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LONG-TIME BEHAVIOR OF NUMERICAL SOLUTIONS TO NONLINEAR
FRACTIONAL ODES

Dongling Wang1, Aiguo Xiao2 and Jun Zou3,*

Abstract. In this work, we study the long time behavior, including asymptotic contractivity and
dissipativity, of the solutions to several numerical methods for fractional ordinary differential equations
(F-ODEs). The existing algebraic contractivity and dissipativity rates of the solutions to the scalar F-
ODEs are first improved. In order to study the long time behavior of numerical solutions to fractional
backward differential formulas (F-BDFs), two crucial analytical techniques are developed, with the
first one for the discrete version of the fractional generalization of the traditional Leibniz rule, and the
other for the algebraic decay rate of the solution to a linear Volterra difference equation. By means of
these auxiliary tools and some natural conditions, the solutions to F-BDFs are shown to be contractive
and dissipative, and also preserve the exact contractivity rate of the continuous solutions. Two typical
F-BDFs, based on the Grünwald–Letnikov formula and L1 method respectively, are studied. For high
order F-BDFs, including convolution quadrature schemes based on classical second order BDF and prod-
uct integration schemes based on quadratic interpolation approximation, their numerical contractivity
and dissipativity are also developed under some slightly stronger conditions. Numerical experiments
are presented to validate the long time qualitative characteristics of the solutions to F-BDFs, revealing
very different decay rates of the numerical solutions in terms of the the initial values between F-ODEs
and integer ODEs and demonstrating the superiority of the structure-preserving numerical methods.
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1. Introduction

Fractional calculus has been widely applied to many areas in science and engineering. Various fractional-order
dynamical models have been proposed in applications, and their numerical solutions have shown better consis-
tencies with experimental data than those produced by the corresponding integer-order differential equations
[28,39,40]. A typical model is the time fractional anomalous diffusion equation, which describes a diffusion pro-
cess where the mean square displacement of a particle grows slower or faster than that in the normal diffusion
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process. Anomalous diffusions were observed and confirmed in many experiments. Solutions to fractional anoma-
lous diffusion equations demonstrate an important so-called long-tail effect, that is, they decay asymptotically
in an algebraic decay rate, which is generally much slower than the exponential decay rate of classical integer
order equations and thus the solutions look like having a long tail geometrically. It is highly interesting and
important both mathematically and practically if we could have a quantitative understanding of the long-time
dynamical behavior of the solutions to nonlinear fractional models, especially of how the numerical solutions
decay and if they can preserve the exact same algebraic decay rate as their continuous counterparts. This is a
challenging topic and has basically still not been investigated in the literature, and will be the main motivation
and focus of the current work. Let us start with the model of our main interest. For 0 < 𝛼 < 1, we consider the
Caputo F-ODEs:

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑡 > 0, 𝑥 ∈ R𝑑, (1.1)

with initial condition 𝑥(0) = 𝑥0, where the Caputo fractional derivative is given by

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡) =
1

Γ(1− 𝛼)

∫︁ 𝑡

0

𝑥′(𝑠)
(𝑡− 𝑠)𝛼

d𝑠.

The stability analysis of F-ODEs has attracted a great attention and the main difficulty in the analysis lies in
the nonlocal nature of fractional derivatives. A fundamental stability result for linear F-ODEs, i.e., 𝑓(𝑡, 𝑥) = 𝐴𝑥
for a matrix 𝐴 ∈ R𝑑×𝑑 in (1.1), was established by Matignon [37], where the stability region and a concrete
long time algebraic decay rate, namely 𝑂(𝑡−𝛼) as 𝑡 → +∞, of the solutions were derived.

For a linear fractional order integro-differential equation, the asymptotic behavior of continuous and discrete
solutions with optimal decay rate 𝑂(𝑡−𝛼) was derived by constructing a nice contour integral [9]. Many important
results and various analytical strategies for the stability of fractional linear systems have been developed in
succession; see the survey article [31].

For the stability of nonlinear F-ODEs, a popular approach is to extend the classical Lyapunov theorem
to fractional systems and make use of the fractional comparison principle. The concept of the Mittag-Leffler
stability and the fractional Lyapunov second method were developed in [32]. This method relies on an appropriate
Lyapunov function and the calculation of the Caputo fractional derivative of the function. Under the classical
Lipschitz hypothesis on function 𝑓 , the stability with respect to initial values and the structural stability of
F-ODEs were studied in [13]. The stability theory of nonlinear F-ODEs is still far from maturity due to the
coupling between the complex structure of the nonlinear function 𝑓 and the nonlocal feature of fractional
derivatives. To illustrate the motivation of the contractivity and dissipativity of solutions to nonlinear F-ODEs,
we first recall some relevant results for the classical ODEs, namely,

d
d𝑡

𝑥(𝑡) = 𝑓(𝑡, 𝑥), 𝑥 ∈ R𝑑, (1.2)

which are assumed to have a unique solution 𝑥 ∈ 𝐶[[𝑡0, +∞), R𝑑] for any given initial value 𝑥(𝑡0) = 𝑥0.
In order to extend the concept of 𝐴-stability for linear multistep methods from the linear test equation to

nonlinear systems, Dahlquist [11] introduced the one-sided Lipschitz condition in 1975 for the ODEs (1.2):

⟨𝑓(𝑡, 𝑥)− 𝑓(𝑡, 𝑦), 𝑥− 𝑦⟩ ≤ 𝜆‖𝑥− 𝑦‖2, for all 𝑥, 𝑦 ∈ R𝑑, (1.3)

where 𝜆 is the one-sided Lipschitz constant, ⟨·, ·⟩ is the Euclidean inner product in R𝑑, and ‖·, ·‖ is the standard
Euclidean norm. This convention is assumed throughout the paper.

Then any two solutions 𝑥(𝑡) and 𝑦(𝑡) of equation (1.2) with different initial values 𝑥0 and 𝑦0 meet the following
stability estimate:

‖𝑥(𝑡)− 𝑦(𝑡)‖ ≤ ‖𝑥0 − 𝑦0‖ · 𝑒𝜆(𝑡−𝑡0). (1.4)

This implies the contractivity and exponential stability of the solutions to the ODEs (1.2) with respect to the
initial values for 𝜆 ≤ 0 and 𝜆 < 0 respectively.



LONG-TIME BEHAVIOR OF NUMERICAL SOLUTIONS 337

The one-sided Lipschitz condition (1.3) has a significant influence on the numerical methods for stiff ODEs
[4, 20]. Stiff problems usually have large classical Lipschitz constant, but there may be a moderately sized, or
even a negative one-sided Lipschitz constant. One class of important examples of stiff ODEs are derived from the
space discretization of some parabolic equations such as reaction diffusion equations. Dahlquist [11] proposed
the concept of 𝐺-stability for one-leg methods and the corresponding linear multistep methods (LMMs) for
stiff ODEs satisfying the one-sided Lipschitz condition. The fundamental equivalence between the 𝐺-stability
and 𝐴-stability of LMMs and one-leg methods was established in 1978 [12]. Moreover, Butcher [3] studied the
contractivity for Runge–Kutta methods and introduced the concept of the 𝐵-stability; see the monograph [20]
for more details.

Another type of ODE systems that are very close to the contractive ODEs is the so-called dissipative systems.
The main feature of the dissipative systems is the presence of certain mechanisms of energy dissipation, which
can lead to quite complicated limit regimes and structures [21]. For the ODEs (1.2), Humphries and Stuart [23]
imposed a structural condition on 𝑓 , namely,

⟨𝑓(𝑡, 𝑥), 𝑥⟩ ≤ 𝑎− 𝑏‖𝑥‖2 for all 𝑥 ∈ R𝑑 (1.5)

for some 𝑎 ≥ 0 and 𝑏 > 0, which leads to the decay estimate of the form

‖𝑥(𝑡)‖2 ≤ ‖𝑥0‖2𝑒−2𝑏(𝑡−𝑡0) +
𝑎

𝑏

(︁
1− 𝑒−2𝑏(𝑡−𝑡0)

)︁
. (1.6)

Hence the open ball 𝐵(0,
√︀

𝑎/𝑏 + 𝜀) is an absorbing set as 𝑡 → +∞ for any given 𝜀 > 0 and any given initial
data. As defined in [23], an ODEs system is said to be dissipative if for any initial value 𝑥0, there exists a time
𝑡*(𝑥0) ≥ 𝑡0 and a bounded absorbing set 𝐵 such that 𝑥(𝑡) ∈ 𝐵 for all 𝑡 > 𝑡*4. We can easily see the exponential
stability of 𝑥(𝑡) directly from (1.6) for 𝑎 = 0, 𝑏 > 0.

There are various models of dissipative differential equations from physics and engineering; see [21, 42]. In
1994, Humphries and Stuart [23] first studied the numerical dissipativity for Runge–Kutta methods. They proved
that for DJ-irreducible Runge–Kutta methods, the algebraic stability is sufficient to imply the dissipativity of
the numerical solutions to (1.2) with the dissipative condition (1.5). Based on Dahlquist’s 𝐺-stability theory
[12], Hill [22] demonstrated that the 𝐴-stability is equivalent to the dissipativity of LMMs and one-leg methods
for ODEs with the condition (1.5).

It is very interesting and natural for us to understand if the fundamental results we have reviewed above about
contractivity and dissipativity of the classical ODEs (1.2) can be established also for F-ODEs. To continue our
discussions, we recall two important functions, namely the Mittag-Leffler function 𝐸𝛼(𝑧) and the generalized
Mittag-Leffler function 𝐸𝛼,𝛽(𝑧) defined for 𝑧 ∈ C:

𝐸𝛼(𝑧) =
∞∑︁

𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 1)
, 𝛼 > 0; 𝐸𝛼,𝛽(𝑧) =

∞∑︁
𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
, 𝛼, 𝛽 > 0.

It is similar to the exponential functions that are used often in the investigation of differential equations of
integer order, Mittag-Leffler type functions can be seen as the fractional generalization of exponential functions
and used naturally in fractional calculus. For 𝛼 ∈ (0, 1), these two functions have the following nice properties
[28,40]:

𝐸𝛼(𝑡) = 𝐸𝛼,1(𝑡) > 0, 𝐸𝛼,𝛼(𝑡) > 0,
d
d𝑡

𝐸𝛼,𝛼(𝑡) > 0, (1.7)

the asymptotic expansion

𝐸𝛼,𝛽(𝜆𝑡) = −
𝑁∑︁

𝑘=1

1
Γ(𝛽 − 𝑘𝛼)

1
(𝜆𝑡)𝑘

+ 𝑂

(︂
1

(𝜆𝑡)𝑁+1

)︂
, 𝑁 ∈ N+, 𝜆 < 0, 𝑡 → +∞,

4As noted in [23], a numerical method preserves the contractivity in (1.4) is sometimes referred to be dissipative in the numerical
literature, but this conflicts with the corresponding terminology in dynamical systems. At the same time, the authors in [23] give
an accurate definition of dissipativity for ODEs, which mainly emphasizes the existence of a global attracting set. This definition
was later widely accepted in the numerical literature, and we also follow this definition.
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and the integral representation∫︁ 𝑡

0

1
(𝑡− 𝜏)1−𝛼

𝐸𝛼,𝛼(𝜆(𝑡− 𝜏)𝛼)d𝜏 = 𝑡𝛼𝐸𝛼,1+𝛼(𝜆𝑡𝛼), 𝜆 < 0, 𝑡 > 0.

We first studied the Caputo F-ODEs in [43] and established the contractivity and dissipativity under the
same conditions as those for classical ODEs. More precisely, we obtained the following results [43].

Lemma 1.1. (i) Under the one-sided Lipschitz condition (1.3) on 𝑓 , it holds for any two solutions 𝑥(𝑡) and
𝑦(𝑡) to the F-ODEs (1.1) with two initial values 𝑥0 and 𝑦0 that

‖𝑥(𝑡)− 𝑦(𝑡)‖2 ≤ ‖𝑥0 − 𝑦0‖2 · 𝐸𝛼(2𝜆𝑡𝛼). (1.8)

In particular, we have that ‖𝑥(𝑡)− 𝑦(𝑡)‖ ≤ ‖𝑥0 − 𝑦0‖ for 𝜆 ≤ 0.
(ii) Let 𝑥(𝑡) be the solution of the F-ODEs (1.1) and 𝑓 satisfy the dissipative condition (1.5), then the fractional

order system is dissipative in the sense that

‖𝑥(𝑡)‖2 ≤ ‖𝑥0‖2𝐸𝛼 [(−2𝑏)𝑡𝛼] + 2𝑎

∫︁ 𝑡

0

1
(𝑡− 𝜏)1−𝛼

𝐸𝛼,𝛼[(−2𝑏)(𝑡− 𝜏)𝛼]d𝜏. (1.9)

Clearly, for any given 𝜀 > 0, the ball 𝐵(0,
√︀

𝑎/𝑏 + 𝜀) is an absorbing set as 𝑡 → +∞.

We can obtain an explicit contractivity and dissipativity rates from (1.8) and (1.9) by the asymptotic expan-
sion and integral representation of Mittag-Leffler type functions, namely, it holds for some 𝑐𝛼 > 0,

‖𝑥(𝑡)− 𝑦(𝑡)‖2 ≤ ‖𝑥0 − 𝑦0‖2 ·
𝑐𝛼

𝑡𝛼
, as 𝑡 → +∞, (1.10)

‖𝑥(𝑡)‖2 ≤ ‖𝑥0‖2 ·
𝑐𝛼

𝑡𝛼
+

𝑎

𝑏
, as 𝑡 → +∞. (1.11)

Here and in the rest of this work, we use 𝑐𝛼 to represent a generic positive constant, which may take different
values at different occasions, depending on 𝛼 but independent of time 𝑡 or discrete time points 𝑛.

We may readily observe from (1.4), (1.6), (1.10) and (1.11) that the contractivity and dissipativity rates with
regard to initial values are exponential for ODEs while they are algebraic for F-ODEs. This reflects an essential
difference between the long-term decay rates of solutions to classical initial value problems and fractional ones,
mainly due to the nonlocal nature of fractional derivatives in some sense.

In another recent work [44], we further studied the long-time stability of the solutions to stiff nonlinear
fractional functional differential equations (F-FDEs) by means of a novel fractional delay-dependent Halanary-
type inequality. We investigated in [44] the effects of various functional terms such as time delay and delay
integro-differential terms on the long-term properties of solutions. A variety of complex dynamic behaviors were
observed for the solutions to F-FDEs due to the involvement of functional terms and fractional derivatives. In
particular, we demonstrated rigorously the accurate algebraic decay rate the solutions observe with respect to
various complex function perturbations in a given initial range.

When considering numerical methods for F-ODEs or F-DDEs, it is desirable that the numerical solutions can
inherit the long time behavior of the solutions to original continuous equations. This motivates one of the main
focuses of this paper, namely, to study the contractivity and dissipativity of solutions to the numerical F-BDFs
for nonlinear F-ODEs. As we shall demonstrate both analytically and numerically, it is quite remarkable that
the numerical solutions preserve exactly the same algebraic contractivity and dissipativity rates as the ones
their continuous counterparts possess, described in (1.10) and (1.11).

We like to emphasize that contractivity and dissipativity for time fractional evolution equations have stronger
decay behavior than the usual stability. Contractivity and dissipativity preserving numerical methods are more
effective and desired in applications than those stable schemes without such long-time characteristics, especially
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when the solutions have various discontinuous points. Based on the two important lemmas established in this
paper, we constructed in [44] two effective difference schemes for F-FDEs, and proved that their numerical
solutions preserve exactly the same algebraic contractivity rate as the one the continuous solutions observe.

To the best of our knowledge, the existing numerical stability analysis of F-ODEs is mostly focused on linear
problems [8, 16–18, 35], or nonlinear problems based on the classical Lipschitz hypothesis [6, 27]. In particular,
Cao et al. proposed the time splitting schemes in [6] and implicit-explicit difference schemes in [7] to deal
with stiff nonlinear F-ODEs. The methods in [6, 7] have good linear stability without nonlinear iterations,
but the special structures of the nonlinear function 𝑓 were not discussed. Noting that the nonlinear F-ODEs
(1.1) can be written equivalently as the Abel–Volterra integral equations of second kind with weakly singular
kernel, the long time behavior was studied in [15, 38] for the numerical solutions of the corresponding integral
equations. The error estimates were also obtained in [15,38], under some stronger conditions on the function 𝑓 ,
requiring simultaneously the monotone condition and the global Lipschitz condition. For another type of linear
evolutionary Volterra integrodifferential equations in a Hilbert space 𝐻 arising from the linear viscoelastivity
problem, uniform behavior of some numerical methods were derived in 𝑙1𝑡 (0,∞; 𝐻) ∩ 𝑙∞𝑡 (0,∞; 𝐻) in [46, 47]
and the references therein. We note that these stability results were established in the sense of the entire time
averaging, so both the results and their analyses are significantly different from the pointwise stability results
and the analyses we shall develop in this work.

The rest of the paper is organized as follows. In Section 2, the contractivity rate obtained in [43] is improved for
scalar F-ODEs based on nonnegative preserving properties of the solution. This result is then used to establish
optimal numerical contractivity rate of F-BDFs for scalar F-ODEs in Section 3.3. In Section 3, the contractivity
and dissipativity of the numerical solutions to F-BDFs are established. In Section 3.1, a discrete version of
the fractional generalization of the Leibniz rule is first obtained, which allows us to derive an energy-type
inequality. Then a new asymptotical behavior is studied for the solution to a linear Volterra difference equation
with algebraic decay rate, which leads to the long time algebraic decay rate of the solutions to F-BDFs. The
main results is proved in Section 3.2, and two typical examples of F-BDFs based on Grünwald–Letnikov and L1
difference schemes are presented in Section 3.4. The contractivity and dissipativity of some high order numerical
schemes are developed in Section 3.5, under slightly stronger conditions. Several numerical examples and the
concluding remarks are provided in Sections 4 and 5, respectively.

2. Improved contractivity rate of solutions to scalar F-ODEs

In this section, we first derive a new contractivity rate of the solutions to the scalar F-ODE:

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡) = 𝑓(𝑥(𝑡)), 𝑡 > 0, 𝑥 ∈ R, (2.1)

under the one-sided Lipschitz condition (1.5). This improves the main results in [43] and can be applied directly
to establish optimal contractivity rate of numerical solutions to (2.1) in Section 3.3, and to the spatial semi-
discrete model of linear fractional sub-diffusion equation in Section 4. The main tool in the analysis is the
nonnegative preserving properties of the solutions to F-ODEs under appropriate conditions.

If the F-ODEs (1.1) is linear and stable, i.e., 𝑓(𝑥) = 𝐴𝑥, where 𝐴 is a constant coefficient matrix, then we
know the contractivity rate ‖𝑥(𝑡)− 𝑦(𝑡)‖ = 𝑂(𝑡−𝛼) from the basic stability theory [37]. But the rate was shown
to become slower for general nonlinear F-ODEs [43], namely, ‖𝑥(𝑡)− 𝑦(𝑡)‖ = 𝑂(𝑡−𝛼/2); see (1.10). The energy
analysis was used in [43] to estimate the decay rate of ‖𝑥(𝑡)− 𝑦(𝑡)‖2, which is bounded by 𝐸𝛼(2𝜆𝑡𝛼). However,
we do not have

√︀
𝐸𝛼(2𝜆𝑡𝛼) = 𝐸𝛼(𝜆𝑡𝛼) for the Mittag-Leffler function, unlike the identity

√
𝑒2𝜆𝑡 = 𝑒𝜆𝑡 for the

classical exponential function. This is the main reason that causes the slower decay rate by the analysis in [43].
We now make use of a new analytical tool to improve the above result to the optimal contractivity rate,

namely, ‖𝑥(𝑡) − 𝑦(𝑡)‖ = 𝑂(𝑡−𝛼) for nonlinear scalar F-ODE. The basic idea is to estimate the decay rate of
‖𝑥(𝑡)− 𝑦(𝑡)‖ directly, not ‖𝑥(𝑡)− 𝑦(𝑡)‖2 as it did in [43]. This enables us to avoid the square-root operation of
the Mittag-Leffler function. To do this, we first present two auxiliary results.
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Lemma 2.1 ([25]). For any 𝑥 ∈ 𝐶[0, 𝑇 ] ∩ 𝐶1(0, 𝑇 ], if 𝑥 takes its minimum at 𝑡1 ∈ (0, 𝑇 ], then 𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡1) ≤ 0.

Lemma 2.2. (i) Under the dissipation condition (1.5) with 𝑎 = 0, if 𝑥 is a solution to the equation (2.1) and
𝑥 ∈ 𝐶[0, +∞) ∩ 𝐶1(0, +∞), then a positive initial value 𝑥(0) implies 𝑥(𝑡) ≥ 0 for all 𝑡 > 0.

(ii) Under the one-sided Lipschitz condition (1.3) on 𝑓 for some 𝜆 < 0, if 𝑥 and 𝑦 are two solutions to the
equation (2.1) such that 𝑥, 𝑦 ∈ 𝐶[0, +∞) ∩ 𝐶1(0, +∞) and 𝑥(0) > 𝑦(0), then 𝑥(𝑡) ≥ 𝑦(𝑡) for all 𝑡 > 0.

Proof. We prove by contradiction. Assume there exists a time 𝑡1 ∈ (0, 𝑇 ] for some 𝑇 > 0 such that 𝑥(𝑡1) < 0.
Then we can find a time 𝑡2 ∈ (0, 𝑇 ] such that 𝑥(𝑡2) = min

𝑡∈(0,𝑇 ]
𝑥(𝑡) < 0, hence we know 𝐶

0 𝐷𝛼
𝑡 𝑥(𝑡2) ≤ 0 from

Lemma 2.1. Using this result, we derive

0 ≤
⟨︀

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡2), 𝑥(𝑡2)
⟩︀

= ⟨𝑓(𝑥(𝑡2)), 𝑥(𝑡2)⟩ ≤ 𝜆‖𝑥(𝑡2)‖2 < 0. (2.2)

This contradiction yields the desired result in (i). The result in (ii) can be proved by the same argument. �

Theorem 2.3. Under the same conditions on 𝑓 , 𝑥 and 𝑦 as in Lemma 2.2(ii) except that 𝑥(0) may not be
bigger than 𝑦(0), the following asymptotic estimate holds

‖𝑥(𝑡)− 𝑦(𝑡)‖ ≤ ‖𝑥0 − 𝑦0‖ ·
𝑐𝛼

𝑡𝛼
as 𝑡 → +∞. (2.3)

Proof. Let 𝑧(𝑡) = 𝑥(𝑡)−𝑦(𝑡), and we assume 𝑧(0) > 0 (the same argument for 𝑧(0) < 0). We readily see 𝑧(𝑡) ≥ 0
for all 𝑡 > 0 from Lemma 2.2, and⟨︀

𝐶
0 𝐷𝛼

𝑡 𝑧(𝑡), 𝑧(𝑡)
⟩︀

= ⟨𝑓(𝑥(𝑡))− 𝑓(𝑦(𝑡)), 𝑧(𝑡)⟩ ≤ 𝜆‖𝑧(𝑡)‖2 < 0 (2.4)

due to the one-sided Lipschitz condition.
It follows from (2.4) that 𝑧(𝑡) · 𝐶

0 𝐷𝛼
𝑡 𝑧(𝑡) ≤ 𝜆‖𝑧(𝑡)‖2 = 𝜆 (𝑧(𝑡))2, which yields that 𝐶

0 𝐷𝛼
𝑡 𝑧(𝑡) ≤ 𝜆𝑧(𝑡), by

noting the fact that 𝑧(𝑡) ≥ 0 and is scalar. This inequality implies directly 𝑧(𝑡) ≤ 𝑧(0)𝐸𝛼(𝜆𝑡𝛼). Now the desired
estimate follows from the asymptotic expansion of the Mittag-Leffler function. �

By a similar argument to the one of Theorem 2.3 above, we can show that the dissipativity rate in (1.11) for
the solution 𝑥(𝑡) to the scalar F-ODE (2.1) can be improved:

‖𝑥(𝑡)‖ ≤ ‖𝑥0‖ ·
𝑐𝛼

𝑡𝛼
as 𝑡 → +∞, (2.5)

under the dissipativity condition (1.5) with 𝑎 = 0 and 𝑏 > 0.
For a general nonlinear system (1.1) with 𝑑 > 1, we cannot expect the same contractivity rate as the one

(cf. (2.3)) for the linear systems or the nonlinear scalar equation. We guess that the contractivity rate obtained
in (1.10) should be optimal for the nonlinear systems that can not be decoupled by diagonalization (note that
the rate in (1.10) is only the half of the rate shown in (2.3)), and this is confirmed in Section 4 by numerical
experiments. We can easily see that a similar derivation as we did for (2.3) above from the inequality (2.4) does
not apply for the general nonlinear system (1.1) with 𝑑 > 1. That is, we can not get 𝐶

0 𝐷𝛼
𝑡 ‖𝑧(𝑡)‖ ≤ 𝜆‖𝑧(𝑡)‖ in

general from the inequality 𝑧(𝑡)𝑇 · 𝐶
0 𝐷𝛼

𝑡 𝑧(𝑡) ≤ 𝜆‖𝑧(𝑡)‖2 for the vector-valued case (𝑑 > 1), for which a more
sophisticated functional framework may be needed.

3. Contractivity and dissipativity analysis of F-BDFs

In this section we investigate the contractivity and dissipativity of numerical solutions to F-BDFs. Let ℎ > 0
be the step-size and 𝑡𝑛 = 𝑛ℎ, 𝑛 = 0, 1, 2, 3, . . . be the corresponding time nodal points. Further, we write 𝑥𝑛 for
the approximation of 𝑥(𝑡𝑛) and 𝑓𝑛 = 𝑓(𝑡𝑛, 𝑥𝑛). As in integer-order differential equations, one basic approach
of constructing difference schemes is based on the numerical differentiation of fractional derivatives. Because of
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the nonlocal nature of fractional derivatives, the numerical approximation involves all discrete time points from
𝑡0 to 𝑡𝑛, leading to the numerical method for F-ODEs (1.1) in the following full-term recursion

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗𝑥𝑗 = ℎ𝛼𝑓𝑛, 𝑛 = 1, 2, 3, . . . . (3.1)

There are several approaches in the literature for determining the weight coefficients {𝜔𝑛}∞𝑛=0, which yield a
wide variety of numerical methods with different accuracies and stabilities. Solutions to time fractional equations
often exhibit weak singularities at the origin, resulting in slower convergence rates of numerical solutions.
Correction formulas were developed in [26, 36] to restore the convergence rate. Since the correction terms do
not affect the stability of numerical methods, we shall not consider them in this work.

Due to the major characteristic difference between F-ODEs and ODEs, the traditional analytical tools de-
veloped by Dahlquist [12] can not easily extended to F-ODEs. It is well known that the concept of 𝐺-stability
plays a central role [12,20,22] in the study of the contractivity and dissipativity of LMMs and one-leg methods
for classical ODEs, and most analyses are performed under the 𝐺-norm in R𝑑·𝑘. Unfortunately, the 𝐺-norm can
not extend to F-LMMs, mainly because of the nonlocal nature of fractional operators, for which the dimension
of the 𝐺 matrix increases with the time and is no longer fixed.

We consider the F-BDFs in (3.1) for F-ODEs in R𝑑 with 𝑑 ≥ 1. The numerical contractivity and dissipativity
with polynomial decay rate will be established under some natural assumptions on the weight coefficients
{𝜔𝑛}∞𝑛=0. It can be verified that Grünwald–Letnikov formula [40] and the L1 method [33, 41] fully satisfy our
assumptions. In particular, for the scalar F-ODE with 𝑑 = 1, the decay rate can be improved to be the optimal
one (cf. Sect. 3.3), exactly as in the continuous case given in Section 2. We further study in Section 3.5 the
numerical contractivity and dissipativity for two second order schemes for F-ODEs in R𝑑 with 𝑑 ≥ 1 under some
slightly stronger conditions.

We like to point out that we consider only the F-BDF like methods of the form (3.1) in this work. There are
many other general numerical schemes, such as classical quadratures, collocation methods, for which the analysis
could be much more complicated, and more analytical tools or refined analyses may need to be developed.

3.1. Preliminaries

In this subsection, we present some auxiliary results for the subsequent analysis. An inner product inequality
involving Caputo fractional derivatives played a key role in our analysis of F-ODEs [43], and the inequality
was originated from the following important equality by Alikhanov, which is a fractional variant of the classical
Leibniz formula.

Lemma 3.1 ([1]). For any two absolutely continuous functions 𝑥(𝑡) and 𝑦(𝑡) on [0, 𝑇 ], the following equality
holds for 0 < 𝛼 < 1:

𝑥𝑇 (𝑡) · 𝐶
0 𝐷𝛼

𝑡 𝑦(𝑡) + 𝑦𝑇 (𝑡) · 𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡) = 𝐶
0 𝐷𝛼

𝑡

(︀
𝑥𝑇 (𝑡) · 𝑦(𝑡)

)︀
(3.2)

+
𝛼

Γ(1− 𝛼)

∫︁ 𝑡

0

1
(𝑡− 𝜉)1−𝛼

(︃∫︁ 𝜉

0

𝑥′(𝜂)d𝜂

(𝑡− 𝜂)𝛼
·
∫︁ 𝜉

0

𝑦′(𝑠)d𝑠

(𝑡− 𝑠)𝛼

)︃
d𝜉.

We can easily derive the inequality

𝐶
0 𝐷𝛼

𝑡

(︀
𝑥𝑇 (𝑡) · 𝑥(𝑡)

)︀
≤ 2𝑥𝑇 (𝑡) · 𝐶

0 𝐷𝛼
𝑡 𝑥(𝑡) for 0 < 𝛼 < 1 (3.3)

by taking 𝑥(𝑡) = 𝑦(𝑡) in the identity (3.2) and noting the fact that 𝛼
Γ(1−𝛼)

∫︀ 𝑡

0
d𝜉

(𝑡−𝜉)1−𝛼

(︁∫︀ 𝜉

0
𝑥′(𝜂)d𝜂
(𝑡−𝜂)𝛼

)︁2

≥ 0.
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We shall start with the contractivity and dissipativity of numerical solutions to F-BDF (3.1) under the
following general assumptions on the weights {𝜔𝑛}∞𝑛=0:

Assumption (𝐼) :

⎧⎪⎪⎨⎪⎪⎩
(i) 𝜔0 > 0,
(ii) 𝜔𝑗 ≤ 0 for all 𝑗 ≥ 1,

(iii)
𝑛∑︀

𝑗=0

𝜔𝑗 ≥ 0 for any given 𝑛 ≥ 1,

then apply the results to two specific F-BDFs, based on Grünwald–Letnikov formula and L1 method.
As it is seen, the main motivation of Assumption (I) is for deriving the following discrete version of the

inequality (3.3), which is crucial to help us establish the numerical dissipativity and contractivity of F-BDFs.

Lemma 3.2. Under Assumption (I), it holds for the F-BDF (3.1):

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗‖𝑥𝑗‖2 ≤

⟨
2𝑥𝑛,

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗𝑥𝑗

⟩
, 𝑛 ≥ 1. (3.4)

Proof. The desired result comes from the direct calculations:⟨
2𝑥𝑛,

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗𝑥𝑗

⟩
−

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗‖𝑥𝑗‖2 =

⟨
2𝑥𝑛,

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗𝑥𝑗

⟩
−

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗‖𝑥𝑛‖2 −
𝑛∑︁

𝑗=0

𝜔𝑛−𝑗‖𝑥𝑗‖2 +
𝑛∑︁

𝑗=0

𝜔𝑗‖𝑥𝑛‖2

=

⟨
2𝑥𝑛,

𝑛−1∑︁
𝑗=0

𝜔𝑛−𝑗𝑥𝑗

⟩
−

𝑛−1∑︁
𝑗=0

𝜔𝑛−𝑗‖𝑥𝑛‖2 −
𝑛−1∑︁
𝑗=0

𝜔𝑛−𝑗‖𝑥𝑗‖2 +
𝑛∑︁

𝑗=0

𝜔𝑗‖𝑥𝑛‖2

≥ −
𝑛−1∑︁
𝑗=0

𝜔𝑛−𝑗 (‖𝑥𝑛‖ − ‖𝑥𝑗‖)2 +

⎛⎝ 𝑛∑︁
𝑗=0

𝜔𝑗

⎞⎠ ‖𝑥𝑛‖2 ≥ 0,

where we have used Assumption (I) on the weight coefficients in the last inequality. �

The numerical discretization of F-ODEs often leads to some Volterra difference equations of convolution
type. The relevant results and analytical tools for Volterra difference equations are often employed to study
the stability and asymptotic behavior of fractional numerical schemes [8]. We now introduce some important
results on the boundedness and asymptotic decay rate for the solutions to a class of linear convolution Volterra
difference equations.

General speaking, it is much more difficult to achieve the exact decay rates of the solutions to difference
equations than to establish qualitative properties such as the stability or asymptotic stability of some equilibrium
solutions. Applelby, Győri and Rennolds [2] derived exact convergence rates of some linear Volterra difference
equations by making use of an elegant three-term decomposition of the discrete convolution; see Appendix A
for the relevant concepts and the main results in [2]. A remarkable advantage of Lemma A.1 is that the class of
kernels could decay sub-exponentially, which allows us to derive the non-exponential convergence rates for some
asymptotically stable nontrivial solutions. This approach applies also to the difference schemes of F-ODEs, so
we shall adopt it to derive the boundedness and exact contractivity rate of the F-BDF (3.1). For the sake of
ease exposition, we shall often write in the rest of the paper that 𝑎𝑛 ∼ 𝑏𝑛 for any two sequence {𝑎𝑛} and {𝑏𝑛}
that are equivalent in the sense lim𝑛→∞ 𝑎𝑛/𝑏𝑛 = 1.

Lemma 3.3. Consider the Volterra difference equation

𝑥𝑛+1 = 𝑑𝑛 +
𝑛∑︁

𝑗=0

𝐷𝑛−𝑗𝑥𝑗 , 𝑛 ≥ 1, (3.5)
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where the coefficients satisfy 𝑑𝑛 ∼ 𝑐1
𝑛𝛼 , 𝐷𝑛 ∼ 𝑐2

𝑛1+𝛼 , 𝑎𝑛𝑑 𝜌 =
∑︀∞

𝑗=0 |𝐷𝑗 | < 1, for some constants 𝑐1, 𝑐2 > 0 and

0 < 𝛼 < 1. Then we have the asymptotic estimate 𝑥𝑛 ∼ 𝑐1(1−𝜌)−1

𝑛𝛼 .

Proof. We apply Lemma A.1 for the desired result, but we can not apply Lemma A.1 directly as the conditions
there are not satisfied, namely 𝑑𝑛 ∼ 𝑐1/𝑛𝛼 and ̃︀𝛾𝑛 = 1/(𝑛 + 1)𝛼 /∈ 𝑊 (1) for 0 < 𝛼 < 1 (see the exact definition
of 𝑊 (1) in Appendix A), and that the series

∑︀∞
𝑗=1 1/𝑛𝛼 diverges.

Instead, we transform the equation (3.5) to a different one for which Lemma A.1 is applicable. To do so, we
introduce a simple transformation 𝑦𝑛 = 𝑥𝑛

𝑛 for 𝑛 ≥ 1, and let 𝑦0 = 𝑥0, 𝑔𝑛 = 𝑑𝑛

𝑛+1 and 𝐺𝑛,𝑗 = 𝑗
𝑛+1𝐷𝑛−𝑗 . Then

the equation (3.5) becomes

𝑦𝑛+1 = 𝑔𝑛 +
𝑛∑︁

𝑗=0

𝐺𝑛,𝑗 𝑦𝑗 , 𝑛 ≥ 1. (3.6)

We may note that (3.5) is a convolution difference equation while equation (3.6) is not. Obviously, it holds
that 𝑔𝑛 → 𝑐1/𝑛1+𝛼 as 𝑛 → ∞. Following the idea developed in [2], we now take the weight sequence 𝛾𝑛 =
1/(𝑛 + 1)1+𝛼 ∈ 𝑊 (1) and compute 𝐿𝛾(𝑦) = lim𝑛→∞ 𝑦𝑛/𝛾𝑛 to give a non-trivial limit, which yields that 𝑦𝑛

behaves like 𝑂(𝑛−(1+𝛼)) asymptotically. Letting 𝑧𝑛 = 𝑦𝑛/𝛾𝑛, we can rewrite equation (3.6) as

𝑧𝑛+1 = ℎ𝑛 +
𝑛∑︁

𝑗=0

𝐻𝑛,𝑖 𝑧𝑗 , 𝑛 ≥ 1, (3.7)

with ℎ𝑛 = 𝑔𝑛

𝛾𝑛+1
, 𝐻𝑛,𝑗 = 𝛾𝑗

𝛾𝑛+1
𝐺𝑛,𝑗 = 𝑗

𝑛+1
𝛾𝑗

𝛾𝑛+1
𝐷𝑛−𝑗 . Now we plan to derive the limit of 𝑧𝑛 satisfying equation

(3.7) by Lemma A.1. It suffices to verify all the conditions in the lemma. Firstly, it is easy to see

lim
𝑛→∞

sup
𝑛≥0

𝑚∑︁
𝑗=0

|𝐻𝑛,𝑛−𝑗 | =
𝑚∑︁

𝑗=0

|𝐷𝑗 | lim
𝑛→∞

(︂
𝑛− 𝑗

𝑛 + 1
𝛾𝑛−𝑗

𝛾𝑛+1

)︂
=

𝑚∑︁
𝑗=0

|𝐷𝑗 |,

therefore, lim
𝑚→∞

sup
𝑚≥0

(︂
lim

𝑛→∞
sup
𝑛≥0

∑︀𝑚
𝑗=0 |𝐻𝑛,𝑛−𝑗 |

)︂
=
∑︀∞

𝑗=0 |𝐷𝑗 | = 𝜌 < 1. Secondly, for any fixed 𝑚 > 0, we have

lim
𝑛→∞

sup
𝑛≥0

𝑛−𝑚∑︁
𝑗=𝑚

|𝐻𝑛,𝑛−𝑗 | ≤ sup
𝑙≥𝑚

(︂
|𝐷𝑙|
𝛾𝑙

)︂
lim

𝑛→∞

𝛾𝑛

𝛾𝑛+1
lim

𝑛→∞
sup
𝑛≥0

⎛⎝𝑛−𝑚∑︁
𝑗=𝑚

𝑛− 𝑗

𝑛 + 1
𝛾𝑛−𝑗𝛾𝑗

𝛾𝑛

⎞⎠ ·
This implies that lim

𝑚→∞

(︃
lim

𝑛→∞
sup
𝑛≥0

𝑛−𝑚∑︀
𝑗=𝑚

|𝐻𝑛,𝑛−𝑗 |

)︃
= 0 by noting that lim

𝑚→∞

(︃
lim

𝑛→∞
sup
𝑛≥0

𝑛−𝑚∑︀
𝑗=𝑚

𝛾𝑛−𝑗𝛾𝑗

𝛾𝑛

)︃
= 0; see

Appendix A. It remains to compute that

lim
𝑛→∞

𝐻𝑛,𝑚 = lim
𝑛→∞

(︂
𝑚

𝑛 + 1
𝛾𝑛−𝑚

𝛾𝑛+1

𝐷𝑛−𝑚

𝛾𝑛−𝑚

)︂
𝛾𝑚,

which implies that 𝐻∞,𝑚 = lim
𝑛→∞

𝐻𝑛,𝑚 = 0. In fact, it follows directly from Lemma A.1 that lim
𝑛→∞

𝑧𝑛 = 𝐿𝛾(𝑦) =

(1− 𝜌)−1
𝐿𝛾(𝑔), which leads readily to our desired estimate

𝑦𝑛 =
𝑥𝑛

𝑛
∼ 𝑐1 (1− 𝜌)−1

𝑛1+𝛼
,

and competes the proof. �
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The discrete energy inequality in Lemma 3.2 and the 𝑂(𝑛−𝛼) decay rate of Volterra difference equation in
Lemma 3.3 are crucial in our subsequent analysis. They are also very useful for analyzing the long-term stability
and decay rate of other more complex problems, such as F-FDEs [44] and time fractional PDEs.

Although we consider only the uniform grids in this work, we hope that our analytical techniques may provide
some meaningful insights for non-uniform grid methods, especially for the popular graded grids and the non-
uniform L1 formula [29], which are very useful when we construct adaptive numerical methods or schemes with
relatively large time steps.

3.2. Numerical contractivity and dissipativity

We now present one of our main results in this paper, which can be seen as the discrete version of Lemma 1.1.

Theorem 3.4. Assume that the weights {𝜔𝑘}∞𝑛=0 of the F-BDF (3.1) satisfy Assumption (I), and there exists
a constant 𝑐𝛼 > 0 such that for any given 𝑛 ≥ 2, |𝜔𝑘| ≤ 𝑐𝛼/𝑘1+𝛼 for 1 ≤ 𝑘 ≤ 𝑛− 1 and |𝜔𝑛| ≤ 𝑐𝛼/𝑛𝛼.

(i) If function 𝑓 in (3.1) satisfies the one-sided Lipschitz condition (1.3), and 𝜌1 = lim𝑛→∞
∑︀𝑛

𝑗=1
|𝜔𝑗 |

𝜔0−2𝜆ℎ𝛼 < 1
for any ℎ > 0, then the F-BDF (3.1) is contractive, and its solution can preserve the exact contractivity
rate as the true solution to F-ODEs (1.1) (cf. (1.10)), namely, ‖𝑥𝑛 − 𝑦𝑛‖2 ≤ 𝑐1‖𝑥0 − 𝑦0‖2𝑛−𝛼 as 𝑛 →∞,
with 𝑐1 = (1− 𝜌1)−1 𝑐𝛼

𝜔0−2𝜆ℎ𝛼 .

(ii) If function 𝑓 in (3.1) satisfies condition (1.5), and 𝜌2 = lim𝑛→∞
∑︀𝑛

𝑗=1
|𝜔𝑗 |

𝜔0+2𝑏ℎ𝛼 < 1 for any ℎ > 0, then
the F-BDF is dissipative, i.e., for any given initial value 𝑥0 and 𝜀 > 0, there is a bounded set 𝐵 (0, 𝑟) and
𝑛0 ∈ 𝑁+ such that 𝑥𝑛 ∈ 𝐵 (0, 𝑟) for all 𝑛 ≥ 𝑛0, with 𝑟 =

√︀
𝑐2𝑎/𝑏 + 𝜀 and 𝑐2 = (1− 𝜌2)−1. Moreover, if the

condition (1.5) is satisfied with 𝑎 = 0, the numerical solution has the exact dissipativity rate as the exact
solution to F-ODEs (1.1), namely, ‖𝑥𝑛‖2 ≤ 𝑐3‖𝑥0‖2𝑛−𝛼 as 𝑛 →∞, with 𝑐3 = (1− 𝜌2)−1 𝑐𝛼

𝜔0+2𝑏ℎ𝛼 .

Proof. (i) Let 𝑥𝑗 and 𝑦𝑗 be the numerical solutions of the F-BDF (3.1) with two different initial values 𝑥0 and
𝑦0, respectively. Put 𝑧𝑛 = 𝑥𝑛−𝑦𝑛, 𝑛 ≥ 0. We can easily see that

∑︀𝑛
𝑗=0 𝜔𝑛−𝑗𝑧𝑗 = ℎ𝛼 (𝑓(𝑥𝑛)− 𝑓(𝑦𝑛)) . Taking

the inner product with 2𝑧𝑛 on both sides and applying the one-sided Lipschitz condition and Lemma 3.2,
we get

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗 ‖𝑧𝑗‖2 ≤ 2𝜆ℎ𝛼 ‖𝑧𝑛‖2 , (3.8)

which can be rewritten as (𝜔0 − 2𝜆ℎ𝛼) ‖𝑧𝑛‖2 ≤
∑︀𝑛−1

𝑗=0 |𝜔𝑛−𝑗 | ‖𝑧𝑗‖2 by noting that 𝜔𝑛−𝑗 < 0 for 𝑗 =
0, 1, . . . , 𝑛 − 1. Since the weights 𝜔𝑛 and 𝜔𝑗 for 𝑗 ≤ 𝑛 − 1 have different decay rates, the above Volterra
difference inequality can be further rewritten as

‖𝑧𝑛‖2 ≤
|𝜔𝑛|

𝜔0 − 2𝜆ℎ𝛼
‖𝑧0‖2 +

𝑛−1∑︁
𝑗=1

|𝜔𝑛−𝑗 |
𝜔0 − 2𝜆ℎ𝛼

‖𝑧𝑗‖2 , 𝑛 ≥ 2.

Now applying Lemma 3.3 yields the desired decay rate ‖𝑧𝑛‖2 ≤ (1− 𝜌1)−1 ‖𝑧0‖2
𝜔0−2𝜆ℎ𝛼

𝑐𝛼

𝑛𝛼 = 𝑐1
‖𝑧0‖2

𝑛𝛼 as 𝑛 →∞.

(ii) It follows directly from the dissipativity condition (1.5) and Lemma 3.2 that⟨
2𝑥𝑛,

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗𝑥𝑗

⟩
= 2ℎ𝛼 ⟨𝑓𝑛, 𝑥𝑛⟩ ≤ 2ℎ𝛼

(︀
𝑎− 𝑏‖𝑥𝑛‖2

)︀
,

which implies that (𝜔0 + 2ℎ𝛼𝑏) ‖𝑥𝑛‖2 ≤ 2ℎ𝛼𝑎 −
∑︀𝑛−1

𝑗=0 𝜔𝑛−𝑗 ‖𝑥𝑗‖2 for 𝑛 ≥ 1, leading to the convolution
Volterra inequality

‖𝑥𝑛‖2 ≤
2ℎ𝛼𝑎

𝜔0 + 2ℎ𝛼𝑏
+

𝑛−1∑︁
𝑗=0

|𝜔𝑛−𝑗 |
𝜔0 + 2ℎ𝛼𝑏

‖𝑥𝑗‖2 , 𝑛 ≥ 2.
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By applying Lemma A.1, we obtain that ‖𝑥𝑛‖2 ≤ (1− 𝜌2)−1 2ℎ𝛼𝑎
𝜔0+2ℎ𝛼𝑏 ≤ 𝑐2

𝑎
𝑏 as 𝑛 → ∞, where 𝜌2 =

lim𝑛→∞
∑︀𝑛

𝑗=1
|𝜔𝑗 |

𝜔0+2ℎ𝛼𝑏 < 1 and 𝑐2 = (1− 𝜌2)−1. The poof of the desired dissipativity rate for 𝑎 = 0, 𝑏 > 0
is similar to the proof of (i) and omitted here. �

One may observe from the proof of part (ii) in Theorem 3.4, it is not easy to derive the dissipativity result
by the usual Grönwall-like inequalities, because those estimates depend often directly on the initial values 𝑥0,
but the dissipativity is a long time feature of solutions to F-ODEs and is independent of the initial values.

An alternative approach for the boundedness of ‖𝑥𝑛‖ in part (ii) of Theorem 3.4 is to apply some discrete
variants of a Paley–Wiener theorem, which was introduced by Lubich [35]. We demonstrate below that the
results obtained by this approach is consistent to the ones in Theorem 3.4. We first recall a result from [35].

Lemma 3.5. Consider the discrete Volterra equation 𝑦𝑛 = 𝑝𝑛 +
∑︀𝑛

𝑗=0 𝑞𝑛−𝑗𝑦𝑗 , 𝑛 ≥ 1, where the kernel {𝑞𝑛}∞𝑛=0

belongs to 𝑙1, i.e.,
∑︀∞

𝑗=0 |𝑞𝑗 | < ∞. Then 𝑦𝑛 → 0 (resp. bounded) whenever 𝑝𝑛 → 0 (resp. bounded) as 𝑛 →∞ if
and only if the Paley–Wiener condition is satisfied, i.e.,

∞∑︁
𝑗=0

𝑞𝑗𝜁
𝑗 ̸= 1 for |𝜁| ≤ 1. (3.9)

If we define a sequence {𝑟𝑛}∞𝑛=0 by 1
1−
∑︀∞

𝑗=0 𝑞𝑗𝜁𝑗 =
∑︀∞

𝑗=0 𝑟𝑗𝜁
𝑗 , we can easily check from the proof of Lemma 3.5

that if {𝑞𝑛}∞𝑛=0 belongs to 𝑙1 and the Paley–Wiener condition (3.9) holds, then {𝑟𝑛}∞𝑛=0 is also in 𝑙1, and the
estimate holds ‖𝑦‖𝑙∞ ≤ ‖𝑟‖𝑙1‖𝑝‖𝑙∞ .

Now consider the Volterra difference equation related to (ii) of Theorem 3.4, i.e.,

‖𝑥𝑛‖2 =
2ℎ𝛼𝑎

𝜔0 + 2ℎ𝛼𝑏
+

𝑛−1∑︁
𝑗=0

|𝜔𝑛−𝑗 |
𝜔0 + 2ℎ𝛼𝑏

‖𝑥𝑗‖2 for 𝑛 ≥ 1.

The assumption 𝜌2 = lim𝑛→∞
∑︀𝑛

𝑗=1
|𝜔𝑗 |

𝜔0+2𝑏ℎ𝛼 < 1 implies that the kernel
{︁

|𝜔𝑗 |
𝜔0+2𝑏ℎ𝛼

}︁∞
𝑗=1

belongs to 𝑙1 and the

corresponding Paley–Wiener condition
∑︀∞

𝑗=1
|𝜔𝑗 |𝜁𝑗

𝜔0+2𝑏ℎ𝛼 ̸= 1 for |𝜁| ≤ 1 holds. Let

1

1−
∞∑︀

𝑗=1

|𝜔𝑗 |𝜁𝑗

𝜔0+2𝑏ℎ𝛼

=
∞∑︁

𝑗=0

𝑟𝑗𝜁
𝑗 for |𝜁| ≤ 1. (3.10)

Then 𝑟𝑗 ≥ 0 and {𝑟𝑛}∞𝑛=0 is in 𝑙1. Taking 𝜁 = 1 in (3.10) yields that

‖𝑥𝑛‖2 ≤ ‖𝑟‖𝑙1
2ℎ𝛼𝑎

𝜔0 + 2ℎ𝛼𝑏
= (1− 𝜌2)−1 2ℎ𝛼𝑎

𝜔0 + 2ℎ𝛼𝑏
≤ (1− 𝜌2)−1 𝑎

𝑏
as 𝑛 →∞,

which is the same as the corressponding results in part (ii) of Theorem 3.4.

3.3. Improved numerical contractivity rates for scalar F-ODEs

In Section 2, we presented an optimal contractivity rate for the scalar F-ODE (2.1). A typical application of
this new result is for the spatial semi-discrete model of linear fractional sub-diffusion equation, and this will be
carefully validated by numerical experiments in Section 4. Next we demonstrate that this optimal contractivity
rate can be preserved exactly by the numerical solutions to the scalar F-ODE (2.1). We first derive some
nonnegative preserving properties of the numerical solutions to the F-BDF (3.1) for (2.1).

Lemma 3.6. Let function 𝑓 in the scalar F-ODE (2.1) satisfy that ⟨𝑓(𝑥), 𝑥⟩ ≤ 𝜆‖𝑥‖2 for some 𝜆 < 0, and 𝑥(𝑡)
be the solution to (2.1) with 𝑥(0) > 0. Then under Assumption (I), the solutions to the F-BDF (3.1) are all
nonnegative.
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Proof. We prove by mathematical induction. For 𝑛 = 1, we see directly from (3.1) that 𝜔1𝑥0 +𝜔0𝑥1 = ℎ𝛼𝑓(𝑥1).
Then we can get by taking the inner product with 𝑥1 on both sides that −𝜔1𝑥0𝑥1 ≥ (𝜔0 − ℎ𝛼𝜆)𝑥2

1 ≥ 0, which
implies 𝑥1 ≥ 0.

We now prove 𝑥𝑛 ≥ 0 under the condition that 𝑥𝑗 ≥ 0 for 𝑗 = 1, 2, . . . , 𝑛− 1. Taking the inner product with
𝑥𝑛 in both sides of the F-BDF (3.1) gives that ⟨𝑥𝑛,

∑︀𝑛
𝑗=0 𝜔𝑛−𝑗𝑥𝑗⟩ = ℎ𝛼 ⟨𝑓𝑛, 𝑥𝑛⟩ ≤ ℎ𝛼𝜆‖𝑥𝑛‖2, which can be

rewritten as

𝑥𝑛

⎛⎝− 𝑛−1∑︁
𝑗=0

𝜔𝑛−𝑗𝑥𝑗

⎞⎠ ≥ (𝜔0 − ℎ𝛼𝜆)‖𝑥𝑛‖2 ≥ 0.

This implies that 𝑥𝑛 ≥ 0. �

Theorem 3.7. Let function 𝑓 in the scalar F-ODE (2.1) satisfy the one-sided Lipschitz condition (1.3), 𝑥𝑛

and 𝑦𝑛 are two solutions to the F-BDF (3.1) with different initial values 𝑥0 and 𝑦0. Then under Assumption
(I), the following contractivity estimate holds

‖𝑥𝑛 − 𝑦𝑛‖ ≤ ‖𝑥0 − 𝑦0‖ ·
𝑐1

𝑛𝛼
, as 𝑛 →∞, (3.11)

where 𝑐1 is the same as in Theorem 3.4.
On the other hand, if function 𝑓 in the scalar F-ODE (2.1) satisfies the dissipative condition (1.5) with 𝑎 = 0,

then the solutions to the F-BDF (3.1) decay as

‖𝑥𝑛‖ ≤ ‖𝑥0‖ ·
𝑐3

𝑛𝛼
as 𝑛 →∞ (𝑐3 is the same as in Thm. 3.4). (3.12)

Proof. The proof is very similar to the one of Theorem 3.4, but we estimate the decay rate of 𝑧𝑛 = 𝑥𝑛 − 𝑦𝑛

directly rather than ‖𝑥𝑛−𝑦𝑛‖2, which allows us to avoid the square-root operation of the Mittag-Leffler function.
Without lose of generality, we assume 𝑧0 = 𝑥0 − 𝑦0 > 0. Using the dissipative condition (1.5), we can derive⟨

𝑧𝑛,

𝑛∑︁
𝑗=0

𝜔𝑛−𝑗𝑧𝑗

⟩
= ℎ𝛼 ⟨𝑧𝑛, 𝑓(𝑥𝑛)− 𝑓(𝑦𝑛)⟩ ≤ ℎ𝛼𝜆‖𝑧𝑛‖2, (3.13)

then it follows from Lemma 3.6 that 𝑧𝑛 ≥ 0 for all 𝑛 ≥ 1. This non-negativity and the inequality (3.13) yield
that

∑︀𝑛
𝑗=0 𝜔𝑛−𝑗𝑧𝑗 ≤ ℎ𝛼𝜆‖𝑧𝑛‖ = ℎ𝛼𝜆𝑧𝑛, from which and Lemma 3.3 the contractivity rate (3.11) follows readily.

The proof of the dissipativity rate (3.12) can be done similarly. �

3.4. Examples of F-BDFs

In this subsecion, we present some concrete examples of F-BDFs, whose weights {𝜔𝑗}∞𝑗=0 meet all the con-
ditions required for the results we have derived in the previous three subsections. We consider two widely used
low-order schemes of the form F-BDF (3.1), i.e., the Grünwald–Letnikov formula [40] and the L1 method [33,41].
The coefficients of these two schemes carry very nice properties that enable us to establish the energy-type in-
equality in Lemma 3.2 and the decay rate in Lemma 3.3 directly.

3.4.1. Grünwald–Letnikov formula

The approximate formula of the Grünwald–Letnikov (G–L) fractional derivative [28,40] can be given by

𝐺𝐿
0 𝐷𝛼

𝑡 𝑥(𝑡𝑛) =
1
ℎ𝛼

𝑛∑︁
𝑘=0

(−1)𝑘

(︂
𝛼
𝑘

)︂
𝑥𝑛−𝑘 + 𝑂(ℎ) =

1
ℎ𝛼

𝑛∑︁
𝑘=0

𝜔𝑘𝑥𝑛−𝑘 + 𝑂(ℎ) (3.14)
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for 0 < 𝛼 < 1, where the coefficients are given by 𝜔𝑘 = (−1)𝑘

(︂
𝛼
𝑘

)︂
, 𝑘 = 0, 1, . . . , 𝑛, while the Caputo derivative

can be described by

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡𝑛) =
1
ℎ𝛼

⎛⎝ 𝑛∑︁
𝑗=1

𝜔𝑛−𝑗𝑥𝑗 + 𝛿𝑛𝑥0

⎞⎠+ 𝑂(ℎ), (3.15)

where the coefficient 𝛿𝑛 is set to be 𝛿𝑛 = −
∑︀𝑛−1

𝑗=0 𝜔𝑗 so that the sum of the weights in (3.15) equals to zero,
which is beneficial to the numerical stability of the scheme [16]. The G–L formula is a simple and effective
numerical scheme with first order accuracy, and its weights 𝜔𝑘 meet the following properties.

Lemma 3.8 ([16]). For 0 < 𝛼 < 1, the coefficients 𝜔𝑘 = (−1)𝑘

(︂
𝛼
𝑘

)︂
satisfy

(i) 𝜔0 = 1, 𝜔𝑛 < 0, |𝜔𝑛+1| < |𝜔𝑛|, 𝑛 = 1, 2, . . .;

(ii) 𝜔0 = −
∞∑︀

𝑗=1

𝜔𝑗 > −
𝑛∑︀

𝑗=1

𝜔𝑗 , 𝑛 ≥ 1;

(iii) 𝜔𝑛 = 𝑂(𝑛−1−𝛼), 𝛿𝑛 = 𝑂(𝑛−𝛼) 𝑎𝑠 𝑛 →∞.

3.4.2. L1 method

The L1 method is among the most popular algorithms for the discretization of the Caputo derivative. It often
leads to unconditionally stable algorithms, and has the accuracy 𝑂(ℎ2−𝛼) for smooth data [33,41] and the order
𝑂(ℎ) for non-smooth data in uniform grids [24]. The L1 method can be written as

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡)|𝑡=𝑡𝑛
=

1
ℎ𝛼

𝑛−1∑︁
𝑘=0

𝑏𝑛−𝑘−1 (𝑥𝑘+1 − 𝑥𝑘) + 𝑂(ℎ𝑞) =
1
ℎ𝛼

𝑛∑︁
𝑘=0

𝛾𝑛−𝑘𝑥𝑘 + 𝑂(ℎ𝑞), (3.16)

where 𝑂(ℎ𝑞) is the local truncation error with order 𝑞 = 1 or 2−𝛼, and the weight coefficients are given by 𝑏𝑘 =
1

Γ(2−𝛼)

(︀
(𝑘 + 1)1−𝛼 − 𝑘1−𝛼

)︀
for 0 ≤ 𝑘 ≤ 𝑛 − 1, 𝛾0 = 1

Γ(2−𝛼) , 𝛾𝑘 = 1
Γ(2−𝛼)

(︀
(𝑘 + 1)1−𝛼 − 2𝑘1−𝛼 + (𝑘 − 1)1−𝛼

)︀
for 𝑘 = 1, 2, . . . , 𝑛 − 1, and 𝛾𝑛 = 1

Γ(2−𝛼)

(︀
(𝑛− 1)1−𝛼 − 𝑛1−𝛼

)︀
. The second formula in (3.16) is the discrete

convolution quadrature and its coefficients have the following properties, which can be checked directly.

Lemma 3.9. The coefficients of the L1 method meet the properties:

(i) 𝛾0 > 0, 𝛾1 < 𝛾2 < . . . < 𝛾𝑛−1 < 0, 𝛾𝑛 < 0 for any 𝑛 ≥ 1;

(ii) 𝛾𝑘 ∼ −
𝛼

Γ(1− 𝛼)𝑘1+𝛼
as 𝑘 →∞ for 𝑘 ̸= 𝑛, and 𝛾𝑛 ∼ −

1
Γ(1− 𝛼)𝑛𝛼

as 𝑛 →∞.

A common feature of the G–L formula and L1 method is that the sign of the weights {𝜔𝑗}𝑗≥1 and {𝛾𝑗}𝑗≥1

remain negative, which are crucial to the results in Lemma 3.2. But this feature is no long true for high order
schemes, such as the fractional trapezoidal rule, the second order F-BDF formula and fractional Newton-Gregory
formula, and there are always some positive weights [18]. Another important feature of the G–L formula and
L1 method is that their weights 𝛿𝑛 and 𝛾𝑛 decay in the order 𝑂(𝑛−𝛼). But the coefficients of the schemes for
the F-ODEs with the Riemann–Liouville fractional derivative decay faster, namely, in the order 𝑂(𝑛−1−𝛼). We
emphasize that the decay rates of the weights 𝛿𝑛 and 𝛾𝑛 essentially determine the decay rates of the numerical
method (3.1); see Lemma 3.3.

For both the G–L formula and L1 method, we now verify the conditions in Theorem 3.4 are satisfied. Indeed,
for the G–L formula, we have

𝜌1 = lim
𝑛→∞

𝑛∑︁
𝑗=1

|𝜔𝑗 |
𝜔0 − 2𝜆ℎ𝛼

=
1

1− 2𝜆ℎ𝛼
< 1, 𝑐1 =

(︂
1− 1

2𝜆ℎ𝛼

)︂
𝑐𝛼

1− 2𝜆ℎ𝛼
,

𝜌2 = lim
𝑛→∞

𝑛∑︁
𝑗=1

|𝜔𝑗 |
𝜔0 + 2𝑏ℎ𝛼

=
1

1 + 2𝑏ℎ𝛼
< 1, 𝑐2 = 1 +

1
2𝑏ℎ𝛼

,
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while for the L1 method, we have

𝜌1 =
1

1− 2Γ(2− 𝛼)𝜆ℎ𝛼
< 1, 𝑐1 =

(︂
1− 1

2Γ(2− 𝛼)𝜆ℎ𝛼

)︂
𝑐𝛼

1− 2Γ(2− 𝛼)𝜆ℎ𝛼
,

𝜌2 =
1

1 + 2Γ(2− 𝛼)𝑏ℎ𝛼
< 1, 𝑐2 = 1 +

1
2𝑏Γ(2− 𝛼)ℎ𝛼

·

The above shows both methods satisfy all the conditions of Theorem 3.4, therefore are contractive, dissipative,
and preserve the optimal contractivity rate.

3.5. High order numerical approximations

In this subsection, we establish the contractivity and dissipativity of the F-BDFs for some high order approx-
imations under slightly stronger conditions than those in (1.3) and (1.5). As two typical examples, we consider
the convolution quadrature schemes based on classical second order BDF [10,18,36] and the product integration
schemes based on quadratic interpolation approximation [19,34].

3.5.1. Second order F-BDFs

Second order F-BDFs have good stability as the first order G–L formula, but with higher accuracy. Due to
the weak singularity of the solutions of time fractional order equations at the initial time, special correction
techniques are usually needed to restore the full order at the initial steps [10,26]. The numerical method in (3.1)
can be written

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡𝑛) =
1
ℎ𝛼

⎛⎝ 𝑛∑︁
𝑗=1

𝜇𝑛−𝑗𝑥𝑗 + 𝛿𝑛𝑥0

⎞⎠+ 𝑂(ℎ𝑞),

where the coefficient 𝛿𝑛 is given by 𝛿𝑛 = −
∑︀𝑛−1

𝑗=0 𝜇𝑗 , while the weights {𝜇𝑗} are generated by the function

𝜇(𝜉) =
(︂

3
2
− 2𝜉 +

1
2
𝜉2

)︂𝛼

=
(︂

3
2

)︂𝛼

(1− 𝜉)𝛼

(︂
1− 1

3
𝜉

)︂𝛼

=
∞∑︁

𝑛=0

𝜇𝑗𝜉
𝑗 , (3.17)

and can be computed by 𝜇𝑗 =
(︀

3
2

)︀𝛼∑︀𝑗
𝑙=0 3−𝑙𝜔𝑙𝜔𝑗−𝑙, where 𝜔𝑙 are the coefficients of the Grünwald–Letnikov

formula in (3.14). Using this formula and the asymptotic expansion of the binomial coefficients [36], we have
the following more details about the behavior of these coefficients, the asymptotic decay rate 𝜇𝑛 = 𝑂(𝑛−𝛼−1)
[36] and 𝛿𝑛 = 𝑂(𝑛−𝛼).

Lemma 3.10 ([18]). For 0 < 𝛼 < 1, we have

𝜇0 =
(︂

3
2

)︂𝛼

, 𝜇1 = −
(︂

3
2

)︂𝛼 4𝛼

3
, 𝜇2 =

(︂
3
2

)︂𝛼
𝛼(8𝛼− 5)

9
,

𝜇3 =
(︂

3
2

)︂𝛼 4𝛼(𝛼− 1)(7− 8𝛼)
81

; 𝜇𝑗 < 0 𝑓𝑜𝑟 𝑗 ≥ 4;
∞∑︁

𝑗=0

𝜇𝑗 = 0;

𝜇𝑛 = 𝑂(𝑛−𝛼−1) as 𝑛 →∞; 𝛿𝑛 = 𝑂(𝑛−𝛼).

3.5.2. Quadratic interpolation approximations

The L1 method can be seen as a linear interpolation formula on each subinterval, and has the accuracy of order
2 − 𝛼 for smooth functions. High order approximations to the Caputo derivative can be constructed by using
the multiple nodal interpolations for the integrands. In particular, the quadratic interpolation approximation
(QIA) [19,34] gives

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡)|𝑡=𝑡𝑛
=

1
ℎ𝛼

𝑛∑︁
𝑗=0

𝜇𝑛−𝑗𝑥𝑗 + 𝑂(ℎ3−𝛼) (3.18)
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for smooth functions. The coefficients {𝜇𝑗}𝑗≥0 were given in [19,34], and have the following properties.

Lemma 3.11 ([34]). For 𝑛 ≥ 4, 0 < 𝛼 < 1 and 𝑑0 = 1/Γ(3− 𝛼), we have

𝜇0 = 21−𝛼(1 + 𝛼/2)𝑑0 > 0, −4
3
𝑑0 < 𝜇1 < 0, −1

3
𝑑0 < 𝜇2 <

1
2
𝑑0,

𝜇𝑗 < 0 𝑓𝑜𝑟 𝑗 ≥ 3;
𝑛∑︁

𝑗=0

𝜇𝑗 = 0; 𝜇𝑛 = 𝑂(𝑛−𝛼) 𝑎𝑠 𝑛 →∞.

As we can see from Lemmas 3.10 and 3.11, some weights in the above two methods might be positive,
e.g., 𝜇2, 𝜇3 in second order F-BDFs, and 𝜇2 in QIA. This is very different from the previous G–L formula
and L1 method, and causes some difficulties for us to derive the energy-like inequality in Lemma 3.2. In [34],
a special technique was introduced to transform all the coefficients {𝜇𝑗}𝑗≥1 in QIA to be negative. But the
transformation is essentially linear and appears to be difficult to apply to nonlinear systems. However, we are
still able to establish the contractivity and dissipativity for these high order schemes by slightly relaxing our
previous assumptions, as it is shown in Theorem 3.12.

Theorem 3.12. (i) Let function 𝑓 in the F-ODEs (1.1) satisfy the one-sided Lipschitz condition (1.3). Then
the second order F-BDFs and QIA are contractive if

ℎ𝛼𝜆 ≤
{︂
−2𝜇2 − 2𝜇3, for second order F-BDFs,
−2𝜇2, for QIA,

(3.19)

and any two different solutions 𝑥𝑛 and 𝑦𝑛 meet the following contractivity estimate

‖𝑥𝑛 − 𝑦𝑛‖2 ≤ ‖𝑥0 − 𝑦0‖2 ·
𝑐𝛼

𝑛𝛼
as 𝑛 →∞. (3.20)

(ii) Let function 𝑓 in (1.1) satisfy the dissipative condition (1.5). Then the second order F-BDFs and QIA are
dissipative if

ℎ𝛼𝑏 ≥
{︂

2𝜇2 + 2𝜇3, for second order F-BDFs,
2𝜇2, for QIA,

(3.21)

i.e., for any initial value 𝑥0 and 𝜀 > 0, there is a bounded set 𝐵 (0, 𝑟) and 𝑛0 ∈ 𝑁+ such that 𝑥𝑛 ∈ 𝐵 (0, 𝑟)
for all 𝑛 ≥ 𝑛0, with 𝑟 =

√︀
𝑐𝛼𝑎/𝑏 + 𝜀. Moreover, if condition (1.5) holds with 𝑎 = 0, the dissipativity is given

by ‖𝑥𝑛‖2 ≤ 𝑐𝛼‖𝑥0‖2𝑛−𝛼 as 𝑛 →∞.

Proof. (i) We prove only the result for the QIA, and the same argument can be used to show the result for the
second order F-BDFs. Let 𝑧𝑛 = 𝑥𝑛− 𝑦𝑛, and take the inner product with 2𝑧𝑛 on both sides of the numerical
scheme and then apply the one-sided Lipschitz condition to obtain⟨

𝑛∑︁
𝑗=0

𝜇𝑛−𝑗𝑧𝑗 , 2𝑧𝑛

⟩
= 2ℎ𝛼 ⟨𝑓(𝑥𝑛)− 𝑓(𝑦𝑛), 𝑧𝑛⟩ ≤ 2ℎ𝛼𝜆‖𝑧𝑛‖2. (3.22)

Without loss of generality, we assume 𝑛 ≥ 4. We know from Lemma 3.11 that only the coefficient 𝜇2 may be
positive. If 𝜇2 ≤ 0, the results follow as in the proof of Theorem 3.4. We now prove for the case that 𝜇2 > 0.
Define the new weights {�̃�𝑗}𝑗≥0: �̃�0 = 𝜇0 + 𝜇2, �̃�1 = 𝜇1, �̃�2 = 0 𝑎𝑛𝑑 �̃�𝑗 = 𝜇𝑗 𝑓𝑜𝑟 𝑗 ≥ 3. Then the inequality
(3.22) can be written as ⟨

𝑛∑︁
𝑗=0

�̃�𝑛−𝑗𝑧𝑗 , 2𝑧𝑛

⟩
+ 𝜇2 ⟨𝑧𝑛−2 − 𝑧𝑛, 2𝑧𝑛⟩ ≤ 2ℎ𝛼𝜆‖𝑧𝑛‖2. (3.23)
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We can now check that �̃�0 > 0, �̃�𝑗 ≤ 0 for all 𝑗 ≥ 1 and that
∑︀𝑛

𝑗=0 �̃�𝑗 ≥ 0 for 𝑛 ≥ 1. Now Lemma 3.2 and
the Cauchy inequality yields that

∑︀𝑛
𝑗=0 �̃�𝑛−𝑗‖𝑧𝑗‖2 − 3𝜇2‖𝑧𝑛‖2 − 𝜇2‖𝑧𝑛−2‖2 ≤ 2ℎ𝛼𝜆‖𝑧𝑛‖2. This inequality is

equivalent to

‖𝑧𝑛‖2 ≤
1

�̃�0 − 3𝜇2 − 2ℎ𝛼𝜆

⎛⎝𝑛−1∑︁
𝑗=0

|�̃�𝑛−𝑗 | ‖𝑧𝑗‖2 + 𝜇2‖𝑧𝑛−2‖2
⎞⎠ . (3.24)

Now the assumption ℎ𝛼𝜆 < −2𝜇2 ensures that

𝜌3 =
1

�̃�0 − 3𝜇2 − 2ℎ𝛼𝜆

⎛⎝𝑛−1∑︁
𝑗=0

|�̃�𝑛−𝑗 |+ 𝜇2

⎞⎠ =
𝜇0 + 2𝜇2

𝜇0 − 2𝜇2 − 2ℎ𝛼𝜆
< 1, for any 𝑛 ≥ 1. (3.25)

Then the estimate (3.20) follows from Lemma 3.3.

(ii) The same as in part (i), we introduce the new weights {�̃�𝑗}𝑗≥0 and can then derive using the dissipative
condition, ⟨

𝑛∑︁
𝑗=0

�̃�𝑛−𝑗𝑥𝑗 , 2𝑥𝑛

⟩
+ 𝜇2 ⟨𝑥𝑛−2 − 𝑥𝑛, 2𝑥𝑛⟩ ≤ 2ℎ𝛼

(︀
𝑎− 𝑏‖𝑥𝑛‖2

)︀
. (3.26)

By Lemma 3.2 and the Cauchy inequality, we can further deduce

‖𝑥𝑛‖2 ≤
1

�̃�0 − 3𝜇2 + 2ℎ𝛼𝑏

⎛⎝2ℎ𝛼𝑎 +
𝑛−1∑︁
𝑗=0

|�̃�𝑛−𝑗 |‖𝑥𝑗‖2 + 𝜇2‖𝑥𝑛−2‖2
⎞⎠ . (3.27)

Now the assumption ℎ𝛼𝑏 > 2𝜇2 ensures that

𝜌4 =
1

�̃�0 − 3𝜇2 + 2ℎ𝛼𝑏

⎛⎝𝑛−1∑︁
𝑗=0

|�̃�𝑛−𝑗 |+ 𝜇2

⎞⎠ =
𝜇0 + 2𝜇2

𝜇0 − 2𝜇2 + 2ℎ𝛼𝑏
< 1 for any 𝑛 ≥ 1. (3.28)

Then we can see the desired dissipativity follows from Lemma A.1 or the discrete Paley–Wiener theorem. The
dissipativity decay for 𝑎 = 0 can be derived similarly. �

Remark 3.13. The conditions in (3.19) and (3.21) are automatically fulfilled when the weights of the numerical
schemes are negative. This is the case with both the G–L formula and L1 method. When the weight coefficients
are positive, the constraints in (3.19) and (3.21) are not very restrictive, because the weights 𝜇2 in QIA or
𝜇2 + 𝜇3 in second order F-BDF are usually small, no more than 0.5 which can be verified by direct calculations.
So these conditions are relatively easy to meet. We note that these constraints are only sufficient, and it is
unclear if they are also necessary.

Remark 3.14. For many other high order F-BDFs in the literature, such as the convolution quadrature type
schemes based on high order BDFs or Runge–Kutta methods [36] and the product integration type schemes
based on high order interpolation formulas [5], their weights {𝜇𝑗}∞𝑗=0 often satisfy the conservation property∑︀∞

𝑗=0 𝜇𝑗 = 0 and 𝜇0 > 0. If there exist 𝑘 weights from {𝜇𝑗}𝑗≥1 that are positive, say 𝜇𝑖1 , 𝜇𝑖2 , . . . , 𝜇𝑖𝑘
, we may

naturally modify the condition in (3.19) to ℎ𝛼𝜆 ≤ −2(𝜇𝑖1 + 𝜇𝑖2 + . . . + 𝜇𝑖𝑘
), then the contractivity of F-BDFs

can be derived. The dissipativity can also be obtained in a similar manner. However, we like to point out that
it is generally difficult to achieve the optimal convergence order of high order methods for F-ODEs due to the
low regularity of the true solutions near the initial time. In order to restore the optimal convergence order, some
special correction techniques are usually needed, but mostly only a few steps are required near the initial time;
see the correction techniques for fractional BDFs in [26], for L1 methods in [48] and for QIA in [45]. These
corrections usually do not affect the stability of numerical solutions and the qualitative behaviour of numerical
solutions in a long time, nor do they affect the dissipativity and contractivity that are studied in the current
work.
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4. Numerical experiments

In this section, several numerical examples are presented to validate our theoretically predicted contractivity
and dissipativity of the implicit F-BDFs (3.1), and to reveal the algebraic decay rates of the F-ODEs. We
will compare the numerical performance of F-BDFs with the popular predictor-corrector type methods, i.e.,
fractional Adams-Bashforth-Moulton (F-ABM) method, which was proposed in [14], especially for stiff problems.

4.1. Fractional Lorenz system

Consider the system ⎧⎨⎩
𝐶
0𝐷

𝛼
𝑡 𝑥1(𝑡) = 𝑥3 + (𝑥2 − 𝑐1)𝑥1,

𝐶
0𝐷

𝛼
𝑡 𝑥2(𝑡) = 1− 𝑐2𝑥2 − 𝑥2

1,
𝐶
0𝐷

𝛼
𝑡 𝑥3(𝑡) = −𝑥1 − 𝑐3𝑥3,

(4.1)

where 𝑐1, 𝑐2 and 𝑐3 are positive parameters and 𝑐2 > 1/2. This example contains many well-known dynamical
systems such as the Lorenz, Chen, Chua systems and the financial system [39]. The classical Lorenz system was
proved to be dissipative [23] for 𝛼 = 1. Let 𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑇 , then we have by simple calculations that

⟨𝑓(𝑥), 𝑥⟩ = −𝑐1𝑥
2
1 − 𝑐2𝑥

2
2 − 𝑐3𝑥

2
3 + 𝑥2

≤ 1
2
− 𝑐1𝑥

2
1 −

(︂
𝑐2 −

1
2

)︂
𝑥2

2 − 𝑐3𝑥
2
3

≤ 𝑎− 𝑏‖𝑥‖2,

(4.2)

with 𝑎 = 1/2, 𝑏 = min{𝑐1, 𝑐2− 1/2, 𝑐3}. Thus the system is dissipative, and the set 𝐵(0,
√︀

𝑎/𝑏 + 𝜀) is absorbing.
Figures 1 and 2 plot the numerical solutions computed by the G–L formula and second F-BDFs respectively

with various parameters and fractional order 𝛼. They show that the order 𝛼 heavily affect the shape and size of
the absorbing set, but all the computed solutions are kept inside the ball 𝐵(0,

√︀
𝑎/𝑏) when the time 𝑡 increases,

as expected. Comparing Figure 1 with Figure 2, we can see that when 𝑏 is greater (i.e., the conditions in (3.21)
is satisfied), the solution has stronger dissipation characteristics, which shrinks to the absorbing set 𝐵(0,

√︀
𝑎/𝑏)

at a faster rate. For the L1 method or QIA, similar numerical results are observed but not provided here.
In [43], the F-ABM method was employed to simulate this system. In order to keep the stability, the step

size ℎ is required such that ℎ < ℎ0(𝛼) for some ℎ0(𝛼) > 0. Moreover, when the order 𝛼 is small, this limitation
usually becomes very demanding and can not be used for long time computation. As a comparison, we list in
Table 1 the step size limits that make the F-ABM method to be stable. For 𝛼 = 0.1, the step sizes have to be
selected about ℎ = 1𝑒−13, and the numerical blowup appears for ℎ = 2𝑒−13. But the F-BDFs method is stable
uniformly for any ℎ > 0 and 𝛼 ∈ (0, 1). In fact, we guess that there exists certain equivalence relation between
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Figure 1. Numerical solutions for 𝛼 = 0.3, 0.6 and 0.9 with parameters 𝑐1 = 1/4, 𝑐2 = 1, 𝑐3 =
1/4, 𝑎 = 1/2, 𝑏 = 1/4 and the reference ball 𝐵(0,

√
2). Three orbits are computed by G–L

method with ℎ = 0.2 and 𝑇 = 100 form initial values (2, 1, 2)𝑇 , (−2, 3,−2)𝑇 and (−1,−4,−3)𝑇 ,
respectively.
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Figure 2. Numerical solutions for 𝛼 = 0.3, 0.6 and 0.9 with parameters 𝑐1 = 5, 𝑐2 = 6, 𝑐3 = 5,
𝑎 = 1/2, 𝑏 = 5 and the reference ball 𝐵(0, 1/

√
10). Three orbits are computed by second order

F-BDFs with ℎ = 0.4 and 𝑇 = 200 from the initial values (0.3, 0.3, 0.3)𝑇 , (−0.3, 0.3,−0.3)𝑇 and
(−0.3,−0.3,−0.3)𝑇 , respectively.

Table 1. Numerical performances of the F-ABM for Example 4.1.

𝛼 = 0.9 𝛼 = 0.7 𝛼 = 0.5 𝛼 = 0.3 𝛼 = 0.1

Blowup ℎ 5e-2 2e-2 4e-3 1e-4 2e-13
Stable ℎ 4e-2 1e-2 3e-3 5e-5 1e-13

linear stability and numerical dissipativity for F-ODEs. Hill proved the corresponding equivalence theorem for
classical ODEs in [22].

4.2. Fractional sub-diffusion equation

Consider the 2D fractional sub-diffusion equation⎧⎨⎩
𝐶
0𝐷

𝛼
𝑡 𝑢(𝑡, 𝑥, 𝑦) = 𝑘 (𝑢𝑥𝑥(𝑡, 𝑥, 𝑦) + 𝑢𝑦𝑦(𝑡, 𝑥, 𝑦)) + 𝑔(𝑡, 𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,

𝑢(0, 𝑥, 𝑦) = 𝑢0(𝑥, 𝑦),
𝑢(𝑡, 𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ 𝜕Ω,

(4.3)

where Ω = [0, 1]2 and the diffusion coefficient 𝑘 > 0. Applying the standard finite element method with
rectangular grids in the spatial direction, we get the F-ODEs

𝐶
0𝐷

𝛼
𝑡 𝑈(𝑡) = −𝑘𝐴𝑈(𝑡) + 𝐺(𝑡), (4.4)

where 𝑈(𝑡), 𝐺(𝑡) ∈ 𝑅𝑁𝑥·𝑁𝑦 , and 𝑁𝑥, 𝑁𝑦 are the numbers of nodes in the 𝑥, 𝑦-directions respectively. It is well-
known that the stiffness matrix 𝐴 is similar to a symmetric positive matrix, i.e., 𝐷 = 𝑃−1𝐴𝑃 , where 𝑃 is
an orthogonal matrix. Hence, its eigenvalues are positive and real, i.e., 0 < 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑁𝑥·𝑁𝑦 . Let
𝐹 (𝑈) = −𝑘𝐴𝑈(𝑡) + 𝐺(𝑡). By direct calculations we have

⟨𝐹 (𝑈)− 𝐹 (𝑉 ), 𝑈 − 𝑉 ⟩ =− 𝑘(𝑈 − 𝑉 )𝑇 𝐴(𝑈 − 𝑉 )

=− 𝑘(𝑈 − 𝑉 )𝑇 𝑃𝐷𝑃−1(𝑈 − 𝑉 )
≤𝜇‖𝑈 − 𝑉 ‖2,

(4.5)

where 𝜇 = −𝑘𝜆1 < 0. Therefore, the F-ODEs (4.4) satisfy the one-sided Lipschitz condition (1.3), and they are
contractive. From (1.10), we have the contractivity rate

‖𝑈(𝑡)− 𝑉 (𝑡)‖2 ≤ ‖𝑈(0)− 𝑉 (0)‖2 · 𝑐𝛼

𝑡𝛼
, 𝑐𝛼 > 0. (4.6)
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Figure 3. Numerical solutions obtained by L1 method at 𝑇 = 20 for ℎ = 0.2, 𝛼 = 0.6 with
initial values 𝑢1 and 𝑢2, and the corresponding difference function 𝑒(𝑡) on [0, 100] for h = 0.2
with 𝛼 = 0.3, 0.6, 0.9 and 0.99.

Table 2. The observed index functions 𝑝𝛼 by L1 method for Example 4.2 with ℎ = 0.2.

𝑡 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.9 𝛼 = 0.99

20 0.3286 0.6771 1.0769 1.4751
40 0.3233 0.6641 1.0461 1.3866
60 0.3209 0.6582 1.0324 1.3481
80 0.3195 0.6546 1.0240 1.3249
100 0.3185 0.6521 1.0182 1.3089

where 𝑈(0), 𝑉 (0) are two given initial values. Since 𝐴 is symmetric and positive in the semi-discrete system
(4.4), it can be diagonalized, so the contractivity rate can be improved to be

‖𝑈(𝑡)− 𝑉 (𝑡)‖ ≤ ‖𝑈(0)− 𝑉 (0)‖ · 𝑐𝛼

𝑡𝛼
, 𝑐𝛼 > 0. (4.7)

In the numerical simulation, we take the initial values 𝑢1
0 = sin(2𝜋𝑥) sin(2𝜋𝑦), 𝑢2

0 = 10𝑥𝑦(1 − 𝑥)(1 − 𝑦) and
𝑔(𝑡, 𝑥, 𝑦) = 0. Let 𝑒(𝑡) = ‖𝑈(𝑡) − 𝑉 (𝑡)‖, then the discrete 𝑙2-norm is given by 𝑒(𝑡𝑛) =

(︁
1

𝑁𝑥·𝑁𝑦

∑︀𝑁𝑥·𝑁𝑦

𝑘=1 |𝑈𝑛
𝑘 −

𝑉 𝑛
𝑘 |2
)︁ 1

2
. Figure 3 reports the numerical solutions and corresponding function 𝑒(𝑡) for various fractional order

𝛼 obtained by L1 method with initial values 𝑢0
1 and 𝑢0

2. It clearly shows that the decay rate of 𝑒(𝑡) depends
directly on the fractional order parameter 𝛼. The greater the order 𝛼, the faster the difference function 𝑒(𝑡)
contracts. But all the contractivity rates remain to be algebraic, rather than the exponential decay rate in the
case of integer-order ODEs (𝛼 = 1).

In order to further analyze the quantitative behavior of the decay rate of 𝑒(𝑡), we introduce the index:

𝑝𝛼(𝑡) =
ln (𝑐𝛼‖𝑈(0)− 𝑉 (0)‖)− ln (‖𝑈(𝑡)− 𝑉 (𝑡)‖)

ln(𝑡)
, 𝑡 > 1 (4.8)

from the improved contractivity rate estimation (4.7). Obviously, the index 𝑝𝛼(𝑡) → − ln(‖𝑈(𝑡)−𝑉 (𝑡)‖)
ln(𝑡) as 𝑡 →∞

and is independent of the initial value 𝑐𝛼‖𝑈(0) − 𝑉 (0)‖. In the numerical simulations, we just take ‖𝑈(1) −
𝑉 (1)‖ = 𝑐𝛼‖𝑈(0)− 𝑉 (0)‖.

The observed index 𝑝𝛼 for L1 method is presented in Table 2 and for QIA method is given in Table 3. The
results show that the contractivity rate is about ‖𝑈(𝑡) − 𝑉 (𝑡)‖ = 𝑂(𝑡−𝛼) as 𝑡 → +∞, which is consistent
with the continuous estimate in (4.7) and our theoretical prediction for numerical contravtivity rate given in
Theorem 3.7.
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Table 3. The observed index functions 𝑝𝛼 by QIA for Example 4.2 with ℎ = 0.2.

𝑡 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.9 𝛼 = 0.99

20 0.3451 0.6768 0.8355 1.7972
40 0.3375 0.6639 0.8498 1.6480
60 0.3341 0.6581 0.8555 1.5835
80 0.3320 0.6546 0.8587 1.5449
100 0.3305 0.6521 0.8609 1.5182
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Figure 4. Left: numerical solutions of (i) at 𝑇 = 100 obtained by G–L with ℎ = 0.2, initial
values 𝑢1 = 2, 𝑢2 = −1 and 𝛼 = 0.3, 0.6, 0.9; Middle: numerical solutions of (ii) at 𝑇 = 0.01
obtained by L1 with ℎ = 0.0001 on [0, 0.01] with 𝛼 = 0.6 and initial values 𝑥0 = −6, 𝑦0 = 1;
Right: numerical solutions of (ii) at 𝑇 = 20 obtained by L1 with ℎ = 0.2 on [0, 20] with 𝛼 = 0.6
and initial values 𝑥0 = −6, 𝑦0 = 1.

The semi-discrete F-ODEs (4.4) is stiff when 𝑡 is small, and F-BDFs work well for relatively large step size
ℎ = 0.2. As a comparison, when we make use of the F-ABM method proposed in [14] for simulations, numerical
blowup or oscillation appears even for ℎ = 1𝑒 − 14 when 𝛼 = 0.3. The serious restrictions on the step sizes,
especially when 𝛼 is small, indicate that the explicit F-ABM method is not suitable for stiff F-ODEs. In fact,
the linear stability of fractional predictor-corrector methods was studied deeply in [17], and it was shown that
the stability regions of this type of methods are usually relatively small, not suitable for stiff F-ODEs.

4.3. Nonlinear F-ODEs

Consider the nonlinear F-ODEs

(i)
{︂

𝐶
0𝐷

𝛼
𝑡 𝑥(𝑡) = −𝑥3 − 𝑥,

𝑥(0) = 𝑥0.
(ii)
{︂

𝐶
0𝐷

𝛼
𝑡 𝑥(𝑡) = −10𝑥𝑦2 − 𝑥,

𝐶
0𝐷

𝛼
𝑡 𝑦(𝑡) = 10𝑥2𝑦 − 𝑦,

(4.9)

By simple calculations, it is easy to check that scalar F-ODEs in (i) satisfy the one-sided Lipschitz condition
with 𝜆 = −1, and also meet the dissipative condition with 𝑎 = 0, 𝑏 = 1. Hence, it is contractive and dissipative.
The F-ODEs in (ii) satisfy the dissipative condition with 𝑎 = 0, 𝑏 = 1, hence are dissipative.

From Figure 4, we find that the sign of the numerical solution in scalar F-ODEs (i) remains unchanged, as
shown in Lemma 3.6. The order 𝛼 significantly affects the contractivity rate and dissipativity rate, and all the
solutions decay to zero at a slow rate and keep a long tail. As in Example 4.2, we can compute the index 𝑝𝛼

defined in (4.8) to quantitatively characterize the contractivity rate. Tables 4 and 5 show that the contractivity
rate depends directly on the order parameter 𝛼 and is algebraic, and almost equal to the rate 𝛼, which is
consistent with the results presented in Theorem 3.7. Note that when 𝛼 = 0.3, the index 𝑝𝛼 is slightly smaller
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Table 4. Observed index function 𝑝𝛼 in Example 4.3 (i) computed by G–L with ℎ = 0.5 and
𝑇 = 5000.

𝑡 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.9 𝛼 = 0.99

1000 0.2149 0.5682 1.0672 1.4874
2000 0.2200 0.5714 1.0520 1.4739
3000 0.2228 0.5729 1.0441 1.4101
4000 0.2247 0.5739 1.0390 1.3906
5000 0.2262 0.5746 1.0352 1.3755

Table 5. Observed 𝑝𝛼 in Example 4.3 (i) computed by second order F-BDFs with ℎ = 0.5 and
𝑇 = 5000.

𝑡 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.9 𝛼 = 0.99

1000 0.2333 0.6036 1.1183 1.5437
2000 0.2367 0.6035 1.0984 1.4884
3000 0.2387 0.6035 1.0882 1.4601
4000 0.2407 0.6034 1.0817 1.4397
5000 0.2412 0.6034 1.0767 1.4250

Table 6. The observed index function 𝑞𝛼 in Example 4.3 (ii) computed by L1 with ℎ = 0.5
and 𝑇 = 5000.

𝑡 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.9 𝛼 = 0.99

1000 0.2662 0.6038 1.1094 1.5342
2000 0.2678 0.6037 1.1090 1.4830
3000 0.2639 0.6036 1.1080 1.4552
4000 0.2613 0.6035 1.1074 1.4362
5000 0.2596 0.6035 1.1069 1.4246

than expected because it takes a long time to get to the equilibrium. For long time simulations, some fast
algorithm for Caputo derivatives, should be very helpful.

From Figure 4, we see that the sign of the numerical solutions in the vector F-ODEs (ii) is no longer unchanged.
It also exhibits an initial layer and thus has a stiff feature. We now introduce an index to quantitatively
characterize the dissipativtity rate:

𝑞𝛼(𝑡) =
ln (𝑐𝛼‖𝑢(0)‖)− ln (‖𝑢(𝑡)‖)

ln(𝑡)
, 𝑡 > 1. (4.10)

The index 𝑞𝛼(𝑡) → − ln(‖𝑢(𝑡)‖)
ln(𝑡) as 𝑡 → +∞ and is also independent of the initial values 𝑐𝛼‖𝑢(0)‖. In the numerical

simulations, we just take ‖𝑢(1)‖ = 𝑐𝛼‖𝑢(0)‖. Table 6 shows that the dissipativity rate depends directly on the
order 𝛼 and is algebraic, with the rate nearly equal to 𝛼.

5. Concluding remarks

We have presented some sufficient conditions to ensure the numerical contractivity and dissipativity of F-BDFs
for nonlinear F-ODEs. F-BDFs, including four popular schemes, are shown to be dissipative and contractive,
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and can preserve the exact contractivity and dissipativity rates of the solutions to the continuous equations.
To the best of our knowledge, this is the first work on the numerical asymptotic behavior of the solutions to
nonlinear F-ODEs. There are still a lot to be done in order to better understand efficient numerical methods
for nonlinear F-ODEs without the classical Lipschitz conditions. For instance, stable numerical methods for
strongly stiff F-ODEs and their rigorous long-time convergence analysis are very important.

We note that for Riemann–Liouville F-ODEs, the numerical dissipativity and contractivity of the F-BDFs
that we have studied can be developed directly. But the decay rate for Riemann–Liouville F-ODEs is slightly
changed. For the multi-order fractional systems with 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛)𝑇 , where 𝛼𝑖 ∈ (0, 1) for 𝑖 = 1, 2, . . . , 𝑛,
their numerical dissipativity and contractivity of F-BDFs can be established in a similar manner.

Appendix A. Asymptotical decay rate of Volterra difference equation

We introduce some related concepts and results in [2]. Let 𝑟 > 0 be finite. A real sequence 𝛾 = {𝛾𝑛}𝑛≥0 is in
𝑊 (𝑟) if 𝛾𝑛 > 0 and

lim
𝑛→∞

𝛾𝑛−1

𝛾𝑛
=

1
𝑟
, 𝛾(𝑟) =

∞∑︁
𝑖=0

𝛾𝑖𝑟
−𝑖 < ∞ and lim

𝑚→∞

(︃
lim

𝑛→∞
sup
𝑛≥0

1
𝛾𝑛

𝑛−𝑚∑︁
𝑖=𝑚

𝛾𝑛−𝑖𝛾𝑖

)︃
= 0.

Note that if 𝛾 ∈ 𝑊 (𝑟) and 𝑟 ≤ 1, then lim𝑛→∞ 𝛾𝑛 = 0 as 𝑛 →∞. The sequence 𝛾𝑛 = 1/(𝑛 + 1)1+𝛼 ∈ 𝑊 (1)
while 𝛾𝑛 = 1/(𝑛+1)𝛼 is not in 𝑊 (1) for 0 < 𝛼 < 1. For a given sequence 𝛾 = {𝛾𝑛}𝑛≥0 in 𝑊 (𝑟) and 𝑥 = {𝑥𝑛}𝑛≥0,
we define 𝐿𝛾(𝑥) = lim

𝑛→∞
𝑥𝑛

𝛾𝑛
if the limit exists. We now recall the main results of [2] in the scalar case.

Lemma A.1 ([2]). Consider the Volterra difference equation

𝑧𝑛+1 = ℎ𝑛 +
𝑛∑︁

𝑖=0

𝐻𝑛,𝑖𝑧𝑖, 𝑛 ≥ 1. (A.1)

Assume that

(i) 𝐾 := lim
𝑚→∞

sup
𝑚≥0

(︃
lim

𝑛→∞
sup
𝑛≥0

𝑚∑︀
𝑗=0

|𝐻𝑛,𝑛−𝑗 |

)︃
is finite with 𝐾 < 1;

(ii) 𝐻𝑛,𝑚 ∼ 𝐻∞,𝑚 and ℎ𝑛 ∼ ℎ∞ as 𝑛 →∞ with
∞∑︀

𝑚=0
|𝐻∞,𝑚| < ∞;

(iii) lim
𝑚→∞

(︃
lim

𝑛→∞
sup
𝑛≥0

𝑛−𝑚∑︀
𝑗=𝑚

|𝐻𝑛,𝑗 |

)︃
= 0.

Then the limit lim
𝑛→∞

𝑧𝑛 exists and satisfies

lim
𝑛→∞

𝑧𝑛 = (1− 𝑉 )−1

⎛⎝ℎ∞ +
∞∑︁

𝑗=0

𝐻∞,𝑗𝑧𝑗

⎞⎠ with 𝑉 := lim
𝑚→∞

⎛⎝ lim
𝑛→∞

𝑚∑︁
𝑗=0

𝐻𝑛,𝑛−𝑗

⎞⎠ . (A.2)

Furthermore, when (A.1) is a convolution equation with 𝐻𝑛,𝑗 = 𝐻♯
𝑛−𝑗 and

∞∑︀
𝑗=0

|𝐻♯
𝑗 | < 1, it is seen that

𝐾 =
∞∑︀

𝑗=0

|𝐻♯
𝑗 | < 1, 𝑉 =

∞∑︀
𝑗=0

𝐻♯
𝑗 and 𝐻∞ = 0. Therefore, the limit lim

𝑛→∞
𝑧𝑛 exists and satisfies

lim
𝑛→∞

𝑧𝑛 =

⎛⎝1−
∞∑︁

𝑗=0

𝐻♯
𝑗

⎞⎠−1

ℎ∞. (A.3)
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