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Abstract

In this paper we consider the inverse scattering problem for high-contrast targets, and analyze mathe-
matically the experimentally observed phenomenon about super-resolution in imaging the shapes of these
targets. In particular, super-resolution at specific high contrast values is justified based on the novel con-
cept of scattering coefficients and several important implications (given by two main theorems, Theorems
and . This is the first time that a mathematical theory of super-resolution is established in the
context of imaging high-contrast inclusions. We shall also illustrate our main findings with a variety of
numerical examples. These findings may help develop resonant structures for resolution enhancement.
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1. Introduction

The aim of this work is to mathematically investigate the mechanism underlying the experimentally-
observed phenomenon of super-resolution in reconstructing targets of high contrast from far-field mea-
surements. Our main focus is to explore the possibility of breaking the diffraction barrier from the far-field
measurements using the novel concept of scattering coefficients [I, 2, B]. This diffraction barrier, referred
to as the Abbe-Rayleigh or the resolution limit, places a fundamental limit on the minimal distance at
which we can resolve the shape of a target [4], [5]. It applies only to waves that have propagated for a
distance substantially larger than its wavelength [6], [7].

Since the mid-20th century, several approaches have aimed at pushing this diffraction limits. Reso-
lution enhancement in imaging the target shape from far-field measurements can be achieved using sub-
wavelength-scaled resonant media [8), [, [10} [IT], 12} T3], single molecule imaging [14] and using plasmonic
particles [I5]. Another innovative method to overcome the diffraction barrier has been proposed after
some experimental observations in [I6]. In their work, resolution enhancement in shape reconstruction of
the inclusion was experimentally shown when the contrast value is very high. In the reconstructed images
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from far-field measurements, the observed resolution is smaller than half of the operating wavelength.
This encouraging observation suggests a possibility of breaking the resolution limit with high permittivity
of the target. It is therefore the purpose of this work to prove that the higher the permittivity of the
target is, the higher the resolving power is in imaging its shape.

For the transmission problem of a strictly convex domain, it was proved in [I7] that there exists
an infinite sequence of complex resonant frequencies located at the upper half plane. These resonances
converge to the real axis exponentially fast, and the real part of these resonances correspond to the quasi-
resonant modes introduced as in [17]. Quasi-resonance occurs when the wavelength inside the inclusion
is larger than the wavelength in the background media and is such that it reaches the real part of one of
these true resonant frequencies. In this paper, we have shown, via the analysis of the shape derivative
of the scattering coeflicients, that these resonant state of the inclusion actually has a signature in the
far-field and can be used for super-resolved imaging from far-field data. To be more exact, we have proved
that, in the shape derivative of the scattering coefficients for a circular domain, there are simple poles
at the complex resonant states, and therefore peaks corresponding to the real parts of these resonances.
Henceforth, as the material contrast increases to infinity and is such that it is equal to the real part of
a resonance, the sensitivity in the scattering coefficients becomes large and super-resolution for imaging
becomes possible.

Throughout this paper, we consider the following scattering problem in R?,

<A+k2<1+q(:c)))u0, (1.1)

where u is the total field, g(z) > 0 is the contrast of the medium and k is the wave number. The operating
wavelength is then 27 /k.

We consider an inclusion D contained inside a homogeneous background medium, and assume that D
is an open bounded connected domain with a C'“-boundary for some o > 0. Suppose that the function
q is of the form

q(z) =" xp(x), (1.2)
where x p denotes the characteristic function of D and * > 0 is a constant. We shall always complement
the system by the physical outgoing Sommerfeld radiation condition:

0 3
s . s b 1.
‘T ‘u —iku ‘ =0(Jz|72) as |z| = o0, (1.3)

where u® := u — u’ is the scattered field and u’ is the incident field. The solution u to the system —
represents the total field due to the scattering from the inclusion D corresponding to the incident
field u’.

Following the work of [I8] 2 [3], the scattering coefficients provide a powerful and efficient tool for
shape classification of the target D. Therefore, we aim at exhibiting the mechanism underlying the
super-resolution phenomenon experimentally-observed in [I6] in terms of the scattering coefficients cor-
responding to high-contrast inclusions.

In [2], it is proved that the scattering coefficient of order (n,m) decays very quickly as the orders |n|,
|m| increase. Nonetheless, it is shown in [3] that the scattering coefficients can be stably reconstructed
from the far-field measurements by a least-squares method. The stability of the reconstruction in the
presence of a measurement noise is analyzed and the resolving power of the reconstruction in terms of
the signal-to-noise-ratio is estimated. It is the purpose of this paper to use the scattering coefficients to
estimate the resolution limit for imaging high contrast targets from far-field measurements as function of
the material contrast, and to prove that the higher the permittivity is inside the target, the better the
resolution is for imaging its shape from far-field measurements.

In order to achieve this goal, in this work, we first give a decay estimate of the scattering coefficients
in arbitrary shaped domains, and then in the particular case of a circular domain. Our estimate shows
different behaviors of the scattering coefficients of different orders as the material contrast increases.
Then we provide a sensitivity analysis of the scattering coefficients, which clearly shows that, in the
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linearized case, the scattering coefficient of order (n,m) of a circular domain contains information about
the (n—m)-th Fourier mode of the shape perturbation. Afterwards, we establish the asymptotic behavior
of eigenvalues of an important family of integral operators closely related to the scattering coefficients.
Series representations of the scattering coefficients and their shape derivatives in the case of a circular
domain are given based on this asymptotic behavior. From these series representations, we prove that as
the material contrast increases and moves close to the reciprocal of the eigenvalues, the shape derivatives
of the scattering coefficients behave like simple poles. This explains the better conditioning of the inver-
sion process of higher Fourier modes of inclusions with large material contrast, and hence an enhanced
resolution of reconstructing the perturbation using the scattering coefficients. Numerical examples illus-
trate that the relative magnitudes of higher order scattering coefficients grow as the medium coefficients
grow and move close to the reciprocals of several of these eigenvalues similtaneously, therefore provid-
ing more information about the shape of the domain with a fixed signal-to-noise ratio. Our approach
provides a good and promising direction of understanding towards the super-resolution phenomenon for
high-contrast targets.

This paper is organized as follows. In section [2| we give a brief review of the concept of scattering
coefficients. We also prove a fundamental expression of the scattering coefficients in terms of a family
of important integral operators. Sensitivity analysis of the scattering coeflicients with a fixed contrast is
then presented in section 3] which shows that the shape derivative can also be represented by the family
of integral operators introduced in section [2| Section briefly recalls Riesz decomposition of compact
operators. Asymptotic behavior of eigenvalues and eigenfunctions of the introduced integral operators
will be studied in section[4.2] Section [£.3] provides a series representation of the scattering coefficients and
their shape derivative. A mathematical explanation of the super-resolution phenomenon is given based
on several implications in Theorems and which are the main results of this work. Theorem
provides the clear asymptotic behavior of the eigenvalues of a related operator, while Theorem gives a
reason for the stronger sensitivity of the Fourier modes of higher orders when the reciprocal of a contrast
comes close to the real parts of the reciprocals of the respective eigenvalues simultaneously. Numerical
results are reported in section [j] to illustrate the phenomenon of super-resolution as the material contrast
increases.

2. The concept of scattering coefficients and a fundamental expression

In this section, we estimate the behavior of the scattering coefficients. Without loss of generality,
from now on, we normalize the wave number £ in to be k =1 by a change of variables.

To begin with, we first recall the definition of the scattering coefficients W, (D, e*) from [I8] [2]. For
this purpose, we introduce the following several notions. The fundamental solution ¢ to the Helmholtz
operator A 4+ 1 in two dimensions satisfying

(A +1)®(z) = do(x), (2.1)

where Jg is the Dirac mass at 0, with the outgoing Sommerfeld radiation condition:

8 3
——® 1P| = 2 S —
’ 2] (] ’ O(Jx|72) as |z o0,

is given by
1
() =~ Hy (la]). (22)

where Hél) is the Hankel function of the first kind of order zero.
Now, given an incident field u’ satisfying the homogeneous Helmholtz equation, i.e.,

Au'4u' =0, (2.3)



100

105

110

the solution u to (1.1)) and (1.3)) can be readily represented by the Lippmann-Schwinger equation as

u(z) = u'(z) — &* /D ®(z — y)u(y)dy, =€R?, (2.4)
and hence, the scattered field reads
u’(x) = —€* /D ®(z — y)u(y)dy, =cR?. (2.5)
Let Spp be the single-layer potential defined by the kernel ®(-), i.e.,
Saplol(@) = [ @@= y)oty) dsty) (26)

for ¢ € L2(AD). Let SY5 ' be the single-layer potential associated with the kernel ® (VI+e(+)).
Definition 2.1. The scattering coefficient Wi, (D, e*) for n,m € Z is defined as follows:

W (D, &™) = /8 () e, (@) ds (o). (27)

where x = r,(cosO,,sinb,) in polar coordinates and the weight function ¢, € L?*(OD) is such that the
pair (Gm, ¥m) € L2(0D) x L*(0D) satisfies the following system of integral equations:

{S{%/S*ﬁ[qu](x) - SaD[wm](m) = Jm(rw)eiméz 7
2 GYEF s 11 (1) — 2 Sopltm] |+ (2) = 2 (Jon(ra)ei™?=).

Here 4+ and — in the subscripts respectively indicate the limit from outside D and inside D to 0D along
the normal direction, and 9/0v denotes the normal derivative.

According to [I8] 2], the scattering coefficients W, (D, e*) are basically the Fourier coefficients of the
far-field pattern (scattering amplitude) which is 2w-periodic function in two dimensions. The far-field

(2.8)

pattern Ao, (c?7 7), when the incident field is given by ¥ for a unit vector J, is defined to be
eilz]
£/ 87| z]

with Z := z/|z|. We have, recalling from [I8] [2], that

(u —u')(z) = ie~ T4

Aso(d, ) + O(|2]72)  as |z] = o0,

Wom (D, &%) = i" ™Fg, 0. [Ao (d, B)] (—m, n), (2.9)

where T = (cosf,,sinf,) and d = (cosfg,sinfy) are in polar coordinates and g, 0, [AOO(E, Z)|(m,n)
denotes the (m, n)-th Fourier coefficient of the far-field pattern A, (E, Z), under the Fourier basis functions
{ei(m9d+n9m) };o;mz?oo .

Our first objective is then to work out an explicit relation between the far-field pattern and the
contrast €* so as to obtain the behavior of the scattering coefficients when &* is large.

In view of (2.4)), we introduce the following operator for the subsequent analysis.
Definition 2.2. The operator Kp : L2(D) — L2(D) is defined by

Bpld)(x) = /D (e - y)é(y)dy, forzeD andé e I*(D); (2.10)

whereas, the operator K : L2(D) — L*(R2) is given by

Kplg)(z) = /D O(x —y)d(y)dy, forxz e R?* and ¢ € L*(D). (2.11)
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It is easy to see from the definition of Kp and the Rellich lemma that Kp is a compact operator. However,
it is worth emphasizing that Kp is not a normal operator in L?(D). Therefore, it is not unitary equivalent
to a multiplicative operator. With Definition we can rewrite (2.4]) as

(I +e*Kp)[u)(z) = u'(z), VzeD. (2.12)

By the Fredholm theory [19] and the injectivity of operator I + e Kp (see, e.g., [20]), we know

u=(I+eKp) ul]. (2.13)
From the well-known fact that
; ilz|—iZy .
_ _tygm _ o —mijaC -3
d(x —y)=—-H, x — = —ie —— 4+ 0(|z|72) as |x|— o, 2.14

we have
ezl

\/8r|z| Jp ‘

Therefore, the far-field of the scattered field can be written as

u(z) = " / ®(x — y)uly) dy = ie*e ™/ “EVu(y)dy + O(|z]72) as x| — o0, (2.15)
D

(02,0, i= A(@7) =" [ e ruly)dy. (2.16)
D

Recall the following well-known Jacobi-Anger identity [2I] for any unit vector d,

6—1‘(?:1: _ Z (71-)71‘]”(7,)@1'“(9/1*9) (2.17)

n=—oo

for x = (r,0) in polar coordinates. Using (2.17)) and taking the Fourier transform with respect to 6., we
get

o, [As](n) = (—i)n€*<Jn(’l‘)€m0, ’LL>L2(D) — 4 n <Jn(’l“)€m9, (E*_l + kD)—l[ui]>L2(D) . (2.18)

Now using u'(x) = eid-w , it follows from ([2.9) and (2.17))-(2.18)) that the following proposition holds:

Proposition 2.3. For a domain D and a contrast €*, the scattering coefficient Wy (D, e*) forn,m € Z
can be written in the following form

Wom(D, &%) = ™0, 0,[A(04, 0))(=m,n) = (Ju(r)e™, (7" + Kp) ™ [T (r)e™]) (2.19)

L2(D)’

where Kp is defined by (2.10)).

The expression of the scattering coefficients W,,,,, will be fundamental to the analysis of the
behavior of W,,,,, with respect to &*.

Using , we can readily obtain an a priori estimate for the coefficients W,,,,. Let us first recall
the following facts on Schatten-von Neumann ideals; see, for example, [22]. Given a Hilbert space H, we
let B(H) to be the set of bounded operators on H. We denote by S (H) the closed two-sided ideal of
compact operators in B(H). For K € S, and k € N, let the k-th singular number s;(K) be defined
as the k-th eigenvalue of |K| = v K*K ordered in descending order of magnitude and being repeated
according to its multiplicity, written as s (K) := A\t (] K]). Now, for 0 < p < oo, we shall often write the
following Schatten-von Neumann quasi-norms (which are norms if 1 < p < 00) as follows:

o0 1/p
[1K]|s, () = (Z Sk(K)p> for p <oo; |[Klls.(m) = [IK]lu, (2.20)
k=1
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whenever they are finite. Now let the Schatten-von Neumann quasi-normed operator ideal S,(H) be
defined by

Sp(H) :={K € S : ||K]||s, ) < o0} . (2.21)

Note that with this convention, Sy (H) is the well-known trace class, Sa(H) is the usual Hilbert-Schmidt
class, and S, (H) is the usual class of compact operators in H. Moreover, if H = L?(D) and K € Sy(H)
is the integral operator defined by

K[fl(x) = /D K(z,y)f(y)dy, forxzec D and f e L*(D), (2.22)

then it holds that
1K, 100y = /D /D K (2, )|? da dy, (2.23)

which is always well-defined for any K € So(L?(D)). We refer the reader to, for example, [22] for more
properties concerning the Schatten-von Neumann ideals.

For a compact operator K, let o(K) := {\ € C| A\— K is singular} denote its spectrum and (z — K)
its resolvent operator whenever z € C\o(K). Now, we have the following resolvent estimate [23].

—1

Proposition 2.4. For 0 < p < oo and K € S,(H), we have the following estimate for the resolvent
operator (z — K) ™" that

‘ (z—K)™" §1exp<ap|K||g”(H)+bp> , (2.24)
n~ d(z0(K)) d(z,0(K))P
where ap, b, are two constants depending on p and d(z,0(K)) is defined by
d(z,0(K)):= inf |z—]]. (2.25)

A€o (K)

Now we can apply Proposition to get an estimate for Wy, (D, e*). In fact, with the logarithmic
type singularity of the function H(gl , we readily obtain that

1R, 1)) = /D /D HO (j2 — )2 dzdy < C(1+ R) (1 +log R)? < oo, (2.26)

whenever D C B(0,R), and hence Kp € S;. Therefore, using the Cauchy-Schwartz inequality and
applying (2.24) for H = L?(D) to (2.19), together with the following well-known asymptotic expression
of J,,, for large m [24] pp. 365-366 |,

1 ez \™m
Jm(z)/\/ﬁ %) 51 asm— oo, (2.27)

we readily obtain the following inequality (using that as = 1/2,b; = 1/2 if p = 2 [25]):

[Wom(D,e*)| = ‘<Jn(r)em0,(€*_l+KD)I[Jm,(r)eim0}>L2(D)

< H(e*_l + f(D)*l‘

inf imo
LZ(D)HJ"(T)G ||L2(D)||Jm(r)e HL?(D)
1 HKDHQSQ(B(D))
— exp i
d—e L o(Bp) T\ Ao, o(Rp))?
1 Cir 1\ oyt
T oo P T oz 3 [l 1l
d(—e*~1,0(Kp)) d(—e*~*,0(Kp))? 2 |n

Im|
where C; g (i = 1,2) are some constants, which depend only on the radius R such that D C B(0, R). We
summarize the above result in the following theorem.

IA

1 in im
3 )OI 11
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Corollary 2.5. For a given domain D and a contrast €*, we have the following estimate for the scattering
coefficient Wy, (D, e*), for n,m € Z,

|m|+[n]
Cir 1 ) Cor

2 |m||m||n||n‘ ’

R ) o d(—= " o(Kp)? 2

(2.28)

From Corollary [2.5] we foresee that the magnitude of W, may grow as € increases, and becomes a
very large value as e* ! is close to the spectrum of the operator K p.

2.1. The case of a circular domain
Now, we consider the operator Kp for a circular domain, i.e., when D = B(0,R). In this case, the
operator Kp becomes more explicit. Actually, from Graf’s formula [21], we have for |z| # |y| that

o0

1 —imby imb, —imbOy im
HP (e =y = > XqateiynTm(2De ™ HD (y))e™ -+ X (a5 iy HL ([2])e ™™ T (y)e ™

m=—0o0

Therefore, for all f € L?(D), the operator Kp can be written as

. oo
]

Kolflw)=-7 X {<Jm(r)eme’f>DﬂB<o,|y>H5$)(|y|)e””"y

m=—0oQ

1 im im
+(H (1™, ) g (W)e ™
The above expression of Kp will be helpful to investigate the behavior of Kp and W,,,. Before we
continue our discussion on the operator Kp, we shall first define some operators.
Definition 2.6. Given an integer m € Z, the operators IN(,(,;) : L2((0,R),rdr) — L*((0,R),rdr) for
i=1,2 are defined as

& =1 ( [ o) - L [Crag@ema)men e
= ()

for h € (0,R) and ¢ € L?((0, R),rdr), and their extensions K,, : L*((0,R),rdr) — L>((0,+00)) for
i=1,2 as

Rt =2 ( [ o) - L [Crag@oma)mm e

for h € (0,+00) and ¢ € L?((0, R),rdr).

With this notion, we can readily see that if f € L?(D) has the form f = ¢(r)e?™?, then we have in polar
coordinates by the orthogonality of {¢?™?},,c7 on L?(S!) that

- i h ) i R )
Rolln0) = ([ rimetnar) e - 4 [T o) sumen
= KD, (2:31)

and K3[f](h,0) = K [#](h)e’™? . Furthermore, we can directly see that a(f(,(,%)) =o( ~7(71)). Moreover,
using the following relations for all m € Z,

Jom(2) = (=1)™Jpn(z) and  HY (2) = (-1)"HD (2), (2.32)
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we immediately infer the properties for the integral operators:

=) _ =) = (%) = (%)
K, =K} ad K_, K =K, . (2.33)

Substituting (2.31)) into Proposition we obtain the following simplified expressions of the scattering
coefficients when D = B(0, R).

Proposition 2.7. For a domain D = B(0,R) for some R > 0 and a contrast value £*, the scattering
coefficient Wy (D, e*), n,m € Z, can be written in the following form
- -1
Wom(D, ") = 6pm <Jn, (=" + &) [Jm}> : (2.34)
L2((0,R),r dr)
where dpnm is the Kronecker symbol.

As a consequence of Proposition we easily see that W, = 0 for n # m. Moreover, we readily
have the following a priori estimate for the coefficients W,,,,, by the same arguments as those in Corollary

185 In order to obtain the desired estimate, we consider the asymptotic expression of Y;, as m — oo [24]

190

195

pp. 365-366 :

Ym(z)/\/z (%)W 1. (2.35)

Together with ‘2.27) and the logarithmic type singularity of Y, we have from the definitions of INQ(ﬁ) for
t=1,21in (2.29) that

NESZ, L2 (0.m)yrary) < Cm (1+ R)* (1 +1log R)? < 00 (2.36)

Consequently, following the same arguments as the ones for (2.28]), we arrive at the estimate:

(s (= + R) " 1))

m|+|n
0 L exp CmCiR L M
nm — - 5 = —,
d(—E*_l,O'(Ky(,%)>) d(*€*71,U(K£&))) 2 |m|‘ “n“ |

|an(Da 6*)‘ = 6nm

L2((0,R),r dr)

IN

where C,, is a constant depending only on m and C; r,i = 1,2, are constants only depending on the
radius R such that D C B(0, R).

Corollary 2.8. For a circular domain D = B(0, R) and a contrast €*, we have the following estimate
for the scattering coefficient Wy, (D, e*), for n,m € Z,

1 CnCin 1) oyt
exp

|an(D75*)‘ S(Snm — 2 +7 ﬁ
d(—eta®) T\ d(—etog) 2 ) el ™l

(2.37)

In the next section we perform a sensitivity analysis of the scattering coefficients in order to obtain a
quantitative description of what piece of information is provided by the scattering coefficients of different
orders.
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3. Sensitivity analysis of the scattering coefficients for a given contrast

In this section, for a given contrast ¢*, we calculate the shape derivative D W, (D,e*)[h] of the
scattering coefficient W, (D,e*) along the variational direction h € C*(dD) when 9D is of class C.
From the shape derivative, we will clearly understand what piece of information is provided by the
scattering coefficients of different orders, and how the knowledge of the scattering coefficients is related
to the resolution of the reconstructed shapes.

Let us first recall the definition of the shape derivative of a function F[D], where the argument of the
function is a domain D, which is essential for our sensitivity analysis later in this section. For a given
bounded C2-domain D in R?, let D? be its §-perturbation in the variational direction h € C*(9D), i.e

oD? = {x =z +5h(z)v(z) : x € 6D} : (3.1)

where v(z) is the outward unit normal to dD. Then the shape derivative of a function F[D] in the
variational direction h € C1(dD), denoted as DF(D), is defined to satisfy the following relationship:

F[D°] = F[D] + 6 DF(D)[h] + O(6?). (3.2)

Before going to the sensitivity analysis, we consider now the inclusion of the operators and their
spectra. To do so, we define the following inclusion maps.

Definition 3.1. For a given domain D, suppose that the bounded linear operator Kp e B (L2(D)) 18
defined as in . Consider any domain D such that D C D we shall often write o(Kp) € B (L2 (D )

as the followmg opemtor.

UEKD)[f) (x) = Kb [xpf] (&) for any f € L*(D), (3.3)

where Xp is the characteristic function of D. Likewise, for a given radius R > 0, assume the bounded
linear operators K\ € (L*((0,R),rdr)) (m € Z,i = 1,2) , which are defined in ([2.29). Then we
write

UED) ] (@) = K [vo.mf] (x)  for any f € L2((0, R), rdr). (3.4)

Then the operators +(Kp) and (K K& )) i = 1,2, are compact on L2((0, R),r dr). Moreover, we have

the following relations between the spectra of Kp and «(Kp), as well as between K% and L(K#L)) for
mez,i=12

Lemma 3.2. Let Kp and L(KD) be defined as in (2.10) and (3.3), respectively. Then, the following
simple relationship between the spectra of Kp and «(Kp) holds:

o(((Kp)) = o(Kp) U{0}~ (3.5)

Likewise, form € Z, i = 1,2, we have
oK) = a(KWD) | J{0}. (3.6)

Proof. For a given A, suppose that the pair (A, ey) is an eigenpair of Kp over L? (D). If A # 0, we denote
by éx € L?(D) the following function

€)= %f(tp/[e,\]. (3.7)

If A = 0, we write €) € LQ(E) as the extension by zero of the function ey outside the domain D, i.e.,

& (x) = {6)\(1‘) itx eD, (3.8)

0 otherwise .
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Then we readily check from the definition of W(Kp) that L(KD)[ A = Aéx and hence the pair (A, €)) is
an eigenpair of 1(Kp) over L*(D D). As any function f € L2(D\D) is a zero eigenfunction of «(Kp), hence
we know o(Kp) {0} C o(«(Kp)).

Conversely, if a pair (\,€y) is an eigenpair of +(Kp) over LQ(D) then, by writing ey := € |p, it is
easy to see form the definition of Kp that (A, ey) is an eigenpair of Kp. Hence, o(:(Kp)) C o(Kp). The

proof of o (¢ (Kfn))) = U(Kfn)) J{0} is the same. O

Lemma 3.2/ and the Fredholm alternative yield that e*~1 4 4(Kp) is invertible over L2(D) if and only
if *~! + Kp is invertible over L?(D). Moreover, from the definition, we can show as in section [2[ that
L(Kp) € S3(L?*(D)) and then apply (2.24) to obtain the following resolvent estimate for ¢* ' + (K p)
that

o » 1 o Cir z
H (5 T (KD)) L2(B) = d(—s*_l,a(b(f(D)D ’ d(_f* 1"7(L(KD)))2 )
1 CI,R 1
d(_g*—lja(K'D)) ’ d(_E*fl,G(f(D))Q ' i "

Here the last equality comes from Lemma and the fact that or(f( p) must have zero as its accumulation

point, since L?(D) is infinite dimensional. The above argument also applies to the operators L(f{,(,?) for
m € Z,1 = 1,2, where the resolvent estimate reads

! 2120 + 11 o)

—1
w1 (1)
(=" + o BDD) < ———exp
H L2((0,R),r dr) d(*E**l,U(Kv(nl)» d(—a*‘l»a(f(ﬁ)))Z 2

Furthermore, we can easily recover the relationship between L(f( B(o,r)) and L(R}(ﬁ;)) for any D such that
B(0, R) C D from their definitions. In fact, for any f € L*(D) in the form f = ¢(r)e"™?, where (r,0) € D
we have in polar coordinates that

UK po,r)[f1(h, 0) = (K [G)()e™ . u(Ky0,p))[f1(R, 0) = o( KT [9)(R)e™, (3.11)

where the operators L(K(l)) for m € Z,i = 1,2, are the extensions to L2((0, Rg), r dr) with the radii Ry
being defined as Ry := sup{r : (r,0) € D} for different § € [0,2x]. Although the extensions L(K}(fi)) are
now different for different angles 6, no difficulty will arise in understanding the properties of L(K B(O,R))

via estimating L(fﬂ(ﬁ)), since the conclusions of Lemma and do not depend on the choice of R
and thus can be applied to different choices of radii.

From now on, we will no longer distinguish between the operators Kp and L(K p) whenever there is
no ambiguity, and by an abuse of notation, we denote both operators by Kp, likewise for the operators
K’ﬁi) and L(f(r(r?) formeZ,i=1,2.

Then we move to our main focus of this subsection, which is to obtain the shape derivative of the
scattering coefficients for a domain D along a perturbation h € C*(0D). Now let €* be given. For any
bounded C2?-domain D in R?, let D’ be a §-perturbation of D along the variational direction h € C*(0D)
as in . For such perturbatlons of the domain D, we investigate the difference between an(D‘S e*)
and an(D e*). We first estimate the difference Kps — Kp, where both operators Kps and Kp are
regarded as the extended operators on L2 (D5 U D). Indeed, from the fact that the singularity type of

the function Hél) is logarithmic, there exists a constant C'r depending only on the radius R such that
the estimate

K ps — Kpll2(B0,r)) < Cr 6 (3.12)

10
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holds for ¢ small enough with R being such that D @ B(0, R). Therefore, we can repeatedly apply the
following resolvent identities

(5*_1 +I~(D5>_1 — (s*_l +RD>_1 = (5*_1 +KD5)

_1(I~(D*I~(D6) <€*_1+RD)_1 (3.13)
= (s*‘1 - f{D>_1 (Kp — Kps) (5*‘1 + I?D5>_1 (3.14)

to obtain the following expression of the difference of scattering coefficients for any n,m € Z,

Wom(D?, &%) — Wy (D, €¥)
- <Jn(r)ei”0, {(5*_1 + f(m)_l - (5*_1 n ch)_l] [Jm(r)efm9]>

+ < (5*—1 + f(}*ys)j [T ()€™, sgn(h) Jm(r)eim9>

L2(D)

L2(DUD\D N D?)

_ <(€*1 N Kza)_l [Jn(r)e), (K ps — Kp) (a**l + f<D)_1 [Jm<r)eim0}>m)

~ -1 . .
+ < (6*_1 + KB) [ ()€™, sgn(h) Jm(r)e"”‘9> + 0(6?%), (3.15)
L2(D D3\D () D%)

where the last equality comes from the resolvent identities and (3.12). Now for any L' function f,
considering the fact that the shape derivative of the integral

(D) = /D F(@)de (3.16)

is given by the following boundary integral
DID)H = [ f@)h(z)ds(z), (3.17)
aD
we have for x € D|J D% and ¢ € L?(D|J D°) that

~ ~ 1

= by [P — ko) dst) + 0). (3.18)

sgn(h) HYY (|2 — yl)é(y)dy

Therefore, by substituting the above expression into (3.15)), a direct expansion of the integral together
with Fubini’s theorem yields the following expression for the first term in (3.15]):
[Jm (T)€i7”0]>

_ <<€*—1 i Kz))_l [Jn(r)e™], (Kps — Kp) (5*_1 + KD)_l 2(0)

-1 —1

_ 53 /D [ H e —yn(y) [(E*uf@) wmmeimﬂ <y>dy[(s*-1+f?;s) [Jn<r>ein91} () dz

+0(8?)
~ -1 ~ ~ -1 .
5 < [(5*1 n KD) [Jm(r)eime]] [K;‘) (5*_1 + K,’5> [Jn(r)eme]} h> +O(8?).  (3.19)
L2(8D)
Likewise, for the second term in (3.15)), we derive that
~ -1 . .
(= + K) " L)L senlt) 1
L2(D|J D’\D N D?)
~ -1 .
) < {(5*—1 +Kp) [Jm(r)eime]} [ (r)e™] ,h> +0(5). (3.20)
L2(8D)

11
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Therefore, combining the above two estimates shows that

Wom (D%, e*) = W (D, €)

= st <[(6*1 + f(D)il [Jm(T)eime}] [(5*1 + f(}*g)il [Jn(T)eme]} ,h>
L2(9D)
+O(62). (3.21)

Hence, if we define the following L?(9D)-duality gradient function VW,,,,(D,e*) of the form of

-1

VWyon(D,e*) = e+~ {(5*1 v KD)_I [Jm(r)eima]} {(5*1 v fq)) [Jn(r)ema]} : (3.22)

then the shape derivative of the scattering coefficient W,,,,(D,e*) along the variational direction h is
given by

D Wyum(e™, D)[h] = (VW (e*, D), h>L2(aD) . (3.23)
In particular, for the case where D is a circular domain D = B (0, R), we have from the decomposition of
the operator Kp the following simple expression of VW, (D, e*):

VWom(B(0,R),e*) = & [(8*_1 +f<7(5))—1 [Jm]] (R) [(8*—1 +K£2))_1 [Jn]] (R) eitn=m)0

Consequently, we get that

-1

Do (BOR.NM = = |(= 7 4 K0) 7 1l @ (7 K9) T 1] ()50 0 0 - ).

where Fg [h] (n — m) is the (n — m)-th Fourier coefficient of the function h on L?(S'). This gives the
following key result on the shape derivative of W,,,,,(D,e*) .

Theorem 3.3. Suppose that e* > 0 is given. For any C?-domain D and n,m € Z, the shape derivative
of the scattering coefficient Wy, (D,e*) along the variational direction h € L?(0D) is given by

D Wyum(D,e")[h] = <Van(D,g*)7h>L2(3D) , (3.24)
where VW, is defined by

YW (D,e%) = &1 {(5*_1 v Ep) [Jm(r)eimo]} {(E*—l Vi) [Jn(r)ei"‘g]} . (32)

In particular, if the domain D is a circular domain D = B(0, R), then for any D° as a §-perturbation of
D along the variational direction h € C1(0D), we have

Wom (D%, %) = W (D, e*) = 6 C(e*,n,m) o [h] (n — m) + O(5?), (3.26)
with
O(e*,n,m) =+~ {(s*—l + fcf,p) B [Jm]} (R) {(e*—l + fcfll)) B [Jn]} (R). (3.27)

From the above theorem, we obtain in the linearized case that the scattering coefficient W,,,,, gives us
precise information about the (m — n)-th Fourier mode of the perturbation h.

Therefore, the magnitude of the coefficients W,,,,, and C'(¢*, n, m) shall be responsible for the resolution
in imaging D°. Note that the function C(e*,n,m) depends now on the spectra of both f(ﬁi) and f(y(Ll).
The change and growth of the coefficients W,,,,, and C(e*, n, m) with respect to ¢* will be the main focus
of the next section.

12
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4. Asymptotic behaviors of eigenvalues over a circular domain and the phenomenon of
super-resolution

In the previous section, we have obtained a relationship between the coefficients W,,,,, of a perturbed
circular domain D and the Fourier coefficients of the perturbation h. In this section, we investigate the
decay of the eigenvalues of f(r(,%) and analyze the behavior with respect to £* of W,,,, and C(g*,n,m)
for different values of n and m. Then the phenomenon of super-resolution is explained based on several
important implications stated in two main theorems of this section, Theorems and The former
provides the clear asymptotic behavior of the eigenvalues of a related operator, while the latter gives
a reason for the stronger sensitivity of the Fourier modes of higher orders when the reciprocal of a
contrast comes close to the real parts of the reciprocals of the respective eigenvalues simultaneously.
These two theorems combine to provide a justification of the experimentally observed phenomenon about
super-resolution for some specific high contrasts as described in the theorems. For this purpose, we first
introduce the following Riesz decomposition.

4.1. Riesz decomposition of the operators IN(D and f(r(,%)

To continue our analysis on the operators K p and IN(,%), we first recall the following well-known
classical spectral theorem for general compact operators (not necessarily self-adjoint or normal) in a
Hilbert space [19].

Proposition 4.1. Let K be a compact operator on a Hilbert space H, o(K) := {\ € C|\—K is singular}
be its spectrum, and o, (K) be its point spectrum consisting of all the eigenvalues of K. Then the following
results hold:

1. If X # 0, then we have that A\ € o(K) if and only if A € 0,(K) the point spectrum (Fredholm’s
alternative).

2. For all X\ € o(K) such that A # 0, there exists a smallest my such that Ker(A — K)™ = Ker(A —
K)™*1. Denoting the space Ker(A — K)™ by E\ := Ker(\A — K)™, we have dim(E)) < oc.
Moreover, Ran(A — K)™* is a closed subspace and H = Ker(A — K)™ @ Ran(A — K)™*.

3. o(K) is countable and 0 is the only accumulation point of o(K) for dim(H) = oc.
4. The map z — (2 — K)~! admits poles at z € o(K).

Now we aim to apply the above theorem to K D, which is compact but not normal, to obtain a spectral
decomposition of the operator Kp and the space L?(D). In order to do so, we shall assert the following
elementary lemma.

Lemma 4.2. Let IN(D be defined as in (2.10), and I?jf, be its L? adjoint, then we have
o(Kp)\op(Kp) = {0} and o(Kp)\oy(K}) = {0}
Proof. Let us first consider the operator K p. From Theorem we directly have that
o(Kp)\{0} = o, (Kp)\{0},

Therefore, in order to prove our assertion, it suffices to show that 0 ¢ ap(f( p). In fact, let us assume
¢ € L?(D) is such that Kp[¢] = 0. Then from the definition of Kp, we get that

0= (a+1)(Kplg]) = ¢,
and therefore ¢ = 0. This shows that 0 ¢ Jp(f( D), and therefore our assertion for the operator Kp holds.

A same argument applying to the operator K7, results in our second assertion that a(f(jg)\ap(f(g) =
{0}. O
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Now, we are ready to apply Theoremto K p to obtain the following decomposition of the space L?(D).

Lemma 4.3. Let the space E) be the generalized eigenspace of the operator [N(D for the eigenvalue \
defined as in Theorem[{.1 Then the following decomposition holds

L’(D)= & Es. (4.1)
AEUP(I?D)

Proof. From Lemma it follows directly that 0 ¢ O'p(f?f)) and ker(f?]*j) = {0}. Hence we have that
~ L -~
L*(D) = (Ker(K;g)) = Ran(Kp).

This proves the lemma after applying Theorem O

We can now restrict the action of K p on the invariant subspaces Fy and consider the linear operator
(K D) |Ey: Ex — E) over the finite dimensional spaces Ey. By directly applying the Jordan theory to the
finite-dimensional linear operator (Kp) |z, , we get that Ey can be decomposed into Ey = Picicn, Ei

for some Ny such the operator (Kp) |E, can be written as

(Kp) le2= > Kin, (4.2)
1<i< Ny

where the operators I?l P Eﬁ\ — B} admit the action of the following Jordan block under a choice of
basis ef\ in Ef\

A1 0
0 X 1 ... 0
Ji=|: (4.3)
0 ... ... A 1
0 ... ... ... A

as matrices of size smaller than or equal to my. With these notations at hand, we are now able to obtain
a decomposition of the operator Kp by combining the decompositions of its respective restricted linear
operators (Kp) |g, as follows

Kp= Y Y K, (4.4)

Aeop(Kp) 1SiSNy

keeping in mind that a summation over A stands for a direct sum over the respective actions in each
invariant subspaces E following the direct sum decomposition of L?(D) in . A similar argument for
such a decomposition of the operator Kp can also be found in [26].

For the sake of simplicity, for a given n € N and a given Riesz basis w, i.e., a complete frame in
L?(D), supposing that v is a finite subset of w, we shall often write, for any ¢ € L?(D), (¢)v,L2(D) eCn
as the coefficients of ¢ in front of the vectors in v when expressed in the Riesz basis w, i.e., if

wi; EW
for coefficients b; € C and v = (wg,, Wy, - - -, Wk, ), then (@), r2py = (bkys ks, - - -, by, ). Also, for any
a=(ay,...,a,) € C", and any given finite frame v = (vy, va,...,v,) in L2(D), we write

vlg = Z a;v; , (4.6)
i=1

14
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and, for any ¢ € L?(D), the L? inner product of v and ¢ as

<Va ¢>L2(D) = ((Ul, ¢>L2(D), <’U27 ¢>L2(D)7 ceey <Um ¢>L2(D)) cCn. (4.7)
With these notations, we can write (4.4]) in terms of the frame UAeo,,(f(D) UlSiSN)\ e, as follows:
K iT 7i
Kp = Z Z (ed)" JA(+ et L2(D)s (4.8)
eop(Kp) 1Si<Ny

where the superscript T denotes the transpose as described in (4.6). Therefore, substituting the above
expression of Kp into (2.19)), we have

Wom(D, ") = <Jn<r)em9,<s**1+KD>*1[Jm<T>eim0]>L2<D>

Z Z |:<Jn(7")€mg; eg\>L2(DJT [J;*71+>\]_1 [Jm(r)eime] el L2(D) " (4.9)

Aeop(Kp) 1SISNy

The above expression gives a general decomposition of the scattering coefficient W, (D, e*).
Next, we consider the special domain D = B(0,R). From Proposition we shall focus on the
operators Kr(r%) for m € Z. Similar to the previous argument, we can see that the operators K,(,P are

compact on L2((0, R),rdr). Moreover, it is direct to obtain the following lemma for K similar to
Lemma (421

Lemma 4.4. Let KV be defined as in (2.29), and ([?f,?) be its L? adjoint, then we have

(RN (D) = {0} and o ((BD) )y ((RD)) = {0}

Proof. We follow a same argument as in the proof of Lemma [.2] By directly applying Theorem [£.1] it
suffices to show that 0 ¢ Jp(K}(ﬁ)), in order to prove our claim for KS. Assume ¢ € L2((0,R),rdr) is
such that IN(,(TPW] = 0. Then from the definition of K, we get that

2 ~ . ~ . .
0= <i6rra,« +1- 7:2) (R o) e = (A+DED (4(r)e™) = o(r)e™,

which gives ¢ = 0. This proves our assertion for the operator f(,%) The same argument applies to

(I?,(nl )) for the remaining part of our assertion. O
A same argument as in the proof of Lemma [4.3] results in the following lemma.

Lemma 4.5. Let the space E,,  be the generalized eigenspace of the operator R}%) for the eigenvalue X
defined as in Theorem[].1 Then the following decomposition holds

L*((0, R),rdr) = B - (4.10)

A€oy, (I?,(,p

Following a same argument as we did for K p to the new operator I?m, we apply the Jordan de-
composition theorem to the finite-dimensional linear operator (K,) |k, 1: Emx — Emx over the in-
variant subspace. Combining this with the previous lemma, we get that there exists a complete basis
U UOSZ-SN;H €, ) over L2((0, R),r dr) with each e}, \ spanning the subspace E}, , such that K, admits
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the action of a Jordan block, denoted by J!

m,\’
subspace F;, . Moreover, adopting the same notations as previously introduced, we can write

with respect to the basis when acting on the invariant

—1
«—1 | i T -
(6 + Kfr?) = E E (em,/\) [']m,e**lJr)\] 1( : )eﬁm)\,Lz((O,R),r dr)» (411)
A€o, (K)) 1SisNT

and a similar expansion holds for f(,(,?b). Again, we keep in mind that the summation over A stands
for a direct sum over the respective actions in each invariant subspaces E,, » following the direct sum

decomposition of L?((0, R),rdr) in (4.10).

Now, using the orthogonality of {e"™?},,cz on L?(S!), for a given contrast e* such that —&* 71 is not

an eigenvalue of K3 ), we have that

Wom/(D, €")

~ —1
= bum <Jn, (s*‘1 + K,(,})) [Jm}>
L2((0,R),r dr)

Onm Z Z [(Jn(r), ein,)\>L2((0,R),rdr)]T[Jvin,a*—l-i-/\]il( I (1) )ei

myA?
A€o (K )y 1IN

L2((0,R),r dr)-(4:12)

Finally, the following remarks are in order. For D = B(0, R), the action of Kp on each of the subspace
Efn )\eimg of L? (D) is invariant and admits the same Jordan block representation as K,(,})

o) : , rdr). Hence, the decomposition
f L2((0, R),rdr). H , the d P

o= p P E,

MmEZ A€o, (f(fﬁ)) 1<i<NP

acting on E}n N

coincides with the original Jordan block decomposition of Kp,

o= fp & E.

ApEo(K) 1SISNA

Therefore, we readily get (J,,cz ap(f(,%)) = 0,(Kp), and the sum constitutes a part of the sum
with all the other terms in being zero. In the next section, we will focus on the decay of the
eigenvalues of K, and the asymptotic expansion for the eigenvalues and eigenfunctions of the operators.
This will allow us to better understand the behavior of W,,,,, and C(e*,n, m).

4.2. Asymptotics of the eigenvalues and eigenfunctions of INQ%)

Intuitively, we can expect that the eigenvalues of K% are distributed closer to 0 as |m| increases for

the following reason. Considering (2.33)) together with the asymptotic expressions (2.27) and (2.35)) of
Jm and Y, as m — oo, we have the following bound for the operator norm of K,, for m € Z:

!

~ C
KO r2 (0, Ryrary < m—g‘ (4.13)

for some constant C; depending on R. Then we obtain the estimate for the spectral radius of K,, from
the Gelfand theorem:

~ n||n /
sup A = lim (K,(,})) <% (4.14)
)\Ea'(fﬂ(r})) oo m2
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This implies that the spectrum U(f{,(,})) actually lies inside o(K) () B(0, mz) However, this argument is
heuristic.

Therefore, we intend to obtain a rigourous asymptotic expansion of the eigenvalues for the operators
K,,. For this purpose we first restrict ourselves to the discussion of the operators for m € N, and consider
the equation K f Af with A # 0. Since we have

( oprdy +1 — r) (K<1> f) = (A+ 1)K (feimf) = feimf, (4.15)

we obtain for m # 0 the following equivalence

2

(%&r@rJrl—%—%)f —0,
KPf=x & £(0) =0, (4.16)
f(R) = — & [ (r) f(r)drHS) (R) .

Enumerating the eigenvalues \ of K 7(,} ) as Am,i in descending order of their magnitudes, and writing efm !
as the unique eigenfunction in the Jordan basis efm x,,, for each i, we are bound to have the following

form for the eigenpair of the operator for all 7,

; 1
(Am,lae’;n,l) = <)\m,l7 Jm < 1-— by lr>> . (417)

The above statement implies that the geometric multiplicities of all the eigenvalues of f(,(,}) should be
Ny =1 (while the algebraic multiplicities are still unknown for the time being). For the sake of simplicity,
we denote the frame e, , by e, and also the eigenfunction eml by e,,;. Substituting (4 into
- ), together with the followmg well-known property of Lommel’s integrals [24] that for all n € N and
for all a,b > 0 with a # b:

R RZ
/0 n(an)Prdr = [Ju(@B)? — Jua(aR)Jna(aR), (4.18)

/R In(ar)J, (br)rdr = R bz[ Jn(aR)J,—1(bR) — aJp—1(aR)J,(bR)], (4.19)
o _

we get the following equation for A, ;:

/ 1
1— —
= iR% (HO(R) |1 — LJm(R)Jm_l - 1op
4 e )\m,l >\m,l
/ 1
—Jm—1(R) T, ( 1— AR) ] : (4.20)
m,l

Now since A,;,; — 0 as | — oo, from the following well-known asymptotic of J,, [24] for all n:

T (2) = \/Z cos <z _ 2”; 171') +O(=32), (4.21)

we obtain the following estimate for m,n,l € N:

2 1
—R-— ”: 7r>+0(|)\m,l|3/4). (4.22)
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Hence, substituting this expression into (4.20]), we shall directly infer that the eigenvalues A, ; satisfy

the following bound:
1
T (w/ 1= AR> = O(|Ama*") (4.23)
m,l

which has a decay order higher than the one in (4.22)). With this observation, we shall expect that the
terms ,/1 — ﬁR should be close to the I-th zeros of the Bessel functions of .J,,, as [ grows, which is

indeed the case following the argument below.

For the sake of exposition, we shall often denote by a,,; the zeros of the m-th Bessel function of
the first kind, i.e., Ji(am,) = 0, arranged in ascending order. Then it follows from , the inverse
function theorem and the Taylor expansion that

2m + 4l — 1
4

Qm,l — 77' <C(m+ 21)_1/2 -0 asl— oo. (4.24)

Then, again from (4.21]), we have

T (@) = (1) | —— = Olama ), (4.25)

T, ’

which, combined with (4.23)), leads to

/ 1
R\[1= 1 —am = Olam,~1?). (4.26)
m,l

This gives us the following estimate for A, ;:

/ 1 (m+2)7 =«
R 1)\m7l/( 5 4)%1 as | — oo. (4.27)

Therefore, we obtain the following decay rate of the eigenvalues,

4R? 1
. 2 )1 as . 42
A ’l/<7r2 (m+2l)2)_> as | — o0 (4.28)

Moreover, using (4.26]) and the fact that J,, is holomorphic, we have the following uniform estimate for
the eigenfunctions:

Jm< 1-— )\;lr> —Jm (%r)

Note that the set {Jn, (“54r)}72, forms a complete orthogonal basis in L((0, R), r dr). Hence, the above

estimate actually implies that the eigenfunctions of IE',(nl ) approach in the sup-norm to an orthogonal basis
in L%((0, R), rdr) for all m € N. From (2.33)), together with the fact that a_p,; = ap, from (2.32), the
above analysis also holds for K (_17),1

The following theorem summarizes the main eigenvalue and eigenfunction estimates for the operator

K.

< Ol (0.m) @ma 2 < C(m+20) 77, (4.29)

co((0,Rr))

Theorem 4.6. For all m € Z\{0}, the eigenpairs of the operator K are of the form

1
A, €m) = <)\m,l7 Im <1 [1— )\T>> forl e N, (4.30)
m,l
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where the eigenvalues Ay, satisfy the following asymptotic behavior

4R2 1
VPR (i LS N | ! . 431
’l/<7r2 <|m|+21)2)% as = o0 (4.31)

Moreover, the eigenfunctions also have the following uniform estimate:

I (1 /1- Aif) — T (“1’;’1 r)

This theorem is very important for the analysis of the behaviors of W,,,, and C(¢*,n,m). Figure

shows the distribution of eigenvalues of K% for R = 10 with different values of m. It not only illustrates
that the spectral radius decreases as the value of m increases (which agrees with the estimate (4.14]));

= O((jm| +21)~"/%). (4.32)
Co((0,R))

but also that, for a fixed number [ € N, the magnitude of the I-th eigenvalue of f{,(,} ) decreases in general

monotonically with respect to increment of m (which agrees with (4.31)). Eigenfunctions of KW for
some values of m are also plotted in Figure [2| for a better illustration of the behaviour of eigenfunctions.

i

Nourwn=O

Figure 1: (a) Spectral radius of 12',(,%) for m = 0,1,...,11. (b) Norms of eigenvalues A, ;,I = 1,2,...,15, for operators
f(,(,%),m =0,1,...,7, as in the legend.
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Figure 2: Real and imaginary parts of the first 4 eigenfunctions of f{fﬁ), m = 1,2,3. (1a) Real parts of eigenfunctions of

Ril); (1b) imaginary parts of eigenfunctions of fql); (2a) real parts of eigenfunctions of f{él), and so forth.

4.8. Tail behavior of the series representation of Wy and C(e*,n,m) and the super-resolution phe-
nomenon

In this subsection, we deduce very useful information on the behaviors of W,,,,, and C(e*,n,m) from
the asymptotic behaviors of eigenpairs of f(fﬁ ) derived in the previous subsection.

4.8.1. Tail behavior of the series representation of Wi,

We first focus on the scattering coefficients Wi, (D, e*) when D = B(0, R). Form (2.34), it is known
that W,,,, = 0 when n # m, therefore the only interesting case is when n = m. Again, we shall first
consider m € N. From the analysis in the previous subsection that the geometric multiplicities of all the

eigenvalues of K& are N{* =1, we already obtain from (4.12) that

oo

Wmm(Dv 5*) = ZKJm (T), em,l>L2((0,R),7'dr)]T[Jm,s**ur)\myl]il( Jm(r) )e,ml,L2((0,R),r dr)-
=0

For the sake of simplicity, from now on we shall often denote

/{;Tl = 5 and  en = Jn (am’l 7‘) . (4.33)
9 R
1— 7
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From and (£.32), together with the completeness and orthogonality of €,,; in L?((0, R), r dr) and
the Parseval’s identity, we readily obtain that, fixing any m € N and for any given ¢, there exists N(m)
such that for all ¢ > N(m), we have
RZ

(€m,is €m,j) L2((0,R),rdr) — 5ij7‘]72n+1(am7j) < €ij 5 (4.34)
where 3. €7, < ¢ . Therefore, for a large Ni(m), the span of {em, i} N, (m) has a finite dimensional
orthogonal complement. This follows that there exists a large No(m) > Nj(m) such that the algebraic
multiplicity of A, ; is 1. Therefore, we directly obtain

Wmm(Dvg*) = Sl,m(g*) + S2,m(5*)7 (435)
where the sums S; ,,,(¢*), i = 1, 2, are defined by

Na(m)
Sl,m(f‘:*) = Z [<Jm(r)aem,l>L2((O,R),rdr)]T[Jm,s*—1+>\m’l]_1(Jm(r) )em,L,Lz((O,R),rdr) (436)
=0
SQ,m(€*) = i *_104% s (437)
I=Na(m)+1 ° T Aml

with the coefficients o, ; being defined, for all m, I, as
Wt = (I (7)s €m 1) £2((0.R),rdr) (Jm (T) ey 1 L2((0,R)  dr) - (4.38)

Note that for any ¢* > —2Re ()\:nlNQ(m) , we have |S ,,(¢*)| < C,, for some constant C,. Therefore, if
L

we want to investigate the behavior of (4.35)) for large £*, we shall focus on the term Ss ,,,(¢*). For this
purpose, we analyze the limiting behavior of a,,; as [ increases. Now, from (4.19) and (4.32)), we have
the following estimate for the inner product:

<Jm(r)7 em,l>L2((O,R),rdr) - 5\\m/lam,,lJm(R>JWL71(am,l) = O(a;r:l/2) . (439)
From (4.21) we get
2
T (1) = (—1)" = Oami~?), (4.40)
TQm,. 1

)

and hence it follows that

— 2
<Jm('r)7em,l>L2((O,R),rdr)/(_1>l)\m,lain/’2l\/;Jm<R) —1 asl—o0. (4.41)

From (4.34), we obtain that the coefficient of J,,,(r) of ey, ; with respect to the Jordan basis approaches
to the orthogonal project of Jp,(r) on the subspace ey, ;, whence the following holds

(S ()5 €m,1) L2((0,R) rdr)
(I () e i,L2((0,R).rd )/ ’ YD
o o Sl 1(am)]
Combining the above several limiting behaviors (4.41) and (4.42)) yields
2 5 Jm(R)
Q1 2)\m,l am,l R2

which can further be reduced to the following asymptotic behavior by combining (4.26]),(4.28)) and (4.33]),

—1 asl—o0. (4.42)

—1 asl— oo, (4.43)

am’l/2)\m,1Jsl(R) — -1 asl— . (4.44)

From (12.32) and (2.33), the conclusions also hold for the case with —m € N.
The above analysis can be summarized in the following theorem.
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Theorem 4.7. Let D = B(0,R) be a circular domain. For all m € Z\{0}, there exist constants
N(m) € N and C,, > 0 such that, for any given contrast value e* > —2 Re ()\;llN(mJ, the scattering
coefficient W, (D, e*) has the following decomposition

Wmm(D7€*) = Sl,m(g*)+52,m(5*)a (445)

where St m(e%) has a uniform bound

|Sl,m(5*)| < O, (4.46)
whereas So.m(e*) is of the form
- A,
Snle) = 3 (1.47
I=Na(m)+1 © ml

where the coefficients any,,; have the following limiting behavior
amyl/Q/\mJJs%(R) — -1 asl— oco. (4.48)

This decomposition of the coefficient W,,,, gives us a clear picture of the behavior of W,,,, as &*
grows. When &* increases, £*~ ' passes through the values —Re(Ap) ~ (Im| + 20)=2 for large 1. If
Am, € R, e* 71 directly passes through the pole. Therefore W,,,, grows from a finite value rapidly to a
directional complex infinity ooe? for some 6, and then comes back from —ooe to a finite value after
gx71 passes through it. Otherwise, if A\, ; ¢ R, then £*~1 does not directly hit the pole. However, since
At ~ —(Jm|+21)=2 where (|m|421)~2 are real, Tm(\,, ;) is very small for large /. Hence, as ¢*~* moves
close to —Re(Ap,1), it comes close to the pole. Therefore, W,,,, grows from a comparably small value
very rapidly to a complex value of very large modulus, and then drops back to a small value after passing
through —Re(\,, ;). The behavior of W, is consequently very oscillatory as ¢* grows. Moreover, from

(4.48) we have for a fixed pair of m,[ that

Qm, 1

—92J%2(R 4.49
e S e AL (4.49)

as €* — oo, and therefore it is clear that there is no hope on any convergence behavior of W, as €*
grows to infinity.
Furthermore, from ([4.31)) that the asymptotic A, ; ~ —(|m| 4 21)~2 holds and the limit comparison

test, we have for a fixed e* > —2Re ()\;LlN(mO that

c >

Wom(D,e™)] < Spm | C + m— J2(R)Y | Aml (4.50)
d(—e*, o (K1) ;
' ml+In|

< bpm [ Cm + Com e RI — | - (4.51)
d(—e*~1 o (Kw’)) Im|™ |n]™

Corollary 4.8. Let D = B(0, R). For all m € Z\{0}, there exist constants N(m) € N and C; ,, 1 = 1,2

such that, for any given contrast value €* > —2 Re ()\71 )>, the scattering coefficient Wi (D, e*)

m,N(m
satisfies the following estimate for all n € Z,

(4.52)

C Rlml+In]
|an(Da 5*)‘ < 5nm (Cl,m + 2m .

d(—e*=1,a(KW)) [m|™|n|™

This clearly improves the estimate ([2.37]).
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4.8.2. Tail behavior of the series representation of C(e*,mn, m)
We now focus on the behaviors of the coefficients C(e*,n, m), which will help us to understand the
phenomenon of super-resolution. We first focus on the case when n,m € N. We recall the expression of

the coefficient C'(e*,n, m) in (3.27):

Cle* n,m) = & {(e*—l + Rg>)_1 [Jm]} (R) {(s*—l + Kfﬁ)_1 [Jn]} (R).

oy —1
It remains to study the term (5*_1 + Kﬁ?) [Jm](R). From the previous subsection, the geometric

multiplicities of all the eigenvalues of IN(T(,%) are Ny = 1, and the algebraic multiplicities of eigenvalues

Am,i of K}(nl) are also 1 for I > Na(m) (see Theorem . Together with the regularity of J,,, we readily
obtain as in the previous subsection that

Cle*,n,m) = e (s1.0(6%) + 52.0(€7)) (51.m (%) + s2.m (7)), (4.53)

where the sums s; ,,, (), (i = 1,2) are defined by

N2(m)
S1,m (5*) = Z (em,l(R))T[Jm,s*_l-l-)\m,l]_l( Jm (T) )em,l,L2((0,R),r dr)s (454)
=0
SQ,m(g*) = i *7?% (455)
I=Na(m)+1 © T Am.i

with the coefficients 3,,; being given for all m,{ by

/ 1
ﬁm,l = (Jm('r) )em,l,LQ((O,R),rdr)Jm < 1-— )\1R> . (456)

Similarly to the previous subsection, for any £* > —2Re A;}Ng(m)>7 we have [s1 ., (e")] < Cp, for some
&

constant Cp,. Therefore, we can study the behavior of (4.53) for large €* by investigating the limiting
behavior of B, in the series so (") .
Substituting (4.22)), (4.26) and (4.28) into (4.20), we readily derive

Jm (1 /1— /\1R> /(—1)liAm,la},{Z;Hg)(R)Jm(R) ? —1 asl—oo. (4.57)
m,l ’

Together with (4.41) and (4.42)), we conclude that

Bm,l/;\/EAm,lJ,%l(R)H,(,})(R) — -1 asl—oo. (4.58)

Combining the above results with ([2.32)) and (2.33)), we obtain the following decomposition of C(¢*, n, m).

Theorem 4.9. Let D = B(0, R) be a circular domain. For all p € Z\{0}, there exist constants N(p) € N
and Cp, > 0 such that, for anyn,m € Z\{0} and any contrast value e* > —2 max {Re (A;le(n)) , Re (/\;:N(m)
the coefficient C(e*,n,m) (3.27) admits the following decomposition:

Cle*,n,m) = e (s1.0(€%) + 52.0(€")) (51.m (%) + s2.m (7)) . (4.59)
For all p € Z\{0}, s1,(c*) satisfies the uniform bound

[s1,p(e)] < Cyp, (4.60)
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whereas s2 (") is given by

sap(e) = Y . L. (4.61)

1 )
e* A
I=Na(p)+1 T Ap,l

where the coefficients B, have the following limiting behavior
i
Bp.i / 5\/EANJg(R)ngn(R) — -1 asl—o00. (4.62)

Similarly to the previous subsection, the aforementioned decomposition of C(e*,n,m) clearly illus-
trates the behavior of C'(¢*,n,m) as e* grows and £* ! passes through the values —Re(), ) ~ (|p|+21)~2
with p = n,m. If \,; € R, e*~1 directly hits the pole. Therefore C(g*,n,m) first grows from a finite
value rapidly to a directional complex infinity coe? for some 6, then back from —ooe® to a finite value
after passing through it. Otherwise if A,; ¢ R and when [ is large, £*~1 does not pass through the pole,
but comes very close to it. Hence, C(e*, n,m) grows rapidly from a considerably small value to a complex
value of very large modulus, then drops to a small value after passing through —Re(\, ;). Moreover, for
a fixed pair of p, [, we have

P L RPREO(R) (4.63)

as €* — 0o. Therefore, we can see that C(¢*,n,m) has very oscillatory behavior as €* grows.

4.4. The super-resolution phenomenon

Although C(g*,n,m) is very oscillatory as £* grows, the aforementioned behavior and series decom-
position of C(g*,n,m) gives a clear explanation of the super-resolution phenomenon for high-contrast
inclusions. It is because, what we have actually proved is that, in the shape derivative of the scattering
coefficients of a circular domain, there are simple poles corresponding to the complex resonant states,
and therefore peaks at the real parts of these resonances. Hence, as the material contrast €* increases to
infinity and is such that it hits the real part of a resonance, the sensitivity in the scattering coefficients
becomes very large and super-resolution for imaging occurs.

To put it more accurately, let us recall . Suppose D = B(0, R), then for any J-perturbation of
D, D°, along the variational direction h € C'(9D), we have

an(Déag*) - an(D,é*) = 60(6*,71,711)39 [h] (TL - m) + 0(52) .

As one might recall from 7 Wom(D?,*) always decays exponentially as |n|, |m| increase. Hence, it
is always of exponential ill-posedness to recover the higher order Fourier modes of the perturbation h.
The inversion process to recover the k-th Fourier mode §g [h] (k) becomes less ill-posed if C'(e*,n,m) is
large for some n,m € Z such that £k = n —m. This not only makes the respective scattering coefficients
more apparent than the others, but also lowers the condition number of the inverse process to reconstruct

the respective Fourier mode. From the analysis in the previous subsection, this can only be made possible
1

when e*7 " comes close to —Re(\,,;) for some p = n,m and for some [ € N.
Now, suppose * is close to the following resonant value (57 — &)2 where K € N is large. Then,
from the fact that the eigenvalues A, ; of the operators I?I(,l) follow the asymptotics:
2
_ 7(|p| + 20) ™
B NI (LN A, R 4.64
Pl < 2R 4R (4.64)
we see that ¢* 7! is close to —Re()\;ll(p)) for all p € Z such that |p| + 2i(p) = K for some I(p) € N.
Therefore, £* ! comes close to fRe()\I_(}O), fRe(/\I_(l_QJ), fRe()\]_(l_zw), e *Re(/\;{l,z[%“%]) simultane-
ously where [-] is the floor function. This in turn boosts up the magnitudes of all the terms Efi%
Pt (p
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whenever p is of the form p = —K +2s, s =0,2,..., K. These terms dominate the series s ,(¢*), hence
we obtain the following approximations of s ,(¢*) for all p = —K +2s, s =0,2,..., K:

(K —0.5)72
4-1g2R=2e*~1 (K —0.5)~2

. i
s9.p(e) = —§\/EJ§(R)H1§1)(R)

Now we see from Theorem that the coefficients C'(¢*,n, m) have the following approximations for

n,m € Z when €* is very close to the resonant values (% — ﬁ) for large K:

My i (K —0.5)76 (4" 122R=2* "1 — (K —0.5)72) "

if both of n, m have the form —K +2s, s =0,2,...,K;
C(e*n,m) $x My pr(K—05) "4 (4" 172R2* "1 — (K — 0.5)72) "
if only one of n, m has the form —K +2s, s =0,2,..., K ;

is very small otherwise,

Q

-1
where M), ., r are some constants depending only on n, m and R. Here, the term (4_17T2R_26*_1 — (K — 0.5)_2)

1S ver arge, and makes the Fourier coeflicients 0 n — m) visible 1or n,m & - + 25 : s =
is very large, and makes the Fouri flicients Fo [h] ( ) visible for n, {-K +2

1,2,...,K} for accurate classification of the shapes. The above mechanism is possible only when &*
. 2 . . . . .
increases up to one of the resonant values (% — &) when K is large. This explains the increasing

likelihood of obtaining super-resolution as £* increases.
Now, for a given *, consider the following bounded linear map over the space [ (C) of two-sided
sequences (q;)7°_ such that Y ,° _ a? < oo,

A 2(C) — E(C)®IL(0)
(a)2_oe = (CE"1,m) Gnm) e oo - (4.65)
By Theorem (3.3} . we know the shape derivative of (W, (D, s*))fim:_oo in the variational direction A is

given by
DW (D, =")[h] = A(e*)0 1] - (4.66)
Hence, we can conclude that the least-squared map

[AE)"[AE)]  E2(C) — FE(C)

(@) o (Z |C’(5*,n7m)|2al> (4.67)

—m=l l=—0c0

is a diagonal operator, and the I-th singular value s;(A) is of the form

Z (e*,n,m)|?. (4.68)
n—m=l
Therefore, from the above analysis on C'(e*, n, m) when £* is close to the resonant values (12% — &)2, we
can observe that the singular values s; become large and comparable to each other, making the inversion
of many Fourier modes well-conditioned. This implies a much higher resolution of the modes of h, and also
for reconstructing the geometry of D? in the linearized case. This provides a good understanding towards
the recently observed phenomenon of super-resolution in the physics and engineering communities.
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5. Numerical experiments

In this section, we present some numerical experiments on the behaviors of the scattering coefficients
for some domains as the contrast ¢* grows, and numerically illustrate the phenomenon of super-resolution.

In the following 2 examples, we consider an infinite domain of homogeneous background medium with
its material coefficient being 1. An inclusion D? is then introduced as a perturbation of a circular domain
D = B(0,R) for some R > 0 and § > 0 lying inside the homogeneous background medium, with its
contrast chosen to be e* = a?n,l/R2 — 1 running over all m,{ such that a,,; < 18.901. The exact values
of the zeros of Bessel functions are found in [27].

In order to generate the far-field data for the forward problem and the observed scattering coefficients,
we use the STES-master package developed by H. Wang [28].

The forward problem is solved by computing the solutions (¢, ¥m) of for |m| < 25 using
rectangular quadrature rule with mesh-size s/1024 along the boundary of the target, where s denotes the
length of the inclusion boundary. The scattering coefficients of D® of orders (n,m) for |n|,|m| < 25 are
then calculated as the Fourier transform of the far-field data.

In order to test the robustness of the super-resolution phenomenon, we introduce some multiplicative
random noise in the scattering coefficients in the form:

Wi (D%, %) = Wi (D®, ") (1 + (i + i) (5.1)

where 7;, i = 1,2, are uniformly distributed between [—1,1] and ~ refers to the relative noise level. In
both examples below, we always set the noise level to be v = 5%.

Since the purpose of our numerical experiments is to illustrate the phenomenon of super-resolution
as €* increases, we assume that both R and &* are known and use the following regularized inversion
method suggested from the linearized problem to recover the k-th Fourier mode for |k| < 50 from
the observed noisy scattering coefficients W), (D°,e*), |n|,|m| < 25:

Z ng(DtS,E*) _an(DaE*)

recovered _
085 [h] (k) = C(e*,n,m) +

, (5.2)

n—m=k, |n|,|m|<25

where « is a regularization parameter. The coefficients Wi,,,,(D,e*) used in the inversion process are
calculated using the same method as previously mentioned for the forward problem without adding
noise, and the coefficients C(¢*,n, m) are calculated by the following approximations

C(e*,n,m) = (Wam (D% (n —m),e*) = Wym(D, ")) /o (5.3)
for |n|, |m| < 25, where D% (k) are defined as domains with the following boundaries for |k| < 50,
dD% (k) := {Z = R(1 + 6pe*?) : 6 € (0,2x]} (5.4)

with dy chosen to be §g = 0.1.
Example 1 As a toy example, we first consider a flori-form shape D? described by the following
parametric form (with § = 0.1 ):

7 = 0.3(1 4 § cos(360) + 26 cos(66) + 45 cos(99)), 6 € (0,27], (5.5)

which is a perturbation of the domain D := B(0,0.3); see Figure |3| (left) for the domain and Figure
(right) for the comparison between the domains D? and D.
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Figure 3: Inclusion shape in Example 1. Left: shape of the domain; Right: comparisoin of the domain with a circle.

The relative magnitudes of the scattering coefficients max|,, (= [Wanm (D?, €*)|/ maX oty [Winm (D°, €*)|
are plotted for & = 6,9 in Figure

From Figure [4] we can clearly observe that, as €* grows, the relative magnitude of the scattering
coeflicient corresponding to the +k-th Fourier mode grows from a smaller magnitude to larger magnitude,
and the peaks become apparent when * hits the respective zeros of the Bessel functions.

max o W (O max W (D) 10 Mmoo W, (%) /max W (D)
0.06F i
161 g
0.05 1 141 1
12f g
0.04} g
10f g
0.03F , 8l i
0.02f 1 o ]
4+ 1
001t g
A i
500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500
Figure 4: Relative magnitudes of the scattering coefficients in Example 1. Left: the
fraction of max‘m,n‘ZG{\an(D‘s, €|}/ max,,zp {|[Wam (D?, €*)[}, Right: the fraction of

max‘m,n‘zgﬂwmn(D‘S, )}/ maxm;ﬁnﬂwmn(Dév )t

From the relative magnitudes shown in the above figures, we observe that the off-diagonal scattering
coefficients are more apparent and are therefore best conditioned for inversion when £* = 1971.2481, 3627.456.
The scattering coefficients of the respective contrasts are plotted in Figure [5| (left), together with ¢* =
63.2669 corresponding to the first zero of Jy as a comparison.
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Figure 5: Illustration of super-resolution in Example 1: magnitude of scattering coefficients, |Wym (D?,€*)| where —10 <
m,n < 10. Left: £* = 63.2669; right: £* = 1971.2481; bottom: £* = 3627.456

We notice from Figure [0 that the scattering coefficients corresponding to higher Fourier modes be-
come more apparent as €* increases. We then apply the aforementioned inversion process, with the
regularization parameter chosen as o = 1 x 1078, The magnitudes of the recovered Fourier modes and
the reconstructed domains are shown in Figures [6] and [7] respectively. We can clearly see that the fine
features are more and more apparent as ¢* grows along the specific contrasts that we choose. Notice
also that the fine features are of a magnitude smaller than 0.4, which is much smaller than half of the

operating wavelength, 7.
|F[h](k)| , -10<k <10, ¢ = 63.2669

[FIh](k)| , 10 <k <10, € =1971.2481
! !

1.4 . 0.12 :
t2r | 04t 1
4L ,
0.08 ]
08t g
0.06 1
06} i
0.04 1
0.4t g
0.2f A /\ i 0.02 ]
0 ' 0 '
-10 5 0 5 10 ~10 -5 0 5 10
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Figure 6: Illustration of super-resolution in Example 1: magnitude of recovered Fourier coefficients,
So [h]’recove’red (k), —10 < k < 10. Left: £* = 63.2669; right: £* = 1971.2481; bottom: e* = 3627.456.

In fact, with fine features are of a magnitude smaller than 0.4 = 0, 17, we do not expect to recover any
of these feature with incidence field of wavelength 27. The original domain has a shape with boundary
purturbation consisting of 3 Fourier modes, i.e. kK = 3,6,9. As we expected from exponential ill-posedness,
we do not usually expect to recover the high Fourier modes in the purturbation, especially for £k = 9 in
normal situation. However in our experiment, we can see that as the constrast increases and hits some of
the values e* = afn’ ./ R?—1, the higher Fourier modes becomes more apparent. In particular, as seen from
Figures [6] and [7} with £* = 63.2669, only the 3-th Fourier mode is present and the magnitude overshoots,
at €* = 1971.2481, the 6-th Fourier mode comes out, and when ¢* = 3627.456, even the 9-th Fourier
mode becomes notable. We cannot expect the recovered magnitude of the respective Fourier modes to
be exact considering the severe exponential ill-posed-ness nature, the long wave-length of the incidence
as well as noise added. However, the very fact that even the 9-th Fourier modes becomes notable when
it represents features of only 1/20 of the wavelength of the incidence is very exciting, and confirms the
super-resolution phenomenon observed in experiments.

Shape Reconstruction, ¢ = 63.2669
T T T T

05 1 051

04f g 04f

031 1 03

0.2r 1 02

01 4 o1k

L L L L L L L L L L L L L L L L L L L
04 -03 02 -01 0 0.1 02 03 04 05 06 -04 03 -02 01 0 0.1 0.2 03 04 05 06
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Shape Reconstruction, € = 1971.2481 Shape Reconstruction, ¢ = 3627.456
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Figure 7: Illustration of super-resolution in Example 1: exact and recovered domains. Left top: exact domain. Right top:
e* = 63.2669; left bottom: * = 1971.2481; right bottom: £* = 3627.456.

Example 2 We try the following right-angled isosceles triangle D?, which is a perturbation of the
domain D := B(0,0.2); see Figure [§| (left) for the domain and Figure [§] (right) the comparison between
the domains D° and D. This case is substantially harder, since the perturbation h consists of many

635 Fourier modes and is no longer smooth.

08F 4

06 4

04f g

0.2F 4

Figure 8: Inclusion shape in Example 2. Left: shape of the domain; Right: comparisoin of the domain with a circle.

The relative magnitudes of the scattering coefficients maxj,, | | W (D2, €%)|/ MaX,£n | W (D2, %)
are plotted for k =1,2,...,6, in Figure[0] From this figure, we can see that the relative magnitude of the
scattering coefficient corresponding to the +k-th Fourier mode comes out more often when £* becomes

s0 large.
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Figure O: Relative magnitudes of the scattering coefficients in Example 2. The fraction of

max‘m_n‘:kﬂan(D‘s, )|}/ max,,zn {|Wnm (D?, €*)|} for k= 1,...,6 from left to right and from top to bottom.

We observe from the relative magnitudes shown in the above figures that the scattering coefficients
are best-conditioned for inversion when €* = 5237.1406. The scattering coefficients of the respective
contrast are then plotted in Figure together with €* = 143.6006 corresponding to the first zero of
Jo as a comparison. The aforementioned inversion process is then applied with regularization parameter
chosen as a = 1 x 1075, Figures [L1] and [12| respectively show the magnitude of the recovered Fourier
modes and the reconstructed domains. We can see that the shape obtained from ¢* = 143.6006 provids
us an understanding that the shape is with three angles, and the angle size and dimensions fit in the
exact domain. However, the shape consists of three large troughs on the three edges of the triangle. The
shape obtained from ¢* = 5237.1406 contains more high Fourier modes are present; now that the right
angle is better approximated as well as less troughs present compared with that from £* = 143.6006, but
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the two sharper angles becomes less apparent because the higher Fourier modes becomes more dominant.
65 Moreover, the scattering coefficients of €¢* = 5237.1406 are large enough for accurate classification.

Figure 10:

W, (D%€)l . n=m, ¢ =143.6006
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Illustration of super-resolution in Example 2: magnitude of scattering coefficients, |Wiym (D?, e*)| where
—10 < m,n < 10. Left: £* = 143.6006; right: £* = 5237.1406.
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Figure 11:
So [h]recovered (k), —10 < k < 10. Left: * = 143.6006; right: £* = 5237.1406.
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Figure 12: Illustration of super-resolution in Example 2: exact and recovered domains. Left : exact domain. Right:
e* = 143.6006; bottom: £* = 5237.1406.

6. Concluding remarks

In this paper, we have for the first time established a mathematical theory about super-resolution in
the context of imaging high-contrast inclusions. We have found both analytically and numerically that at
some high resonant values of the contrast, super-resolution in reconstructing the shapes of the inclusions
can be achieved.

Our approach opens a new avenue for mathematical imaging and focusing in resonant media. Many
challenging problems are still to be solved in this direction. It would be very interesting to generalize
our approach to justify the fact that super-resolution can be achieved using structured light illuminations
[29, B0]. Tt is also a very challenging yet important problem to extend our theory to a general shape
to provide an explanation of super-resolution for non-circular domains. Furthermore, it would be both
mathematically and physically very interesting to develop our approach for electromagnetic and elastic
wave imaging problems of high-contrast inclusions.
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