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a b s t r a c t

In this paper we study a nonlinear reaction–diffusion system which models an
infectious disease caused by bacteria such as those for Cholera. One of the
significant features in this model is that a certain portion of the recovered human
hosts may lose a lifetime immunity and could be infected again. Another important
feature in the model is that the mobility for each species is allowed to be dependent
upon both the location and time. With the whole population assumed to be
susceptible with the bacteria, the model is a strongly coupled nonlinear reaction–
diffusion system. We prove that the nonlinear system has a unique solution globally
in any space dimension under some natural conditions on the model parameters
and the given data. Moreover, the long-time behavior and stability analysis for
the solutions are carried out rigorously. In particular, we characterize the precise
conditions on variable parameters about the stability or instability of all steady-
state solutions. These new results provide the answers to several open questions
raised in the literature.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

In biological, ecological, health and medical sciences, researchers have a great deal of interest to establish
a suitable mathematical model for various infectious diseases. The current global COVID pandemic attracts
even more scientists to this field. There are many different mathematical models for an infectious disease in
the literature. Roughly speaking, these models can be divided by two categories: a data-based discrete model
and a continuous model based on a population growth (see [1–3]). Our approach is based on a continuous
model which provides a much more convenient tool to analyze the complicated dynamics of the interaction
among susceptible, infected and recovered patients. A continuous model is typically governed by a system
of ordinary differential equations (ODE model) or a system of partial differential equations (PDE model).
For an ODE model, a monumental work was done in 1927 by Kermack and McKendrick [4]. Since then,
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a significant progress has been made in modeling and analyzing various infectious diseases such as SIR,
SEIR models and their various extensions. An ODE model often provides a clear and precise description of
physical quantities and their relations. By using an ODE model, one can study detailed dynamical interaction
between viruses and various species as well as other qualitative properties such as reproduction numbers.
This type of ODE models is widely adopted and used by researchers in all fields, particularly those in
biological and health sciences. On the other hand, when one takes the movement of species across different
geographical regions into consideration, it is necessary to include a diffusion process in a mathematical model
to reflect the movement. This leads to modeling an infectious disease by using a system of partial differential
equations (PDEs), often called reaction–diffusion equations. A well-known work [5] discussed a number of
PDE models arising from biological, ecological and animal sciences and explained why the PDE approach is
more appropriate in those areas. There are a large number of research studies, conference proceedings and
monograph in both PDE and ODE models in the literature. We list only some of them here as examples,
e.g., [6–10] for the SIR ODE models and [5,11–15] for the SIR PDE models. Many more references can be
found in a SIAM Review paper by Hethcote [16] and the monograph by Busenberg and Cooke [17], Cantres
and Cosner [18], Daley and Gani [8], Lou and Ni [14], etc. It is worth noting from the mathematical point
of view that the PDE models present significant more challenges for scientists to study the dynamics of the
solutions and to analyze qualitative properties of the solutions. Many important mathematical questions
such as global existence and uniqueness are still open for some popular PDE models. This is one of the
motivations for the current study.

In this paper we consider a mathematical model in a heterogeneous domain for an infectious disease
caused by bacteria such as Cholera without lifetime immunity. Without considering the diffusion-process of
the population, the ODE models have been studied extensively (see, e.g., [9,17,19,20]). The model considered
in this work is a direct extension of the ODE model. To describe the mathematical model, we introduce the
following variables:

S(x, t) = Susceptible population concentration at location x and time t

I(x, t) = Infected population concentration at location x and time t

R(x, t) = Recovered population concentration at location x and time t

B(x, t) = Concentration of bacteria at location x and time t

We assume that the whole population is susceptible to the bacteria. Moreover, the rate of growth for the
population, denoted by b(x, t, S), depends on location, time and the population itself. A classical example
for b is that the population growth follows a logistic growth model with a maximum capacity k1 > 0:

b(x, t, s) = b0s(1 − s

k1
),

where b0 > 0 represents the growth rate of the population.
The population reduction caused by infected patients is denoted by a nonlinear nonnegative function

g1(x, t, S, I, B). A typical form of the nonlinear function g1 is given by (see [21,22]):

g1(x, t, S, I, B) = β1SI + β2Sh1(B), h1(B) = B

B + k2
,

here β1, β2 are positive transmission parameters and h1(B) represents the maximum saturation rate of
acteria on human hosts, and k2 is a positive contact.

The bacteria growth follows the same assumption as the growth of the population, denoted by g2(x, t, s)
ith a maximum capacity k3 > 0:

g2(x, t, s) = g0s(1 − s

k3
),

where g > 0 is the growth rate of the bacteria.
0
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We also assume that the diffusion coefficients depend on location and time. By extending the ODE model
(see [9,17,23] etc.,), we obtain the following reaction–diffusion system:

St − ∇ · [a1(x, t)∇S] = b(x, t, S) − g1(x, t, S, I, B) − d1S + σR, (1.1)
It − ∇ · [a2(x, t)∇I] = g1(x, t, S, I, B) − (d2 + γ)I, (1.2)

Rt − ∇ · [a3(x, t)∇R] = γI − (d3 + σ)R, (1.3)
Bt − ∇ · [a4(x, t)∇B] = ξI + g2(x, t, B) − d4B. (1.4)

The biological meaning of various parameters and functions in the above model are given below
(see [20,24,25]):

ai = the diffusion coefficients, i = 1, 2, 3, 4,

γ = the recovery rate of infectious individuals,
σ = the rate at which recovered individuals lose immunity,

di = the natural death rate of species or bacteria,

ξ = the shedding rate of bacteria by infectious human hosts.

To complete the mathematical model, we assume that the system (1.1)–(1.4) holds in QT = Ω × (0, T ]
for any T > 0, where Ω is a bounded domain in Rn with C2-boundary ∂Ω . The initial concentrations for
all species are known and we assume that no species can cross the boundary ∂Ω . This leads to the following
initial and boundary conditions:

(∇νS, ∇νI, ∇νR, ∇νB) = 0, (x, t) ∈ ∂Ω × (0, T ], (1.5)
(S(x, 0), I(x, 0), R(x, 0), B(x, 0)) = (S0(x), I0(x), R0(x), B0(x)), x ∈ Ω , (1.6)

where ν represents the outward unit normal on ∂Ω .
We would like to give a short review about the existing results for the above model. For the ODE system

corresponding to (1.1)–(1.4), there are many studies for various interesting mathematical problems such
as global existences, dynamical interaction between the bacteria and species (see, e.g., [9,19,20,26]). The
stability analysis was also carried out by several groups (see [23,27,28] etc.). When the movement of species
is considered in the model, the corresponding PDE system is much more complicated to study. This is due to
the fact that the maximum principle can not be applied for a system of reaction–diffusion equations. It is a
challenge to establish the global well-posedness for the PDE system (1.1)–(1.6). Nevertheless, when the space
dimension is equal to 1, the global existence was established (see [21,24,25,29]) under certain conditions on
g1 and g2. In the special case of n = 1, the total population is bounded in L1(Ω), which implies a global
boundedness for S(x, t) by using Sobolev embedding. However, this does not work when the space dimension
n is greater than 1. In a SIAM review article [30], the authors considered the following system (with a and
b being two positive constants):

ut − a∆u = f(u, v), x ∈ Ω , t > 0,

vt − b∆v = g(u, v), x ∈ Ω , t > 0,

subject to appropriate initial and boundary conditions. Suppose f(0, v), g(u, 0) ≥ 0 for all u, v ≥ 0. Then
under the condition that

f(u, v) + g(u, v) ≤ 0,

the L1-norms of the nonnegative solutions u and v are bounded, i.e.,

sup
∫

(u + v)dx ≤ C.

t>0 Ω
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However, the solution (u, v) may blow up in finite time when the space dimension is greater than 1 if no
additional conditions on f(u, v) and g(u, v) are made. Therefore, as indicated in [30], one must impose
ome additional conditions in order to obtain a global bound for a reaction–diffusion system. There are
ome interesting results for a general reaction–diffusion system when leading coefficients are constants.
n 2000, under certain additional conditions, Pierre-Schmitt [30] introduced a dual method to establish
uch a bound for the reaction–diffusion system. In 2007, Desvillettes-Fellner-Pierre-Vovelle introduced
n [31] an entropy condition originated by Kanel in 1990 [32] and extended the dual method to a more
eneral reaction–diffusion system with constant diffusion coefficients and established the global bound with
quadratic-growth reaction as long as a total mass is controlled (L1−boundedness). In 2009, Caputo-

asseur [33] extended the entropy method to establish a global existence for a reaction–diffusion system
here the nonlinear reaction terms grow at most sub-quadratically. One can see an interesting review by M.
ierre in 2010 [34]. Caceres-Canizo [35] extended in 2017 to the case where the reaction terms grow at most
uadratically under certain conditions on the steady-state solutions. In 2018, Souplet [36] established the
lobal well-posedness for a reaction–diffusion system with quadratic growth in the reaction. Very recently,
ome considerable progress was made for a reaction–diffusion system by Fellner-Morgan-Tang in 2019 [37]
nd Morgan-Tang in 2020 [38]. They were able to derive a global bound for the solution of a reaction–
iffusion as long as the diffusion coefficients are smooth and nonlinear reaction terms in the system satisfy
condition called an intermediate growth condition, which replaces the entropy condition. Their approach

s based on a combination of the dual method and the entropy method. In 2021, Fitzgibbon-Morgan-Tang-
in [39] studied a very general reaction–diffusion system with a controlled mass and nonsmooth diffusion

oefficients. They established the global well-posedness for the system with at most a polynomial growth
or reactions. Moreover, several interesting examples as applications arising from biological, health sciences
nd chemical reactive-flow were studied in the paper. Those results made a substantial progress for a general
eaction–diffusion system with a controlled mass. However, due to the nonlinearity in Eq. (1.1), these results
o not cover the nonlinear system (1.1)–(1.4), particularly, we do not have the growth conditions here on g1

with respect to its key variables for the global existence (see Theorem 2.1, Section 2).
The purpose of this paper is twofold. The first one is to establish the existence of a global solution to the

generalized system (1.1)–(1.6) in any space dimension, without any restriction on parameters nor growth
conditions with respect to the key variables of g1. This extends a result obtained by the first author in his
recent work [22]. Our approach here will make use of some key ideas developed in [22], the special structure
of the system (1.1)–(1.4), as well as several important techniques from the theories of elliptic and parabolic
equations (see [40–42]). To derive an a priori bound, we use a crucial result for a linear parabolic equation
in the Campanato-John–Nirenberg-Morrey space from [43], which extends the DiGoigi-Nash’s estimate with
weaker conditions for nonhomogeneous terms. The other purpose of the current work is to present the
stability analysis of all steady-state solutions, which was not addressed in [22]. In particular, for the following
classical choices of the growth model [18]:

b(x, t, S) = b0S

(
1 − S

k1

)
, g1(x, t, S, I, B) = β1SI + β2Sh1(B), h1(B) = B

B + k2
(1.7)

g2(B) = g0B

(
1 − B

k2

)
, (1.8)

e are able to precisely describe what conditions are needed for the steady-state solutions to be stable or
nstable. Roughly speaking, we shall demonstrate that under the conditions:

d1 > b0, d2 ≥ 0, d3 ≥ 0, d4 > g0,

he steady-state solutions are stable. On the other hand, if either d1 < b0 or d4 < g0, then we can choose a
et of suitable values for parameters σ, γ, β and β such that the steady-state solutions are unstable. This
1 2
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implies that our stability conditions are optimal. This stability analysis provides some important guidance
to practitioners and scientists in biological, ecological and health sciences.

The paper is organized as follows. In Section 2 we first recall some function spaces which are frequently
used in the subsequent analysis, and then state our main results. In Section 3, we prove the first part of the
main results on global solvability of the system (1.1)–(1.6) (Theorem 2.1 and Corollary 2.1). In Section 4
we focus on a general stability analysis and obtain the sufficient conditions on parameters which ensure
the stability of a steady-state solution. In Section 5, for a set of concrete functions b(x, t, s), h1(s) and

2(x, t, s), we give precisely conditions on the model parameters, under which a steady-state solution is
stable or unstable. Finally, some concluding remarks are given in Section 6.

Throughout the paper, we shall use C, with or without subscript, for a generic constant depending only
on the given data in the model, including the terminal time T , and it may take a different value at each
occurrence.

2. Preliminaries and statement of main results

For reader’s convenience, we first recall some standard function spaces that are used frequently in the
subsequent analysis. For α ∈ (0, 1), we denote by Cα(Ω̄) (or Cα, α

2 (Q̄T )) the Hölder space in which every
unction is Hölder continuous with respect to x (or (x, t)) with exponent α in Ω̄ (or (α, α

2 ) in Q̄T ). For
= ∞, we write QT = Ω × (0, T ) as Q = Ω × (0, ∞).
For p ≥ 1 and a Banach space V with norm ∥ · ∥v, we define

Lp(0, T ; V ) = {F (t) : t ∈ [0, T ] → V ; ∥F∥Lp(0,T ;V ) < ∞},

quipped with the norm

∥F∥Lp(0,T ;V ) =
(∫ T

0
∥F∥p

vdt
) 1

p
.

hen V = Lp(Ω), we simply write Lp(QT ) = Lp(0, T ; Lp(Ω)), with its norm as ∥ · ∥p.
Sobolev spaces W k,p(Ω) and W k,l

p (QT ) are defined the same as in the classical references (see, e.g., [40]).
Let V2(QT ) = {u ∈ C([0, T ]; W 1,0

2 (Ω)) : ∥u∥V2 < ∞} (see [42]) equipped with the norm

∥u∥V2 = max
0≤t≤T

∥u∥L2(Ω) +
n∑

i=1
∥uxi

∥L2(QT ).

We will also use the Campanato-John–Nirenberg-Morry space L2,µ(QT ), which is defined as a subspace
of L2(QT ) with its norm given by

∥u∥L2,µ(QT ) = ∥u∥L2(QT ) + [u]2,µ,QT
< ∞,

where

[u]2,µ,QT
= sup

ρ>0,z0∈QT

(
ρ−µ

∫
Qρ(z0)

|u − uQ|2dxdt

) 1
2

,

ith z0 = (x0, t0), Qρ(z0) = Bρ(x0) × (t0 − ρ2, t0], and uQ representing the average of u over Qρ(z0) for any
ρ(z0) ⊂ QT ; see Troianiello [44] for its detailed definition and properties. An important fact of the space

s that L2,µ+2(QT ) is equivalent to Cα, α
2 (Q̄T ) with α = µ−n

2 if n < µ ≤ n + 2 (Lemma 1.19 in [44]). We
hall write the norm of L2,µ(QT ) as ∥u∥2,µ.

Next, we first make some basic assumptions on the diffusion coefficients and the known data involved
n our model (1.1)–(1.4). All other model parameters are assumed to be positive constants throughout this
aper. One can easily extend the well-posedness results to more general system when those parameters are
5
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functions of (x, t) as long as the basic structure of the system is preserved. Then we state some main results
n this work, whose proofs will be provided in Sections 3 and 4.

(2.1). Assume that ai ∈ L∞(Q). There exist two positive constants a0 and A0 such that

0 < a0 ≤ ai(x, t) ≤ A0, (x, t) ∈ QT , i = 1, 2, 3, 4.

H(2.2). Assume that all initial data U0(x) := (S0(x), I0(x), R0(x), B0(x)) are nonnegative on Ω . Moreover,
U0(x) ∈ L2,µ0(Ω̄)4 with µ0 ∈ (n − 2, n).
(2.3).

a) Let b(x, t, s), di(x, t, s) and g2(x, t, s) be measurable in Q × R+ and locally Lipschitz continuous with
espect to s, and 0 ≤ b(x, t, 0), di(x, t, 0) ∈ L∞(Q). Moreover, it holds for some M > 0 that

di(x, t, s) ≥ d0 ≥ 0, bs(x, t, s) ≤ b0, (x, t, s) ∈ Q × [M, ∞).

b) Let g1(x, t, s1, s2, s3) be measurable in Q×(R+)3 and nonnegative, differentiable with respect to s1, s2, s3,
nd

g1(x, t, 0, s2, s3) ≥ 0, s2, s3 ≥ 0,

g2(x, t, 0) ≥ 0, g2s(x, t, s) ≤ g0, (x, t, s) ∈ Q × R+.

where k1, k2 and k3 represent the maximum capacity of the general population, the infected population and
the bacteria, respectively.

For convenience, we define
X = V2(QT )

⋂
L∞(QT ),

and write U(x, t) = (u1, u2, u3, u4) to be a vector-valued function defined in QT , with

u1(x, t) = S(x, t), u2(x, t) = I(x, t), u3(x, t) = R(x, t), u4(x, t) = B(x, t), (x, t) ∈ QT .

The right-hand sides of the Eqs. (1.1)–(1.4) are denoted by f1(x, t, U), f2(x, t, U), f3(x, t, U) and f4(x, t, U),
respectively. With the new notation, the system (1.1)–(1.6) can be written as the following reaction–diffusion
system:

u1t − ∇ · [a1(x, t)∇u1] = f1(x, t, U), (x, t) ∈ QT , (2.1)
u2t − ∇ · [a2(x, t)∇u2] = f2(x, t, U), (x, t) ∈ QT , (2.2)
u3t − ∇ · [a3(x, t)∇u3] = f3(x, t, U), (x, t) ∈ QT , (2.3)
u4t − ∇ · [a4(x, t)∇u4] = f4(x, t, U), (x, t) ∈ QT , (2.4)

ubject to the initial and boundary conditions:

U(x, 0) = U0(x) := (S0(x), I0(x), R0(x), B0(x)), x ∈ Ω , (2.5)
∇νU(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ]. (2.6)

efinition 2.1. We say U(x, t) ∈ X4 is a weak solution to the problem (2.1)–(2.6) in QT if it holds for all
unctions ϕk ∈ X with ϕkt ∈ L2(QT ), ϕk(x, T ) = 0 on Ω for k = 1, 2, 3, 4:∫ T

0

∫
Ω

[−uk · ϕkt + ak∇uk · ∇ϕk] dxdt

=
∫

uk(x, 0)ϕk(x, 0)dx +
∫ T ∫

fk(x, t, U)ϕk(x, t)dxdt.

Ω 0 Ω

6
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Theorem 2.1. Under the assumptions H(2.1)-H(2.3), the problem (2.1)–(2.6) has a unique weak solution
in X and the weak solution is nonnegative and bounded in QT for any T > 0. Moreover, it holds that

i(x, t) ∈ Cα, α
2 (Q̄T ) for i = 1, 2, 3, 4.

Under some additional conditions on b and g2, we can deduce an uniform bound of the weak solution to
he problem (2.1)–(2.6) in Q. We state such a result for the special case which is needed in the subsequent
symptotic analysis.

orollary 2.1. Under the conditions H(2.1)-(2.2), we further assume that there exists a constant λ0 such
hat

bs(x, t, s) − d ≥ λ0 > 0, g2s(x, s) − d4 ≥ λ0 > 0, (x, t, s) ∈ Q × [0, ∞),

nd ∫ ∞

0

∫
Ω

b0(x, t)dxdt < ∞.

hen the weak solution of the problem (2.1)–(2.6) is bounded globally in Q.

emark 2.1. The weak solution obtained in Theorem 2.1 may blow up when t grows if there are no
dditional conditions imposed on b(x, t, S), g2(x, t, s) and d1(x, t, s), d4(x, t, s). On the other hand, if one
ssumes that g1 and g2 grow at most in a polynomial power with respect to s1, s2 and s3, then one can
erify that the conditions in [39] hold. Consequently, a global bound in Q can be deduced. The next theorem
tates our main stability results for the steady-state solutions to the problem (2.1)–(2.6).

heorem 2.2. Under the condition H(4.1) (see Section 4), a steady-state solution is asymptotically stable if

d1 > B0, d4 > G0,

nd the parameters β1, β2, γ, σ are appropriately small, where B0 and G0 are constants which depend on the
teady-state solution.

It turns out that the conditions in Theorem 2.2 are almost necessary in order to ensure the stability of
ach steady-state solution. In Section 5, we will see that when b(x, t, s), g1 and g2(x, t, s) are of the form
n (1.7)–(1.8), then we have a very precise set of conditions for the model parameters to ensure the local
tability or instability for each steady-state solution. To avoid repetitions, we will state this result only in
ection 5, since there are many specific cases we have to consider.

. Global solvability and Proof of Theorem 2.1

In this section we first derive some a priori estimates for a weak solution to the system (2.1)–(2.6), then
how the existence of a unique weak solution. Finally, we establish the global boundedness and the Hölder
ontinuity.

emma 3.1. Under the assumptions H(2.1)-(2.2), a weak solution of the system (2.1)–(2.6) is nonnegative.

This is a well-known result since each fi(x, t, u1, u2, u3, u4) is quasi-positive for i = 1, 2, 3, 4, and is also
ocally Lipschitz continuous with respect to each uk for k = 1, 2, 3, 4. Interested readers may refer to [45] for
detailed proof. Next, we apply the energy method to derive an a priori estimate in the space V (Q ).
2 T
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Lemma 3.2. Under the assumptions H(2,1)-(2.3), there exists a constant C1 such that

4∑
k=1

∥uk∥V2(QT ) ≤ C1.

roof. We multiply Eq. (1.1) by u1 and integrate over Ω to obtain

1
2

d

dt

∫
Ω

u2
1dx + a0

∫
Ω

|∇u1|2dx +
∫
Ω

g1u1dx + d0

∫
Ω

u2
1dx

≤
∫
Ω

b(x, t, u1)u1dx + σ

∫
Ω

u1u3dx

≤ C

∫
Ω

[1 + u2
1]dx + C

∫
Ω

[u2
1 + u2

3]dx,

here we have used the assumption H(2.3)(a) in the second estimate.
We can perform a similar energy estimate for Eq. (1.3) to deduce

1
2

d

dt

∫
Ω

u2
3dx + a0

∫
Ω

|∇u3|2dx ≤ γ

∫
Ω

u2u3dx ≤ C

∫
Ω

[u2
2 + u2

3]dx.

In order to derive an estimate for u2, we make use of the special structure of the system (2.1)–(2.4). To
do so, we define

v(x, t) = u1(x, t) + u2(x, t), (x, t) ∈ Q.

hen it is easy to see that v(x, t) satisfies

vt − ∇ · [a2∇v] = ∇ · [(a1 − a2)∇u1] + f1(x, t, U) + f2(x, t, U), (x, t) ∈ QT , (3.1)
∇νv(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ], (3.2)

v(x, 0) = S0(x) + I0(x), x ∈ Ω . (3.3)

We now multiply Eq. (3.1) by v and then integrate over Ω to obtain

1
2

d

dt

∫
Ω

v2dx + a0

∫
Ω

|∇v|2dx

= −
∫
Ω

[(a1 − a2)∇u1 · ∇v]dx +
∫
Ω

v[f1(x, t, U) + f2(x, t, U)]dx

:= J1 + J2.

A direct application of the Cauchy–Schwarz’s inequality implies

|J1| ≤ ε

∫
Ω

|∇v|2dx + C(ε)
∫
Ω

|∇u1|2dx.

n the other hand, using the fact that

f1(x, t, U) + f2(x, t, U) = b(x, t, u1) − d1u1 + σu3 − (d2 + γ)u2,

e readily derive that

|J2| = |
∫
Ω

v[f1(x, t, U) + f2(x, t, U)]dx|

≤ C

∫
[v(1 + u1 + u3)]dx ≤ C + C

∫
[v2 + u2

1 + u2
3]dx.
Ω Ω

8
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Now choosing ε = a0
2 , we can readily derive from the above estimates that

d

dt

∫
Ω

v2dx + a0

∫
Ω

|∇v|2dx

≤ C + C

∫
Ω

[v2 + u2
1 + u2

3]dx.

By combining the above energy estimates for u1, v and u3, we can further deduce

d

dt

∫
Ω

[u2
1 + v2 + u2

3]dx +
∫
Ω

[|∇u1|2 + |∇v|2 + |∇u3|3]dx

≤ C

∫
Ω

[u2
1 + v2 + u2

3]dx,

then a direct application of Gronwall’s inequality implies

sup
0<t<T

∫
Ω

[u2
1 + v2 + u2

3]dx +
∫ T

0

∫
Ω

[|∇u1|2 + |∇v|2 + |∇u3|2]dxdt

≤ C + C

∫
Ω

[S2
0 + I2

0 + R2
0]dx.

Noting that v = u1 + u2, we can write∫
Ω

|∇v|2dx =
∫
Ω

[|∇u1|2 + |∇u2|2]dx + 2
∫
Ω

[(∇u1) · (∇u2)]dx.

But using the Cauchy–Schwarz’s inequality, we can see∫
Ω

[(∇u1) · (∇u2)]dx ≤ ε

∫
Ω

|∇u2|2dx + C(ε)
∫
Ω

|∇u1|2dx

≤ ε

∫
Ω

|∇u2|2dx + C(ε)
∫
Ω

[u2
1 + u2

3]dx.

Using the above estimates and choosing ε to be sufficiently small, we can obtain∫
Ω

[u2
1 + u2

2 + u2
3]dx + +

∫ ∫
QT

[|∇u1|2 + |∇u2|2 + |∇u3|2]dxdt

≤ C + C

∫
Ω

[S2
0 + I2

0 + R2
0]dx.

For u4, we note that
h2(x, t, u4)u4 ≤ k0(u2

4 + 1).

Then we can readily derive from Eq. (2.4) that

d

dt

∫
Ω

u2
4dx + a0

∫
Ω

|∇u4|2dx ≤ C

∫
Ω

[u2
2 + u2

4]dx.

Now an integration over (0, T ) implies

sup
0<t<T

∫
Ω

u2
4dx +

∫ ∫
QT

|∇u4|2dxdt ≤ C + C

∫
Ω

B2
0dx + C

∫ ∫
QT

u2
2dxdt

≤ C + C

∫
Ω

[S2
0 + I2

0 + R2
0 + B2

0 ]dx.
This proof of Lemma 3.2 is now completed. □

9
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In order to derive more a priori estimates, we need a crucial result about the Campanato-John–Nirenberg-
Morrey estimate for a general parabolic equation. For reader’s convenience, we state the result in detail here
(see Lemma 3.3 below). Consider the parabolic equation:

ut − Lu =
n∑

i=1
fi(x, t)xi

+ f(x, t), (x, t) ∈ QT , (3.4)

u(x, t) = 0 or uν(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ], (3.5)
u(x, 0) = u0(x), x ∈ Ω . (3.6)

here Lu := (aij(x, t)uxi
)xj

+ bi(x, t)uxi
+ c(x, t)u is an elliptic operator. We assume there are positive

onstants A1, A2 and A3 such that A = (aij(x, t)n×n is a positive definite matrix that satisfies

A0|ξ|2 ≤ aijξiξj ≤ A1|ξ|2, ξ ∈ Rn,

nd
n∑

i=1
∥bi∥L∞(QT ) + ∥c∥L∞(QT ) ≤ A2 < ∞.

Lemma 3.3 ([43]). Let u(x, t) be a weak solution of the parabolic Eq. (3.8)–(3.10). Let u0 ∈ Cα(Ω̄) with
u0(x) = 0 on ∂Ω , and ∇u0 ∈ L2,µ0(Ω) for some µ0 ∈ (n − 2, n). Then for any µ ∈ [0, n), there exists a
constant C such that

∥∇u∥L2,µ(QT ) ≤ C[∥∇u0∥
L2,(µ−2)+ (Ω) + ∥f∥

L2,(µ−2)+ (Ω) +
n∑

i=1
∥fi∥L2,µ(QT )].

Moreover, it holds that u ∈ L2,µ+2(QT ) and

∥u∥L2,2+µ(QT ) ≤ C[∥∇u0∥
L2,(µ−2)+ (Ω) + ∥f∥

L2,(µ−2)+ (Ω) +
n∑

i=1
∥fi∥L2,µ(QT )]

for a constant C that depends only on A0, A1, A2, n and QT .

Lemma 3.4. Under the assumptions H(2.1)-(2.3), the weak solution of (2.1)–(2.4) satisfies

4∑
k=1

∥uk∥
C

α, α
2 (Q̄T )

≤ C(T ).

roof. Let µ ∈ (0, n) be arbitrary. By Lemma 3.3, we have

∥∇u3∥L2,µ(QT ) ≤ C[∥∇R0∥
L2,(µ−2)+ (Ω) + ∥u2∥

L2,(µ−2)+ (QT ) + ∥u3∥
L2,(µ−2)+ (QT )]. (3.7)

On the other hand, we note that v(x, t) = u1(x, t) + u2(x, t) satisfies the system (3.1)–(3.3), so we can
apply Lemma 3.3 again to obtain

∥∇v∥L2,µ(QT ) ≤ C[∥∇v0∥
L2,(µ−2)+ (Ω) +

3∑
i=1

∥ui∥L2,(µ−2)+ (QT )]. (3.8)

To derive the L2,µ-estimate for u1, we note that

u − ∇[a (x, t)∇u ] ≤ b(x, t, u ) − d u + σu = [b (x, t, θ) − d ]u + b(x, t, 0) + σu ,
1t 1 1 1 1 1 3 s 1 1 3

10
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where θ is the mean-value between 0 and u1. Using the facts that bs(x, t, s) and b(x, t, 0) are bounded, we
an use the same calculations as in Lemmas 3.2 and 3.3 to obtain

∥∇u1∥L2,µ(QT ) ≤ C[∥∇S0∥L2,µ(Ω) + ∥u3∥L2,µ(QT )].

Now we can combine the L2,µ(QT )-estimates for u1, v and u3 and note that v = u1 + u2 to obtain for any
µ ∈ [0, n) that

3∑
i=1

∥∇ui∥L2,µ(Ω) ≤ C[∥∇U0∥
L2,(µ−2)+ (Ω) +

3∑
i=1

∥ui∥L2,(µ−2)+ (QT )] + C. (3.9)

Using the fact that ui ∈ V2(QT ), we derive for any µ1 ∈ [0, 2) that
3∑

i=1
∥∇ui∥L2,µ1 (QT ) ≤ C[

3∑
i=1

∥∇ui0∥L2(Ω) + 1]. (3.10)

Now we can apply the interpolation theory for the parabolic Eq. (2.3) (see Lemma 2.6 in [43]) to further
deduce

∥u3∥L2,µ1+2(Ω) ≤ C[∥u2∥L2(Ω) + ∥u3∥L2(Ω) + ∥∇u3∥L2(QT )] + C.

Next we go back to the system (2.1)–(2.3) and apply the same process for µ2 = µ1 + 2 to obtain
3∑

i=1
∥∇ui∥2,µ2,QT

≤ C[
3∑

i=1
∥∇ui0∥L2,µ2 (Ω) +

3∑
i=1

∥ui∥2,(µ2−2)+,QT
+ C]. (3.11)

hen after a finite number of steps, we can deduce for any µ ∈ (0, n) that
3∑

i=1
∥ui∥L2,µ+2(Ω) ≤ C[

3∑
i=1

∥ui∥L2(Ω) + ∥∇ui0∥
L2,(µ−2)2 (Ω)]

≤ C[
3∑

i=1
∥ui∥L2(QT ) +

3∑
i=1

∥∇ui0∥
L2,(µ−2)+ ]. (3.12)

Now we apply the interpolation theory again (see Lemma 2.6 in [43]) to derive
3∑

i=1
∥ui∥2,µ0+4,QT

≤ C[
3∑

i=1
∥ui∥L2(QT ) +

3∑
i=1

∥∇ui0∥L2,µ0 .]

ut noting that µ0 ∈ (n − 2, n), we can then obtain by Lemma 1.19 in [44] that
3∑

i=1
∥ui∥

C
α, α

2 (Q̄T )
≤ C

or α = µ0+2−n
2 . The proof of Lemma 3.4 is now completed. □

roof of Theorem 2.1. First of all, by using the energy method we see that the weak solution of (2.1)–(2.6)
ust be unique since the solution is bounded and fk is locally Lipschitz continuous with respect to ui for

ll k, i ∈ {1, 2, 3, 4}. With the a priori estimates in Lemma 3.1–3.4, there are several approaches, such as
he truncation method and Galerkin finite element method, to prove the desired result (see, e.g., [22,39,45]).
ere we choose a different approach, the bootstrap argument (see [46]), for the proof. Let T ∈ (0, ∞) be any
xed number, it is easy to show that the system (2.1)–(2.6) has a unique local weak solution in X in QT0

or some small T0 > 0. Let

T ∗ = sup{T : the system (2.1)-(2.6) has a unique weak solution in Q }.
0 T0

11
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Suppose T ∗ < T (otherwise, nothing is needed to prove). We note that the a priori estimates in Lemmas 3.1
nd 3.4 hold for any weak solution. It follows that

lim
t→T ∗−

sup[
4∑

k=1
∥uk∥V2(Qt) +

4∑
k=1

∥uk∥
C

α, α
2 (Q̄T )

] < ∞.

y the compactness, we know that

uk(x, T ∗) ∈ H1(Ω), ∇uk ∈ L2,(µ−2)+
(Ω) for any µ ∈ (n, n + 2).

Now, we use U(x, T ∗) as an initial value and consider the system (2.1)–(2.6) for t ≥ T ∗. Then the local
xistence result implies that there exists a small t0 > 0 such that the problem (2.1)–(2.6) has a unique weak
olution in the interval [T ∗, T ∗ + t0). Consequently, we obtain a weak solution to the system (2.1)–(2.6) in
he interval [0, T ∗ + t0). This is a contradiction with the definition of T ∗, therefore we have T ∗ = T . □

Next, we prove Corollary 2.1. Assume that there exists a constant λ0 > 0 such that

d1(x, t, s) − bs(x, t, s) ≥ λ0 > 0, d4(x, t, s) − g2s(x, t, s) ≥ λ0, (x, t, s) ∈ Q × [0, ∞).

ith the above assumption, we take the integration over Ω for Eq. (2.1)–(2.3) to obtain

d

dt

∫
Ω

(u1 + u2 + u3)dx + min{d0, λ0}
∫
Ω

(u1 + u2 + u3)dx ≤
∫
Ω

b(x, t, 0)dx.

hen it is easy to see
sup
t≥0

∫
Ω

(u1 + u2 + u3)dx ≤ C.

Now we derive a uniform estimate in L2(Q). By using the energy estimate for Eq. (2.1), we can see that

d

dt

∫
Ω

u2
1dx +

∫
Ω

|∇u1|2dx ≤ C[
∫
Ω

b(x, t, 0)2dx + C

∫
Ω

u2
3dx.]

or v(x, t) := u1(x, t) + u2(x, t), we can derive from Eq. (3.1)–(3.3) that

d

dt

∫
Ω

v2dx +
∫
Ω

|∇v|2dx ≤ C

∫
Ω

|∇u1|2dx + C

∫
Ω

[b(x, t, 0)2 + u2
1 + u2

3]dx

≤ C[
∫
Ω

(b(x, t, 0)2 + u2
1 + u2

3)dx],

where we have used the estimate of u1 at the second estimate.
Again, we can use the energy estimate for Eq. (2.3) to obtain

d

dt

∫
Ω

u2
3dx +

∫
Ω

|∇u3|2dx ≤ C

∫
Ω

u2
2dx.

ut we know from the Gagliardo–Nirenberg estimate for p = q = 2, s = 1, θ = n
n−2 and ε > 0,∫

Ω

u2dx ≤ ε

∫
Ω

|∇u|2dx + C(ε)∥u∥L1(Ω),

hen using the uniform boundedness of L1(Ω)-norms of u1, u2, u3, we get for sufficiently small ε,

sup
t≥0

∫
Ω

[u2
1 + u2

2 + u2
3]dx +

∫ t

0

∫
Ω

[|∇u1|2 + |∇u2|2 + |∇u3|2dx]

≤ C1 + C2

∫ t ∫
b(x, t, 0)2dxdt ≤ C3 .
0 Ω

12
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Next we use the iteration method again as in the proof of Theorem 2.1. From Eq. (3.2) for v and u3, we
deduce, respectively,

∥∇v∥2,µ ≤ C + C∥u1∥2,µ + C∥u3∥2,µ

and
∥∇u3∥2,µ ≤ C + C∥u2∥2,µ.

For u1, we see by noting that g1 ≥ 0,

u1t − ∇[a1(x, t)∇u1] ≤ [b0(x, t) − d1]u1 + σu3.

s u1 ≥ 0 in Q, we can follow the same argument as in [43] to obtain for µ ∈ (n − 2, n),

∥∇u1∥2,µ ≤ C + C[∥u1∥2,µ + ∥u3∥2,µ].

As u1, v, u3 are uniformly bounded in L2(Q), the interpolation for v and u3 with µ = 0 yields that

∥v∥2,2 + ∥u3∥2,2 ≤ C.

ence, we can obtain the L2,µ(Q)-estimate for ∇u1 with µ = 2:

∥∇u1∥2,2 ≤ C + C[∥u1∥2,2 + ∥u2∥2,2],

which is uniformly bounded.
We can now go back to the equations for v and u3 with µ = 2 to obtain

∥v∥2,4 + ∥u3∥2,4 ≤ C[∥u1∥2,2 + ∥u2∥2,2 + ∥u3∥2,2].

By continuing the above iteration process, after a finite number of steps, we obtain for α = µ0−n
2 that

∥v∥
C

α, α
2 (Q̄T )

+ ∥u3∥
C

α, α
2 (Q̄T )

≤ C.

onsequently, we get
∥ui∥L∞(Q) ≤ C, i = 1, 2, 3.

Once we know that u2 is uniformly bounded, then from Eq. (2.4), we can apply the maximum principle
o obtain

sup
t≥0

∥u4∥L∞(Ω) ≤ C.

With the a priori bound for each ui, we can extend the weak solution in QT to Q. □

. Linear stability analysis

In this section, we will analyze the stability of solutions to the model system (2.1)–(2.6). To illustrate the
ain ideas, we assume that the two nonlinear growth functions b and g2 depend only on x and s, and focus

only on the following model cases:

b(x, t, s) = b0(x)s(1 − s

k1
), g1 = β1u1u2 + β2

u1u4

u4 + k2
, g2 = g0(x)s(1 − s

k3
).

oreover, we assume that all parameters σ, γ, β1, β2, di, ki are positive constants. The general case can be
arried out similarly as long as the functions are differentiable.

To study the stability, we need only to consider the steady-state problem in Ω :

−∇ · [a (x)∇u ] = b(x, u ) − g (x, u , u , u ) − d u + σu , (4.1)
1 1 1 1 1 2 4 1 1 3
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−∇ · [a2(x)∇u2] = g1(x, u1, u2, u4) − (d2 + γ)u2, (4.2)
−∇ · [a3(x)∇u3] = γu2 − (d3 + σ)u3, (4.3)
−∇ · [a4(x)∇u4] = ξu2 + g2(x, u4) − d4u4 (4.4)

subject to the boundary conditions

∂νu1(x) = 0, ∂νu2(x) = 0, ∂νu3(x) = 0, ∂νu4(x) = 0, ∀ x ∈ ∂Ω . (4.5)

Again, we write U(x) = (u1(x), u2(x), u3(x), u4(x)). It is clear to see directly from the above model system
hat there is a trivial solution U(x) = (0, 0, 0, 0) if b(x, 0) = g1(x, 0) = g2(x, 0) = 0. But we are interested in

nontrivial solutions, so we shall make the following assumptions:
H(4.1). (a) 0 < a0 ≤ ai(x) ≤ A0 on Ω ;

(b) b0(x) ≥ b1 > 0 and g0(x) ≥ g1 > 0, and both are bounded.

Lemma 4.1. Under the assumptions H(4.1), the elliptic system (4.1)–(4.5) has at least one nonnegative weak
solution U ∈ W 1,2(Ω). Moreover, the weak solution is Hölder continuous in Ω̄ for any space dimension.

Proof. Since the argument is very similar to the case for a parabolic system, we only sketch the proof.
The key step is to derive an a priori estimate in Hölder space. As a first step, we know that a solution of
(4.1)–(4.5) must be nonnegative since every right-hand side of (4.1) to (4.4) is quasi-positive. Next we can
use the same argument as for the parabolic case to derive L1-estimate for ui(x) ≥ 0, i = 1, 2, 3, 4 on Ω .
ndeed, by direct integration we have∫

Ω

[d2u2 + d3u3]dx + 1
k1

∫
Ω

b0(x)u2
1dx =

∫
Ω

(b0 − d1)u1dx.

hen an application of the Cauchy–Schwarz’s inequality yields∫
Ω

[u2
1 + d2u2 + d3u3]dx ≤ C.

On the other hand, we obtain from Eq. (4.1) that

g1

k3

∫
Ω

u2
4dx ≤ ξ

∫
Ω

u2dx + g0

∫
Ω

(g0 − d4)u4dx ≤ C + C

∫
Ω

u4dx,

hich implies ∫
Ω

u2
4dx ≤ C,

here C depends only on known data.
Next step is to derive the L2(Ω)-estimate for u2 and u3. The idea is very much similar to the case for a

arabolic system. The energy estimate for Eq. (4.1) yields that, for any ε > 0,∫
Ω

|∇u1|2dx +
∫
Ω

u3
1dx ≤ C(ε) + ε

∫
Ω

u2
3dx.

t is easy to see that, by adding up Eq. (4.1) and Eq. (4.2), v(x) := u1(x) + u2(x) satisfies that

−∇[a2(x)∇v] = ∇[(a1(x) − a2(x))∇u1] + b(x, u1) − d1u1 − (d2 + γ)u2 + σu3.

hen we can get by the energy estimate that∫
|∇v|2dx +

∫
v2dx ≤ C(ε) + 2ε

∫
u2

3dx.

Ω Ω Ω
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From Eq. (4.3) we have by using Cauchy–Schwarz’s inequality that

a0

∫
Ω

|∇u3|2dx + (d3 + σ)
∫
Ω

u2
3dx

≤ γ

∫
Ω

u2u3dx ≤ d3 + σ

2

∫
Ω

u2
3dx + γ

2(d3 + σ)

∫
Ω

u2
2dx,

which implies ∫
Ω

|∇u3|2dx +
∫
Ω

u2
3dx ≤ C

∫
Ω

u2
2dx.

Now we can combine the above estimates for u1, v and u3 and choose ε sufficiently small to conclude

4∑
i=1

∥∇ui∥L2(Ω) +
4∑

i=1

∫
Ω

u2
i dx ≤ C. (4.6)

To derive a further a priori estimate, we use the Campanato estimate for elliptic equations [44]) to obtain
that ui ∈ Cα(Ω̄) and

4∑
i=1

∥ui∥Cα(Ω̄) ≤ C.

With the above a priori estimates, we can use the Schauder’s fixed-point theorem [47] to obtain the exis-
ence of a weak solution for the system (4.1)–(4.5) and the weak solution is in the space W 1,2(Ω)

⋂
Cα(Ω̄).

We skip this step here. □

Remark 4.1. The uniqueness is not expected in general since one can see that there are many nontrivial
constant solutions when b1(x, s), g1, g2 have the special forms as stated in the Introduction.

Next, we shall consider the steady-state solutions to the system (4.1)–(4.5). Let Z∗(x) = (u∗
1(x), u∗

2(x),
∗
3(x), u∗

4(x)) be such a steady-state solution. For ε > 0, we consider a small perturbation near Z∗(x) and
et

Z(x, t) = Z∗(x) + εZ1(x, t), (x, t) ∈ Q,

here Z1 = (U1, U2, U3, U4), with Ui = ui − u∗
i (x) for i = 1, 2, 3, 4.

A direct calculation shows that Z1 satisfies the following linear system:

U1t − ∇ · [a1∇U1] = F1(Z1), (x, t) ∈ Q, (4.7)
U2t − ∇ · [a2∇U2] = F2(Z1), (x, t) ∈ Q, (4.8)
U3t − ∇ · [a3∇U3] = F3(Z1), (x, t) ∈ Q, (4.9)
U4t − ∇ · [a4∇U4] = F4(Z1), (x, t) ∈ Q, (4.10)

ubject to the initial and boundary conditions:

Z1(x, 0) = Z1(x, 0), x ∈ Ω , (4.11)
∇νZ1(x, t) = 0, (x, t) ∈ ∂Ω × (0, ∞), (4.12)

here the right-hand sides of the system (4.6)–(4.9) are given by

F1(Z1) = [bs(x, u∗
1) − β1u∗

2 − β2h1(u∗
4) − d1]U1 − β1u∗

1U2 + σU3 − (β2u∗
1h′

1u∗
4)U4,

F2(Z1) = (β1u∗
2 + β2h1(u∗

20))U1 + [β1u∗
1 − (d2 + γ)]U2 + β2u∗

1h′
1(u∗

4)U4,

F3(Z1) = γU2 − (d3 + σ)U3,
∗
F4(Z1) = ξU2 − h2s(x, u4)U4.

15
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Theorem 4.1. Under the assumptions H(4.1), the steady-state solution Z∗(x) to the system (4.1)–(4.5) is
asymptotically stable if the following conditions hold:

d1 − B0 > 0, d4 − G0 > 0,

and β1 is suitably small, where B0 and G0 are given by

B0 = max
x∈Ω

|bs(x, u∗
1)|, G0 = max

Ω
|h2s(x, u∗

4)|.

Proof. For any positive integer k, we multiply Eq. (4.1) by Uk
1 and integrate over Ω to obtain

1
k + 1

d

dt

∫
Ω

Uk+1
1 dx + 4ka0

(k + 1)2

∫
Ω

|∇U
k+1

2
1 |

2
dx

+
∫
Ω

[d1 + β1u∗
2 + β2h1(u∗

4) − bs(x, u∗
1)]Uk+1

1 dx ≤ |J |,

here J is given by

J = −β1

∫
Ω

u∗
1U2Uk

1 dx + σ

∫
Ω

U3Uk
1 dx − β2

∫
Ω

u∗
1h′

1(u∗
4)U4Uk

1 dx := J1 + J2 + J3.

et U0 = maxΩ u∗
1(x), then we can use the Young’s inequality to readily get

|J1| ≤ β1U0

∫
Ω

[
k

k + 1Uk+1
1 + 1

(k + 1)Uk+1
2

]
dx,

|J2| ≤ σ

∫
Ω

[
k

k + 1Uk+1
1 + 1

(k + 1)Uk+1
3

]
dx,

|J3| ≤ β2U0G0

∫
Ω

[
k

k + 1Uk+1
1 + 1

(k + 1)Uk+1
4

]
dx.

Using these estimates, we easily see for sufficiently small σ, β1, β2 that

1
k + 1

d

dt

∫
Ω

Uk+1
1 dx + 4ka0

(k + 1)2

∫
Ω

|∇U
k+1

2
1 |

2
dx

+ [d1 + β1u∗
2 + β2h1(u∗

4) − bs(x, u∗
1)]
∫
Ω

Uk+1
1 dx

≤ C

(k + 1)

∫
Ω

[
Uk+1

2 + Uk+1
3 + Uk+1

4
]

dx

for a constant C independent of k.
We can apply the same argument above for U2, U3, U4 from Eq. (4.2), Eq. (4.3) and Eq. (4.4), respectively,

to obtain (with constant C independent k)

1
k + 1

d

dt

∫
Ω

Uk+1
2 dx + 4ka0

(k + 1)2

∫
Ω

|∇U
k+1

2
2 |

2
dx + (d2 + γ − β1U0)

∫
Ω

Uk+1
2 dx

≤ C

(k + 1)

∫
Ω

[
Uk+1

1 + Uk+1
4

]
dx;

1
k + 1

d

dt

∫
Ω

Uk+1
3 dx + 4ka0

(k + 1)2

∫
Ω

|∇U
k+1

2
3 |

2
dx + (d3 + σ)

∫
Ω

Uk+1
3 dx

≤ C
∫

Uk+1
2 dx;
(k + 1) Ω
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T

T

T

5

(
a

s

1
k + 1

d

dt

∫
Ω

Uk+1
4 dx + 4ka0

(k + 1)2

∫
Ω

|∇U
k+1

2
4 |

2
dx + (d4 − G0)

∫
Ω

Uk+1
4 dx

≤ C

(k + 1)

∫
Ω

Uk+1
2 dx.

We now study the quantity

Y (t) =
∫
Ω

[
Uk+1

1 + Uk+1
2 + Uk+1

3 + Uk+1
4

]
dx.

Noting from Assumption H(4.1) that there exists a small number, denoted by β0, such that

d1 − B0 ≥ β0, d2 + γ − β1U0 ≥ β0, d3 + σ > β0, d4 − G0 ≥ β0,

we can add up the above estimates for Uk+1
i to derive for sufficiently large k that

1
k + 1Y ′(t) + β0Y (t) ≤ 0.

his readily implies
Y (t) ≤ C(k + 1)Y (0).

aking the kth-root on both sides, we obtain as k → ∞ that

4∑
i=1

sup
0<t<∞

|Ui|L∞(Ω) ≤ sup
Ω

|Z1(x, 0)|L∞(Ω).

his implies that the solution Z1(x, t) is asymptotically stable near the steady-state solution Z∗(x). □

. Further stability analysis

In this section we investigate the stability of constant steady-state solutions corresponding to the system
1.1)–(1.4). To illustrate the method and physical meaning, we further assume that the diffusion coefficients
nd the death rate are constants:

H(5.1). (a) Let ai and di be positive constants, and

a0 = min{a1, a2, a3, a4}, d0 = min{d1, d2, d3, d4}.

(b) The functions b, h1 and h2 are of the following forms for two constants b0 and g0:

b(x, t, s) = b0s(1 − s

K1
), h1(s) = s

s + K2
, h2(s) = g0s(1 − s

K3
).

Under the above setting, the steady-state system (4.1)–(4.4) reduces to

−∇ · [a1(x)∇u1] = b(x, u1) − β1u1u2 − β2u1 · h1(u4) − d1u1 + σu3, (5.1)
−∇ · [a2(x)∇u2] = β1u1u2 + β2u1 · h1(u4) − (d2 + γ)u2, (5.2)
−∇ · [a3(x)∇u3] = γu2 − (d3 + σ)u3, (5.3)
−∇ · [a4(x)∇u4] = ξu2 + h2(x, u4) − d4u4 (5.4)

ubject to the boundary condition
∂νu1(x) = 0, ∂νu2(x) = 0, ∂νu3(x) = 0, ∂νu4(x) = 0, ∀ x ∈ ∂Ω . (5.5)
17
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We can easily derive from (5.1) to (5.4) that

(d1 − b0)
∫
Ω

u1dx + d2

∫
Ω

u2dx + d3

∫
Ω

u3dx + b0

K1

∫
Ω

u2
1dx = 0.

(d4 − g0)
∫
Ω

u4dx + g0

K2

∫
Ω

u2
4dx = ξ

∫
Ω

u2dx,

rom which we readily see that there exists one trivial solution, i.e., u1 = u2 = u3 = u4 = 0 if b0 ≤ d1 and
g0 ≤ d4.

On the other hand, we can also see that there are two sets of steady-state solutions. The first set of
constant solutions requires b0 > d1 and g0 > d4:

Z1 = (0, 0, 0, 0); Z2 =
(K1(b0 − d1)

b0
, 0, 0, 0

)
; Z3 =

(
0, 0, 0,

K3(g0 − d4)
g0

)
.

The other set of constant solutions is given as follows:

Z4 =
{

(S, I, R, B) : R = γ

d3 + σ
I

}
,

where S, I and B are the solutions of the following nonlinear system:

b0

K1
S2 − (b0 − d1)S +

(
d2 + γ − σγ

d3 + σ

)
I = 0, (5.6)

g0

K2
B2 − (g0 − d4)B − ξI = 0, (5.7)

S = (d2 + γ)I
β1I + β2h1(B) . (5.8)

emma 5.1. The nonlinear system (5.5)–(5.7) has one nontrivial constant solution if and only if b0 >

1, g>d4.

roof. We first derive a necessary condition which will ensure the existence of a nontrivial constant solution.
ote that

α := d2 + γ − σγ

d3 + σ
> 0,

e express Eq. (5.6) as a function of S for I:

I = − 1
α

[
b0

K1
S2 − (b0 − d1)S

]
= − 1

α

[
b0

K1
(S − b0 − d1

2b0
)2 − K1(b0 − d1)2

4b0

]
,

hich is a parabola with the vertex s∗ = b0−d1
2b0

> 0 as long as b0 > d1. Hence,

I > 0 ⇐⇒ 0 < S <
K1(b0 − d1)

b0
.

On the other hand, we can see from Eq. (5.7) that

S = (d2 + γ)I
β1I + β2h1(B) = d2 + γ

β1
[1 − β2h1(B)

β1I + β2h1(B) ].

If we consider S as a function of I, i.e., S = S(I), we get

S(0) = 0, S′(I) > 0, S′′(I) < 0, S(∞) = d2 + γ
.

β1
18
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Consequently, there exists a unique intersection for two curves in IS-plane from Eq. (5.6) and Eq. (5.7)
f and only if

b0 > d1.

oreover, the intersection point is unique since S = S(I) is a monotone function. Once I is found, we can
asily obtain exactly a positive constant solution B from Eq. (5.6) as long as g0 > d4. □

roof of Theorem 2.2. Let A be the diagonal matrix formed by the diffusion coefficients ai. We can
alculate the Jacobian matrix for the nonlinear reaction terms from system (2.1)–(2.4):

B1(Z) =
(

∂fi

∂ui

)
4×4

.

For Z1 = (0, 0, 0, 0), it is easy to see the 4 × 4 matrix:

B1(Z1) =

⎛⎜⎜⎝
b0 − d1 0 σ 0

0 −(d2 + γ) 0 0
0 γ −(d3 + σ) 0
0 ξ 0 g0 − d4

⎞⎟⎟⎠ .

Let 0 ≤ λ1 < λ2 < · · · be the eigenvalue of the Laplacian operator subject to the homogeneous Neumann
boundary condition.

It is easy to calculate the eigenvalues of Aj(Z1) = B1(Z1) − λjA:

µ1j = b0 − d1 − λja1, µ2j = −(d2 + γ) − λja2, µ3j = −(d3 + σ) − λja3, µ4j = g0 − d4 − λja4.

Since λ1 = 0 is the first eigenvalue of the Laplacian and b0 ≥ d1 and g0 ≥ d4, it follows that Z1 = (0, 0, 0, 0)
is unstable unless b0 ≤ d1, g0 ≤ d4.

Since λj ≥ 0, the eigenvalues indicate that the stability of Z1 is not affected by the diffusion processes.
This is clear since the birth rate is greater than the death rate. The population must be positive for a long
time.

For Z2 = ( K1(b0−d1)
b0

, 0, 0, 0), we can see the 4 × 4 matrix:

B1(Z2) =

⎛⎜⎜⎜⎝
−(b0 − d1) − K1β1(b0−d1)

b0
σ − β2K1(b0−d1)

b0K2
0 β1K1(b0−d1)

b0
− (d2 + γ) 0 β2K1(b0−d1)

b0K2
0 γ −(d3 + σ) 0
0 ξ 0 g0 − d4

⎞⎟⎟⎟⎠ .

Then we consider
Aj(Z2) = B1(Z2) − λjA,

and see its characteristic polynomial, denoted by P (µ), is equal to

P (µ) = (b0 − d1 − λja1 − µ)(d3 + σ + λja3 + µ){
[µ2 − [(g0 − d4 − λja4)] + m0 − (d2 + γ + λja2)µ]

+ [m0 − (d2 + γ + λja2)][g0 − d4 − λja4] − ξm0

K2

}
,

where
m0 = β2K1(b0 − d1)

b0
.

e obtain the eigenvalues

µ = −(b − d ) − λ a ,
1 0 1 j 1

19



H.-M. Yin and J. Zou Nonlinear Analysis: Real World Applications 75 (2024) 103984

I
M

a

W

µ2 = −(d3 + σ + λja3),

µ3 = M1 +
√

M2
1 − 4M2

2 ,

µ4 = M1 −
√

M2
1 − 4M2

2 ,

where

M1 = m0 − (d2 + γ + λja2) + (g0 − d4 − λja4);

M2 = [m0 − (d2 + γ + λja2)][g0 − (d4 + λja4)] − ξm0

K2

t follows that Z2 is locally stable if M1 < 0 and M2 > 0 and Z2 is unstable for either M1 > 0 or M2 < 0 or
2
1 − 4M2 > 0 when M2 > 0. On the other hand, we know

λj → ∞ as j → ∞,

nd M2
1 − 4M2 > 0. Consequently, we conclude that Z2 is an unstable steady-state solution.

Now we calculate Aj(Z3):
Aj(Z3) = B1(Z3) − λjA.

For Z3 = (0, 0, 0, K2(g0−d4)
g0

), we can see the 4 × 4 matrix:

B1(Z3) =

⎛⎜⎜⎝
(b0 − d1) 0 σ 0
β2(g0−d4)
(2g0−d4) −(d2 + γ) 0 0

0 γ −(d3 + σ) 0
0 ξ 0 −(g0 − d4)

⎞⎟⎟⎠ .

e know the characteristic polynomial for the matrix Aj(Z3) = DF (Z3) − µI4×4 is equal to

P (µ) = |Aj(Z3)| = −[(g0 − d4 + λja4) + µ]P0(µ),

where

P0(µ) = [(b0 − d1 − λja1 + µ)(d3 + σ + λja3 + µ)(d2 + γ + λja2 + µ)] + σγβ2(g0 − d4)
2g0 − d4

.

Hence, the first eigenvalue is equal to

µ1 = −(g0 − d1 + λja4),

To see the rest of eigenvalues of P (µ), we use a lemma from Yin-Chen-Wang [46]. □

Lemma 5.2. Let p > 0, q and h be constants, and

P0(µ) = µ3 + pµ2 + qµ + h = 0.

Then it holds that
(a) If h < 0, there exists a positive root;
(b) If 0 < h < pq, all roots have negative real parts;
(c) If pq < h, there is a root with positive real part;
(d) If pq = h, the roots are µ1 = −p, µ2 =

√
−q, µ3 = −

√
−q.

Let
P (µ) = µ3 + pµ2 + qµ + h,
0
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with its coefficients given by

p = (d2 + γ + λja2) + (d3 + σ + λja3) − (b0 − d1 − λja1);
q = (d2 + γ + λja2)(d3 + σ + λja3) − (b0 − d1 − λja1)[(d2 + γ + λja2) + (d3 + σ + λja3)];

h = (d1 + λja1 − b0)(d2 + γ + λja2)(d3 + σ + λja3) − σγβ2(g0 − d4)
2g0 − d4

.

Since λ1 = 0 is one of the eigenvalues and d1 − b0 < 0, g0 − d4 > 0, we see h < 0 from the expression of
h, so Z3 is unstable.

Finally, we study the stability of Z4. Since u4 always has positive solutions as long as u2 is positive, it does
not affect the stability of other variables. We only need to focus on the stability of (u1, u2, u3). Furthermore,
since λ1 = 0 is the first eigenvalue, the rest of eigenvalues have the same sign with di which increases the
tability of the solution. Therefore, we only need to find the conditions for the stability when λ1 = 0.

It is easy to calculate the Jacobian matrix

B∗
1 =

⎛⎝ −L0 −β1S0 σ
β1I0 + β2h(B0) −(d2 + γ) 0

0 γ −(d3 + σ)

⎞⎠
here

L0 = (d1 − b0) + 2b0S0

K1
+ β1I0 + β2h1(B0).

The characteristic polynomial of B∗
1 is equal to

P (µ) = µ3 + p0µ2 + q0µ + h0 = 0.

where the three coefficients p0, q0 and h0 are given by

p0 = L0 + (d2 + γ) + (d3 + σ) + L0,

q0 = (d3 + σ)(L0 + d2 + γ) + L0(d2 + γ) + β1S0(β1I0 + β2h1(B0)),
h0 = (d3 + σ)[L0(d2 + γ) + β1S0(β1I0 + β2h1(B0))] − σγ(β1I0 + β2h1(B0)).

By Lemma 5.2, we can see the stability or instability of the steady-state solution precisely when parameters
vary. In particular, when L0 > 0, if σ, γ, β1 and β2 are sufficiently small, we see the condition 0 < h0 <

p0q0 holds. Consequently, the steady-state solution (S0, I0, R0) is stable. This result confirms the result of
Theorem 2.2 about the stability analysis of the steady-state solutions. □

6. Conclusion

In this paper we have studied a nonlinear mathematical model for an epidemic caused by cholera without
life-time immunity. The diffusion coefficients are different for each species. Moreover, these coefficients are
allowed to be dependent upon the concentration as well as the space location and time. The resulting
model system is strongly coupled. We established the global well-posedness for the coupled reaction–diffusion
system under some very mild conditions on the given data. Moreover, we have analyzed the linear stability
for the steady-state solutions and proved that there is a turing phenomenon when the diffusion coefficients
are different. This result indicates that there are some fundamental differences between the ODE model and
the corresponding PDE model. These results show that the mathematical model is well-defined and can be
used by other researchers to conduct the field study. The theoretical results obtained in this paper lays a
solid foundation for other scientists in related fields to further study more constructive qualitative properties
of the solutions, and also provide scientists a deeper understanding of the dynamics of the interaction
between bacteria and susceptible, infected and recovered species. We have used several fundamental ideas
and techniques from the theories of elliptic and parabolic equations, particularly, the energy method and
various Sobolev’s inequalities. There are some open questions that remain to be understood, and further

studies are needed.

21



H.-M. Yin and J. Zou Nonlinear Analysis: Real World Applications 75 (2024) 103984
Acknowledgments

This work was motivated by some open questions raised by Professor K. Yamazaki from Texas Tech
University and Professor Jin Wang from University of Tennessee at Chattanooga in WSU biological seminar
series. The authors would like to thank them for some helpful discussions about the model. Our gratitude
also goes to the anonymous referees for their comments and suggestions, particularly, for Lemma 5.1. These
comments and suggestions have improved the original version of the paper. The work of the second author
was substantially supported by Hong Kong RGC General Research Fund (projects 14306921 and 14308322).

References

[1] C. Nicholas, Grassly and christopher fraser, mathematical models of infectious disease transmission, Nat. Rev. Microbiol.
6 (2008) 477–487.

[2] Constantinos I. Siettos, Lucia Russo, Mathematical modeling of infectious disease dynamics, Virulence 4 (2013) 295–306.
[3] Caroline E. Waltersa, Margaux M.I. Mesléb, Ian M. Hall, Modelling the global spread of diseases: A review of current

practice and capability, Epidemics 25 (2018) 1–8.
[4] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A

115 (1927) 700–721.
[5] E.E. Holmes, M.A. Lewis, J.E. Banks, R.R. Veit, Partial differential equations in ecology: Spatial interactions and

population dynamics, Ecology 75 (1994) 17–29.
[6] R.M. Anderson, R.M. May, Population biology of infectious diseases I, Nature 280 (1979) 361–367.
[7] R.M. May, R.M. Anderson, Population biology of infectious disease II, Nature 280 (1979) 455–466.
[8] D.J. Daley, J. and Gani, Epidemic Modelling, an Introduction, Cambridge University Press, New York, 1999.
[9] P. van de Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibra for compartmental

models of disease transmission, Math. Biosci. 180 (2002) 29–48.
[10] Yu A. Kuznetsov, C. Piccardi, Bifurcation analysis of periodic SEIR and SIR epidemic models, J. Math. Biol. 32 (1994)

109–121.
[11] L. Allen, B. Bolker, Y. Lou, A. Nevai, Asymptotic profiles of the steady-states for an SIS epidemic disease patch model,

SIAM J. Appl. Math. 67 (2007) 1283–1309.
[12] W.E. Fitzgibbon, Jeffery J. Morgan, Glenn F. Webb, Yixiang. Wu, Spatial models of vector-host epidemics with directed

movement of vectors over long distances, Math. Biosci. 312 (2019) 77–87.
[13] M. De Jone, O. Diekmann, H. Heesterbreek, Transmission of Infection Depend on Population Size? in Epidemic Models:

Their Structure and Relation To Data, 84-89, Cambridge University Press, New York, 1995.
[14] Y. Lou, W.M. Ni, Self-diffusion and cross-diffusion, J. Differential Equations 131 (1996) 791–831.
[15] P. Song, Y. Lou, Y. Xiao, A spatial SEIRS reaction–diffusion model in heterogeneous environment, J. Differential

Equations 267 (2019) 5084–5114.
[16] H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000) 599–653.
[17] S. Busenberg, R. Cooke, Vertically Transmitted Diseases: Models and Dynamics, Vol. 23, Springer-Verlag Science and

Business Media, New York, 2012.
[18] R.S. Cantrell, C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley & Sons, New York, 2003.
[19] J.R. Andrew, S. Basu, Transmission dynamics and control of cholera in Haiti: an epidemic model, Lancet 377 (2011)

1248–1255.
[20] M.C. Eisenberg, Z. Shuai, J.H. Tien, P. van den Driessche, A cholera model in a patchy environment with water and

human movement, Math. Biosci. 180 (2002) 29–48.
[21] K. Yamazaki, X. Wang, Global stability and uniform persistence of the reaction-convection–diffusion cholera epidemic

model, Math. Biosci. Eng 14 (2017) 559–579.
[22] Hong-Ming Yin, On a reaction–diffusion system modeling infectious diseases without life-time immunity, European J.

Appl. Math. (2020) in press, arXiv:2011.08355.
[23] S. Liao, J. Wang, Stability analysis and application of a mathematical cholera model, Math. Biosci. Eng. 8 (2011)

733–752.
[24] Xueying Wang, Jin Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn. 9

(2015) 233–261.
[25] K. Yamazaki, X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection–diffusion

Cholera pedimic model, Disc. Cont. Dyn. Sys. Ser. B 21 (2016) 1297–1316.
[26] H. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations,

Math. Biosci. 111 (1992) 99–121.
[27] Z. Shuai, P. van den Driessche, Global stability of infectious disease models using lyapunov functions, SIAM J. Appl.

Math. 73 (2013) 1513–1532.
[28] J.P. Tian, J. Wang, Global stability for cholera epidemic models, Math. Biosci. 232 (2011) 31–41.
[29] K. Yamazaki, Global well-posedness of infectious disease models without life-time immunity: the cases of cholera and

avian influenza, Math. Medic. Bio. 10 (2018) 200–220.

[30] M. Pierre, D. Schmitt, Blowup in reaction–diffusion systems with dissipation of mass, SIAM Rev. 42 (2000) 93–106.

22

http://refhub.elsevier.com/S1468-1218(23)00154-2/sb1
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb1
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb1
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb2
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb3
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb3
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb3
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb4
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb4
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb4
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb5
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb5
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb5
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb6
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb7
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb8
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb9
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb9
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb9
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb10
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb10
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb10
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb11
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb11
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb11
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb12
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb12
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb12
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb13
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb13
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb13
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb14
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb15
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb15
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb15
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb16
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb17
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb17
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb17
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb18
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb19
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb19
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb19
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb20
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb20
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb20
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb21
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb21
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb21
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://arxiv.org/abs/2011.08355
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb23
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb23
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb23
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb24
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb24
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb24
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb25
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb25
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb25
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb26
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb26
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb26
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb27
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb27
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb27
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb28
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb29
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb29
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb29
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb30


H.-M. Yin and J. Zou Nonlinear Analysis: Real World Applications 75 (2024) 103984
[31] L. Desvillettes, K. Fellner, M. Pierre, J. Vovelle, Global existence for a quadratic systems of reaction–diffusion, Adv.
Nonlin. Stud. 7 (2007) 491–511.

[32] Y.I. Kanel, Solvability in the large of a system of reaction–diffusion equations with balanced condition, Differential
Equations 26 (1990) 448–458.

[33] M.C. Caputo, L. Vasseur, Global regularity of solutions to systems of reaction–diffusion with sub-quadratic growth in
any space dimension, Comm. Partial Differential Equations 34 (2009) 1228–1250.

[34] M. Pierre, Global existence in reaction–diffusion systems with control of mass, Milan, J. Math. 78 (2010) 417–455.
[35] Maria J. Caceres, Jose A. Canizo, Close-to-equilibrium behavior of quadratic reaction–diffusion systems with detailed

balance, Nonlinear Anal. 159 (2017) 62–84.
[36] Philippe Souplet, Global existence for reaction–diffusion systems with dissipation of mass and quadratic growth, J. Evol.

Equ. 18 (2018) 1713–1720.
[37] K. Fellner, J. Morgan, B.Q. Tang, Global classical solutions to quadratic systems with mass control in arbitrary

dimensions, Ann. Instit. Henri Poincare 37 (2019) 281–307.
[38] K.J. Morgan, B.Q. Tang, Boundedness for reaction–diffusion systems with Lyapunov functions with intermediate sum

conditions, Nonlinearity 33 (2020) 3105–3133.
[39] W.E. Fitzgibbon, Jeffery J. Morgan, Glenn F. Webb, Yixiang Wu, SIAM J. Math. Anal (2021) preprint http://arxiv.o

rg/abs/2103.16863, in press.
[40] L.C. Evans, Partial Differential Equations, in: AMS Graduate Studies in Mathematics, vol. 19, Providence, Rhode Island,

USA, 2010.
[41] Gary M. Lieberman, Second-Order Parabolic Differential Equations, World Scientific Publication, New York, 1996.
[42] O.A. Ladyzenskaja, V.A. Solonikov, N.N. Uralceva, Linear and quasilinear equations of parabolic type, in: AMS

translation series, vol. 23, Rode Island, 1968.
[43] Hong-Ming Yin, L2,u-Estimates for parabolic equations and applications, J. Part. Diff. Equ. 10 (1) (1997) 31–44.
[44] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987.
[45] M. Bendahmane, M. Langlais, M. Saad, Existence of solutions for reaction–diffusion systems with L1-data, Adv.

Differential Equations 7 (2002) 743–768.
[46] Hong-Ming Yin, Xinfu Chen, Lihe Wang, On a cross-diffusion system modeling vegetation spots and strips in a semi-arid

or arid landscape, Nonlinear Anal. 159 (2017) 482–491.
[47] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations, third ed., Springer, New York, 1998.
23

http://refhub.elsevier.com/S1468-1218(23)00154-2/sb31
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb31
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb31
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb32
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb32
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb32
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb33
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb33
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb33
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb34
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb35
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb35
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb35
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb36
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb36
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb36
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb37
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb37
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb37
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb38
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb38
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb38
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://arxiv.org/abs/2103.16863
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb40
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb40
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb40
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb41
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb42
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb42
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb42
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb43
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb44
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb45
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb45
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb45
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb46
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb46
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb46
http://refhub.elsevier.com/S1468-1218(23)00154-2/sb47

	Asymptotic analysis for a nonlinear reaction–diffusion system modeling an infectious disease
	Introduction
	Preliminaries and Statement of Main Results
	Global Solvability and Proof of Theorem 2.1
	Linear Stability Analysis
	Further Stability Analysis
	Conclusion
	Acknowledgments
	References


