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We present a numerical method for reconstructing the coefficient in a wave equation from a single measure-
ment of partial Dirichlet boundary data. The original inverse problem is converted to a nonlinear integral
differential equation, which is solved by an iterative method. At each iteration, one linear second-order
elliptic problem is solved to update the reconstruction of the coefficient, then the reconstructed coefficient
is used to solve the forward problem to obtain the new data for the next iteration. The initial guess of the
iterative method is provided by an approximate model. This model extends the approximate globally con-
vergent method proposed by Beilina and Klibanov, which has been well developed for the determination of
the coefficient in a special wave equation. Numerical experiments are presented to demonstrate the stability
and robustness of the proposed method with noisy data. © 2014 Wiley Periodicals, Inc. Numer Methods Partial
Differential Eq 31: 289–307, 2015
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I. INTRODUCTION

We shall develop a numerical method for an inverse problem arising from reconstructing the
coefficient in the following wave equation

∂2u

∂t2
= ∇ · (μ∇u) in R

d × (0, ∞), (1.1)

where u may be the displacement or pressure of some physical medium and the coefficient μ

may represent the physical properties of the medium. This inverse problem is involved when one
tries to identify the locations and physical properties of inhomogeneous media sitting inside a
homogeneous background medium. Such a technique is very useful and may have several physical
applications. The wave model (1.1) may be considered as a special case of the time-dependent
transverse magnetic polarized wave scattering problem [1], or as a simplified acoustic wave
model for fluids with variable density and constant bulk modulus [2–4]. It may also be viewed
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as a simplified model for the shear waves in a two-dimensional isotropic elastic medium when
the scalar displacement travels along the direction transversal to the medium. In recent years,
some rapid identification techniques have been developed for solving the elastodynamic inverse
problem, for instance, crack/fault identification techniques are developed for cracks having free
boundary condition using a reciprocity gap function [5, 6], and linear sampling techniques are
designed to locate inclusions in the isotropic elastic medium [7, 8]. In this work, we shall mainly
focus on the inverse problem of reconstructing the coefficient μ in the model equation (1.1), using
some Dirichlet boundary data from a single measurement. We will develop a numerical method
based on the approximate globally convergent method proposed by Beilina and Klibanov in [9],
which will be referred to as the Beilina–Klibanov method.

The least-squares minimization combined with a Tikhonov regularization is a popular tech-
nique to solve a multidimensional coefficient inverse problem (MCIP). However, this technique
may encounter a common barrier to numerical solutions of inverse problems, that is, the iterative
optimization process may be trapped in the neighborhoods of some local minima. This difficulty
may be overcome when a good initial guess is available, but it may not be always convenient
and possible to achieve a reasonable initial guess. An intriguing and very challenging goal is to
construct a numerical method which would deliver a good approximation to the exact solution
without any a priori knowledge of a small neighborhood of this solution. The development of
the Beilina–Klibanov method aims to reach this goal by proposing a method which does not rely
on the construction of a least-squares functional, instead it makes full use of the structure of the
underlying forward model.

The Beilina–Klibanov method for MCIPs was first proposed in [9], and further developed in
many follow-up studies. The detailed developments of this method and its convergence analysis
are available in a recent monograph [10]. The main advantage of this method is that, within the
framework of a reasonable approximation, it delivers a good approximation to the true solution
without any advanced knowledge of a small neighborhood of this solution. Indeed, it is well
known that MCIPs are highly nonlinear and ill-posed. In the case of a single measurement, as
considered by the Beilina–Klibanov method and also in our current work, the amount of data is
minimized.

The Beilina–Klibanov method has been well developed so far only for the hyperbolic equation

c(x)
∂2u

∂t2
= �u (1.2)

with the unknown coefficient c(x) > 0, where c(x) is sitting outside all derivatives. The governing
model equation (1.1) investigated in this work is quite different from (1.2) and more challenging
for its numerical inversions. This work explores the possibility to extend the Beilina–Klibanov
method to the wave equation (1.1).

The rest of the article is arranged as follows. The forward and inverse problems of our interest
are introduced in Section II. A nonlinear integral differential equation is derived in Section III,
which is crucial to the first step of the new numerical reconstruction algorithm. In Section IV, we
show how to obtain the first approximation to the so-called “tail function” and formulate our new
algorithm in Section V. Some numerical experiments are presented in Section VI.

II. THE FORWARD AND INVERSE PROBLEMS

In this work, we shall be concerned with the inverse problem of reconstructing the coefficient μ

in the wave equation (1.1). Consider an inhomogeneous medium �, an open bounded domain
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RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 291

sitting in the homogeneous background R
d . We assume that the coefficient μ(x) is piecewise

C1-smooth such that

0 < β ≤ μ(x) ≤ μ0 in R
d ; μ(x) = μ0 in R

d\� , (2.1)

or

μ0 ≤ μ(x) ≤ γ < ∞ in R
d ; μ(x) = μ0 in R

d\� . (2.2)

For sake of exposition, we assume that the incident plane wave propagates along some axis. For
definiteness, this propagating axis is specified to be x2-axis. Then, we may complement Eq. (1.1)
with the following initial conditions:

u(x, 0) = 0 and
∂u

∂t
(x, 0) = δ(x2 − x02) (2.3)

where x02 ∈ R is a fixed point. Furthermore, it is reasonable for us to assume that the plane wave
is excited outside the inhomogeneous medium region �, namely � ∩ {x2 = x02} = ∅.

Alternatively, we may also consider the case where a plane wave is generated along a line/plane
{x2 = x02}, namely

∂2u

∂t2
= ∇ · (μ∇u) + δ(x2 − x02)r(t) in R

d × (0, ∞), (2.4)

where r(t) is the source strength at time t. Correspondingly, we can complement Eq. (1.1) with
the following initial conditions:

u(x, 0) = 0 and
∂u

∂t
(x, 0) = 0 . (2.5)

In the case of a uniform plane wave, it is known that the phase speed of the wave is
√

μ. Con-
dition (2.1) states a case when the inclusions concerned are with a lower wave speeds than that
of the background. Conversely, Condition (2.2) states a case when one detects some inclusions
having a faster wave speed than the background.

A. The Forward Problem in Laplace Domain

The Beilina–Klibanov method is constructed based on the governing forward equation in the
pseudofrequency domain. For this aim, we consider the Laplace transform of function u(x, t):

w(x, s) =
∫ ∞

0
u(x, t)e−st dt ∀ s > s (2.6)

where s is a positive constant such that the above integral converges. The parameter s is called
the pseudofrequency. By applying the Laplace transform to the system (1.1) and (2.3), we obtain
the wave equation in the pseudofrequency domain:

∇ · (μ∇w) − s2w = −δ(x2 − x02) ∀ x ∈ R
d , s ≥ s. (2.7)

It was proved in [10] (Theorem 2.7.1) that lim|x|→∞w(x, s) = 0 if s is sufficiently large, when
δ(x2 − x02) is replaced by a point source of the form δ(x − x0). In this work, we shall assume that

lim
|x| → ∞

[w(x, s) − w0(x, s)] = 0 ∀s > s, (2.8)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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292 CHOW AND ZOU

for sufficiently large s, where w0 is the fundamental solution to the equation �w0 − s2w0 =
−δ(x2 − x02), namely

w0(x, s) = exp(−s|x2 − x02|)
2s

.

B. The Inverse Problem

We are now going to formulate the inverse problem of our interest in both the time domain and
the pseudofrequency domain. Let � be a nonempty relatively open subset of ∂�, where we shall
assume that the solution u(x, t) is measured.

Inverse Problem in Time Domain. Given the following measurement data:

u = g(x, t) on � × (0, T ) , (2.9)

determine the coefficient μ in the following wave system:

∂2u

∂t2
= ∇ · (μ∇u) in R

d × (0, ∞), (2.10)

u(x, 0) = 0,
∂u

∂t
(x, 0) = δ(x2 − x02) . (2.11)

Inverse Problem in Pseudofrequency Domain. Given the following boundary data:

w(x, s) =
∫ ∞

0
g(x, τ)e−sτ dτ =: φ(x, s) on �, (2.12)

determine the coefficient μ(x) in the following wave system in the pseudofrequency domain:

∇ · (μ∇w) − s2w = −δ(x2 − x02) in R
d × (s, ∞) , (2.13)

lim
|x|→∞

[w(x, s) − w0(x, s)] = 0 ∀s > s . (2.14)

The fact that the time interval is infinite in (2.12) is not a serious restriction. In fact, noting that
the kernel of the Laplace transform integral decays rapidly with τ → ∞, only a small portion
of the interval (0, ∞) provides an essential contribution to this integral. Hence, only the data of
g(x, t) on this small portion are important or required in numerical reconstructions.

III. A NONLINEAR INTEGRAL DIFFERENTIAL EQUATION

In this section, we develop a numerical reconstruction method for the inverse problem we formu-
lated in Section IIA. To do so, we extend the basic idea of the Beilina–Klibanov method developed
for Eq. (1.2) to the wave equation (1.1) and derive a crucial integral differential equation. Noting
the fact that the line/plane {x2 = x02} is outside the inhomogeneous medium region �, we obtain
from (2.7) the equation

μ−1(s2w) = �w + ∇ ln μ · ∇w in � .

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 293

If we define a new function v := (ln w)/s2, then v satisfies

�v + s2|∇v|2 + ∇ ln μ · ∇v = 1

μ
. (3.1)

Clearly, this equation may help us find the unknown μ when v is known. However, v is not
known a priori. Therefore, we shall work out some technique to solve v first. This leads to a
fundamental integral differential equation which we intend to derive below.

The following asymptotic relation was established for the problem (3.1) under some appropriate
conditions [9, 10]:∥∥∥∥∂k

s v(x, s) − (−1)k p(x)

sk+1

∥∥∥∥
C2+α(�)

= O

(
1

sk+2

)
as s → ∞ (3.2)

for k = 0, 1 and some smooth function p in �. Now, we introduce a function q = ∂sv. Using the
decay property of q = ∂sv in (3.2), we can write

v(x, s) = −
∫ s̄

s

q(x, τ)dτ −
∫ ∞

s̄

q(x, τ)dτ := −
∫ s̄

s

q(x, τ)dτ + V (x, s̄) (3.1)

for s̄ >> 1, and V (x, s̄) satisfies

V (x, s̄) = ln w(x, s̄)

s̄2
= v(x, s̄) . (3.4)

The parameter s̄ above is called the truncated pseudofrequency and will be viewed as the
regularization parameter in our new method. The fact that s̄ can be treated as a regularization
parameter will be explained more in Section VI. The function V (x, s̄) is called the tail function.
Differentiating both sides of (3.1) with respect to s and using (3.3) and (3.4), we obtain

�q − 2s2∇q ·
∫ s̄

s

∇q(x, τ)dτ + 2s2∇q · ∇V + 2s

∣∣∣∣∇
∫ s̄

s

q(x, τ)dτ

∣∣∣∣
2

− 4s∇V ·
∫ s̄

s

∇q(x, τ)dτ + 2s|∇V |2 + ∇ ln μ · ∇q = 0 , (3.5)

where q admits the boundary condition

q(x, s) = ψ(x, s) := ∂

∂s

(
ln φ(x, s)

s2

)
on ∂� . (3.6)

Both q and V need to be solved in Eq. (3.5). To do so, we follow [9, 10] to use the layer
stripping technique and approximate q and V iteratively in the pseudofrequency direction. First,
we partition the pseudofrequency range [s, s̄] by

s = sN < sN−1 < · · · < s3 < s2 < s1 < s0 = s̄

with a uniform stepsize h, then approximate q by a piecewise constant function with respect to
this partition, namely q(x, s) = qn(x) for s ∈ (sn, sn−1] for n = N , N − 1, · · · , 1. By setting
q0 = 0, we can naturally have the following approximation

∫ s̄

s

∇q(x, τ)dτ ≈ (sn−1 − s)∇qn(x) + h

n−1∑
j=0

∇qj (3.7)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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294 CHOW AND ZOU

for s ∈ (sn, sn−1). Now in (3.5), we replace q by its piecewise constant approximation and the
integral term by the approximation (3.7), then multiply both sides of the equation by a Carleman
weight function eλ(s−sn−1) for some λ >> 1 (to be selected), and then integrate the resulting
equation with respect to s over (sn, sn−1) to obtain

�qn + A3,n|∇qn|2 − A1,n∇qn · h

n−1∑
j=0

∇qj + A1,n∇qn · ∇Vn

+ 2h2A2,n

∣∣∣∣
n−1∑
j=0

∇qj

∣∣∣∣
2

− 4A2,n∇Vn · h

n−1∑
j=0

∇qj + 2A2,n|∇Vn|2 + ∇ ln μ · ∇qn = 0, (3.8)

where the coefficients A1,n, A2,n, and A3,n have the following closed forms:

A1,n =
(∫ sn−1

sn

eλ(s−sn−1)ds

)−1 (∫ sn−1

sn

(2s2 − 4s(sn−1 − s))eλ(s−sn−1)ds

)
,

A2,n =
(∫ sn−1

sn

eλ(s−sn−1)ds

)−1 (∫ sn−1

sn

seλ(s−sn−1)ds

)
,

A3,n =
(∫ sn−1

sn

eλ(s−sn−1)ds

)−1 (∫ sn−1

sn

(−2s2(sn−1 − s) + 2s(sn−1 − s)2)eλ(s−sn−1)ds

)
.

Using (3.6), we may impose the following Dirichlet condition for the solution qn in (3.8):

qn(x) = ψn(x) := 1

h

(
ln w(x, sn−1)

s2
n−1

− ln w(x, sn)

s2
n

)
on ∂�. (3.9)

As the coefficient A3,n decays as λ → ∞ [9, 10], we shall drop the second term in (3.8) from
now on. We remark that the tail function V in (3.5) is replaced by an approximation V n in (3.8).

If the data are available only on the partial boundary � on ∂�, we may assume w takes the value
of the fundamental solution w0 on the rest of the boundary, that is, ∂�\�. Thus, the boundary
condition (3.9) changes to

qn|� = ψn(x) and qn|∂�\� = 1

h

(
ln w0(x, sn−1)

s2
n−1

− ln w0(x, sn)

s2
n

)
. (3.10)

This was done in a similar manner in [10] (section 6.8.5), and it is reasonable if the inclusions
in � do not essentially affect the propagation of the wave on the partial boundary ∂�\�. This is
the case of our interest in this work, where the backscattering data are collected along the partial
boundary �. The choice of the above boundary data will be justified numerically in Example 2
of Section VI.

IV. APPROXIMATION OF THE FIRST TAIL

Now, we discuss how to find the unknown functions qn and the approximate tail functions V n

in (3.8). A natural idea is to update qn and V n alternatively. We shall update function qn in an
inner iteration inside the domain � from Eq. (3.8), while update function V n in an outer iteration

Numerical Methods for Partial Differential Equations DOI 10.1002/num

 10982426, 2015, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.21904 by T
he C

hinese U
niversity of H

ong K
ong, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 295

from the system (2.7) and (2.8) in the entire space R
d for each new iterate μn(x) of the unknown

coefficient μ(x). Using Eq. (3.1), the coefficient μnew can be improved from μold whenever qn,
V n, and vn are available:

1

μnew(x)
= �vn(x, sn) + s2

n|∇vn(x, sn)|2 + ∇(ln μold(x)) · ∇vn(x, sn). (4.1)

To update qn and V n in (3.8), we need to find an appropriate initial approximation V1,1(x, s̄) of
the first tail V1(x, s̄). To do this, we set s = s̄ in Eq. (3.5) to obtain

�q + 2s̄2∇q · ∇V + 2s̄|∇V |2 + ∇ ln μ · ∇q = 0 in �. (4.2)

From (3.4), we see that V (x, s̄) = ln w(x,s̄)
s̄2 = v(x, s̄). Clearly, we can also view the tail V (x, s̄)

as a function of x and s̄, and sometimes we may simply write V (x, s) when it is convenient. It
then follows from the asymptotic behaviors (3.2) that the tail function V (x, s) satisfies

∂k
s V (x, s) = (−1)k p(x)

sk+1
+ O

(
1

sk+2

)
as s → ∞ (4.3)

for k = 0, 1. So, it is natural for us to propose the following initial approximation for the first tail
function V 1:

V1,1(x, s) := p(x)

s
∀s ≥ s̄ (4.4)

where p is a function of x to be determined. Under this approximate model, we can also suggest
an initial approximation of function q. Noting that the original functions q satisfies q = ∂sV , we
may naturally define the approximation of function q by

q̃(x, s) := ∂sV1,1(x, s) = ∂s

(
p(x)

s

)
= −p(x)

s2
∀s ≥ s̄. (4.5)

By substituting (4.4) and (4.5) into (4.2), we obtain

0 = �

(
−p(x)

s̄2

)
+ 2s̄2∇

(
−p(x)

s̄2

)
· ∇

(
p(x)

s̄

)
+ 2s̄

∣∣∣∣∇
(
p(x)

s̄

) ∣∣∣∣
2

+ ∇ ln μ · ∇
(
−p(x)

s̄2

)
,

which gives

�p = −∇ ln μ · ∇p . (4.6)

Noting the relations (3.6) and (4.5), we may impose the following boundary condition for p:

p = −s̄2ψ(x, s̄) on ∂� . (4.7)

Now it follows from (4.4) that the first initial tail V1,1(x, s) can be obtained by solving

�V1,1(x) + ∇ ln μ · ∇V1,1(x) = 0. (4.8)

If we assume only partial boundary data on � ⊂ ∂�, we may take the following boundary
condition for V1,1(x):

V1,1(x) = ln w(x, s̄2)

s̄2
on � and V1,1(x) = ln w0(x, s̄)

s̄2
on ∂�\�, (4.9)

where w0 is the fundamental solution. From the above, we see that we can obtain an initial
approximate tail V1,1 from the system (4.8) and (4.9) for some initial guess of μ.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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296 CHOW AND ZOU

V. A NUMERICAL RECONSTRUCTION ALGORITHM

In this section, we propose a new numerical reconstruction algorithm for the reconstruction of
the coefficient μ(x) in (1.1) based on the derivations in Sections III and IV, more accurately on
Eqs. (3.1), (3.8), (3.9) and (4.8), (4.9). We see from (3.1) that function μ(x) can be reconstructed
inside the sampling domain �. But, we need to solve the problem (2.7) and (2.8) in the entire
space R

d to update the tail function. For the purpose, we will extend each approximation of μ

from � onto the entire space R
d . As the background medium is homogeneous with a constant

coefficient μ0, we will do the extensions naturally by the constant function μ0.
Now, we are ready to formulate our reconstruction algorithm. The reconstruction is proceeded

in a larger computational domain G such that � ⊂ G.

Reconstruction Algorithm

Step 0. Choose an initial guess μ0, two stopping tolerances ε1, ε2, stepsize h, and set
μ1,0 := μ0;

Step 1. Solve the system (4.8) and (4.9) for the initial tail function V1,1. Set q0 := 0, n := 1,
k := 1.

Step 2. Solve the system (3.8) and (3.10) for qn,k with μ := μn,k−1 and Vn := Vn,k;
Update vn,k [based on (3.3) and its approximation similar to (3.7)]:

vn,k = −hqn,k − h

n−1∑
j=0

qj + Vn,k .

Compute μn,k from Eq. (4.1), and extend it from � onto G.
Step 3. Solve the problem (2.7) for wn,k+1 with coefficient μ := μn,k;

Update the tail function Vn,k+1(x) = (ln wn,k+1(x, s̄))/s̄2.
If ||Vn,k+1 − Vn,k|| > ε1, set k := k + 1 and GOTO Step 2;
Otherwise set Vn+1,1 := Vn,k+1, μn := μn,k and μn+1,0 := μn, qn := qn,k;
If ||μn − μn−1|| ≤ ε2, STOP; otherwise set n := n + 1, k := 1, GOTO Step 2.

Remark 1. In our algorithm, (4.1) is used for the reconstruction of images μn,k . This step may
cause a possible loss of regularity of the image at each iteration. To minimize any possible impact
of successive loss of regularity, we smooth the image μn,k by convolving it with a standard mollifier
K vanishing outside the unit sphere B1(0) (with a given ε > 0)

μ̃n,k(x) := 1

εd

∫
Rd

K

(
x − y

ε

)
μn,k(y)dy . (5.1)

VI. NUMERICAL EXPERIMENTS

In this section, we present a few numerical examples to test the performance of the newly proposed
Reconstruction Algorithm in Section V. We choose the computational domain and the sampling
domain to be G = [0, 1]2 and � = [0.25, 0.75]2, respectively, and the exact coefficient μ to be 1
in the homogeneous background of G, and inhomogeneous in the sampling domain �. We then
place a few inhomogeneous inclusions inside the sampling domain � and apply the new algorithm
to recover the inhomogeneities in �.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 297

Before we start the inversion process, we need to first solve the forward problem (1.1) on
the entire space R

d to generate the observation data. To do so, we should truncate the infinite
domain R

d , approximated by a finite computational domain G, and introduce some bound-
ary conditions on the artificial boundaries of G. We separate the boundary ∂G in two parts,
∂1G = ({x2 = 1}∪{x2 = 0})∩ Ḡ and ∂2G = ({x1 = 1}∪{x1 = 0})∩ Ḡ, and apply the first-order
absorbing boundary conditions on ∂1G [11]. We choose the incident plane wave that propagates
in x2-direction, and use the homogenous Neumann boundary condition on ∂2G. This leads us to
solve the following system for the expected measurement data:

∂2u

∂t2
= ∇ · (μ∇u) + δ(x2 − x02)r(t) in G × (0, T ),

u(x, 0) = ∂u

∂t
(x, 0) = 0 in G, (6.1)

∂u

∂ν
− ∂u

∂t
= 0 on ∂1G,

∂u

∂ν
= 0 on ∂2G

where we set T = 2, x02 ∈ (0.75, 1), and r(t) to be (with ω = 1/5)

r(t) =
⎧⎨
⎩

sin

(
2π

ω
t

)
if t ∈ (0, ω),

0 if t > ω.

The forward problem (6.1) is solved in the computational domain G with the given coefficient
μ using the explicit second-order central difference scheme in time but the piecewise linear finite
element method in space. The finite element method is used here for the space discretization of
the system (6.1) as it is more convenient to handle possible jumps of the given coefficient μ in
the system [12]. System (6.1) is solved in G with a very fine mesh of �x = 1/256 and a very
small time step �t = 5 × 10−4. Then, the values of the solution to the forward problem on
� = {(x1, x2); x2 = 0.25, 0.25 ≤ x1 ≤ 0.75} are taken as the measurement data. Sixteen measure-
ment points are taken along the boundary � for the collection of measurement data. To test the
robustness of the reconstruction algorithm against noise, we introduce some multiplicative noise
to the data along � in the time domain:

uδ(x, t) = u(x, t) + ε ζ(x, t)u(x, t) ∀ x ∈ �, t ∈ (0, T ) (6.2)

where ε is the noise level, and ζ(t) is a random variable uniformly distributed in [–1,1]. We shall
take ε = 5% in our numerical tests unless specified otherwise.

The pseudofrequency boundary data are obtained by taking the Laplace transform of the noisy
data uδ(x, t) as in (2.12). The Laplace transform is performed numerically using rectangular
quadrature rule with a small time stepsize �t = 5 × 10−4. No filter is introduced during the
collection of boundary data or the process of integration for the Laplace transform. The pseu-
dofrequency stepsize is chosen to be h = 0.05. From our numerical tests, we have observed an
optimal pseudofrequency interval [4, 6], namely s = 4 and s̄ = 6.

We then take the pseudofrequency boundary data to solve the inverse problem with our newly
proposed inversion algorithm. Subproblems (2.7), (3.8),(3.10), and (4.8), (4.9) involved in our
algorithm, which are all time independent, are solved using the second-order central difference
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298 CHOW AND ZOU

FIG. 1. Exact image (left) and reconstructed image (right) for Example 1. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

scheme with a mesh size �x = 1/32, as the coefficients μn during the iteration are smooth due
to the smoothing step (5.1). As it is well known that the considered inverse problem is highly
nonlinear and ill-posed, it cannot be solved using a mesh which is too fine due to the presence of
noise in the observed data. From our numerical experiments, we observe that mesh size finer than
1/32 makes the inverse problem more unstable and ill-conditioned, leading to the approximate
solutions with less accuracy, while the choice of the mesh size for 1/32 seems to give reasonable
reconstructions.

Next, we present the reconstruction results for three test problems. In all the tests, the inclusions
are small rectangles with side length 0.1 and width 0.125 sitting inside the sampling region �.

Example 1. We have a single inclusion sitting in the center of the domain �, with its coeffi-
cient being μ(x) = 0.5, see Fig. 1 (left). Figure 1 (right) shows the numerically reconstructed
image, with a relative L2-norm error of 7.35%. As we can see, both the location of the inclusion
and the magnitude of μ are recovered quite well, in view of the strong nonlinearity and severe
ill-posedness of the inverse problem.

Example 2. We have the same inclusion as in Example 1, but it is placed very close to the right
boundary of the sampling domain; see Fig. 2 (left). The reconstruction image is shown in Fig. 2
(right), with a relative L2-norm error of 4.30%. The same as in Example 1, both the location of
the inclusion and the magnitude of μ are recovered quite well.

Next, we would like to use this example to illustrate and investigate the effects of the choice
of various parameters involved on numerical reconstructions.

A. Effect of Parameter s̄

s̄ is referred to as a regularization parameter in Section III. Theoretically speaking, the asymptotic
formula (3.2) tells that, as the pseudofrequency s grows larger and larger, the term (−1)k p(x)

sk+1

shall better approximate the term ∂k
s v for k = 0, 1. Hence the approximate model (4.8) and (4.9),

which is derived based on this approximation and gives the first initial guess for V 1 required in
our inversion algorithm, should be more and more accurate as s goes larger. In general, we should
expect better reconstruction with higher pseudofrequency. However, with a rapid decreasing of the
kernel e−st in the Laplace transform, a quadrature rule with very high order (thus very expensive

Numerical Methods for Partial Differential Equations DOI 10.1002/num

 10982426, 2015, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.21904 by T
he C

hinese U
niversity of H

ong K
ong, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 299

FIG. 2. Exact image (left) and reconstructed image (right) for Example 2. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. Relative L2-norm error and recovered μ for Example 2, with s̄ = 10, 9, . . . , 1.

Minimum value of μ in the
s̄ Relative L2-norm error (%) recovered inclusion

10 6.91 0.7308
9 7.28 0.7418
8 7.17 0.7266
7 6.93 0.6988
6 6.24 0.6399
5 4.30 0.4069
4 5.68 0.5388
3 10.30 0.3428
1, 2 Diverge Diverge

and often more unstable numerically, especially against the noise) is needed to do the Laplace
transform numerically when the cutoff vale s̄ becomes very large. Therefore, we should take s̄

appropriately and not take it to be too large. In this sense, s̄ can be viewed as a regularization
parameter in our inversion algorithm.

To sort out the best choice of s̄, numerical experiments have been conducted to observe
the effects of different choices of s̄ on the numerical reconstructions, with s̄ varying among
s̄ = 10, 9, 8, . . . , 3, 2, 1; see Table I and Fig. 3. We can see that the numerical construction
becomes less accurate when s̄ increases over 6. It is the best when s̄ is from 4 to 6. When s̄ is
down to 3, the approximation (4.8) and (4.9) is inaccurate for V 1, leading to a poor reconstruction
by our proposed method. For s̄ = 1, 2, the iterations do not even converge due to the fact that the
approximation (4.8) and (4.9) is far from being accurate.

B. Effect of the Choice of Ad Hoc Boundary Data

The ad hoc boundary data (3.10) and (4.9) are frequently used in the inverse wave problem
[9, 10, 13]. We have performed numerical simulations to compare the reconstructions by our
proposed method with two different sets of observed boundary data:

(A1) full boundary data, namely the observation data on the entire boundary ∂�;
(A2) backscattering data on � combined with the ad hoc boundary data (3.10), (4.9) on ∂�\�.
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300 CHOW AND ZOU

FIG. 3. Reconstructed images for Example 2, with s̄ = 10, 9, . . . , 3, from (a) to (h), respectively. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 301

TABLE II. Relative L2-norm error and recovered μ for Example 2, with boundary data (A1) and (A2).

Minimum value of μ in the
Boundary data Relative L2-norm error (%) recovered inclusion

(A1) 4.38 0.4090
(A2) 4.30 0.4069

FIG. 4. Reconstructed images for Example 2 with boundary data (A1) (left) and (A2) (right). [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE III. Relative L2-norm error and recovered μ for Example 2, with 2n + 1 measurement points for
n = 2, 3, . . . , 5.

Number of measurement Relative L2-norm Minimum value of μ in the
points error (%) recovered inclusion

5 8.09 0.7817
9 7.49 0.6988
17 4.30 0.4069
33 4.61 0.5003

The reconstructions are shown in Table II and Fig. 4, from which we can see that the recon-
structions with two set of observed boundary data do not present much difference. This indicates
that the ad hoc boundary data (3.10), (4.9) do not affect the numerical reconstruction results much,
while the backscattering data play a major role.

C. Effect of the Number of Measurement Points

To see the effect of the number of measurement points on the numerical reconstruction, we take
the number of the measurement points on � to be 2n + 1, with n = 2, 3, . . . , 5. We observe from
Table III and Fig. 5 that the reconstructed images are of less accuracy if fewer measurement points
are used: the size, position, and contrast of the recovered inclusion are all less accurate. As the
number of points grows, the resolutions of the reconstructions increase. Moreover, the size and
the location of the inclusion as well as the contrast become more accurate as more number of
points are taken.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

 10982426, 2015, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.21904 by T
he C

hinese U
niversity of H

ong K
ong, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



302 CHOW AND ZOU

FIG. 5. Reconstructed images for Example 2 with 2n + 1 measurement points, n = 2, 3, . . . , 5, from (a) to
(d), respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

D. Effect of the Choice of Boundary Conditions for the Forward Problem

For the inversion process, we need to first solve the forward problem (1.1) on the entire space R
d to

generate the observation data. To do so, we should truncate the infinite domain R
d , approximated

by a finite computational domain G, and introduce some boundary conditions on the artificial
boundaries of G. Most numerical tests are based on the boundary conditions specified in (6.1).
Next, we shall test and compare the effects of the choice of the following two different sets of
boundary conditions for Eq. (1.1):

(B1) absorbing boundary conditions on the top and bottom boundaries and Neumann con-
ditions on the left and right boundaries of the computational domain G, as specified
in (6.1);

(B2) absorbing boundary condition on the top boundary and Neumann conditions on the
remaining boundaries of the computational domain G.

The reconstructions are shown in Table IV and Fig. 6, from which we can see there are
no essential differences between the reconstructions from these two different sets of boundary
conditions.
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RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 303

TABLE IV. Relative L2-norm error and recovered μ for Example 2, with boundary conditions (B1)
and (B2).

Minimum value of μ in the
Boundary conditions Relative L2-norm error (%) recovered inclusion

(B1) 4.30 0.4069
(B2) 4.35 0.4693

FIG. 6. Reconstructed images for Example 2, with two different boundary conditions (B1) (left) and (B2)
(right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

E. Effect of the Value of Coefficient μ in the Inclusion

In this test we shall see the effect of the value of coefficient μ in the inclusion on the quality of
numerical reconstructions. We take the same configuration of the inclusion as in Example 2, but
with different coefficient μ inside the inclusion, and the numerical results are shown in Table V
and Fig. 7. These results indicate that the quality of the reconstruction for both the location and
the values of μ in the inclusions does not deteriorate much if the values of μ in the inclusion differ
from the one in the background only by a few times in magnitude.

F. Effect of the Medium Noise on Numerical Reconstructions

Finally, we come to test the effect of the medium noise on numerical reconstructions. We introduce
some multiplicative medium noise to the coefficient μ in Example 2 as follows:

μδ(x) = μ(x)(1 + ε ζ(x)) ∀ x ∈ G , (6.3)

where ε = 5% is the noise level, and ζ(x) is a random variable uniformly distributed in [–1,1];
see Fig. 8 (left). The forward data are then calculated by solving (6.1) with coefficient μδ . Then,

TABLE V. Relative L2-norm error and recovered μ, with exact μ = 3
4 , 1

2 , 1
3 , 1

4 inside the inclusion.

Minimum value of μ in the
Exact μ in the inclusion Relative L2-norm error (%) recovered inclusion

3/4 3.63 0.7826
1/2 4.30 0.4069
1/3 8.04 0.3674
1/4 10.06 0.2883
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304 CHOW AND ZOU

FIG. 7. Exact images with μ = 3
4 , 1

2 , 1
3 , 1

4 inside the inclusion (left) and the respectively reconstructed
images (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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RECONSTRUCTING THE COEFFICIENT IN WAVE EQUATION 305

FIG. 8. Image of noisy medium μδ (left) and reconstructed image (right) for Example 2. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE VI. Relative L2-norm error and recovered coefficient for Example 2, with exact media μ and noisy
μδ , respectively.

Minimum value of μ in the
Relative L2-norm error (%) recovered inclusion

Exact medium μ 4.30 0.4069
Noisy medium μδ 8.82 0.3806

multiplicative noise is added to the data u(x, t) along � in the time domain as in (6.2) and is
taken to solve the inverse problem with our newly proposed algorithm. The reconstruction of
the medium coefficient is given in Fig. 8 (right) and Table VI. We can see that, although the
reconstruction of the medium is contaminated by 5% medium noise and is worse than the origi-
nal reconstruction, the overall profile still stands out quite clearly, and both the location and the
contrast of the inclusion is still reconstructed with certain accuracy.

Example 3. This example considers two inclusions, which are placed separately on a row in the
sampling domain �, with their coefficient values being μ = 0.33 and μ = 0.5, respectively. See
Fig. 9 (left). The reconstructed inclusions are shown in Fig. 9 (right), with a relative L2-norm error

FIG. 9. Exact image (left) and reconstructed image (right) for Example 3. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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306 CHOW AND ZOU

TABLE VII. Iteration counts of the new inversion algorithm for the three examples.

Average inner loops
Example Outer loops per outer loop

1 12 4.5
2 10 7.9
3 10 9

FIG. 10. Relative residual with respect to number of outer loops for Examples 1 (left), 2 (middle) and 3
(right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

of 11.04%. We can see that both the locations and abnormalities of two inclusions are recovered
with an acceptable accuracy, considering the high nonlinearity and severe ill-posedness of the
inverse problem and a 5% multiplicative noise in the data.

G. Convergence Rate and Iterative Counts

As our last test, we shall see a bit more on the convergence rate and iteration counts of our pro-
posed inversion algorithm in the aforementioned three examples. Table VII shows the iteration
counts of our proposed algorithm for the three aforementioned examples. From these data, we can
see that the average number of outer loops to achieve convergence is about 10 to 12. Convergence
speed is also investigated by considering the relative residual of the nth iterate μn when compared
with the measured data (with 5% noise); see Fig. 10. Although the considered inverse problem
is highly nonlinear and severely ill-posed, we can still see the sublinear convergence in all the
examples.

The authors thank L. Beilina and M.V. Klibanov for their great help during the algorithmic
development in this work and for their numerous instructive and insightful suggestions and advices
in understanding their approximate globally convergent algorithm.
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