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Abstract In this article we investigate the analysis of a finite element method for
solving H(curl;�)-elliptic interface problems in general three-dimensional polyhe-
dral domains with smooth interfaces. The continuous problems are discretized by
means of the first family of lowest order Nédélec H(curl;�)-conforming finite ele-
ments on a family of tetrahedral meshes which resolve the smooth interface in the
sense of sufficient approximation in terms of a parameter δ that quantifies the mis-
match between the smooth interface and the triangulation. Optimal error estimates in
the H(curl;�)-norm are obtained for the first time. The analysis is based on a δ-strip
argument, a new extension theorem for H1(curl)-functions across smooth interfaces,
a novel non-standard interface-aware interpolation operator, and a perturbation argu-
ment for degrees of freedom for H(curl;�)-conforming finite elements. Numerical
tests are presented to verify the theoretical predictions and confirm the optimal order
convergence of the numerical solution.
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1 Introduction

Given a bounded polyhedral domain Ω ⊂ R
3 with a Lipschitz boundary, we assume

that the domain � consists of two subdomains �1 and �2, where Ω1 ⊂⊂ Ω,Ω2 :=
Ω\Ω1. The internal interface � := ∂Ω1 is to be sufficiently smooth, namely, at least
C2-smooth (see Fig. 1 for an illustration of the geometric setting). We are concerned
with solving the H(curl;�)-elliptic interface problem

curl(χ curl u) + βu = f in Ω, (1)

with Dirichlet boundary condition

n × u = 0 on ∂Ω, (2)

and jump conditions on the interface

[n × u] = 0 on �, (3)

[χn × curl u] = 0 on �, (4)

where f ∈ L2(�), β is a strictly positive constant, and χ is a scalar function of the
spatial variable x ∈ � and there are two constants χ, χ with 0 < χ ≤ χ such that
χ ≤ χ ≤ χ a.e. in �. Further, n stands for a unit normal vector to the boundary
∂�1 pointing into �2; and we denote by [v] := v1 − v2 the jump of a vector-valued
quantity v across the interface � (or by [v] := v1 −v2 the jump of a scalar v). For ease
of exposition, we assume that the coefficient function χ is piecewise constant, i.e.

χ(x) =
{

χ1, x ∈ �1;
χ2, x ∈ �2,

where χi (i = 1, 2) are positive constants.
H(curl;�)-elliptic interface problems like (1)–(4) have to be solved at each time

step for the eddy current model, which typically arises from Maxwell’s equations as

Fig. 1 An illustrative sketch of
the setting of the problem
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a magneto-quasistatic approximation by dropping the displacement current (see, e.g.,
[2,4,13]), and is frequently used in low frequency, high-conductivity applications like
electric machines. In this setting χ represents the magnetic susceptibility, whereas
β is related to the conductivity. The homogeneous Dirichlet boundary condition (2)
models perfectly conducting walls.

Due to the practical relevance of interface problems in many engineering and indus-
trial applications, numerical solution methods for interface problems have been inves-
tigated widely. One may refer to a recent monograph [22] and the references therein for
a history of the development on the topic. Numerous variants of finite element methods
(FEMs) for classical elliptic interface problems in H1(�) have been extensively stud-
ied in the past few decades. Interested readers may refer to [3,6,8,10,16,20,21,27].

Nevertheless, to the best knowledge of the authors, there seems to exist no corre-
sponding work on the convergence analysis of H(curl;�)-elliptic interface problems
discretized by means of interface-aligned edge elements. These H(curl;�)-conform-
ing finite elements are the natural choice for (1)–(4) and well capture the structure
of H(curl;�)-elliptic boundary value problem, see [17]. Yet, most existing analytic
tools for H1(�)-elliptic interface problems based on Lagrangian nodal elements do
not fit edge elements. Hence it is a non-trivial task to adapt some of these techniques
and tools for the convergence analysis to the H(curl;�)-setting.

The main contribution of the current work is to derive optimal order convergence in
the H(curl;�)-norm for H(curl;�)-elliptic interface problems using lowest order
edge elements. To that end, some novel analytical tools and techniques have been devel-
oped, including a non-standard interface-aware finite element interpolant which will be
shown to be a quasi-optimal projection in the sense of the H(curl;�) norm, a δ-strip
argument for quantifying the relation of error estimate near the interface in terms of
the mismatch parameter δ, a new extension theorem for H1(curl;�i ) functions across
smooth interfaces for i = 1, 2, which bridges the gap between standard and non-stan-
dard interpolation and thus is crucial for the argument of convergence, and a perturba-
tion argument for the degrees of freedom for H(curl;�)-conforming finite elements.

The remainder of the paper is organized as follows: In Sect. 2, we first introduce
some necessary notations and assumptions to be used later, then derive the variational
formulation for the H(curl;�)-elliptic interface problem, and present the finite ele-
ment approximation using the lowest order Nédélec’s H(curl;�)-conforming finite
element spaces. In Sect. 3 we prepare some important theoretical results, including a
δ-strip argument for error estimation near the interface and the construction of a new
extension operator for H1(curl;�i ) functions across smooth interfaces for i = 1, 2.
In Sect. 4, we prove the optimal order convergence in the sense of H(curl;�)-norm
for H(curl;�)-elliptic interface problems. In Sect. 5, numerical experiments are pre-
sented to justify the predictions of the convergence theory. Conclusions and future
work are addressed in Sect. 6.

2 Finite element approximation

In the sequel, we adopt the convention that roman letters denote scalar functions, and
their associated spaces etc., while bold letters represent vector-valued functions, and
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their associated spaces etc. For the convenience of presentation, we first introduce the
following function spaces that will be used throughout the paper:

H(curl;�) = {v ∈ L2(�) | curl v ∈ L2(�)},
H1(curl;�) = {v ∈ H1(�) | curl v ∈ H1(�)},
H0(curl;�) = {v ∈ H(curl;�) | n × v = 0 on ∂�} .

The Hilbert spaces H(curl;�) and H1(curl;�) are equipped with the canonical
inner products and the associated norms. For the properties of these function spaces
used in this paper we refer to [15, Chap. 1] or [24]. Similar notations will be used for
�1 and �2, respectively.

For a scalar function u ∈ L2(�) we denote by ui its restriction to Ωi , i.e., ui :=
u|Ωi , for i = 1, 2. While for a vector-valued function u = (u1, u2, u3)T ∈ L2(�) we
denote by ui = (u1

i , u2
i , u3

i )
T its restriction to Ωi , i.e., ui := u|Ωi , for i = 1, 2, where

(·)T denotes the transpose operator.

2.1 Weak formulation

The weak formulation of (1)–(4) is straightforward and reads as follows:
Problem (P) Seek u ∈ H0(curl;�) such that

a(u, v) =
∫

Ω

f · v dx ∀ v ∈ H0(curl;�), (5)

with the bilinear form defined by

a(u, v) :=
2∑

i=1

∫
Ωi

(χi curl ui · curl vi + βui · vi ) dx. (6)

By the assumptions on χ and β in Sect. 1, the bilinear forms a(·, ·) in (6) agrees
with the H(curl;�)-inner product of H0(curl;�) up to the weights χi and β, and
the associated energy norm ‖u‖a = a(u, u)1/2 is equivalent to the H(curl;�)-norm
in the following sense

c ‖u‖H(curl;�) ≤ ‖u‖a ≤ C ‖u‖H(curl;�) , (7)

where c = min(χ1, χ2, β) and C = max(χ1, χ2, β). This ensures the existence and
uniqueness of the solution of (5) by the Lax–Milgram Lemma [11, Theorem 1.1.3].

As suggested by [12], we make the reasonable assumption that the solution of
(5) belongs to H0(curl;�) ∩ H1(curl;�1) ∩ H1(curl;�2). General results for
H0(curl;�) ∩ Hs(curl;�1) ∩ Hs(curl;�2), for 0 ≤ s ≤ 1, will also be inves-
tigated at the end of Sect. 4. They require suitable fractional Sobolev spaces defined
by the method of real interpolation. Interested readers may refer to a separate work
[18] for more details.
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2.2 Triangulation

Let the polyhedral domain Ω ∈ R
3 be equipped with a family of oriented unstructured

tetrahedral meshes (T h)h in the sense of [17, Def. 3], where h stands for the meshsize.
We denote by Fh, Eh and Nh the respective sets of faces, edges and nodes related to
the triangulation Th . The quality of Th can be gauged by means of its meshsize h,
shape regularity measure ρ(Th)and quasi-uniformity measure γ (Th) [9, Sect. 3] as
follows

ρ(Th) := max
K∈Th

hK

rK
, h := max

K∈Th

hK , γ (Th) := max
K∈Th

h

hK
,

where

hK := max{|x − y| : x, y ∈ K },
rK := max{r > 0 : ∃x ∈ K ; |x − y| < r ⇒ y ∈ K }.

Afterward, we will frequently denote by c and C generic positive constants which may
depend on the domain Ω , the coefficients χi ’s, β and the shape-regularity measure
ρ(Th), but must not depend on the mesh size h and the related functions.

In the rest of this subsection, let us explain our assumptions on the meshes in turns.
First of all, our finite element discretization scheme relies heavily on the concept of
interface-aligned triangulation, which can be understood as follows.

Assumption 1 The triangulation Th is interface-aligned if for every K ∈ Th all its
four vertices are either in Ω1 or in Ω2, and this element K is assumed to intersect
with the interface � in such a way that at most three of its vertices are located on the
interface � while all remaining vertices are either in �1 or in �2.

From now on, a vertex in Nh located on the interface is called an interface vertex,
an edge in Eh with two end nodes on the interface an interface edge. Let us comment
on Assumption 1 before we proceed. To meet the requirement of Assumption 1, the
triangulation Th should not be too coarse with respect to the interface, i.e., it is not
allowed to let all the four vertices of an element K ∈ Th located on the interface �.
This might be the case for a region with large curvature on the interface. Nevertheless,
we can always refine the mesh until all the elements in the mesh satisfies Assumption 1
owing to the smoothness of the interface.

When an element K satisfies K ∩� 
= ∅, it is called an interface element, otherwise
a non-interface element. The set of all interface elements is denoted by T∗ := {K ∈
Th | K ∩ � 
= ∅} and T i∗ := {K ∈ T∗ | all nodes of K are in Ω i } represents the set of
all interface elements of �i , for i = 1, 2. For some small δ > 0, we define the δ-strip
regions around the interface in � and �i , i = 1, 2, respectively, by

Sδ := {x ∈ Ω | dist(x, �) < δ}, Si
δ := {x ∈ Ωi | dist(x, �) < δ}.

It is obvious that Sδ = S1
δ ∪ S2

δ and these δ-strip regions will be used to bound the error
near the interface, which cannot be captured by standard interpolation error estimates.
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Fig. 2 Sδ : the region of width
2δ between the two blue closed
dashed lines around the interface
� in red. Interface elements:
K3 ∈ T 1∗ , K4 ∈ T 2∗ .
Non-interface elements:
K1 ∈ T 1, K2 ∈ T 2 (color
figure online)

Of course, the smooth interface � can only be approximately resolved by tetrahe-
dral meshes. We quantify the quality of the approximation of the smooth interface �

by the triangulation Th in terms of a parameter δ through the following definition.

Definition 1 The triangulation Th is said to resolve the interface � up to the error δ

if it can be decomposed as Th = T 1 ∪ T 2 ∪ T 1∗ ∪ T 2∗ , where

T i = {K ∈ Th ; K ⊂ Ωi \Sδ} ,

and K ∈ T i∗ if

max{dist(x, � ∩ K ) ; x ∈ K ∩ Ω i ′ } ≤ δ,

for i = 1, 2, and we define its dual i ′ as follows: i ′ = 1 if i = 2 and i ′ = 2 if i = 1.

We may refer to Fig. 2 for a 2D illustration of Definition 1. Note that although
we assume that all vertices of an element K must belong to either subdomain �1 or
�2. It is possible that the interface may cut some elements into two parts lying in
two different subdomains, see, for instance, triangle K4 in Fig. 2. By Definition 1 we
easily see that any interface element K can be embedded in the union of the interface
strip Sδ and one of the subdomains Ω1 and Ω2.

For a smooth interface � approximated by a union of triangular faces of the trian-
gulation Th , we may further quantify the parameter δ in terms of the meshsize h as
given by the next assumption.

Assumption 2 The interface� is at least C2-smooth. For the interface-aligned meshes,
there exists some δ of order h2 such that K ∩ Ω2 ⊂ S2

δ for all elements K ∈ T 1∗ , and
K ∩ Ω1 ⊂ S1

δ for all elements K ∈ T 2∗ .

A detailed proof of Assumption 2 of δ-approximation property for the interface-
aligned triangulation in two dimensions can be found in [10] and the same idea can
be extended to 3D with no essential changes.

For the subsequent error estimate, we have to resort to an important auxiliary con-
cept for the definition of the perturbed interpolation operator.

Definition 2 (Interface twin edge) For any interface edge e ∈ Eh , there exist two inter-
face elements K1 and K2, with non-interface vertices p1 and p2, respectively, which
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Fig. 3 Two typical interface
elements K1 and K2 intersect
with the interface �. Interface
edges are plotted by black
straight lines on the interface.
Interface twin edges are
visualized as the piecewise
smooth curves composed of blue
and read curved segments (color
figure online)

share the interface edge e and another interface node q, such that there is a unique
curve ẽ which is the intersection by the interface and two triangular faces determined
by p1 with e, and p2 with e, respectively. We call ẽ the interface twin edge associated
with the interface edge e (see Fig. 3).

Basically, the interface edge e is a straight segment, and the interface twin edge
ẽ is a piecewise smooth curve as represented by the alternating red and blue smooth
curves which shares two end nodes and possibly some other points with the interface
edge e. (see Fig. 3).

Remark 1 Observe that face areas bounded by the interface edge e and its twin one ẽ
are still contained within the δ-region. Specifically, let us denote by Se,̃e the piecewise
planar surface bounded by the curves e and ẽ as shown in Fig. 3. It is readily seen by
Assumption 2 that

Se,̃e ⊂ Sδ. (8)

In the subsequent lemmas, theorems, and proofs, etc., two additional technical
assumptions are made. First, the triangulation Th is assumed to be quasi-uniform in
the sense of [11], namely, γ (Th) is bounded from above by some constant. It is obvious
that the bound for γ (Th) implies a bound of ρ(Th), which imposes a limitation on the
number of tetrahedra sharing a vertex, an edge, and a face [11]. We will point out the
necessary modification to relax quasi-uniformity by enforcing only shape-regularity
of finite element meshes. Second, the triangulation Th is assumed to be sufficiently
fine to allow good approximation of the interface. For some interface with bizarre
geometry the interface twin edges might not lie within the δ-region for some coarse
meshes. Nevertheless, the smoothness of the interface makes it look flat from a local
point of view. Thus we can always refine the mesh locally until a well-approximated
interface twin edge is obtained.

2.3 Finite element discretization

A suitable trial space Eh ⊂ H0(curl;�) for the Galerkin discretization of (5) is sup-
plied by the lowest order H(curl;�)-conforming edge elements of the first family
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due to Hiptmair [17] and Nédélec [25]. Let Êh be the set of all interior edges of Th ,
the degrees of freedom of Eh are given by path integrals

vh �→
∫

e
vh · ds, e ∈ Êh .

It is well established that there exists a well-defined global finite element interpolation
operator Ih : H1(curl;�) �→ Eh [24, Thm. 5.41, Sect. 5.5] which has the following
approximation property.

Lemma 1 Let (Th)h be a family of quasi-uniform, oriented unstructured tetrahedral
meshes on �. Then the interpolant Ihu possesses the optimal approximation property:

‖u − Ihu‖H(curl;�) ≤ Ch‖u‖H1(curl;�) ∀ u ∈ H1(curl;�). (9)

With the finite element function spaces presented above, the finite element approx-
imation of (5) can be stated as follows:
Problem (Ph) Seek uh ∈ Eh such that

a(uh, vh) =
∫

Ω

f · vh dx ∀ vh ∈ Eh . (10)

The existence and uniqueness of the solution of (10) follows similarly from those
of the continuous problem (P).

The practical evaluation of the stiffness matrix associated with the bilinear form
a(·, ·) in (10) can be very complicated on an interface element when it is cut through
by the interface, especially in three dimensions. A much more convenient formulation
is obtained by replacing the original bilinear form (6) with an approximate bilinear
form ah(·, ·):

ah(uh, vh) =
∑
K∈T

∫
K

(χK curl uh · curl vh + βuh · vh) dx, (11)

where the coefficients χK are elementwise constant. That is, for every K ∈ T , χK is
taken to be χi if K ∈ T i or T i∗ when i ∈ {1, 2}.

With the modified bilinear form in (11), we can now define a more practical finite
element method for the variational problem (P).
Problem (̃Ph) Find uh ∈ Eh such that

ah(uh, vh) =
∫

Ω

f · vh dx ∀ vh ∈ Eh . (12)

It can be immediately seen that the bilinear form ah(·, ·) still preserves coercivity
and continuity, and thus the well-posedness of Problem (̃Ph) is assured. Moreover, the
two bilinear forms ah and a are related to each other by

a(u, v) = ah(u, v) + a�(u, v), (13)
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where the bilinear form a�(·, ·) satisfies

|a�(u, v)| ≤ C‖u‖H(curl;Sδ)‖v‖H(curl;Sδ) , (14)

with the constant C depending only on the coefficients χi ’s and β.

2.4 Interface-aware interpolation operator

It is worth remarking that there are no ambiguities when Ih is applied to functions in
H0(curl;�) ∩ H1(curl;�1) ∩ H1(curl;�2), but the corresponding interpolant is
not a good candidate for investigating best approximation estimates. Instead we shall
define a problem-specific interface-aware interpolation operator, which can be viewed
as a perturbed version of Ih . The crux here is to define a perturbed degree of freedom
for each interface edge of an interface element through a surrogate degree of freedom
defined along the interface twin edge. To be more precise, we elucidate the idea in the
following definition.

Definition 3 (Interface-aware interpolation operators) Let Th be an oriented unstruc-
tured tetrahedral triangulation satisfying Assumptions 1 and 2 with mesh size h, and
Eh the lowest order Nédélec H(curl;�)-conforming edge element spaces of the first
family on Th .

For a function u ∈ H0(curl;�) ∩ H1(curl;�1) ∩ H1(curl;�2), we define a
perturbed Eh Interface-aware interpolation operator

Ĩh : H0(curl;�) ∩ H1(curl;�1) ∩ H1(curl;�2) �→ Eh

and its interpolant Ĩhu as follows:

1. For any non-interface edge e ∈ Êh , we set
∫

e Ĩhu · ds := ∫
e u · ds.

2. For any interface edge e ∈ Êh with the corresponding interface twin edge ẽ, we
set

∫
e Ĩhu · ds := ∫̃

e u · ds.

We remark that the interface-aware interpolation operator Ĩh is introduced only for
the subsequent error estimates, and it is not needed in the numerical implementation
of the finite element method (̃Ph).

3 Theoretical tools

In this section, we supply some technical results which are indispensable tools for
the convergence analysis of finite element methods for H(curl;�)-elliptic interface
problems.

We first present a δ-strip argument which is used for the error estimate in the region
near the interface and first appeared in [21, Lemma 3.4].

Lemma 2 Let i ∈ {1, 2}. Then it holds for any zi ∈ H1(Ωi ) that

‖zi‖L2(Si
δ)

≤ C
√

δ‖zi‖H1(Ωi )
,

provided that δ is sufficiently small.
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There is a straightforward corollary to Lemma 2 in H1(curl;�i ) spaces by simply
using the Cauchy–Schwarz inequality.

Corollary 1 Let i ∈ {1, 2}. Then it holds for any zi ∈ H1(curl;�i ) that

‖zi‖H(curl;Si
δ)

≤ C
√

δ‖zi‖H1(curl;�i )

provided that δ is sufficiently small.

Motivated by the construction of extension operators for functions in Sobolev spaces
Hk(�) [1,14], in this subsection we propose a new extension for functions in the space
H1(curl). This new extension will play a crucial role in the subsequent error estimate
on interface elements.

The following extension theorem can be found in [14, Theorem 1, Sect. 5.4].

Theorem 1 (H2-extension theorem) Assuming that U is a connected bounded domain
in R

3 with C2-smooth boundary ∂U. Choose a bounded open set V such that U ⊂⊂ V .
Then there exists a bounded linear extension operator

E : H2(U ) → H2(R3)

such that for any scalar function u ∈ H2(U ):

1. Eu = u a.e. in U, and Eu has support within V .
2. ‖Eu‖H2(R3) ≤ C‖u‖H2(U ) with C = C(U, V ) > 0.

Compared with the extension of scalar functions, vector fields must be extended
in a more delicate way to conserve their properties. Consider a vector field u ∈
H1(curl; U ). We wish to extend u to a global ũ ∈ H1(curl; R

3). Since for a scalar
function p ∈ H2(U ) we have grad p ∈ H1(curl; U ), it looks promising to define an
H1(curl)-extension operator Ecurl based on the commuting diagram property [17]:

Ecurl(grad p) = grad(Ep). (15)

It is obvious that the operator Ecurl defined in the form (15) preserves the curl-
free property of a grad field in U . While for general vector fields, we can exploit
the structure of (15) to construct a universal extension operator Ecurl taking the cue
from (15).

With the motivation above, now we can establish the H1(curl)-extension theorem
across the C2-smooth boundary.

Theorem 2 Assuming that U is a connected bounded domain in R
3 with C2-smooth

boundary ∂U. Choose a bounded open set V such that U ⊂⊂ V . Then there exists a
bounded linear extension operator:

Ecurl : H1(curl; U ) → H1(curl; R
3), (16)

such that for each u ∈ H1(curl; U ):
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1. Ecurlu = u a.e. in U.
2. ‖Ecurlu‖H1(curl;R3) ≤ C ‖u‖H1(curl;U ) with C = C(U, V ) > 0.

Proof We first construct a special extension from within a half ball. For a fixed x0 ∈
∂U , we first suppose that ∂U is flat near x0 which is lying in the plane {x ∈ R

3 | x3 =
0}. Let us assume that there exists an open ball B = {x ∈ R

3; |x − x0| < r} with
center x0 and radius r > 0 such that

{
B+ := B ∩ {x3 ≥ 0} ⊂ U ,

B− := B ∩ {x3 < 0} ⊂ �\U .

Suppose p ∈ C∞(U ). A second-order reflection of p from B+ to B− can be
obtained as follows:

p̃(x) :=
⎧⎨
⎩

p(x), if x ∈ B+;∑3

j=1
λ j p

(
x1, x2,− x3

j

)
, if x ∈ B−,

where (λ1, λ2, λ3) = (6,−32, 27) is the unique solution of the 3 × 3 system of linear
equations

3∑
j=1

(
−1

j

)k

λ j = 1, k = 0, 1, 2. (17)

With this special choice of λ’s, it is straightforward to check that p̃ ∈ C2(B).
Now we define a reflection of grad p from B+ to B− based on (15), that is,

g̃rad p :=
{

grad p, if x ∈ B+;
grad p̃, if x ∈ B−,

(18)

or written in the vector form,

g̃rad p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝px1

px2

px3

⎞
⎠ , if x ∈ B+;

⎛
⎜⎜⎜⎜⎜⎜⎝

∑3

j=1
λ j px1

(
x1, x2,− x3

j

)
∑3

j=1
λ j px2

(
x1, x2,− x3

j

)
∑3

j=1
−λ j

j
px3

(
x1, x2,− x3

j

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, if x ∈ B−.

(19)

Comparing the components of g̃rad p in (19) in the B+ and B−, we can construct a ten-
tative extension formula for a general vector field w(x) = (w1(x), w2(x), w3(x))T ∈
C∞(B+) in the following form,
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w̃(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(x), if x ∈ B+;⎛
⎜⎜⎜⎜⎜⎜⎝

∑3

j=1
λ jw

1
(

x1, x2,− x3

j

)

∑3

j=1
λ jw

2
(

x1, x2,− x3

j

)

∑3

j=1
−λ j

j
w3

(
x1, x2,− x3

j

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, if x ∈ B−.
(20)

Detailed calculation (cf. [19]) reveals

‖w̃‖H1(curl;B) ≤ C ‖w‖H1(curl;B+) , (21)

where the constant C is a polynomial of λ1, λ2 and λ3.
For bounded domains with compact C2-smooth boundaries, we can apply the usual

flattening technique and partition of unity in order to reduce the situation to the one
discussed above. ��

An immediate result from Theorem 2 is the following corollary.

Corollary 2 There exist two bounded linear operators for i = 1, 2, respectively

Ei
curl : H1(curl;�i ) → H1(curl;�) (22)

such that for each u ∈ H1(curl;�i ):

1. Ei
curlu = u a.e. in �i .

2.
∥∥Ei

curlu
∥∥

H1(curl;�)
≤ C ‖u‖H1(curl;�i )

with C = C(�i ) > 0.

For the later use, we will need the following variant of the well-known trace inequal-
ity in a pyramid. The crucial fact is that the estimate in this inequality can be applied
to a pyramid with slender bottom face. Readers may refer to [19] for its proof.

Lemma 3 Let P be a pyramid with F being its quadrilateral bottom face and O its
apex (see Fig. 4). Then we have

‖u‖2
L2(F)

≤ 3

d
‖u‖L2(P)(h P‖grad u‖L2(P) + ‖u‖L2(P)) ∀u ∈ H1(P) ,

where d := dist(O, F), h P := max{|x − y| : x, y ∈ P}.
Moreover, if d ∼ O(h P ) and h P < 1, we have

‖u‖2
L2(F)

≤ C

(
1

h P
‖u‖2

L2(P)
+ ‖grad u‖2

L2(P)

)
∀u ∈ H1(P) , (23)

with C > 0 independent of h P .
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Fig. 4 Sketch of the pyramid
from Lemma 3

4 Convergence analysis

In this section, we show the optimal convergence for the H(curl)-elliptic interface
problem (1)–(4) using the lowest order H(curl;�)-conforming finite element approx-
imation. We will make use of a perturbation argument combined with the technical
tools provided in Sect. 3.

First we show a technical lemma to be used for the main theorem on optimal con-
vergence.

Lemma 4 If u ∈ H0(curl;�) ∩ H1(curl;�1) ∩ H1(curl;�2), then∑
K∈T 1∗

‖E1
curlu1‖2

H(curl;K∩Ω2)
≤‖E1

curlu1‖2
H(curl;S2

δ )
≤Cδ‖u1‖2

H1(curl;Ω1)
, (24)

∑
K∈T 1∗

‖u2‖2
H(curl;K∩Ω2)

≤ ‖u2‖2
H(curl;S2

δ )
≤ Cδ‖u2‖2

H1(curl;Ω2)
, (25)

∑
K∈T 2∗

‖E2
curlu2‖2

H(curl;K∩Ω1)
≤‖E2

curlu2‖2
H(curl;S1

δ )
≤Cδ‖u2‖2

H1(curl;Ω2)
, (26)

∑
K∈T 2∗

‖u1‖2
H(curl;K∩Ω1)

≤ ‖u1‖2
H(curl;S1

δ )
≤ Cδ‖u1‖2

H1(curl;Ω1)
, (27)

with constant C = C(�1,�2) > 0.

Proof We only prove (24)–(25) since the estimates (26)–(27) are obtained from (24)–
(25) by interchanging the subscripts 1 and 2. To see (24), we note ∪K∈T 1∗ K ∩Ω2 ⊂ S2

δ ;
furthermore, since all elements of Th are pairwise disjoint, the first inequality in (24)
follows immediately. For the second estimate, using Corollary 1 and the continuity
property of the extension operator E1

curl yields:

‖E1
curlu1‖2

H(curl;S2
δ )

≤ Cδ‖E1
curlu1‖2

H1(curl;Ω2)
≤ Cδ‖u1‖2

H1(curl;Ω1)
.

The estimate (25) is obtained analogously by noting the fact that ∪K∈T 1∗ K ∩Ω2 ⊂ S2
δ .
��
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To obtain the convergence result, we need to show the approximation property for
the interface-aware interpolation operator Ĩh in Definition 3.

Lemma 5 Assume u ∈ H0(curl;�) ∩ H1(curl;�1) ∩ H1(curl;�2), Then we have
the following error estimate under Assumptions 1 and 2:

∥∥u − Ĩhu
∥∥

H(curl;Ω)
≤ C

(
h + √

δ + δ√
h

) (
‖u‖H1(curl;Ω1)

+ ‖u‖H1(curl;Ω2)

)
.

(28)

Proof Take any interface element K ∈ T 1∗ . We observe a crucial identity following
from Definition 3 of the perturbed interpolation operator

Ĩhu
∣∣
K = ĨhE1

curlu
∣∣∣
K

.

Thus we can always decompose the difference u − Ĩhu over this interface element K
into three parts:

(
u − Ĩhu

)∣∣
K =

(
u − E1

curlu
)∣∣∣

K
+

(
E1

curlu − IhE1
curlu

)∣∣∣
K

+
(

IhE1
curlu − ĨhE1

curlu
)∣∣∣

K
. (29)

Noting that u = E1
curlu on K ∩ �1, then employing Lemma 4 and the continuity

of E1
curl lead to the error estimate for the first term in (29):

∑
K∈T 1∗

∥∥∥u − E1
curlu

∥∥∥2

H(curl;K )
≤ Cδ

(
‖u‖2

H1(curl;�1)
+ ‖u‖2

H1(curl;�2)

)
. (30)

Lemma 1 and the continuity of E1
curl give

∑
K∈T 1∗

∥∥∥E1
curlu − IhE1

curlu
∥∥∥2

H(curl;K )
≤ Ch2 ‖u‖2

H1(curl;�1)
. (31)

For the third term on the right-hand side of (29), we observe that the only difference
between IhE1

curlu and ĨhE1
curlu comes from their degrees of freedom endowed with the

interface edges which are immersed within the interface buffer region Sδ . Therefore
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∥∥∥IhE1
curlu − ĨhE1

curlu
∥∥∥2

H(curl;K )

≤ C
∑

e∈Eh∩K∩Sδ

⎛
⎜⎝

∥∥∥∥∥∥
⎛
⎝∫

e

E1
curlu · ds −

∫
ẽ

E1
curlu · ds

⎞
⎠ be

∥∥∥∥∥∥
2

+
∥∥∥∥∥∥
⎛
⎝∫

e

E1
curlu · ds −

∫
ẽ

E1
curlu · ds

⎞
⎠ curl be

∥∥∥∥∥∥
2
⎞
⎟⎠

≤ C
∑

e∈Eh∩K∩Sδ

(
‖be‖2 + ‖curl be‖2

) ⎛
⎝∫

e

E1
curlu · ds −

∫
ẽ

E1
curlu · ds

⎞
⎠

2

≤ C
∑

e∈Eh∩K∩Sδ

(h + 1

h
)

⎛
⎝∫

e

E1
curlu · ds −

∫
ẽ

E1
curlu · ds

⎞
⎠

2

≤ C
∑

e∈Eh∩K∩Sδ

1

h

⎛
⎜⎝

∫
Se,̃e

curl E1
curlu · dS

⎞
⎟⎠

2

≤ C
∑

e∈Eh∩K∩Sδ

1

h

∣∣Se,̃e
∣∣
⎛
⎜⎝

∫
Se,̃e

| curl E1
curlu|2dS

⎞
⎟⎠

≤ C
∑

e∈Eh∩K∩Sδ

δ

⎛
⎜⎝

∫
Se,̃e

| curl E1
curlu|2dS

⎞
⎟⎠ , (32)

where we have employed estimates for edge element basis functions in the third
inequality (cf. [24, Lemma. 5.43]), the Stokes theorem in the fourth inequality, and
the Cauchy–Schwarz inequality in the fifth inequality. In the last inequality,

∣∣Se,̃e
∣∣

stands for the area of Se,̃e, which is of the order hδ in view of Assumption 2 and
Remark 1.

We continue by estimating the last term in (32). For each piecewise planar surface
Se,̃e, it can be embedded into a narrow region between the slim bottom sides of two
pyramid-type elements Pe

1 and Pe
2 which share the same apex q and lie in two adjacent

interface elements K e
1 and K e

2 , respectively, sharing the common interface edge e (see
Fig. 5). These pyramids Pe

1 and Pe
2 are taken to be so slender that they lie completely

inside Sδ .
Now by enlarging the area of the surface integral from Se,̃e to be the two slender

bottom sides of those two pyramids Pe
1 and Pe

2 , observing that the height to the bottom
sides of Pe

1 and Pe
2 are still of the order h, and applying Lemma 3, we arrive at
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Fig. 5 Piecewise planar surface
Se,̃e imbedded in pyramid-type
elements Pe

1 and Pe
2 in two

adjacent interface elements K e
1

and K e
2

∫
Se,̃e

| curl E1
curlu|2dS ≤ C

(
1

h

∥∥∥curl E1
curlu

∥∥∥2

L2(Pe
1 ∪Pe

2 )

+
∥∥∥grad curl E1

curlu
∥∥∥2

L2(Pe
1 ∪Pe

2 )

)
. (33)

Plugging (33) into (32), and summing over all K in T 1∗ give us

∑
K∈T 1∗

∥∥∥IhE1
curlu − ĨhE1

curlu
∥∥∥2

H(curl;K )

≤ C

(
δ

h

∥∥∥curl E1
curlu

∥∥∥2

L2(Sδ)
+ δ

∥∥∥grad curl E1
curlu

∥∥∥2

L2(Sδ)

)

≤ C(
δ2

h
+ δ)

∥∥∥curl E1
curlu

∥∥∥2

H1(�)

≤ C(
δ2

h
+ δ) ‖u‖2

H1(curl;�1)
. (34)

In the first inequality we have used the fact that

⋃
K∈T 1∗

⋃
e∈Eh∩K∩Sδ

(Pe
1 ∪ Pe

2 ) ⊂ Sδ ,

and that, thanks to the quasi-uniformity assumption on the triangulation, there is only
finite overlap among those slim pyramids sharing a common interface edges. In the
second inequality we have employed Lemma 2 for the first term, and the continuity
of E1

curl in the last inequality.
In the next step, for any non-interface K ∈ T 1, we see that Ĩhu and Ihu are iden-

tical for u ∈ H1(curl; K ). Thus a classical interpolation approximation (cf. [24,
Theorem 5.41]) yields
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∑
K∈T 1

∥∥u − Ĩhu
∥∥2

H(curl;K )
=

∑
K∈T 1

‖u − Ihu‖2
H(curl;K )

≤ C
∑

K∈T 1

h2 ‖u‖2
H1(curl;K )

≤ Ch2 ‖u‖2
H1(curl;�1)

. (35)

Combining (29), (30), (31), (34), and (35) yields

∑
K∈T 1∪T 1∗

∥∥u−Ĩhu
∥∥2

H(curl;K )
≤C(

δ2

h
+ δ + h2)

(
‖u‖2

H1(curl;�1)
+‖u‖2

H1(curl;�2)

)
.

(36)

In a completely analogous manner, we can repeat the previous arguments by inter-
changing the indices from 1 to 2 and arrive at the same bound for

∑
K∈T 2∪T 2∗∥∥u − Ĩhu

∥∥2
H(curl;K )

. Combining the error estimates from two parts yields the desired
result (28) and thus completes the proof. ��
Remark 2 It is possible to relax the assumption on the quasi-uniformity of the trian-
gulation by modifying slightly the δ-region assumption. That is,

Sδ := {x ∈ Ω | dist(x, �) < δ}

and δ is a mesh-dependent smooth function such that

δ(x) = O(h2
T )

for x ∈ � in some interface element T . In other words, the δ-region is no longer a
tubular region of fixed width(radius) but depends on the local mesh size of the interface
elements.

Note that all the error estimates in the proof of Lemma 5 are local. For an interface
element T , observe first that hT , meshsize of local element T , serves as the denom-
inator in (34). In the original assumption, δ = O(h2) with h being global meshsize,
therefore we my lose optimality there. To guarantee the optimality in the end, thus
δ2/hT requires us to assume a modified assumption on δ, namely, δ = O(h2

T ). For
smooth interface, we can always refine locally the mesh to achieve the second order
approximation of the interface.

Now we are in a position to state our main theorem about the optimal convergence
of edge element Galerkin solutions of H(curl)-elliptic interface problems.

Theorem 3 Let u and uh be the solutions to problems (P) and (̃Ph), respectively,
and assume u ∈ H0(curl;�) ∩ H1(curl;�1) ∩ H1(curl;�2). Then we have the
following error estimate under Assumptions 1 and 2:

‖u − uh‖H(curl;�) ≤ Ch(‖u‖H1(curl;�1)
+ ‖u‖H1(curl;�2)

) (37)

with the constant C > 0 independent of u and the meshsize h.
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Proof By the first Strang lemma (see, e.g., [11], Theorem 4.1.1) applied to (10) and
(12)

‖u−uh‖H(curl;Ω) ≤C inf
wh∈Eh

{
‖u−wh‖H(curl;Ω)+ sup

vh∈Eh

|a(wh, vh)−ah(wh, vh)|
‖vh‖H(curl;Ω)

}
.

(38)

In particular, we choose wh = Ĩhu. By Lemma 5 we have

‖u−Ĩhu‖H(curl;Ω) ≤ C(
δ√
h

+h+√
δ)

(
‖u‖H1(curl;Ω1)

+‖u‖H1(curl;Ω2)

)
. (39)

Next, for any vh ∈ Eh we can derive by using Lemma 4 and Corollary 1 that

|a�(̃Ihu, vh)| ≤ C ‖̃Ihu‖H(curl;Sδ)‖vh‖H(curl;Sδ)

≤ C
(‖u‖H(curl;Sδ) + ‖u − Ĩhu‖H(curl;Sδ)

) ‖vh‖H(curl;Sδ)

≤ C (
√

δ+h+ δ√
h

)
(
‖u‖H1(curl;Ω1)

+‖u‖H1(curl;Ω2)

)
‖vh‖H(curl;�),

which implies that

sup
vh∈Eh

|a�(̃Ihu, vh)|
‖vh‖H(curl;�)

≤ C

(√
δ + h + δ√

h

) (
‖u‖H1(curl;Ω1)

+ ‖u‖H1(curl;Ω2)

)
.

(40)

The desired estimate follows from Assumption 2 by substituting δ ∼ O(h2) into
wherever δ occurs in (38)–(40) and plugging (39)–(40) into (38). ��

Now we relax the regularity of the global solution u in Theorem 3 and require
only u ∈ H0(curl;�) ∩ Hs(curl;�1) ∩ Hs(curl;�2) for 0 ≤ s ≤ 1. Interpola-
tion arguments yield optimal s-order of convergence by interpolation (see, e.g., [23,
Theorem B.2]).

Theorem 4 Let u and uh be the solutions to problems (P) and (̃Ph), respectively, and
assume u ∈ H0(curl;�) ∩ Hs(curl;�1) ∩ Hs(curl;�2) for 0 ≤ s ≤ 1. Then we
have, under Assumptions 1 and 2:

‖u − uh‖H(curl;�) ≤ Chs(‖u‖Hs (curl;�1) + ‖u‖Hs (curl;�2)). (41)

with the constant C > 0 independent of u and the meshsize h.

Proof Combining the following stability from the Galerkin projection

‖u − uh‖H(curl;�) ≤ C ‖u‖H(curl;�) , (42)
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with the convergence result (37) in Theorem 3 enables us to achieve the desired result
by interpolation in light of the characterization of Hs(curl;�i ) as interpolation space[
H(curl;�i ), H1(curl;�i )

]
s (see [18]). ��

5 Numerical experiments

In this section, we present a 3D numerical example for verification by using the first
family of lowest order edge elements. Our numerical experiments are implemented
using Matlab combined with Femlab. In the sequel, we will check the conver-
gence history for the relative error in the H(curl;�)-norm and energy norm defined,
respectively, by

Relative error := ‖u − uh‖H(curl;�)

‖u‖H(curl;�)

, Relative energy error := ‖u − uh‖a

‖u‖a
.

Example We take � = {(x, y, z) : x2 + y2 + z2 ≤ r2} and Let the interface � be
a spherical surface {(x, y, z) : x2 + y2 + z2 = r1}. The exact solution u(x, y, z) is
given by

u(x, y, z) =
{

u1(x, y, z)/χ1, if x2 + y2 + z2 ≤ r1 ;
u2(x, y, z)/χ2, if r1 < x2 + y2 + z2 ≤ r2,

(43)

where u1(x, y, z) is given by⎛
⎝ x + n1(r2

1 − x2 − y2)y − n1(r2
1 − x2 − y2)z

−n1(r2
1 − x2 − y2)x + y + n1(r2

1 − x2 − y2)z
n1(r2

1 − x2 − y2)x − n1(r2
1 − x2 − y2)y + z

⎞
⎠

and u2(x, y, z) by⎛
⎝ x + n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)y − n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)z

−n2(r2
1 − x2 − y2)(r2

2 − x2 − y2)x + y + n2(r2
1 − x2 − y2)(r2

2 − x2 − y2)z
n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)x − n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)y + z

⎞
⎠

We choose β = 1, χ1 = 1, χ2 = 0.1, r1 = 1, r2 = 2, n2 = 20, n1 = n2(r2
2 − r2

1 )

and derive the source functions f through the Eq. (1) using the exact solution (43)
which indeed satisfies the homogeneous boundary condition and jump conditions.
Numerical convergence tests are carried out to analyze the error decay rates using
lowest order edge elements of the first family. We start our tests on a rather coarse
mesh with mesh size h = 1.2968 and then refine the mesh in a regular and uniform
way which subdivides a coarse element into eight smaller ones. The refinement pro-
cess will be done for four consecutive times which amounts to around 2.5 million
degrees of freedom at the finest mesh with meshsize h = 0.0811. From Fig. 6, we see
clearly that the convergence rates tend to be parallel to the reference line of first order
in terms of the meshsize for different jump ratios of coefficients, which consolidates
our theoretical prediction.
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Fig. 6 a The exact solution when χ1 = 1, χ2 = 0.1. b A sample slice view of interface-aligned mesh.
The convergence rate when χ1 = 1, χ2 = 0.1 c; χ1 = 1, χ2 = 1000 d; χ1 = 1, χ2 = 0.001 (e)

Table 1 Relative error in the H(curl; �)-norm versus relative jump of coefficients at different levels of
refinement

χ2/χ1 Level of refinement

1 2 3 4 5

10−3 0.7763 0.6122 0.3481 0.1676 0.0791
10−2 0.7263 0.5222 0.2810 0.1418 0.0709

10−1 0.6628 0.4912 0.2736 0.1405 0.0707

100 0.6587 0.4915 0.2742 0.1408 0.0708

101 0.7948 0.5451 0.2974 0.1522 0.0767

102 0.8616 0.5718 0.3088 0.1578 0.0795

103 0.8635 0.5724 0.3090 0.1579 0.0795

Table 2 Relative error in the energy norm (Err.) versus jump ratio of coefficients on a fine mesh with
h = 0.04

Jump ratio χ2/χ1

10−8 10−6 10−4 10−2 100 102 104 106 108

Err. 0.0514 0.0514 0.0520 0.0561 0.0720 0.0691 0.0671 0.0671 0.0671
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In addition, we numerically check the relation between the relative error and rela-
tive jump of the coefficients χ2/χ1. As can be seen from Table 1, the relative error in
the H(curl;�)-norm does not fluctuate wildly as we refine the meshes.

Last, we test the relation between the relative error in the energy norm and relative
jump of the coefficients χ2/χ1. On a typical fine mesh with meshsize h = 0.04, we
increase the relative jump of coefficients from 10−8 to 108 and record the correspond-
ing relative energy error curve versus the relative jump in Table 2, It can be seen
that the numerical solution converges quite robustly in the sense of energy norm with
respect to the relative jump of coefficients as in the first example.

6 Conclusion

We have analyzed the convergence of the H(curl;�)-conforming finite element
method for H(curl;�)-elliptic interface problems based on a family of
interface-aligned meshes. The difficulty mainly arises from the discontinuity of the
magnetic susceptibility coefficient χ in the curl χ curl term. We note that the analysis
framework here can be generalized naturally to cover the case when the coefficient β

in the low order term also has jumps across the interface, which may be due to the dif-
ferent conductivity of several materials. Optimal convergence results in H(curl;�)-
norm are obtained under reasonable regularity assumptions. Further work may target
the time-dependent H(curl;�)-interface problem and H(div;�)-elliptic interface
problem.
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