|·|m,r ,Ω will denote the norm and semi-norm of the spacesWm,r (Ω)
for any integerm ≥ 0 and real numberr ≥ 1.

3. Two level overlapping Schwarz algorithms

Based on the finite element spacesV h
i andV H given in the preceding section, we

derive the two level overlapping Schwarz methods for nonnested grids. Schwarz
methods are preconditioners for the linear systemAu = f that are built by using
local and coarse grid solvers. We first define these solves. From these we may
write down the preconditioners using matrix notations.

The local solves are defined as in Dryja and Widlund [11] and in Bramble,
Pasciak, Wang, and Xu [3]. Define theH 1-projection operatorsPi : V h → V h

i ,
i = 1, · · · , p, such that for anyu ∈ V h, Pi u ∈ V h

i satisfies

a(Pi u, vi ) = a(u, vi ) ∀ vi ∈ V h
i .(15)
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The coarse grid projection-like operator must be defined slightly differently
than in Dryja and Widlund [11], due to the non-nestedness of the coarse grid
space. LetIh be any linear operator that mapsV H into a subspaceIhV H of V h.
It may be chosen as the modified standard finite element interpolation operator
Πh or the locally defined operatorRh; see Sect. 5 for more details.

In Method 1, we defineP̃0 by first definingPH u ∈ V H on the original coarse
grid space by

a(PH u, v) = a(u,Ihv) u ∈ V h, ∀v ∈ V H(16)

and then definẽP0 = IhPH : V h → V h
0 . The subspaceV h

0 ⊂ V h is defined by
IhV H .

In Method 2, we defineP0 by calculating the projection directly onto the
subspaceV h

0 ,

a(P0u, v) = a(u, v) u ∈ V h, ∀v ∈ V h
0 ,(17)

whereP0u ∈ V h
0 .

Remark 1.We note here that for the left-hand side in (16),a(uH , vH ) for any
uH , vH ∈ V H , is not an integral over the original domainΩ, but one over the
coarse domainΩH , i.e.

a(uH , vH ) =
∫
ΩH

( d∑
i ,j =1

aij
∂u
∂xj

∂v

∂xi
+ b uv

)
dx +

∫
∂ΩH \Γ H

α uv ds.(18)

Thus in the sequel we always assume that the coefficient functionsaij , b, α are
extended intoΩH \ Ω properly in the sense that (1) the extendedaij (x) is still
symmetric, uniformly positive definite over the closure ofΩ∪ΩH , (2) the largest
and smallest eigenvalues of the extendedaij (x) can be bounded by the largest
and smallest eigenvalues of the originalaij (x) respectively, (3) the extendedb
andα can be bounded by the bounds of originalb andα, and (4) the extended
α is still non-negative over∂ΩH \ ΓH . Below, we will use|| · ||a and || · ||a,ΩH

to denote the energy normsa(·, ·) overΩ andΩH , respectively.

We now derive the matrix representation of the operatorsPi and P̃0. Using
these, we can write down both the additive and multiplicative Schwarz precondi-
tioners. For the rest of this section only, we will useuh to denote finite practice,
the element functions andu to denote the vector of coefficients of that finite el-
ement function, that is,uh =

∑
ukφk . A purely algebraic of Schwarz algorithms

may be found in Hackbusch [15].
Let {φh

i ,j }ni
j =1 ⊂ {φh

k}n
k=1 be the set of nodal basis functions ofV h

i , i =
1, 2, · · · , p. For eachi , we define a matrix extension operatorRT

i as follows: For
any uh

i ∈ V h
i , we denote byui the coefficient vector ofuh

i in the basis{φh
i ,j }ni

j =1,
and we letRT

i ui be the coefficient vector ofuh
i in the basis{φh

i }n
i =1.

It is immediate to check that
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Ai = Ri A RT
i ,(19)

whereA and Ai , i = 1, 2, · · · , p, are the stiffness matrices corresponding to the
fine subspaceV h and the subspacesV h

i , i = 1, 2, · · · , p. And from (15) it follows
that for anyuh ∈ V h, the coefficient vector ofPi uh in the basis{φh

i }n
i =1 is

RT
i A−1

i Ri A u,(20)

whereu denotes the coefficient vector ofuh in the basis{φh
i }n

i =1.
Since{ψH

i }m
i =1 is the set of basis functions ofV H , then{Ihψ

H
i }m

i =1 is the set
of basis functions ofV h

0 . We define a matrix extension operatorRT
0 as follows: For

anyuh
0 ∈ V h

0 , we denote byu0 the coefficient vector ofuh
0 in the basis{Ihψ

H
i }m

i =1,
and we defineRT

0 u0 as the coefficient vector ofuh
0 in the basis{φh

j }n
j =1. Then

R0ij = Ihψ
H
i (qj ) whereqj is the nodal vertex ofφh

j . WhenIh = Πh, thenR0ij is
simply given byψH

i (qj ).
We first note that the coefficient vector of a functionv ∈ V H in the ba-

sis {ψH
i }m

i =1 is exactly the same as the one for the functionIhv in the basis
{Ihψ

H
i }m

i =1. So from (16) we find that the coefficient vector ofPH uh in the basis
{ψH

i }m
i =1 is

A−1
H R0A u,(21)

whereAH is the stiffness matrix corresponding to the original coarse spaceV H ,
with elementsAHij = a(ψH

j , ψ
H
i ). Now the coefficient vector of̃P0uh = IhPH uh

∈ V h
0 in the basis{Ihψ

H
i }m

i =1 is alsoA−1
H R0A u. Therefore, by the definition of

RT
0 , RT

0 A−1
H R0A u is the coefficient vector of̃P0uh in the basis{φh

i }n
i =1.

For Method 2 it is straightforward to derive that

A0 = R0A RT
0 ,(22)

where A0 is the stiffness matrix corresponding to the subspaceV h
0 . It follows

from (17) that the coefficient vector ofP0uh in the basis{φh
i }n

i =1 is

RT
0 A−1

0 R0A u.(23)

From the above, the additive Schwarz preconditioner may be written as

M1 = RT
0 A−1

H R0 +
p∑

i =1

RT
i A−1

i Ri(24)

for Method 1 and

M2 = RT
0 A−1

0 R0 +
p∑

i =1

RT
i A−1

i Ri(25)

for Method 2. These may be thought of as an overlapping block Jacobi method
with the addition of a coarse grid correction. The multiplicative Schwarz method
is the Gauss-Seidel version of the additive algorithm. We write down the sym-
metrized version, using Method 1, as
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M = (I − (I − RT
1 A−1

1 R1A) . . . (I − RT
p A−1

p RpA)(I − RT
0 A−1

H R0A)

(I − RT
p A−1

p RpA) . . . (I − RT
1 A−1

1 R1A))A−1.(26)

In practice, the application of the multiplicative Schwarz preconditioner is carried
out directly, not as given in (26).

Remark 2.From the above matrix representationsM1 andM2 for Method 1and
Method 2, we see that the only difference between them is in the global coarse
problem solver. The latter coarse problem (withA−1

0 ) is conducted on the newly
constructed coarse subspaceV h

0 , but the former (withA−1
H ) is conducted on the

original coarse subspaceV H . SinceV H is not necessarily nested toV h, AH may
not be expressed in terms of the stiffness matrixA asA0 is in (22).

We give convergence results for the additive algorithm. Similar results may
be obtained for the multiplicative algorithm using the techniques in Xu [27] or
Dryja, Smith, and Widlund [10].

It is easy to check that

κ(M1A) = κ(P̃0 +
p∑

i =1

Pi ), κ(M2A) = κ(
p∑

i =0

Pi ).(27)

For these condition numbers, we have the following bounds:

Theorem 1. Suppose that both triangulationsT h and T H are shape regular
(not necessarily quasi-uniform), and satisfy Assumptions (A1)–(A3). Then we have

κ(M1A), κ(M2A) ≤ C
(
1 +

H
δ

)2
.(28)

Theorem 1 will be proved at the end of Sect. 5.

4. Boundedness of the operatorIh

Let Wh andWH be any two finite element subspaces related to the triangulations
T h and T H , respectively. SinceWH 6⊂ Wh, the convergence proof for the
overlapping two level Schwarz methods requires that the operatorIh : WH →
Wh possess the followingH 1 stability andL2 optimal approximation properties:

|Ihu|1,Ω ≤ C |u|1,ΩH , ∀u ∈ WH ,(29)

and
||Ihu − u||0,Ω ≤ Ch|u|1,ΩH , ∀u ∈ WH .(30)

There exist many options for the operatorIh, for example,L2 and quasi-L2

projection operatorsQh andQ̃h. For a discussion, we refer to Chan and Zou [6].
In this paper, we consider only the most natural option forIh, i.e., the standard
finite element interpolation operatorΠh and the Cĺement’s localL2 projection
operatorRh.
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Generally, forIh = Πh, (29) and (30) are not true for allu ∈ H 1(Ω).
Fortunately, they are true for general finite element spaces. We state this fact
in the following lemma. Several alternative proofs for this result exist; see, for
instance, Cai [4], Zhang [29], and Widlund [25].

Lemma 1. Assume thatT h and T H are both shape regular, not necessarily
quasi-uniform, and Wh and WH are any two corresponding finite element spaces
consisting of continuous piecewise polynomials defined onΩ andΩH , respec-
tively. Furthermore, assume thatΩ ⊂ ΩH . Then (29) and (30) hold in both two
and three dimensions forIh = Πh.

Proof. Let τh ∈ T h, then (see, for example, Ciarlet [8], Theorem 3.1.5), for
r > 3 ands = 0, 1, we know for anyu ∈ WH

|u −Πhu|2s,τh ≤ Ch2(1−s)h2d(1/2−1/r )
τ |u|21,r ,τh .(31)

This implies∑
τh∩τH /=∅

|u −Πhu|2s,τh ≤ C h2(1−s)
∑

τh∩τH /=∅
h2d(1/2−1/r )
τ |u|21,r ,τh .(32)

Now apply the Cauchy inequality∑
i

ai bi ≤ (
∑

i

aq
i )1/q(

∑
i

bp
i )1/p

to the right hand side withp = r /2> 1 and 1
p + 1

q = 1, and get∑
τh∩τH /=∅

|u −Πhu|2s,τh ≤ C h2(1−s)(
∑

τh∩τH /=∅
h2d(1/2−1/r )q
τ )1/q(

∑
τh∩τH /=∅

|u|2p
1,r ,τh )1/p

≤ C h2(1−s)(
∑

τh∩τH /=∅
hd
τ )1−2/r (

∑
τh∩τH /=∅

|u|r1,r ,τh )2/r

≤ C h2(1−s)H d(1−2/r )
τ (

∑
τ̄H∩τ̄H ′/=∅

|u|r1,r ,τH ′ )
2/r

≤ C h2(1−s)H d(1−2/r )
τ

H d(2/r−1)
τ

∑
τ̄H∩τ̄H ′/=∅

|u|21,τH ′

 .(33)

The last line follows from (9) and (10), and a standard local inverse inequality;
see, for instance, Ciarlet [8], Theorem 3.2.6. Note that since the sum is over only
those elements that are neighbors toτH , we do not need the quasi-uniformity
assumption, called the inverse assumption by Ciarlet [8], only the shape regular
assumption.

Taking the sum overτH , we obtain∑
τH

∑
τh∩τH /=∅

|u −Πhu|2s,τh ≤ Ch2(1−s)|u|21,ΩH ,(34)

which implies (29) and (30). ut
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For our later use, we introduce a special, locally defined projection operator
Rh, which has been used in the domain decomposition context in [7] and [6].
Operators with properties similar toRh can be also found in Scott and Zhang
[21].

We denote the set of basis functions ofV h by {φh
i }n

i =1 corresponding to the
vertices{qh

i }n
i =1. Let Oi =suppφh

i , i = 1, 2, · · · , n.

Definition 1. The mappingR0
h : L2(Ω) → V h is defined by

R0
hu =

n∑
i =1

Qi u(qh
i )φh

i ∀ u ∈ L2(Ω),(35)

whereQi u ∈ P1(Oi ) satisfies∫
Oi

Qi u p dx =
∫

Oi

u p dx ∀ p ∈ P1(Oi )(36)

whereP1(Oi ) is the space of linear functions defined onOi .

By using the Poincaré inequality, the definition ofR0
h, and relations (9) and

(10), we can show the following properties ofR0
h; see also Cĺement [9].

Lemma 2. The operatorR0
h defined by (35) and (36) has the properties

||R0
hu||r ,Ω ≤ C ||u||r ,Ω , ∀ u ∈ H 1

Γ (Ω), r = 0, 1,(37)

||u −R0
hu||0,Ω ≤ C h|u|1,Ω , ∀ u ∈ H 1

Γ (Ω),(38)

where the constant C is independent of h.

Remark 3.In Lemma 2, we assume only thatT h is shape regular, not neces-
sarily quasi-uniform, unlike the usualL2 projection.

Remark 4.The definitionR0
h can be generalized to more general finite element

spacesV h, e.g., to bilinear element (2-D), trilinear element (3-D), and higher
order elements. In these cases, one needs only to replaceP1(Oi ) in the relations
(35) and (36) byP̃(Oi ), which are determined by the types of elements used in
V h, and Lemma 2 will still hold.

5. Partition lemma

In this section, we give a partition lemma for the finite element spaceV h. The
lemma is essential for the convergence proof of Theorem 1. As denoted previ-
ously, let{ψH

i }i∈NH be the set of basis functions ofV H with NH = {1, 2, · · · ,m},
and let{qH

i }i∈NH be the corresponding nodes andOi = suppψH
i .

We introduce an auxiliary subspaceṼ H of V H :

Ṽ H = span{ψH
i ; i ∈ N 0

H }(39)
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with N 0
H = {i ∈ NH ; ψH

i = 0 on Γ}. We needṼ H only for the proof of our
main theorem, we do not require its explicit computation for our algorithms. It
is easy to check that̃V H |Ω ⊂ H 1

Γ (Ω).
By Ω̃H andΩH

N we denote

Ω̃H = ∪i∈N 0
H

suppψH
i , ΩH

N = Ω̃H ∪ (Ω \ Ω̃H ).(40)

Let RH be defined forV H similarly to Rh defined forV h in (35) and (36),
with natural modifications, see Remark 4. Now we define a modified operator
R̃H : L2(Ω̃H ) → Ṽ H as follows

R̃H u =
∑
i∈N 0

H

Qi u(qH
i )ψH

i ∀ u ∈ L2(Ω̃H ),(41)

whereQi u ∈ P (Oi ) satisfies∫
Oi

Qi u p dx =
∫

Oi

u p dx ∀ p ∈ P (Oi ).(42)

HereP (Oi ) is determined by the type of elements used inV H . If V H consists
of piecewise polynomials of degree≤ q, then P (Oi ) = Pq(Oi ). We note that
R̃H u is well-defined onΩ by extending by zero.

For the operatorR̃H , we have the following lemma.

Lemma 3. The operatorR̃H defined by (41) and (42) has the properties

||u − R̃H u||r ,ΩH
N
≤ C ||u||r ,ΩH

N
, ∀ u ∈ H 1

Γ (ΩH
N ), r = 0, 1,(43)

||u − R̃H u||0,ΩH
N
≤ C H |u|1,ΩH

N
, ∀ u ∈ H 1

Γ (ΩH
N ),(44)

where the constant C is independent of h and H .

Proof. Analogous to Lemma 2, we can prove that

||u −RH u||r ,ΩH ≤ C ||u||r ,ΩH ∀ u ∈ H 1(ΩH ), r = 0, 1,(45)

||u −RH u||0,ΩH ≤ C H |u|1,ΩH , ∀ u ∈ H 1(ΩH ).(46)

Let ∂NH = {i ; i ∈ NH \ N 0
H }. We see that for anyu ∈ H 1

Γ (ΩH
N )

u − R̃H u = u −RH u +
∑

i∈∂NH

Qi u(qH
i )ψH

i .(47)

Using (45) and (46), we need only to estimate the last term of (47).
For any i ∈ ∂NH , we have by a local finite element inverse inequality,

Poincaŕe’s inequality, (cf. Ladyzhenskaya and Ural’tseva [16]), and the previous
assumption (A3) onΩ \ΩH , that
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||Qi u(qH
i )ψH

i ||20,Oi
≤

∑
τH⊂Oi

||ψH
i ||20,τH ||Qi u||2L∞(τH )

≤ C
∑

τH⊂Oi

H d
τ

(
H−d
τ ||Qi u||20,τH

)
≤ C ||Qi u||20,Oi

≤ C ||u||20,Oi

≤ C ||u||20,Õi
≤ C (diam Oi )

2|u|21,Õi

≤ C H 2 |u|21,Õi
,(48)

whereÕi = the union ofOi with the part ofΩ that is outsideOi , (see Fig. 1).
Now (43) with r = 0 and (44) follow from (45)–(48). The inequality (43)

with r = 1 can be proved analogously to the case ofr = 0 above. ut
We choose

V h
0 = IhV H ,(49)

whereIh can be any linear operator that mapsV H onto the subspaceIhV H of
V h and retains theH 1 stability andL2- optimal approximationin any subspace
(not necessarily in the whole VH ) of VH of functions that vanish onΓ . This
essential observation will become very clear when we go through the following
proof of Lemma 4. Therefore,Ih may be chosen as the standard finite element
interpolation operator, or localL2 projection operatorRh after simple and natural
modifications for satisfying the Dirichlet boundary condition onΓ . For example,
Ih may be chosen asR0

h defined in Definition 4.1, or asΠ0
h defined as follows:

Π0
hu =

n∑
i =1

u(qh
i )φh

i .(50)

From (49), we require that the coarse grid cover the fine grid Neumann boundary,
see (A1). Otherwise,Ih makes no sense for the partΩ \ ΩH . But the coarse
grid does not need to cover the fine grid Dirichlet boundary, since we impose
also homogeneous Dirichlet boundary conditions on the corresponding coarse
grid boundary, soIh still makes sense by naturally extending the coarse grid
functions by zero forΩ \ ΩH . Our numerical experiments will show that this
strategy is important for practical computations.

We now have the following partition lemma for the fine spaceV h:

V h = V h
0 + V h

1 + · · · + V h
p .(51)

Lemma 4. LetΩ ⊂ Rd (d = 2, 3). We assume that both triangulationsT h and
T H are shape regular but not necessarily quasi-uniform. Then for any u∈ V h,
there exists a constant C independent of h, p,H , δ, and ui ∈ V h

i , i = 1, · · · , p
and u0 = IhuH ∈ V h

0 with uH ∈ V H such that

u = u0 + u1 + · · · + up(52)

and



Schwarz methods on unstructured meshes 161

p∑
i =1

||ui ||21,Ω ≤ C
(
1 +

H
δ

)2||u||21,Ω ,(53)

||u0||1,Ω ≤ C ||u||1,Ω , ||uH ||1,ΩH ≤ C ||u||1,Ω .(54)

Proof. Let Ω̂ be an open domain inRd large enough such thatΩ ⊂ ΩH
N ⊂⊂ Ω̂.

Then we know, (see Stein [24]), that there exists a linear extension operator
E : H 1(Ω) → H 1(Ω̂) such thatEu|Ω = u and

||Eu||1,Ω̂ ≤ C ||u||1,Ω .(55)

We note that we do not requireEu for u ∈ V h to be a finite element function.

For anyu ∈ V h, we chooseu0 = IhuH with uH = R̃H ũ and ũ = Eu
∣∣∣
ΩH

N

. Then

from Lemma 3 and Lemma 1, we obtain

||u0||1,Ω = ||IhR̃H ũ||1,Ω ≤ C ||R̃H ũ||1,ΩH = C ||R̃H ũ||1,ΩH
N

≤ C ||ũ||1,ΩH
N
≤ C ||ũ||1,Ω̂ ≤ C ||u||1,Ω ,(56)

which implies (54), and

||u − u0||0,Ω ≤ ||u − R̃H ũ||0,Ω + ||R̃H ũ − IhR̃H ũ||0,Ω
≤ ||ũ − R̃H ũ||0,ΩH

N
+ C h |R̃H ũ|1,ΩH(57)

≤ CH |ũ|1,ΩH
N

+ C h|ũ|1,ΩH
N
≤ C H |ũ|1,Ω̂ ≤ C H |u|1,Ω .

It is well-known, (see Dryja and Widlund [11] or Bramble et al. [3]), that
there exists a partition{θi }p

i =1 of unity for Ω related to the subdomains{Ω′
i }

such that
∑p

i =1 θi (x) = 1 onΩ and for i = 1, 2, · · · , p,

suppθi ⊂ Ω′
i ∪ ∂Ω, 0≤ θi ≤ 1 and ||∇θi ||L∞(Ωi ) ≤ C δ−1

i .(58)

Now for any u ∈ V h, let u0 = IhR̃H ũ ∈ V h be chosen as above, and let
ui = Πhθi (u − u0) with Πh being the standard interpolation ofV h. Obviously,
ui ∈ V h

i and
u = u0 + u1 + · · · + up.(59)

Then (53) follows in the standard way; see Dryja and Widlund [11] and Smith
[22]. We give a complete proof here so that one can see clearly that no quasi-
uniformity assumption onT h and the subdomains{Ωi } is required in the present
case. Letτ be any element belonging toΩ′

k with hτ being its diameter andθk

the average ofθk on elementτ . Then from (58) and the fact thatu − u0 ∈ V h,
we get

|uk |21,τ ≤ 2|θkΠh(u − u0)|21,τ + 2|Πh(θk − θk)(u − u0)|21,τ
≤ 2|u − u0|21,τ + 2|Πh(θk − θk)(u − u0)|21,τ .

By using the local inverse inequality, which requires only the shape regularity
of T h (see Proposition 3.2 in Xu [26]), we obtain
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|uk |21,τ ≤ 2|u − u0|21,τ + C h−2
τ ||Πh(θk − θk)(u − u0)||20,τ

≤ 2|u − u0|21,τ + C h−2
τ

h2
τ

δ2
k

||u − u0||20,τ

≤ 2|u − u0|21,τ + C
1
δ2

k

||u − u0||20,τ .

By taking the sum overτ ∈ Ω′
k , we have

|uk |21,Ω′k ≤ 2|u − u0|21,Ω′k + C
1
δ2

k

||u − u0||20,Ω′k .(60)

Recall the assumption made previously that any pointx ∈ Ω belongs only to a
finite number of subdomains{Ω′

i }, it follows from (56), (57), and (60) that

p∑
k=1

|uk |21,Ω′k ≤ C
(|u − u0|21 +

1
δ2
||u − u0||20

)
(61)

≤ C
(

1 +
H
δ

)2
|u|21.(62)

Analogously, we derive that

p∑
k=1

||uk ||20,Ω′k ≤ C
(

1 +
h2

δ2

)
||u||20,

which completes the proof of (53).ut

In the rest of this section, we prove Theorem 1. We first state a general abstract
lemma that is a natural extension of the one due to Lions [17], Nepomnyaschikh
[20], Dryja and Widlund [11], Zhang [28], and Griebel and Oswald [14]. The
proof is straightforward, similar to the one of Theorem A in [14].

Given a Hilbert spaceV and a symmetric, positive definite bilinear forma(·, ·)
and a set of auxiliary spacesVi for which the bilinear form is also defined, but
which are not necessarily the subspaces ofV . Suppose there exist “interpolation”
operatorsIi : Vi → V and defineTi : V → Vi by

a(Ti u, v) = a(u, Ii v), ∀ v ∈ Vi .(63)

ThenT =
∑p

i =0 Ii Ti satisfies the following lemma.

Lemma 5.

a(T−1u, u) = min
ui∈Vi

u=
∑p

i =0
Ii ui

p∑
i =0

a(ui , ui ).(64)
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Proof of Theorem 1.The estimate ofκ(M2A) is quite routine by using Lemma 4
and (27). To get the bound ofκ(M1A), it suffices to show that there exist two
constantsC0 andC1 independent ofH , δ, h such that for anyuh ∈ V h,

C0 a(P̃uh, uh) ≤ a(uh, uh) ≤ C1

(
1 +

H
δ

)2

a(P̃u, u).(65)

We first provide the upper bound. From (16) we see that

a(PH uh,PH uh) = a(IhPH uh, uh).(66)

Thus, by Cauchy-Schwarz’s inequality and the stability ofIh,

||PH uh||2a,ΩH ≤ ||uh||a ||IhPH uh||a ≤ C ||uh||a ||PH uh||a,ΩH ,(67)

i.e., ||PH uh||a,ΩH ≤ C ||uh||a, which leads to

a(P̃0uh, uh) = a(PH uh,PH uh) ≤ C a(uh, uh).(68)

From standard coloring arguments and the fact that the norm of a projection
operator equals one, (see Zhang [28]),

p∑
i =1

a(Pi u
h, uh) ≤ C a(uh, uh).(69)

Therefore we have proved the first inequality in (65). For the second inequality,
we chooseI0 = Ih, Ii for i > 0 to be the identity operator, andV0 = V H , then
applying Lemma 5 and Lemma 4 gives our results.

Remark 5.We can improve the bound of Theorem 1 by replacing (1 +H /δ)2 by
(1 +Hmax/δ) if the subdomains{Ωi }p

i =1 form a quasi-uniform triangulation ofΩ
and H ≤ βHmax for some fixed constantβ. Here Hmax is the maximum of the
diameters of the subdomains. This can be done by using a result by Dryja and
Widlund [13]; cf. Chan and Zou [6].

6. Numerical experiments

In this section, we give the results of two numerical experiments for the case
Ih = Πh. In our first numerical experiment, we demonstrate that the assumption
(A1) is necessary in practice, i.e., it is very important to cover the Neumann
boundary. When the coarse grid does not completely cover the fine grid Neumann
boundary, one obtains rather poor convergence.

We consider the Poisson problem on the unit square with either pure homo-
geneous Dirichlet or mixed boundary conditions. In the case of mixed boundary
conditions, we prescribe homogeneous Dirichlet boundary condition forx ≤ 0.2
and homogeneous Neumann boundary condition forx > 0.2. A uniform trian-
gulation using linear finite elements is used. The coarse grid is defined on the
square [0, 1 + β] × [0, 1]. If β is less than zero, we are not covering the right
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β < 0

β > 0

Fig. 2. Overlapping region

edge of the fine grid, see Fig. 2. Note that only whenβ = 0 do we have a nested
coarse

grid space. In all of the experiments we use an extension by zero during
the interpolation from the coarse grid for all fine grid nodes not covered by the
coarse grid.

We ran with four size grids: 20 by 20, 40 by 40, 80 by 80 and 160 by 160.
With each refinement the number of subdomains was increased by a factor of
four from 16 to 64 to 256 to 1024. A constant overlap of one element was used.
The coarse grid was refined from 5 by 5 to 10 by 10 to 20 by 20, to 40 by
40. The value of the “missing” overlap,|β|, was changed from 0.1 to 0.05 to
0.025 to 0.0125. Note that we keep|β| � H . For all our calculations, we always
choose the initial iterative guess of zero and stop the iteration when a relative
decrease in the discrete norm of residual of 10−5 is obtained.

As one can see in Tables 1 and 2, the number of iterations was essentially
unaffected by the “missing” overlap for the Dirichlet boundary conditions. How-
ever, for the case of Neumann boundary conditions, the number of iterations
required to achieve the same tolerance increased greatly. This result agrees very
well with our theory.

In our second experiment, we solve a mildly varying coefficient problem:

∂

∂x

(
(1 + xy)

∂u
∂x

)
+
∂

∂y

(
(1 + sin(4x + 4y))

∂u
∂y

)
= x2 sin(3y)

discretized by a standard piecewise linear finite element method on the unstruc-
tured airfoil grid shown in Fig. 3. The airfoil is embedded in the unit square.
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Table 1. Convergence for multiplicative Schwarz

Boundary Conditions β Fine Mesh
20x20 40x40 80x80 160x160

Dirichlet 0 10 10 9 9
+ 10 10 11 12
- 9 10 10 10

Mixed 0 10 10 10 10
+ 10 10 10 10
- 15 22 30 43

Table 2. Convergence for additive Schwarz

Boundary Conditions β Fine Mesh
20x20 40x40 80x80 160x160

Dirichlet 0 30 28 26 25
+ 29 30 28 30
- 27 28 28 29

Mixed 0 23 28 29 29
+ 23 28 29 28
- 33 50 77 110

Table 3. Multiplicative DD iterations for theAirfoil mesh. 32 subdomains

Overlap
(no. elements) Coarse Grid

0 None 55
0 G2 30
0 G1 20
1 None 31
1 G2 17
1 G1 11
2 None 24
2 G2 13
2 G1 9

We use nonhomogeneous Dirichlet boundary conditions forx ≤ 0.2 and homo-
geneous Neumann boundary conditions forx > 0.2. Note that since the present
software used for the calculations can generate only coarse grids that are inte-
rior to the fine grid, we do violate Assumption (A1) here. This explains why
the iteration counts are slightly higher then one would expect for, for example,
a Dirichlet boundary value problem. The subdomains are shown in Fig. 3 and
two sets of coarse grids are given in Fig. 4. Since the theoretical convergence
behavior of additive and multiplicative overlapping Schwarz is very similar, we
have chosen to only include the results for the multiplicative case, see Table 3.
Other numerical studies may be found in Chan and Smith [5].
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Fig. 3. Airfoil grid partitioned into 32 subdomains

Fig. 4. Two coarse grids:G1 (left), G2 (right)
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