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AN EFFECTIVE PRECONDITIONER FOR A PML SYSTEM
FOR ELECTROMAGNETIC SCATTERING PROBLEM
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Abstract. In this work we are concerned with an efficient numerical solution of a perfectly matched
layer (PML) system for a Maxwell scattering problem. The PML system is discretized by the edge finite
element method, resulting in a symmetric but indefinite complex algebraic system. When the real and
imaginary parts are considered independently, the complex algebraic system can be further transformed
into a real generalized saddle-point system with some special structure. Based on an crucial observation
to its Schur complement, we construct a symmetric and positive definite block diagonal preconditioner
for the saddle-point system. Numerical experiments are presented to demonstrate the effectiveness and
robustness of the new preconditioner.
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1. Introduce

Perfectly matched layer (PML) is a popular and effective technique for truncating an unbounded domain
where an electromagnetic wave scattering problem is defined. It was proposed by Bérenger [2] for the time-
dependent Maxwell equations, in an intention to construct a fictitious layer outside the “region of interest” so
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that plane waves entering the layer can be well absorbed. This approach was developed in terms of a complex
change of variables (or stretching) for the Maxwell problems in frequency domain; see, e.g., [8, 9, 11, 12, 17, 18].
The well-posedness of the PML system was studied, and the convergence of the PML solution to the one
of the original Maxwell system in the infinite domain was also verified, provided that the truncated domain is
sufficiently large [8,11]. Furthermore, it was also showed in [8,11] that the solution to the original Maxwell system
in infinite domain is preserved by the PML system in the computational domain while it decays exponentially
in the PML layer. Efficient preconditioned iterative methods have been well developed for the elliptic-type
Maxwell’s equations, with nearly optimal convergence rate independent of the mesh size; see, e.g., [13, 15, 19]
and the references therein. However, not much has been done in literature on fast solvers for a PML system of
the electromagnetic wave scattering problem when it is discretized by the edge finite elements. We are aware
of only the recent work [21] and two works by Botros and Volakis, who presented the GMRES solver coupled
with an approximate inverse preconditioner [6], and proposed some optimal choices of the PML parameters and
tested the numerical performance of the GMRES solver with these parameters [7].

In this work we shall study some fast algorithms for solving the PML system of a Maxwell scattering problem.
As we see, the stiffness matrix of the discrete system resulting from the edge element discretization of the
PML system is complex, and Hermitian but indefinite. When the real and imaginary parts are considered
independently, the complex algebraic system can be further transformed into a real generalized saddle-point
system with a symmetric but indefinite 2 × 2 block coefficient matrix. This coefficient matrix is essentially
different from the coefficient matrices of the standard saddle-point systems arising from, e.g., the Maxwell
system or Navier−Stokes equations: the two diagonal blocks are now both indefinite; the diagonal and off-
diagonal blocks are both obtained from some indefinite curl curl-type second order differential operators. We
shall propose a 2×2 block diagonal positive definite preconditioner, whose two diagonal blocks can be viewed as
some regularizations of the diagonal blocks of the coefficient matrix and the Schur complement corresponding to
the saddle-point system. This construction of the preconditioner is based on a crucial observation on the Schur
complement, which has a very complicated structure. Numerical experiments will be presented to demonstrate
the effectiveness and robustness of the new preconditioner.

The rest of the paper is organized as follows. In Section 2, we will introduce the PML equations for a
Maxwell scattering problem and present some approximation results about the PML equations. We shall discuss
in Section 3 the edge finite element discretization of the PML system, then construct two preconditioners
for the discrete edge element system, and provide some analysis on the preconditioners based on a general
framework in Section 4. Finally, we present some numerical examples to illustrate the competitive behavior of
the preconditioners in Section 5.

2. PML system and its convergence

For the ease of notation, we shall restrict all our discussions from now on in two dimensions, but all the results
can be naturally extended to three dimensions. The theoretical results about the PML system to be introduced
in this section were demonstrated only for three dimensions in [8], but are also true for two dimensions (see
Sect. 7, [8]). So we shall cite these results directly from [8] below.

Let Ω0 ⊂ R
2 be a bounded domain containing the origin with a boundary Γ0, and Ωc

0 the complement of its
closure. Then for a sufficiently large positive constant L, we define three domains Ω1, Ω2 and Ω3 (see Fig. 1):

Ω1 = (−a, a)2 \ Ω̄0, Ω2 = (−b, b)2 \ [−a, a]2, Ω3 = (−L,L)2 \ [−b, b]2,

and set ΩL = Ω1 ∪Ω2 ∪Ω3, with ΓL being its boundary.
For a vector-valued function v = (v1, v2)t and a scalar function g, we shall adopt the following conventional

definitions:

∇× v =
∂v2
∂x

− ∂v1
∂y

; ∇ × g =
(
∂g

∂y
,−∂g

∂x

)t

·
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Figure 1. The bounded domain ΩL.

In this work, we shall consider the following electromagnetic wave scattering problem by the impenetrable
scatterer Ω0 [8]: {∇ × (μ−1∇× u) − k2εu = 0 in Ωc

0,
u · τ = g · τ on Γ0

(2.1)

where τ is unit tangential vector on Γ0, μ and ε are the magnetic permeability and the electric permittivity,
respectively, k is the wavenumber and g is the trace of a function g̃ ∈H loc(curl;Ωc) on Γ0, whereH loc(curl;Ωc)
denotes the set of functions on Ωc whose restrictions to Ωc ∩D are in H(curl;Ωc ∩D) for any bounded domain
D. The system (2.1) is often complemented by the Silver−Müller radiation condition to select the physically
interested outgoing waves [8]:

lim
r→∞ r1/2(∇× u− iku · τ) = 0, (2.2)

where r is the magnitude of the position vector (x, y).
It is easy to see that the system (2.1) reduces to the following one when the medium is homogeneous, i.e.,

μ = ε = 1, {∇ × (∇× u) − k2u = 0 in Ωc
0,

u · n = g · n on Γ0.
(2.3)

Next we introduce the PML approximation of the scattering system (2.1) [8]. For this aim, we define an even
function σ ∈ C0(R):

σ(t) =

⎧⎨⎩
0 for |t| ≤ a,

σ0
(|t|−a)

b−a for a < |t| < b,
σ0 for |t| ≥ b

(2.4)

for a positive constant σ0 (the PML strength), and the two functions

d(t) = 1 + z σ(t), σ̃(r) =
1
r

∫ r

0

σ(t)dt (2.5)

where z is a complex number. For z = i or 1 + i, we introduce the following complex stretching

T (x, y) = ((1 + z σ̃(x))x, (1 + z σ̃(y))y) ≡ (x̃, ỹ), (2.6)
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which is a transformation between the rectangular coordinate system (x, y) and the complex coordinate system
(x̃, ỹ).

Noting that Maxwell equations is invariant in different coordinates [16], system (2.1) changes to the following
equivalence system after the complex stretching T in (2.6):⎧⎪⎨⎪⎩

∇̃ × μ−1(∇̃ × ũ) − k2εũ = 0 in Ωc
0,

ũ · τ = g̃ · τ on Γ0,

lim
r̃→∞

r̃1/2(∇̃ × ũ− ikũ · τ ) = 0
(2.7)

where two operators ∇̃× and ∇̃× in the complex coordinate system (x̃, ỹ) are connected respectively with two
operators ∇× and ∇× in the rectangular coordinate system (x, y) as follows:

∇̃ ×w = J−1∇× (Bw), ∇̃ × w = A∇ × w, (2.8)

where J , A and B are given by

J = d(x)d(y), A = diag(1/d(y), 1/d(x)), B = diag (d(x), d(y)) .

Now we introduce a Hilbert space on the unbounded domain Ωc
0:

Ĥ g̃(curl;Ωc
0) ≡ {θ : Bθ ∈H loc(curl;Ωc

0), θ · τ = g̃ · τ on Γ0},

and two bilinear forms:

[v,w]Ωc
0

=
∫

Ωc
0

Jv ·wdx, [ϕ, ψ]Ωc
0

=
∫

Ωc
0

Jϕψdx. (2.9)

Then for any w̃ ∈ Ĥloc(curl;Ωc
0) and v ∈ Ĥ0(curl;Ωc

0), we have the Green’s formula

[∇̃ × w̃,v]Ωc
0

= [w̃, ∇̃ × v]Ωc
0
. (2.10)

Using this integration by parts formula, we derive the variational formulation of (2.7):
Find ũ ∈ Ĥ g̃(curl;Ωc

0) such that

Ã(ũ,φ) = 0 ∀ φ ∈ Ĥ0(curl;Ωc
0), (2.11)

where the bilinear form Ã(·, ·) is given by

Ã(ũ,φ) = [μ−1∇̃ × ũ, ∇̃ × φ]Ωc
0
− [k2εũ,φ]Ωc

0
. (2.12)

Next we will present a few results on the estimates and convergence of the solution to the variational system
(2.11), all under the following condition:

z = i or z = 1 + i and arg(1 + iσ0) <
π

3
· (2.13)

We have the following well-posedness for the PML scattering problem (2.11) [8].

Corollary 2.1. Under the condition (2.13), there is a unique ũ ∈ Ĥ g̃(curl;Ωc
0) to the system (2.11), and the

solution ũ coincides with the solution u to (2.3) in Ω1. And there are constants C > 0 and α > 0 such that the
following stability estimate holds for L ≥ b:

‖ũ‖H1/2(ΓL) ≤ Ce−αkL‖g̃‖H(curl; ΩL).
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Note that the model problem (2.11) is defined on an unbounded domain Ωc
0, which is inconvenient for

numerical computations. Now we truncate Ωc
0 by the bounded domain ΩL, and accordingly introduce the

following Sobolev spaces on ΩL:

Ĥ(curl;ΩL) ≡ {θ : Bθ ∈H(curl;ΩL)},

Ĥ g̃(curl;ΩL) ≡ {θ : Bθ ∈H(curl;ΩL), θ · τ = g̃ · τ on Γ0 and θ · τ = 0 on ΓL}.
Then the approximate variational problem of (2.11) on the bounded domain ΩL can be formulated as follows:
Find ũL ∈ Ĥ g̃(curl;ΩL) such that

ÃL(ũL,φ) = 0 ∀ φ ∈ Ĥ0(curl;ΩL), (2.14)

where ÃL(·, ·) is given by

ÃL(ũL,φ) = [μ−1∇̃ × ũL, ∇̃ × φ]ΩL − [k2εũL,φ]ΩL . (2.15)

The system (2.14) has a unique solution provided that L is large enough; see ([8], Thm. 6.1), and this solution
converges to the PML solution on ΩL exponentially.

Corollary 2.2 (cf. [8], Thm. 6.2). Under the condition (2.13), there is a positive constant L0 such that for
L ≥ L0,

‖ũ− ũL‖Ĥg̃(curl; ΩL)
≤ C(L0)e−αkL‖g̃‖H(curl; ΩL).

Using Corollaries 2.1 and 2.2, we have the following approximation theory.

Theorem 2.3. Under condition (2.13), the solution ũL to the PML system (2.14) approximates the solution u
to the system (2.3) in Ω1 exponentially.:

‖u− ũL‖Ĥg̃(curl; Ω1)
≤ C(L0)e−αkL‖g̃‖H(curl; ΩL). (2.16)

Noting that the curl operator ∇̃× in equation (2.14) is inconvenient for numerical computations, we will
transform it to the common curl operator ∇× on ΩL. For this purpose, we introduce a complex Sobolev space:

Hg(curl;ΩL) = {u = ur + iui : ur ∈ Hgr
(curl;ΩL),ui ∈ Hgi

(curl;ΩL)},

where gr and gi are the real and imaginary part of function g, and (with l = r or i)

Hgl
(curl;ΩL) = {v : v ∈ H(curl;ΩL), v · τ |ΓL = 0, v · τ |Γ0 = gl · τ |Γ0}.

Using the above space and (2.8), we can write (2.14) equivalently as follows:
Find uL ∈ Hg(curl;ΩL) such that

a(uL,ψ) = 0 ∀ ψ ∈ H0(curl;ΩL), (2.17)

where a(·, ·) is given by

a(uL,ψ) =
∫

ΩL

J−1(∇× uL)(∇×ψ)dx− k2

∫
ΩL

((AB)−1uL) · ψdx. (2.18)

Without loss of generality, we shall consider only the case with z = i. Then by direct complex arithmetic
computings, we can write J−1 and (AB)−1 explicitly as

J−1 = α+ iβ, (AB)−1 = D + iE, (2.19)



844 Q. HU ET AL.

where α, β, D and E are given by

D = diag(d1, d2), α =
1 − σ(x)σ(y)

(1 + σ2(x))(1 + σ2(y))
,

E = diag(e1, e2), β = − σ(x) + σ(y)
(1 + σ2(x))(1 + σ2(y))

,

with

d1 =
1 + σ(x)σ(y)

1 + σ2(x)
, e1 =

σ(y) − σ(x)
1 + σ2(x)

,

d2 =
1 + σ(x)σ(y)

1 + σ2(y)
, e2 =

σ(x) − σ(y)
1 + σ2(y)

·

Now we separate the real and imaginary parts of uL and write uL as

uL = ur + iui (2.20)

with ur ∈ Hgr
(curl;ΩL) and ui ∈ Hgi

(curl;ΩL). Then a straightforward computation gives the equivalent weak
formulation of (2.17):

Find ur ∈ Hgr
(curl;ΩL) and ui ∈ Hgi

(curl;ΩL) such that

a(ur,ui;ψr,−ψi) = 0, ∀ ψr,ψi ∈ H0(curl;ΩL), (2.21)

where a(ur,ui;ψr,−ψi) is given by

a(ur,ui;ψr,−ψi) =
∫

ΩL

(α(∇× ur)(∇×ψr) − α(∇× ui)(∇×ψi))dx

−
∫

ΩL

(β(∇× ui)(∇×ψr) + β(∇× ur)(∇×ψi))dx

−k2

∫
ΩL

(uT
r Dψr − uT

i Dψi)dx

+k2

∫
ΩL

(uT
i Eψr + uT

r Eψi)dx. (2.22)

3. Edge element discretization and preconditioners

In this section we shall discuss the edge element discretization of the PML variational system (2.21) and some
effective preconditioners for the discrete system. Assume that ΩL is covered by a quasi-uniform triangulation
Th of triangular elements, with h being the maximum diameter among all the triangles in Th. Let Eh be the
set of all edges in the triangulation Th. We will use the lowest order edge elements of the first family for the
discretization:

Vh,g(ΩL) = {u = ur + iui : ur ∈ Vh,gr
(ΩL),ui ∈ Vh,gi

(ΩL)}, (3.1)

where Vh,gr
(ΩL) and Vh,gi

(ΩL) are given by

Vh,gl
(ΩL) = {v : v ∈ H(curl;ΩL), v|K ∈ R1 ∀K ∈ Th;

v · τ |e = 0 ∀e ∈ Eh ∩ ΓL; v · τ |e = gl · τ |e ∀e ∈ Eh ∩ Γ0}
with l = r and i. Here R1 is the following space of linear polynomials:

R1 = (P0)2 ⊕
{
p ∈ (P̃1)2 : x · p = 0

}
,

where P0 and P̃1 are respectively the space of constants and the space of homogeneous linear polynomials.
Similarly, we can define Vh,0(ΩL).
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Now we can formulate our edge element approximation of the variational problem (2.21): Find ur,h ∈
Vh,gr

(ΩL) and ui,h ∈ Vh,gi
(ΩL) such that

a(ur,h,ui,h;ψr,h,−ψi,h) = 0 ∀ ψr,h, ψi,h ∈ Vh,0(ΩL). (3.2)

The major goal of this work is to propose an effective preconditioner for the use in an iterative method for
solving the edge element system (3.2). For the purpose, we first write the system (3.2) in a matrix-vector form.
Let m0

h be the number of all the edges in Th lying inside ΩL and (mh −m0
h) be the number of all the edges in

Th lying on ∂ΩL, and ψj
h the jth basis function of the space Vh(ΩL) (1 ≤ j ≤ mh). Then we can express ur,h

and ui,h in (3.2) as

ur,h =
mh∑
j=1

xj
rψ

j
h and ui,h =

mh∑
j=1

xj
iψ

j
h,

and their coefficients corresponding to the edges of Th lying inside ΩL as the vector

X =
(
x1

r , x
2
r , . . . , x

m0
h

r , x1
i , x

2
i , . . . , x

m0
h

i

)T

.

With these expressions, we can obtain the matrix-vector form of the weak formulation (3.2):

MX = F, (3.3)

where F is a vector that absorbs the information of gr and gi on Γ0, and M is a 2 × 2 block matrix given by

M =
(
A B
B −A

)
(3.4)

with A and B being the stiffness matrices associated respectively with the bilinear forms

aA(ur,h,ψr,h) =
∫

ΩL

(
α(∇× ur,h) · (∇×ψr,h) − k2uT

r,hDψr,h

)
dx (3.5)

and
aB(ui,h,ψr,h) = −

∫
ΩL

(
β(∇× ui,h) · (∇×ψr,h) − k2uT

i,hEψr,h

)
dx. (3.6)

The matrix M in (3.4) is symmetric but indefinite. We can observe the following unfavorable features of
matrix M: the coefficient function α in the bilinear form (3.5) may change signs and vanish in some part of ΩL;
both diagonal blocks A and −A are indefinite themselves; and the off-diagonal blocks B are generated from an
indefinite curl curl-type second order differential operator, similarly to the diagonal block A. So the generalized
saddle-point system (3.3) is essentially different in nature from the standard saddle-point systems arising from,
e.g., the Maxwell system or Navier−Stokes equations. Hence it is rather challenging to construct an efficient
and robust preconditioner for the generalized saddle-point system (3.3).

Next we shall construct a Schur complement-type preconditioner for the saddle-point system. To illustrate
our motivation, we shall first present a simple block-diagonal preconditioner.

3.1. A simple preconditioner

As usual, we assume that the original electromagnetic scattering problem (2.1) and (2.2) has a unique solution,
and so the matrix M is nonsingular. Without loss of generality, we assume that both A and A + BA−1B are
nonsingular in the rest of the paper; otherwise, both B and B + AB−1A are nonsingular, and we can then
proceed our study in a similar manner.
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Let Â be the stiffness matrix induced by the following bilinear form

âA(u,v) =
∫

ΩL

|α|(∇× u)(∇× v)dx+ k2

∫
ΩL

uTDvdx ∀u,v ∈ Vh,0(ΩL). (3.7)

It is easy to see that matrix Â is symmetric and positive definite. The bilinear form âA can be viewed as a
regularization of the bilinear form aA in (3.5), the matrix Â should be an efficient preconditioner for A. Then
we may take the following block-diagonal matrix to be a simple preconditioner for M in (3.4):

K−1 =
(
Â−1

Â−1

)
. (3.8)

Unfortunately, this simple preconditioner does not work well, as we shall see from the numerical experiments
in Section 5. In the next section we will construct a more efficient preconditioner for M.

3.2. A preconditioner based on Schur complement

We can easily see that the Schur complement of the system (3.3) is A + BA−1B. This suggests us a natural
more effective preconditioner than (3.8):

P =
(
Â−1

(Â + BÂ−1B)−1

)
. (3.9)

However, the inverse of the Schur complement Â+BÂ−1B is difficult to realize numerically. We shall work out
below an approximation of the Schur complement, which can be implemented much more effectively.

Let I be the identity operator. By the definition of the matrix Â in (3.7), the differential operator defining
Â can be written in the form:

∇× (|α|∇×) + k2D I. (3.10)

Then the differential operator corresponding to Â−1 may be formally, and approximately, written as

(∇× (|α|∇×))−1 + k−2D−1I. (3.11)

Similarly, the differential operator defining B can be written in the form

−∇× (β∇×) + k2E I. (3.12)

Therefore, the differential operator corresponding to the Schur complement Â + BÂ−1B may be formally, and
approximately, written in the form

∇× (α̂∇×) + k2D̂ I (3.13)

where α̂ and D̂ are given by

α̂ =
{

1
2 (|α| + |α|−1β2) if α = 0,

β2 if α = 0, (3.14)

D̂ =
1
2
diag

(
d1 + (d1)−1(e1)2, d2 + (d2)−1(e2)2

)
. (3.15)

Here the factor 1/2 can be viewed as a relaxation parameter, which reflects some balance between two diagonal
blocks in the proposed preconditioner (see below).
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The bilinear form corresponding to the operator (3.13) can be defined by∫
ΩL

α̂(∇× u)(∇×ψ)dx+ k2

∫
ΩL

uT D̂ψdx, ∀u,ψ ∈ Vh,0(ΩL). (3.16)

Let Ŝ be the stiffness matrix associated with this bilinear form, then a preconditioner for M can be defined by

P̂ =
(
Â−1

Ŝ−1

)
. (3.17)

Remark 3.1. We can see that both Â and Ŝ are symmetric and positive definite, and are generated by the
edge element discretization of the elliptic-type Maxwell’s equations. They can be replaced by any other existing
preconditioners for the elliptic-type Maxwell’s equations, for example, the domain decomposition precondi-
tioner [20] or the HX preconditioner [14]. This is an important advantage of the proposed preconditioner for
applications.

4. Analysis

In this section we propose a general framework for the analysis of the efficiency of the preconditions of the
type P̂ in (3.17) for the global system M in (3.3).

4.1. General framework

Let Wh(ΩL) be a general two-dimensional vector-valued finite element space associated with the triangulation
Th of domain ΩL, and A and B be two symmetric (not necessary positive definite) discrete operators mapping
from Wh(ΩL) to Wh(ΩL). Then for any two given functions fh, gh ∈ Wh(ΩL), we consider the following operator
equation: (

A B
B −A

)(
uh

vh

)
=
(
fh

gh

)
. (4.18)

We assume that the system (4.18) is uniquely solvable, namely the coefficient operator

M =
(
A B
B −A

)
is nonsingular. Then we can easily check that either both A and A + BA−1B are nonsingular, or both B and
B + AB−1A are nonsingular. Without loss of generality, we assume that both A and S = A + BA−1B are
nonsingular in the rest of this section. For the case when both B and B + AB−1A are nonsingular, we can
proceed our subsequent study in an exact same manner.

Let Â, Ŝ : Wh(ΩL) → Wh(ΩL) be two symmetric and positive definite operators, which are assumed to be
two efficient preconditioners respectively for A and the Schur complement Â + BÂ−1B, that is, the following
conditions hold for Â:

|(Aϕ,ϕ)| ≤ C1(Âϕ,ϕ) ∀ ϕ ∈ Wh(ΩL), (4.19)

sup
ψ∈Wh(ΩL)

(Aϕ,ψ)
‖ψ‖Â

≥ γ1‖ϕ‖Â ∀ ϕ ∈ Wh(ΩL), (4.20)

while the following conditions hold for Ŝ:

|(Sϕ,ϕ)| ≤ C2(Ŝϕ,ϕ) ∀ ϕ ∈Wh(ΩL), (4.21)

sup
ψ∈Wh(ΩL)

(Sϕ,ψ)
‖ψ‖Ŝ

≥ γ2‖ϕ‖Ŝ ∀ ϕ ∈ Wh(ΩL), (4.22)

((Â+BÂ−1B)ϕ,ϕ) ≤ C3(Ŝϕ,ϕ) ∀ ϕ ∈Wh(ΩL). (4.23)
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We can easily see from (4.23) and (4.20) that

(BÂ−1Bϕ,ϕ) ≤ C3(Ŝϕ,ϕ) ∀ ϕ ∈ Wh(ΩL), (4.24)
(A−1ÂA−1ϕ,ϕ) ≤ γ−1

1 (Â−1ϕ,ϕ) ∀ ϕ ∈Wh(ΩL). (4.25)

Now we define

M̂ =
(
Â

Ŝ

)
, M̃ ≡ M̂− 1

2MM̂− 1
2 =

(
Ã B̃

B̃T − ˜̃A

)
,

where Ã, B̃ and ˜̃A are given by

Ã = Â− 1
2AÂ− 1

2 , B̃ = Â− 1
2BŜ− 1

2 , ˜̃A = Ŝ− 1
2AŜ− 1

2 .

Theorem 4.1. Let γ1, γ2 and C3 be three positive numbers satisfying (4.20), (4.22) and (4.24), and γ =
C−1

3 γ1 min{γ1, γ2}. Then, it holds that

sup
v∈Wh(ΩL)×Wh(ΩL)

(M̃u,v)
‖v‖L2(ΩL)

≥ γ‖u‖L2(ΩL) ∀ u ∈Wh(ΩL) ×Wh(ΩL). (4.26)

Proof. First, it can be verified directly that

˜̃A+ B̃T Ã−1B̃ = Ŝ− 1
2 (A+BA−1B)Ŝ− 1

2 . (4.27)

Then we can derive by using (4.20) and (4.22) that

sup
ψ∈Wh(ΩL)

(Ãϕ,ψ)
‖ψ‖L2(ΩL)

≥ γ1‖ϕ‖L2(ΩL) ∀ ϕ ∈ Wh(ΩL), (4.28)

sup
ψ∈Wh(ΩL)

(( ˜̃A+ B̃T Ã−1B̃)ϕ,ψ)
‖ψ‖L2(ΩL)

≥ γ2‖ϕ‖L2(ΩL) ∀ ϕ ∈ Wh(ΩL). (4.29)

This implies that, for any u1, u2 ∈ Wh(ΩL), there are v1, v2 ∈Wh(ΩL) satisfying((
Ã

−( ˜̃A+ B̃T Ã−1B̃)

)(
u1

u2

)
,

(
v1
v2

))
≥ γ̂

∥∥∥(u1

u2

)∥∥∥
L2(ΩL)

∥∥∥(v1v2
)∥∥∥

L2(ΩL)
(4.30)

with γ̂ = min{γ1, γ2}.
It is straightforward to check the following factorization

M̃ =
(

I 0
B̃Ã−1 I

)(
Ã

−( ˜̃A+ B̃T Ã−1B̃)

)(
I Ã−1B̃
0 I

)
.

This, along with (4.30), suggests us to define(
u1

u2

)
=
(
I Ã−1B̃
0 I

)
u

for any u ∈Wh(ΩL) ×Wh(ΩL), and to choose v by(
I Ã−1B̃
0 I

)
v =

(
v1
v2

)
.
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Then using (4.30) we deduce

(M̃u,v) =

((
Ã

−( ˜̃A+ B̃T Ã−1B̃)

)(
I Ã−1B̃
0 I

)
u,

(
I Ã−1B̃
0 I

)
v

)

≥ γ̂

∥∥∥∥( I Ã−1B̃
0 I

)
u

∥∥∥∥
L2(ΩL)

∥∥∥∥( I Ã−1B̃
0 I

)
v

∥∥∥∥
L2(ΩL)

. (4.31)

Now we take u = (ϕ,ψ)T , then (
I Ã−1B̃
0 I

)(
ϕ
ψ

)
=
(
u1

u2

)
, (4.32)

which implies that

ψ = u2, ϕ = u1 − Ã−1B̃u2.

It follows from (4.24) and (4.25) that

(BA−1ÂA−1Bϕ,ϕ) ≤ γ−1
1 C3(Ŝϕ, ϕ), ∀ϕ ∈ Wh(ΩL),

or equivalently,
(Ŝ− 1

2BA−1ÂA−1BŜ− 1
2ϕ,ϕ) ≤ γ−1

1 C3(ϕ,ϕ), ∀ϕ ∈ Wh(ΩL), (4.33)

which gives
‖Ã−1B̃u2‖L2(ΩL) ≤ γ−1

1 C3‖u2‖L2(ΩL).

Using this, we obtain

‖ψ‖L2(ΩL) = ‖u2‖L2(ΩL) and ‖ϕ‖L2(ΩL) ≤ γ−1
1 C3(‖u1‖L2(ΩL) + ‖u2‖L2(ΩL)).

Then, we can further derive by (4.32) that

‖u‖L2(ΩL) ≤ γ−1
1 C3(‖u1‖2

L2(ΩL) + ‖u2‖2
L2(ΩL))

1
2 = γ−1

1 C3

∥∥∥∥( I Ã−1B̃
0 I

)
u

∥∥∥∥
L2(ΩL)

. (4.34)

Similarly we can obtain

‖v‖L2(ΩL) ≤ γ−1
1 C3

∥∥∥∥( I Ã−1B̃
0 I

)
v

∥∥∥∥
L2(ΩL)

. (4.35)

Now the desired estimate (4.26) is a direct consequence of (4.31), (4.34) and (4.35). �

Theorem 4.2. Let C1, γ1, C2 and C3 be the positive numbers satisfying (4.19)−(4.21) and (4.24), and C =
C3γ

−1
1 max{C1, C2}. Then, the following estimate holds

|(M̃v,v)| ≤ C‖v‖2
L2(ΩL) ∀ v ∈Wh(ΩL) ×Wh(ΩL). (4.36)

Proof. We can easily see from (4.19) and (4.21) that

|(Ãϕ,ϕ)| ≤ C1‖ϕ‖2
L2 ∀ ϕ ∈Wh(ΩL),

|(( ˜̃A+ B̃T Ã−1B̃)ϕ,ϕ)| ≤ C2‖ϕ‖2
L2 ∀ ϕ ∈Wh(ΩL).
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Using these two estimates and the following factorization of M̃ ,

M̃ =
(
I Ã−1B̃
0 I

)T
(
Ã

−( ˜̃A+ B̃T Ã−1B̃)

)(
I Ã−1B̃
0 I

)
,

we can readily derive the desired estimate as follows:

|(M̃v,v)| ≤ max{C1, C2}
∥∥∥∥( I Ã−1B̃

0 I

)(
v1
v2

)∥∥∥∥2

L2

≤ C(‖v1‖2 + ‖v2‖2) = C‖v‖2
L2

where we have used (4.33) to estimate the upper bound of the operator Ã−1B̃. �

4.2. An application

If we choose the space Wh(ΩL) to be the edge element space Vh,0(ΩL) defined in Section 3, and two discrete
operators A and B such that

(Auh,ϕh) =
∫

Ω

(α(∇× uh)(∇×ϕh) − k2Duh ·ϕh)dx,

(Bvh,ψh) = −
∫

Ω

(β(∇× vh)(∇×ψh) − k2Evh · ψh)dx

for any uh, vh, ϕh, ψh ∈ Vh,0(ΩL). Then the edge element system (3.3) can be written in the operator
form (4.18).

Let Â and Ŝ be the operator forms of the matrices Â and Ŝ defined in Section 3.2, respectively. Noting that
Vh,0(ΩL) is a finite dimensional space, and that both A and S are nonsingular, we can easily know that the
positive numbers γ1, γ2, C1, C2 C3 satisfying (4.19)−(4.24) always exist, possibly depending on mesh size h
or growing slowly when h decreases. In particular, when these positive numbers are independent of the mesh
size h or grow very slowly (e.g., logarithmically) when h decreases, the preconditioner P̂ in (3.17) will be a
very efficient preconditioner for the matrix M in (3.4). But we are still unable to establish very satisfactory
estimates of these positives numbers for our current choices of Â and Ŝ, although our numerical experiments in
the next section suggest the existence of some nice constants which grow very slowly when h decreases. The main
difficulties lie in two facts: (1) the operator A in (4.18) is indefinite itself; (2) the coefficient α in the bilinear
form aA in (3.5) may change signs and vanish in some part of Ω. We are unaware of any existing theories which
may help assess the performance of some preconditioning-type methods for the generalized saddle-point system
like (3.4). It is the first time to provide in this section a set of criteria for such assessments.

The preconditioners Â and Ŝ we proposed in Section 3.2 which form the global preconditioner P̂ (cf. (3.17))
for matrix M (cf. (3.4)) are just one possible choice. One may apply or construct any other more efficient
preconditioners for matrix M, especially those for which the positive numbers γ1, γ2, C1, C2 C3 satisfying
(4.19)−(4.24) can be estimated explicitly in terms of h and grow slowly when h decreases. This topic will be
studied further in our future work.

5. Numerical experiments

In this section we present some numerical results to illustrate the effectiveness of the preconditioners intro-
duced in Section 3. We shall take a model example from [8], which is the PML equations to approximate the
electromagnetic scattering problems in two dimensions.

In our experiments, we take the coefficients in the scattering system (2.1) and its boundary data g to be

μ = 1 , ε = 1 , k = 1 , g = ∇×
[
H

(1)
1 (r)eiθ

]∣∣
Γ0
,
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Figure 2. First component (left) and second component (right) of ur.

Table 1. Number of iterations and CPU times of the MINRES method.

h Iter Time
8/16 3845 2.52(s)
8/32 21815 63.39(s)
8/64 88610 1352.11(s)
8/128 317226 22092.86(s)

where H(1)
1 (r) is the Hankel function of first kind. Then the analytic solution to the system (2.1) is given by

u = ∇×
[
H

(1)
1 (r)eiθ

]
. Furthermore, we take the PML parameters and the PML domain ΩL in Section 2 to be

a = 2, b = 3, L = 4, σ0 = 4, Ω0 = (−1, 1)2, ΩL = (−4, 4)2 \ [−1, 1]2,

The two components of u, i.e., its real and imaginary parts ur and ui, are showed in Figures 2 and 3, respectively.
We are interested in the approximate solution to the PML system (2.17) only in the computational domain

Ω1 = (−2, 2)2 \ [−1, 1]2, so we will show the edge element PML solution in Ω1, namely the solution to the
algebraic system (3.3). For solving the edge element system (3.3), we use the MINRES method without any
preconditioner and the preconditioned MINRES method with the preconditioners introduced in Section 3, and
compare the performance of these two methods. The iterations are terminated when the relative L2-norm of
the residual falls below 10−6, and the number of iterations and the required CPU times are reported.

In Table 1, we can see the numbers of iterations and the required CPU times with different mesh sizes when
the MINRES method is applied without any preconditioner.

We may observe from Table 1 that the condition number of the matrix M grows quickly as the mesh size h
reduces, so the MINRES method (without any preconditioner) is quite expensive and impractical for solving
such a PML system like (3.3) when the system is of large size.

Next we shall test the performance of two preconditioners, the simple block-diagonal preconditioner K in (3.8)
and the Schur complement-type preconditioner P̂ in (3.17), when they are used with the preconditioned MINRES
method for solving the PML system (3.3). As our aim is to find the effectiveness of the proposed preconditioners
and do not study the further preconditioning for the preconditioners Â or Ŝ used in (3.17), we shall implement
the actions of Â−1 and Ŝ−1 by the PCG iteration with the HX preconditioner [14], whose action involves the
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Figure 3. First complement (left) and second component (right) of ui.

Table 2. Number of iterations and CPU times of the MINRES method with preconditioner K.

h Iter Time
8/16 121 2.76(s)
8/32 169 16.02(s)
8/64 342 148.85(s)
8/128 677 2078.92(s)
8/256 >104

Table 3. Errors of the PML edge element solutions.

h ‖u − uh‖0,Ω1 Ratio ‖u − uh‖H (curl;Ω1) Ratio
8/16 6.0118e-1 6.8581e-1
8/32 3.1081e-1 1.93 3.4915e-1 1.96
8/64 1.5672e-1 1.98 1.7475e-1 2.00
8/128 7.8556e-2 2.00 8.7496e-2 2.00
8/256 3.9303e-2 2.00 4.3766e-2 2.00
8/512 1.9654e-2 2.00 2.1884e-2 2.00

solutions of three simple elliptic equations by the algebraic multigrid method. This makes the implementation
of the preconditioner P̂ very convenient and computationally cheap.

We first solve the PML edge element system (3.3) by the preconditioned MINRES method with the simple
block-diagonal preconditioner K in (3.8). The number of iterations and the CPU times are reported in Table 2,
where Iter stands for the iteration counts of the preconditioned MINIRES method for solving the system (3.3).

We can see from Tables 1 and 2 that the preconditioned MINRES method with the simple block-diagonal
preconditioner K outperforms essentially the MINRES method without any preconditioner. But the convergence
of the former deteriorates still rapidly when the mesh size reduces.

Now we solve the system (3.3) by the preconditioned MINRES method with the new Schur complement
preconditioner P̂ in (3.17). The errors of the PML edge element solutions are listed in Table 3, from which we
can see that the PML edge element solution converges optimally (with first order accuracy) in both L2-norm
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Figure 4. First complement (left) and second component (right) of uh,r.

Figure 5. First component (left) and second component (right) of uh,i.

and H(curl)-norm. Furthermore, we have shown the two complements of the real part ur,h and the imaginary
part ui,h of the edge element solution uh; see Figures 4 and 5. Comparing these two figures with Figures 2
and 3, we can see that the PML edge element solution uh approximates the analytic solution u well.

The number of iterations and the CPU times are reported in Table 4. We can see from Table 4 that the
new Schur complement-type preconditioner P̂ in (3.17) performs very well, and is much more effective than the
simple block-diagonal preconditioner K in (3.8) when the discrete system becomes large. And most importantly,
the number of iterations becomes more stabilized when the meshes are fine enough. Especially, we can see that
the number of iterations for the coarse mesh h = 8/64 is nearly the same as the number of iterations for the
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Table 4. Number of iterations and CPU times of the MINRES method with preconditioner P .

h Iter Time
8/16 128 3.65(s)
8/32 166 16.81(s)
8/64 248 112.00(s)
8/128 149 460.69(s)
8/256 164 2705.72(s)
8/512 253 20864.19(s)

much finer mesh h = 8/512, which results in a quite large discrete PML system, with a total number of degrees
of freedom being 1 472 000. The convergence of this type in terms of mesh size is what we like to see in most
applications.
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[3] J.-P. Bérenger, Perfectly Matched Layer (PML) for Computational Electromagnetics. Vol. 2 of Synthesis Lectures on Com-
putational Electromagnetics. Morgan Claypool (2007).

[4] H. Banks and B. Browning, Time domain electromagnetic scattering using finite elements and perfectly matched layers.
Comput. Methods. Appl. Mech. Eng. 194 (2005) 149–168.

[5] G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time harmonic Maxwell’s equations.
SIAM J. Numer. Anal. 43 (2005) 2121–2143.

[6] Y. Botros and J. Volakis, Preconditioned generalized minimal residual iterative scheme for perfectly matched layer terminated
applications. IEEE Microw. Guided Wave Letters 9 (1999) 45–47.

[7] Y.Botros and J.Volakis, Perfectly matched layer termination for finite-element meshed: Implementation and application,
Microwave. Optim. Tech. Lett. 23 (1999) 166–172.

[8] J. Bramble and J. Pasciak, Analysis of a cartesian PML approximation to the three dimensional electromagnetic wave
scattering problem, Int. J. Numer. Anal. Model. 9 (2012) 543–561.

[9] J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time harmonic electromagnetic scattering
problems. Math. Comput. 77 (2008) 673–698.

[10] J. Chen, Z. Chen, T. Cui and L. Zhang, An Adaptive Finite Element Method for the Eddy Current Model with Circuit/Field
Couplings, SIAM J. Sci. Comput. 32 (2010) 1020–1042.

[11] Z. Chen, T. Cui and L. Zhang, An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic
scattering problems, Numer. Math. 125 (2013) 639–677.

[12] W. Chew and W. Weedon, A 3d perfectly matched medium for modified Maxwell’s equations with streched coordinates.
Microwave Opt. Technol. Lett. 13 (1994) 599–604.

[13] R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36 (1998) 204–225.

[14] R. Hiptmair and J. Xu, Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007)
2483–2509.

[15] Q. Hu and J. Zou, Substructuring preconditioners for saddle-point problems arising from Maxwell’s equations in three
dimensions. Math. Comput. 73 (2004) 35–61.

[16] E. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics. Dover (1997).

[17] Wonseok Shin and Shanhui Fan, Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s
equations solvers. J. Comput. Phys. 231 (2012) 3406–3431.

[18] F. L. Teixeira and W. C. Chew, Differential forms, metrics, and the reflectionless absorption of electromagnetic waves. J.
Electromagn. Waves Appl. 13 (1999) 665–686.

[19] A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math. 86 (2000) 733–752.
[20] A. Toselli, O. Widlund and B. Wohlmuth, An iterative substructuring method for Maxwell’s equations in two dimensions.

Math. Comput. 70 (2001) 935–947.

[21] P. Tsuji, B. Engquist and L. Ying, A sweeping preconditioner for time-harmonic Maxwell’s equations with finite elements.
J. Comput. Phys. 231 (2012) 3770–3783.


	Introduce
	PML system and its convergence
	Edge element discretization and preconditioners
	A simple preconditioner
	A preconditioner based on Schur complement

	Analysis
	General framework
	An application

	Numerical experiments
	References

