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Abstract

This work is concerned with a mathematical study of ill-posed backward evolution equations associated 
with densely defined linear differential operators in Banach spaces. A general approach is presented to 
investigate the convergence and stability of a class of regularized solutions for ill-posed backward evolution 
equations associated with sectorial or half-strip operators. Generalized concepts of qualification pairs and 
index functions are introduced to characterize the explicit convergence rates of the concerned regularized 
solutions. Applications of our results to general backward evolution equations are also investigated.
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1. Introduction

For a terminal time T and a given data f at the time t = T , we shall consider the backward 
evolution equations of the form:{

u′(t) + Au(t) = 0, 0 < t < T,

u(T ) = f,
(1.1)

where X is an infinite dimensional reflexive Banach space with a norm ‖ · ‖, and A : D(A) ⊂
X → X is a densely defined (unbounded) operator such that −A generates a uniformly stable 
analytic semigroup (e−tA)t≥0. Since (e−tA)−1 for t > 0 is an unbounded operator for general 
practical problems, the backward evolution equation (1.1) is mostly ill-posed. More precisely, 
when the exact terminal data f is replaced by a noisy data f δ with a noise level δ, namely

‖f δ − f ‖ ≤ δ , (1.2)

the solutions of the system (1.1) may not exist, and even if the solutions exist, the solution may 
be far from the exact solution u. In this work we shall often write the exact initial value for the 
backward evolution equation (1.1) with noise-free data f as x† = u(0).

A general methodology to overcome the ill-posedness of inverse problems is to seek approx-
imate solutions by solving some “well-posed” neighboring problems; see [3,4,11,15,22,23,25,
29,33,34,37,39] for various inverse problems associated with the parabolic equation of the form 
u′(t) + Au(t) = g. The most popular methodology is to approximate an inverse problem by 
the output least-squares formulation with an appropriate Tikhonov regularization. The classical 
regularization theory [13,14] ensures the convergence or even the convergence rate of the reg-
ularized solution by a Tikhonov regularization under a general source condition. The classical 
regularization theory has been widely studied for different inverse problems associated with the 
equation of the form u′(t) +Au(t) = g, with A being a second order self-adjoint and coercive el-
liptic operator; see, e.g., [13,15,24,25,30,37,39] and the references therein. But the crucial source 
condition involved in the classical theory requires the existence of a small source function with 
certain desired regularities, and is rather restrictive in general. In fact, the source condition has 
still not been well verified for the backward evolution system (1.1), even when the operator A
is self-adjoint and coercive. So the classical regularization theory is actually quite limited in its 
applicability. This is the main motivation of the current work, namely to explore another basic 
methodology for approximating the ill-posed backward evolution system (1.1). As we demon-
strate in the rest of the paper, this regularization theory applies to a much more general class of 
operators than the self-adjoint and coercive ones. The main idea of this alternative strategy is to 
construct a family of regularized PDEs of the form{

v′
α(t) + Aαvα(t) = 0, 0 < t < T,

vα(T ) = f,
(1.3)

where {Aα}α>0 is a family of perturbations of A such that for each α > 0, Aα generates a 
C0-semigroup (etAα )t≥0. Then we use this semigroup to construct a family of regularizing oper-
ators {

Qα,t : α > 0, t ∈ [0, T ]} ⊂ L(X)
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such that the family of regularized solutions {uα}α>0, given by uα(t) := Qα,tf for t ∈ [0, T ], 
approximates the solution of (1.1) as α → 0+. For the noisy terminal data f δ , the correspond-
ing regularized solutions are given by uα,δ(t) := Qα,tf

δ . One important method for stabilizing 
(1.1) is the method of quasi-reversibility [28], where Aα was taken to be A − αA2. When −A

generates a uniformly bounded analytic semigroup of the angle β with β ∈ (0, π4 ), we may take 
Aα = A − αAb with 1 < b < π

π−2β
[22]. One can also consider Aα = A(1 + αA)−1 [23,34]. 

On the other hand, a modified quasi-reversibility was proposed in [3], based on the perturba-
tions Aα = −(pT )−1 ln(α + e−pT A) for α > 0 and p ≥ 1, where A is a self-adjoint and coercive 
unbounded linear operator in a Hilbert space X. These perturbations may result in better approx-
imations, compared with others (see [3]). Although the convergence behavior of regularizing 
operators and their regularized solutions for ill-posed backward evolution equations have been 
widely studied, only special cases of perturbations were considered in [3,22,23,34]. On the other 
hand, the investigations in [3,29,33] rely heavily on functional calculus for self-adjoint opera-
tors in Hilbert spaces, whose corresponding generalizations in Banach spaces are rarely studied. 
Moreover, the results in many existing literature (see, e.g., [22,23,34]) are mostly qualitative 
instead of quantitative. That is, these results do not provide explicit convergence rates of the reg-
ularized solutions in terms of regularization parameter α as α → 0+. Even when special cases 
were investigated, the requirements on the true solutions are quite restrictive (see, e.g., [3]). In 
this work, we propose a systematic approach to study the explicit convergence rate of the regu-
larized solutions for ill-posed backward evolution equations associated with general sectorial or 
half-strip operators, which is a much more general class of differential operators than self-adjoint 
or coercive operators, and in general Banach spaces. We will also establish general connections 
between the a prior estimate of the exact initial data u(0) of the backward evolution equations 
and the explicit convergence rate of the corresponding regularized solutions.

One of the major tools we shall adopt in our analysis is the well-established theory of the 
functional calculus for (unbounded) operators, which, however, are rarely applied in the study of 
regularizations for inverse problems of evolutional PDEs in Banach spaces. Roughly speaking, 
the functional calculus for a (possibly unbounded) operator B in a Banach space X enables us 
to associate a closed operator f (B) : D(f (B)) ⊂ X → X to each function f from an algebra 
of functions defined on some domain of the complex plane. The theory of functional calculus 
has been utilized to investigate the forward problems (cf. [16] or references therein). One of the 
main issues for functional calculus is the boundedness, i.e., to verify for which operators B and 
functions f the resulting operators f (B) are bounded. It is a very useful tool in understanding 
phenomena around the sectorial and strip operators, e.g., in determining the domain of fractional 
powers of a partial differential operator and connecting the regularity of parabolic evolution 
equations with certain estimates in control theory; see [17,26,27] for more details. As we shall 
demonstrate, the boundedness of H∞-functional calculus is also a very effective tool in our 
subsequent characterization of explicit convergence rates of regularized solutions for ill-posed 
backward evolution equations associated with general sectorial or half-strip operators in Banach 
spaces.

Another important concept in our analysis is qualification and index functions. The qualifica-
tion for a regularization method was introduced for the special case that the qualification is only 
a real number (see, e.g., [13, Chap. 4]). More recently, the qualification concept was general-
ized in [29] to index functions in the context of variable Hilbert scales in order to express prior 
smoothness of unknown solutions, and the interplay between the qualification of regularization 
method and associated index functions. It is worth mentioning that those concepts were essen-
tially based on the spectral theory and functions of linear self-adjoint operators in Hilbert space. 
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To investigate the convergence rates of the Tikhonov-type regularization of ill-posed problems in 
our current Banach setting, one may use the so-called distance functions, which can help quan-
tify the violation of a reference source condition [21]. We refer to [18,20,33] for some recent 
studies using these concepts. In this work, we will generalize the concepts of qualifications and 
index functions for ill-posed linear problems in the Banach setting when the driven operators are 
either of sectorial or half-strip type. We propose the effective concept of qualification pairs and 
index functions to characterize regularization methods and prior smoothness of the unknown ini-
tial values, respectively. The interplay between these two concepts will be investigated, and then 
applied to derive explicit convergence rates for regularized solutions of the backward evolution 
equation (1.1) in our general setting.

The remainder of this work is arranged as follows. In section 2 we present some necessary 
notations, definitions as well as a general framework of the abstract functional calculus. In sec-
tion 3, we establish our major results for sectorial operators. Subsection 3.1 is devoted to some 
preliminary definitions, notations and results about the functional calculus of sectorial opera-
tors. Then a convergence result for the regularizing operators of the backward evolution equation 
(1.1) is derived in subsection 3.2. In subsection 3.3, we will introduce the concepts of qualifica-
tion pairs and index functions for the regularization methods associated with sectorial operators, 
investigate their properties, and then use these properties to characterize the explicit convergence 
rates for regularized solutions. Finally, these results will be applied to a specific family of reg-
ularization methods for the backward evolution equation (1.1). Subsection 3.4 shall recall some 
important classes of sectorial operators for which our results are applicable. The primary concern 
of section 4 is for the case when A is a half-strip operator, whose definition and basic properties 
are discussed in subsection 4.1. The operator A := e−T A and its functional calculus are the main 
subjects of subsection 4.2, and the half-strip operators in Hilbert spaces are further studied in 
subsection 4.3. In subsection 4.4 we will introduce qualification pairs and index functions for 
the regularization methods governed by A, and establish explicit convergence results for those 
regularization methods. With the help of these results, we shall be able to investigate the explicit 
convergence rates for the families of regularized solutions for the backward evolution equations 
(1.1) in section 4.5. Finally, our new general results will be applied in section 4.6 to a specific 
family of regularizing operators for approximating the backward evolution equations.

2. Preliminaries

We shall now present some notations and definitions that are used in the subsequent sections. 
By L(X) we denote the Banach space of all linear bounded operators on X. The spectrum, point 
spectrum, domain and range for a general operator A are denoted by σ(A), Pσ(A), D(A) and 
R(A), respectively. Its resolvent is R(λ, A) for λ ∈ ρ(A) := C\σ(A). A′ : D(A′) ⊂ X′ → X′
stands for the adjoint operator of A, where X′ is the dual space of X.

We shall frequently use the following four regions in complex planes:

Stθ : =
{ {z ∈ C | |Im z| < θ}, θ ∈ (0,π],
R, θ = 0;


θ : = {ez | z ∈ Stθ } =
{ {z �= 0 | |arg z| < θ}, θ ∈ (0,π],

(0,∞), θ = 0;

θ,b : = 
θ ∩ {z ∈ C | |z| < b}, θ ∈ (0,π], b > 0;
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Ha,θ : =
{ {z ∈ C| Re z > a and |Im z| < θ} if a, θ > 0,

(a,∞) if a > 0, θ = 0.

Obviously, Stθ and 
θ are respectively a horizontal strip of width 2θ and a horizontal sector of 
angle 2θ , while 
θ,b and Ha,θ are the intersection between 
θ and a circle centered at origin 
with radius b, and the intersection between a horizontal strip Stθ and an open half-plane {z ∈C |
Rez > a} respectively. For a domain O ⊂ C, we denote by H(O) the algebra of holomorphic 
functions on O, and by H∞(O) the subalgebra of H(O) consisting of all bounded holomorphic 
functions. For a complex function f over a domain O, ‖f ‖∞ represents the supremum norm of 
f over O. A complex function is always viewed to take its value at the principal branch. For a 
complex function f ∈ H(O) and a subset U ⊂O, we write f |U for the restriction of f on U .

Our study and analysis in all the sections that follow involve several different classes of oper-
ators, including sectorial and half-strip operators. For the sake of clarity and brevity, we present a 
general framework to describe the various operations of operators, i.e., the common idea shared 
by many functional calculus constructions. Suppose that we are given an operator A on X and 
an algebra E consisting of complex functions defined on a region containing σ(A), and a homo-
morphism

� : E → L(X),

then we can define f (A) := �(f ) for each f ∈ E . The constructions of homomorphisms in 
practical problems are mostly based on Cauchy-type integrals. Assume further that we are given a 
commutative algebra M containing E and 1, then we say that the triple (M, E, �) is an (abstract) 
functional calculus. A function e in E with e(A) being injective is called a regularizer. The 
collection of all regularizers is denoted by Reg(E). For any f ∈ M, if there is a regularizer e
such that ef ∈ E , then we say that f is regularizable, and e is a regularizer of f . If Reg(E) is not 
empty and e is a regularizer of f ∈M, then we can define

f (A) := e(A)−1(ef )(A) = �(e)−1�(ef ).

One can further show that this is well-defined, i.e., f (A) does not depend on the choice of 
regularizers e. In this case, we say that (M, E, �) is proper. The set of all regularizable functions 
in M are called the domain of the triple (M, E, �), and denoted by MA. We next collect some 
important properties of a proper functional calculus.

Theorem 2.1 ([17, proposition 1.2.2, corollary 1.2.3.]). Let (M, E, �) be a proper abstract 
functional calculus over the Banach space X with a domain MA. Let e ∈ E and f, g ∈ MA. 
Then the following assertions hold.

(a) If T ∈ L(X) commutes with each �(e), then it commutes with �(h) for every h ∈MA.
(b) One has 1 ∈MA and �(1) = I .
(c) The inclusions

�(f ) + �(g) ⊂ �(f + g) , �(f )�(g) ⊂ �(fg)

hold with D(�(f )�(g)) = D(�(fg)) ∩ D(�(g)). These inclusions are actually identities 
for �(g) ∈ L(X).
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For an abstract functional calculus (M, E, �) of operator A with a domain MA, we may 
assign a family of operators {fα(A)}α∈I for a family of functions {fα}α∈I in MA, where I =
(0, ∞) or I = (0, a] for some a > 0. Then one can define a regularized problem for each α ∈ I :{

v′
α(t) + fα(A)vα(t) = 0, 0 < t < T,

vα(T ) = f.
(2.4)

Based on certain construction methods and {fα}α∈I , we will express the family of regularizing 
operators {Qα,t : α ∈ I, t ∈ [0, T ]} in terms of {qα,t (A) : α ∈ I, t ∈ [0, T ]}, where {qα,t : α ∈
I, t ∈ [0, T ]} is a family of functions in MA. In subsequent sections we will use the concept 
of qualification pairs to characterize the convergence behavior of the regularizing operators and 
their regularized solutions. On the other hand, some subspaces Xϕ of X can be given through 
an appropriate function ϕ ∈ MA, which will be called an index function. If u(0) ∈ Xϕ , then 
the study of the convergence behavior of qα,t (A)f δ for α, δ → 0+ can be reduced to that of 
the interplay between qualification pairs and the function ϕ. Actually, the resulting convergence 
rates will be written in terms of qualification pairs and index functions explicitly. As it will 
be shown later, the qualification pair depends on two ingredients: the construction method of 
regularizations, the perturbation functions {fα}α∈I , while the condition u(0) ∈ Xϕ indicates the 
smoothness of u(0). Since all these facts are related to the operator A, we shall pay attention to 
its classification and split the rest of the work into two parts. In section 3, we investigate the case 
when A is a sectorial operator that is widely used in the theory of PDEs and covers a large group 
of differential operators. Then in section 4 we will introduce the concept of half-strip operators. 
For these operators, we shall present another basic construction method that can help us improve 
the convergence rates of the regularized solutions essentially.

3. Convergence of regularizations for sectorial operators

3.1. Functional calculus for sectorial operators

A closed operator A is said to be a sectorial operator with angle θ ∈ [0, π) (in short, A ∈
Sect(θ)) if σ(A) ⊂ 
θ , and for each ω ∈ (θ, π),

sup
{
|λ|‖R(λ,A)‖ | λ ∈ C\
ω

}
< ∞.

There is a natural holomorphic functional calculus associated with this sectorial operator A. One 
can use the Cauchy formula to define an algebra homomorphism by setting

�(f ) := 1

2πi

∫
�

f (z)R(z,A)dz, (3.5)

for a holomorphic function f from the algebra H∞
0 (
ω), which is defined by

H∞
0 (
ω) :=

{
f ∈ H∞(
ω) | |f (z)| ≤ C min{|z|α, |z|−α} ∀ z ∈ 
ω for some α > 0, C ≥ 0

}
for θ < ω < π . The contour � in (3.5) is the positively oriented boundary of a smaller sector 
ω′
with ω′ ∈ (θ, ω), and it is easy to see that this definition is independent of the actual choice of 
ω′ ∈ (θ, ω), using the standard argument involving the Cauchy’s theorem. If we define
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E(
ω) = H∞
0 (
ω) ⊕ 〈 1

1 + z
〉 ⊕ 〈1〉,

and set �((1 + z)−1) = −R(−1, A) and �(1) = I , then (H(
ω), E(
ω), �) is an abstract 
functional calculus. Moreover, if A is injective, then the function e := z(1 + z)−2 is a regu-
larizer (cf. [17, lemma 2.3.6]). Following section 2, we denote by MA the domain of the triple 
(H(
ω), E(
ω), �), with M = H(
ω), and extend the homomorphism to MA. We remark that 
MA(
ω) here contains the collection of all functions f that are regularized by powers of e, i.e., 
en(z)f (z) ∈ H∞

0 (
ω) for some n ∈N, and this collection will be denoted by B(
ω).
Next we collect some basic results about the fractional powers of sectorial operators (cf., e.g., 

[17, proposition 3.1.1 and corollary 3.1.5]).

Proposition 3.2. Let A :D(A) ⊂ X → X be a sectorial operator with angle θ ∈ (0, π), then

(1) (First law of exponents) For each β1, β2 > 0, Aβ1Aβ2 = Aβ1+β2 .
(2) (Second law of exponents) For β1 ∈ (0, π/θ) and β2 > 0, (Aβ1)β2 = Aβ1β2 .

Of particular importance in the theory of functional calculus is the so-called convergence 
lemma, which is crucial to our subsequent analysis (cf. e.g. [17, proposition 5.1.4.]).

Lemma 3.3. Let A ∈ Sect(θ) and (fα) a net of functions from H∞(
ω) with ω ∈ (θ, π). Suppose 
sup
α

‖fα‖∞ < ∞ and that the limit f (z) = lim
α

fα(z) exists pointwise on 
ω. Then

fα(A)x → f (A)x ∀x ∈ D(A) ∩R(A).

Moreover, the following assertions hold

(a) If A is injective, fα(A) ∈ L(X) for all α, and fα(A) → T ∈ L(X) strongly, then f (A) = T .
(b) If A is densely defined with a dense range, and sup

α
‖fα(A)‖ < ∞, then f (A) ∈ L(X) and 

fα(A) → f (A) strongly.

In subsection 4.2 we shall deal with functional calculus for bounded sectorial operators, hence 
we present the functional calculus and its properties below. For a bounded sectorial operator A
such that σ(A) ⊂ 
θ,a for some θ ∈ (0, π) and a > 0 (it is written as A ∈ Sect(θ, a)), it is clear 
that the behavior of f at infinity is irrelevant in order for the expression f (A) to make sense. Let 
us define the function space

H∞
0 (
ω,b) :=

{
f ∈ H∞(
ω,b) | |f (z)| ≤ C|z|α ∀ z ∈ 
ω,b for some α > 0, C ≥ 0

}
for θ < ω < π and b > a. If A ∈ Sect(θ, a) and f ∈ H∞

0 (
ω,b), then we define

f (A) = �(A) := 1

2πi

∫
�

f (z)R(z,A)dz,

where � is the positively oriented boundary of the truncated sector 
ω′,a′ with ω′ ∈ (θ, ω)

and a′ ∈ (a, b). We see that this definition does not depend on the choices of ω′ ∈ (θ, ω) and 
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a′ ∈ (a, b). Further, we can check that (H(
ω,b), E(
ω,b), �) is a proper functional calcu-
lus for E(
ω,b) = H∞

0 (
ω,b) if A is injective. If A is not injective, then we set E(
ω,b) =
H∞

0 (
ω,b) ⊕ 〈 1
1+z

〉 and define the primary calculus by �(f + c
1+z

) = �(f ) − cR(−1, A) for 
every f ∈ H∞

0 (
ω,b) and c ∈ C. In either case, the triple (H(
ω,b), E(
ω,b), �) is a proper 
functional calculus (cf. [17, Section 2.5] for details). As usual, we write the collection of all 
regularizable functions in H(
ω,b) as MA(
ω,b).

3.2. Existence and convergence of regularizing operators

In this whole section 3, we establish all our convergence results for the regularizations of 
sectorial operators, and investigate the convergence for half-strip operators in Section 4. We start 
with an exact classification of all sectorial operators A of our interest.

(H1) A is an injective and densely defined sectorial operator with angle 0 ≤ θ < π
2 , and has a 

bounded H∞-calculus over 
θ∗ for some π
2 > θ∗ > θ , i.e., there exists a constant Cs ≥ 1 such 

that

‖f (A)‖ ≤ Cs‖f ‖∞ ∀f ∈ H∞(
θ∗).

One can easily see that for such sectorial operator A, the triple (H(
θ∗), E(
θ∗), �) as de-
fined in subsection 3.1 is a proper abstract functional calculus with some domain MA(
θA

) (cf. 
e.g. [17]). For the sake of brevity, we write

MA =MA(
θ∗)

throughout the rest of this section if there is no confusion caused.
We next introduce an important concept that is frequently used in our subsequent analysis.

Definition 3.4. A function ϕ ∈MA is called an index function if ϕ(A) is bounded and injective.

Obviously, ϕ(A)−1 is well defined in the range of ϕ(A), usually unbounded and closed. Thus, 
we can assign a norm

‖x‖ϕ := ‖ϕ(A)−1x‖ ∀x ∈ D(ϕ(A)−1). (3.6)

The completion of D(ϕ(A)−1) under this norm is denoted by Xϕ . As ϕ(A)−1 is a closed operator, 
Xϕ is complete with the graph norm induced by ϕ(A)−1. Since ϕ(A) is bounded, we know that 
the norm (3.6) is equivalent to the graph norm. Thus we have x ∈ Xϕ if and only if

x = ϕ(A)y

for some y ∈ X. A simple case of the index function is ϕ(z) = (1 + z)−β with β > 0, which 
induces the fractional power space (see, e.g., [17, Proposition 3.1.9.]).

In this work we shall follow the following definition of regularizing operators that adapts the 
standard concept on regularizing operators for our backward evolution equation (1.1) (cf. [30,
35]).
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Definition 3.5. Let I be an index set with 0 ∈ I . A set {Qα,t : α ∈ I, t ∈ [0, T ]} ⊂ L(X) is called 
a family of regularizing operators for the backward evolution equation (1.1) if for each solution 
u(t) with a data f at the terminal time, and for each δ > 0, there exists an a priori regularization 
parameter choice α(δ) such that α(δ) → 0 as δ → 0, and ‖Qα(δ),t f

δ − u(t)‖ → 0 as δ → 0 for 
each t ∈ [0, T ] whenever f δ satisfies (1.2).

There are different approaches to construct regularizing operators, such as quasi-reversibility 
and modified quasi-reversibility methods [3,28]. In this section we shall focus only on regu-
larizing operators that are constructed by applying the quasi-reversibility method [28] for the 
backward evolution equation (1.1). In view of assumption (H1), we can assign a family of closed 
operators {fα(A)} for each family of functions {fα}α∈I in MA, with I := (0, ∞) or I := (0, a]
for some a > 0. For each α ∈ I , we approximate the backward evolution equation (1.1) by{

u′(t) + fα(A)u(t) = 0, t ∈ [0, T ),

u(T ) = f δ .
(3.7)

It is well-known that if fα(A) generates a C0-semigroup (exp(tfα(A)))t≥0, then the (mild) solu-
tion for (3.7) can be rewritten as

uα,δ(t) = Rα,tf
δ := exp((T − t)fα(A))f δ (3.8)

(see, e.g., [12, chapter 2, section 6] or [31, section 4.1]). We will investigate for what family of 
operators {fα}α∈Is the resulting operators {Rα,t : α ∈ I, t ∈ [0, T ]} is a family of regularizing 
operators. We first present a sufficient condition to ensure function (3.8) is well-defined, and also 
a (mild) solution to (3.7) (cf. [2, Proposition 2.5]).

Lemma 3.6. For any f ∈ MA satisfying

Re(f (z)) ≤ ω0 ∀z ∈ 
θ∗ (3.9)

with some ω0 ∈R, (exp(tf (A)))t≥0 is a C0-semigroup with generator f (A), and ‖ exp(tf (A))‖
≤ Cse

tω0 for t ≥ 0.

Theorem 3.7. Let {fα}α∈I be a family of functions in MA, and we assume
(1) fα(z) → z ∀z ∈ 
θ∗ as α → +0.
(2) There exists a constant M > 0 such that

sup
α∈Is

sup
z∈
θ∗

Re(fα(z) − z) ≤ M.

(3) There exists a continuous and decreasing function ω : I → (0, +∞) such that ω(α) → +∞
as α → +0, and

sup
z∈
θ∗

Refα(z) ≤ ω(α) α ∈ I.

Then Rα,t := exp((T − t)fα(A)) for α ∈ I, t ∈ [0, T ] is a family of regularizing operators for 
the backward evolution equation (1.1).
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Proof. It follows immediately from Lemma 3.6 that

‖ exp(tfα(A))‖ ≤ Cse
tω(α) ∀t ≥ 0. (3.10)

Let u be the solution to the backward evolution equation (1.1), then we know that for all α ∈ I ,

‖u(T ) − Rα,T f δ‖ = ‖f − f δ‖ → 0 as δ → +0.

For a fixed t ∈ [0, T ), we have

‖u(t) − Rα,tf
δ‖ ≤ ‖Rα,tf

δ − Rα,tf ‖ + ‖Rα,tf − u(t)‖ := (I)1 + (I)2.

By (3.10), we see that

(I)1 ≤ ‖ exp((T − t)fα(A))‖‖f δ − f ‖ ≤ Cse
(T −t)ω(α)δ.

As f = e−AT x†, it follows from the semigroup property of (e−tA)t≥0 and Theorem 2.1 (c) that

(I)2 = ‖(exp((T − t)(fα(A) − A)) − I )e−tAx†‖.

The condition (2) and assumption (H1) imply that

sup
α>0

‖ exp((T − t)(fα(·) − ·))‖∞ ≤ Cse
Ms(T −t),

which, together with the convergence in Lemma 3.3, yields that

(I)2 = ‖exp((T − t)(fα(A) − A))e−tAx† − e−tAx†‖ → 0+ as α → +0. (3.11)

Now if we choose

α(δ) = ω−1(
1

T
ln(

1√
δ
)), 0 < δ < 1,

then it is easy to see that α(δ) → 0 as δ → +0, and

(I)1 ≤ Cs

√
δ → 0 as δ → +0. (3.12)

Therefore, the combination of the estimate (3.11) with (3.12) yields

‖Rα,tf
δ − u(t)‖ → 0 as δ → +0. �
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3.3. Explicit convergence rates of regularized solutions

The goal of this subsection is to establish the explicit convergence rates of regularized solu-
tions to the backward evolution equation (1.1). We shall develop a systematic approach for the 
study within the framework of the functional calculus driven by an operator A. More precisely, 
we are interested in the convergence behaviors of some specific family of operators {gα(A)}α∈I , 
which could be seen as approximations of the identity operator I in X, where {gα}α∈I is a col-
lection of functions in MA.

The concepts of qualification and index function for general regularization methods governed 
by standard self-adjoint and coercive operators in Hilbert spaces have been widely studied, which 
appear to be very effective to help characterize the convergence rate for linear ill-posed problems 
(see e.g. [29]). These concepts can not apply to the study of linear ill-posed problems in Banach 
spaces driven by sectorial or half-strip operators, whose studies are clearly more difficult and 
technical than self-adjoint and coercive operators in Hilbert spaces. For the purpose, we propose 
the much more general new concepts of qualification pairs and index functions. These concepts 
can be seen as the generalizations of the existing ones, but there are essential differences due to 
the obvious distinction between self-adjoint and sectorial operators.

Definition 3.8. A pair of functions (ρc, ρr) ∈ MA × C(R+) is called a qualification pair if 
ρc(z) �= 0 for each z ∈ 
θ∗ , and ρr : (0, +∞) → R

+ is a decreasing function satisfying 
ρr(t) → 0 as t → +∞.

Definition 3.9. A family of functions {gα}α∈I in MA is called a regularization associated with a 
qualification pair (ρc, ρr) if there exists a positive constant R1 such that

sup
z∈
θ∗

|1 − gα(z)| ≤ R1 ∀α ∈ I, (3.13)

sup
z∈
θ∗

|(1 − gα(z))ρc(z)| ≤ R1ρr(α
−1) ∀α ∈ I. (3.14)

Next, we show that {gα(A)}α∈I is indeed a family of approximations of the identity on X.

Proposition 3.10. If {gα}α∈I is a regularization associated with a qualification pair (ρc, ρr), 
then gα(A) → I strongly as α → 0+.

Proof. For a fixed z0 ∈ 
θ∗ , we can see that

1 − gα(z0) = (
(1 − g(z0))ρc(z0)

) · 1

ρc(z0)
≤ 1

ρc(z0)
sup

z∈
θ∗
|(1 − gα(z))ρc(z)|.

Then it follows from (3.14) and the decay property of ρr that lim
α→0+(gα(z0) − 1) = 0. In view of 

(3.13), Lemma 3.3(b) is now applicable, then the desired result follows immediately. �
Example 3.11. We present two examples of regularizations associated with some associated 
qualification pairs. Let gα(z) = e−αzb

for α ∈ (0, +∞) with b > 1 and ω ∈ (0, π2b
), then we 

can claim that {gα}α>0 is a regularization with qualification pair (1/zβ, 1/α) for any 0 < β ≤ b. 
To see this, it suffices to show that
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sup
z∈
ω

|e
−αzb − 1

αzb
| < ∞ ∀α > 0. (3.15)

Setting λ = αzb , we get λ ∈ 
bω with bω < π
2 . If |λ| ≤ R for some prescribed bound R > 0, 

then there exists a constant C > 0 such that

|e−λ − 1| < C|λ|.

On the other hand, it is easy to check that

lim|λ|→∞, λ∈
bω

|e−λ − 1|
|λ| = 0.

Thus the desired inequality (3.15) is true, so is our claim. A second example is the family given 

by {gα(z)}α>0 := {e− αz2
1+αz }α>0. In a quite similar way, we can verify that this is a regularization 

with qualification pair (1/z2, 1/α), provided that ω ∈ (0, π4 ).

From Proposition 3.10 we note that limα→0 ‖gα(A)x − x‖ = 0 for any x ∈ X. But, the decay 
rate of the error ‖gα(A)x −x‖ as α → +0 depends largely on the choice of x ∈ X, and the decay 
can be arbitrarily slow. Next, we shall analyze the decay rate exploiting a prior smoothness 
condition on x in terms of index functions.

Definition 3.12. An index function ϕ is said to be proper if there exists some cϕ > 0 such that

|ϕ(z)| ≤ cϕ ϕ(|z|) ∀ z ∈ 
ω, (3.16)

and ϕ|R+ is a non-negative, real-valued and decreasing function satisfying ϕ(|z|) → 0 as 
|z| → ∞.

Definition 3.13. The qualification pair (ρc, ρr) is said to cover a proper index function ϕ if there 
exists a constant c′ > 0 such that

sup
z∈


θ∗,α−1

∣∣∣∣ ϕ(z)

ρc(z)

∣∣∣∣ ≤ c′ ϕ(α−1)

ρr(α−1)
∀α ∈ I. (3.17)

Then we say that ϕ is covered by (ρc, ρr) with constant c′ > 0.

Proposition 3.14. Let {gα}α∈I be a regularization associated with the qualification pair (ρc, ρr), 
and ϕ a proper index function covered by (ρc, ρr) with constant c′ > 0, then it holds that

‖(1 − gα(A))x‖ ≤ Cϕ,s ϕ(α−1)‖x‖ϕ ∀x ∈ Xϕ, (3.18)

with Cϕ,s := CsR1(c
′ + cϕ), where the constants Cs, R1, cϕ and c′ are from (H1), (3.13), (3.16)

and (3.17), respectively.
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Proof. Fixing α ∈ Is , we study the function z → (1 − gα(z))ϕ(z). From (3.13), (3.16) and the 
monotonicity of ϕ|R+ it follows that

sup
z∈
θ∗\


θ∗,α−1

|(1 − gα(z))ϕ(z)| ≤ R1cϕϕ(α−1) . (3.19)

It remains to get an estimate over 
θ∗,α−1 . Using (3.17), we obtain

sup
z∈


θ∗,α−1

|(1 − gα(z))ϕ(z)|

= sup
z∈


θ∗,α−1

∣∣∣∣(1 − gα(z))ρc(z)
ϕ(z)

ρc(z)

∣∣∣∣
≤ sup

z∈

θ∗,α−1

|(1 − gα(z))ρc(z)| sup
z∈


θ∗,α−1

∣∣∣∣ ϕ(z)

ρc(z)

∣∣∣∣
≤ R1c

′ρr(α
−1)

ϕ(α−1)

ρr(α−1)
= R1c

′ϕc(α
−1) .

Combining this with (3.19) yields

sup
z∈
θ∗

|(1 − gα(z))ϕ(z)| ≤ R1(c
′ + cϕ)ϕ(α−1). (3.20)

Given x ∈ Xϕ , there exists y ∈ X such that x = ϕ(A) y, and ‖y‖ = ‖x‖ϕ . Then it follows directly 
from (3.20), (H1) and Theorem 2.1 (c) that

‖(I − gα(A))x‖ = ‖(I − gα(A))ϕ(A)y‖
≤ ‖(I − gα(A))ϕ(A)‖‖y‖
≤ Cs sup

z∈
θ∗
|(1 − gα(z))ϕ(z)|‖y‖

≤ Cϕ,s ϕ(α−1)‖x‖ϕ. �
Theorem 3.15. Let {fα}α∈I be a family of functions in MA satisfying the following conditions:
(i) There exist constants Cf > 0 and p > 0 such that

sup
z∈
θ∗

Refα(z) ≤ Cf

αp
∀α ∈ I.

(ii) The inclusion

{z − fα(z) | z ∈ 
θ∗} ⊂ 
ω′ ∀α ∈ I,

and the inequality
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sup
z∈
θ∗

|(z − fα(z))ρc(z)| ≤ Rgρr(α
−1) ∀α ∈ I

hold for some 0 < ω′ < π
2 , Rg > 0 and a qualification pair (ρc, ρr).

(iii) There exists a proper index function ϕ covered by (ρc, ρr).
Then for each t ∈ (0, T ], {e(fα(z)−z)t }α∈I is a regularization associated with the qualification 

pair (ρc, c0tρr ) for some constant c0 > 0. And for given x† = u(0) ∈ Xϕ satisfying ‖x†‖ϕ ≤ Q, 
there exists some constant CM > 0 such that

‖Rα,tf
δ − u(t)‖ ≤ CM

(
δ e

Cf (T −t)

αp + (T − t)Qϕ(α−1)

)
∀α ∈ I, t ∈ [0, T ] . (3.21)

Furthermore, under the a priori parameter choice

α(δ) =
[

1

log(1/δ)

]κ

with 0 < κ <
1

p Cf (T − t)
, (3.22)

the following estimate of the convergence rate holds for η := 1 − κ p Cf (T − t),

‖Rα(δ),tf
δ − u(t)‖ =O

(
δη + (T − t)Qϕ

([
1

log(1/δ)

]−κ
))

as δ → 0 . (3.23)

Proof. Noting that function hα(z) := z − fα(z) maps the sector 
θ∗ into 
ω′ for all α ∈ I , 
we have supz∈
θ∗ |e−thα(z)| ≤ 1 for all α ∈ I and t ≥ 0. Furthermore, we can verify from the 
reasoning in Example 3.11 that |e−λ − 1|/|λ| ≤ C� for all λ ∈ 
ω′ . Then, using condition (ii) we 
obtain

sup
z∈
θ∗

(
|e−thα(z) − 1||ρc(z)|

)
≤ C�t sup

z∈
θ∗
|(z − fα(z))ρc(z)| ≤ C�Rgtρr(α

−1) (3.24)

for all t ∈ [0, T ] and α ∈ I . Thus the family of operators {e(T −t)(fα(z)−z)}α∈I is a regularization 
associated with the qualification pair (ρc, c0(T − t)ρr ) for c0 = max{C�Rg, 1} by definition.

The estimate (3.21) is obvious for t = T . It remains to consider the case with t ∈ [0, T ). For a 
fixed t ∈ [0, T ), let (I)1 and (I)2 be the two terms used in the proof of Theorem 3.7, i.e.,

(I)1 := ‖Rα,t (f
δ − f )‖ , (I)2 := ‖Rα,t − u(t)‖.

Using condition (i), it is easy to see that (I)1 can be bounded by Csδe
Cf (T −t)

αp . As e−At commutes 
with exp((T − t)hα(A)) and ‖e−tA‖ ≤ Cs , we can apply Proposition 3.14 to obtain

(I)2 = ‖
(

exp(−(T − t)hα(A)) − I
)
e−tAx†‖

= ‖e−tA
(

exp(−(T − t)hα(A)) − I
)
x†‖

≤ (T − t)c0Cϕ,sCsϕ(α−1)‖x†‖ϕ

for some constant Cϕ,s > 0. Using the above estimates for (I)1 and (I)2, we immediately derive
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‖Rα,tf
δ − u(t)‖ ≤ (I)1 + (I)2 ≤ Csδe

Cf (T −t)

αp + (T − t)c0Cϕ,sCsϕ(α−1)‖x†‖ϕ,

which gives (3.21). And the estimate (3.23) of convergence rate follows directly with the a priori 
choice (3.22) for the parameter α = α(δ). �
Corollary 3.16. Under the same assumptions as in Theorem 3.15 except that (i) is replaced by

(i′) supz∈
θ
Refα(z) ≤ 0 ∀α ∈ I ,

for any t ∈ (0, T ], {e(fα(z)−z)t }α∈Is is a regularization associated with the qualification pair 
(ρc, c0tρr ) for some positive constant c0. In addition, for given x† = u(0) ∈ Xϕ satisfying 
‖x†‖ϕ ≤ Q, we have the error estimate

‖Rα,tf
δ − u(t)‖ ≤ CM

(
δ + (T − t) ϕ(α−1)Q

)
∀α ∈ I, t ∈ [0, T ] (3.25)

for some constant CM > 0. Furthermore, under the parameter choice

α(δ) =
[
ϕ−1(δ)

]−1
, (3.26)

we have the following estimate of the convergence rate for all 0 ≤ t ≤ T ,

‖Rα(δ),tf
δ − u(t)‖ =O (δ) as δ → +0 . (3.27)

It is easy to see that the optimal rate in (3.27) indicates that the modified condition (i′) implies 
the well-posedness of the backward evolution equation (1.1). This is clearly unreasonable, and 
implies that condition (i′) could not be satisfied in practical applications.

We end this section with an application of the main result, i.e., approximating the ill-posed 
backward equation (1.1) by the following regularized problem{

u′(t) + (A − εAb)u(t) = 0, 0 < t < T,

u(T ) = f δ,
(3.28)

where A is a densely defined sectorial operator with bounded H∞-calculus on a sector ωH ≤ π
4

and 1 < b < π
π−2ωH

. Setting

fα(z) := z − αbzb,

then fα(A) = A − εAb if α = ε1/b . So it suffices to study the convergence behaviors of fα(A). 
It can be verified that (exp(tfα(A)))t≥0 is an analytic semigroup for each α > 0, and Rα,t :=
exp((T − t)fα(A)) for α > 0, t ∈ [0, T ] is indeed a family of regularizing operators to (1.1). 
Next we shall present an explicit convergence rate of the family {Rα,t; α > 0, t ∈ [0, T ]}. An 
elementary computation yields that condition (i) in Theorem 3.15 holds with p = 1

b−1 and

Cf =
(

1 − 1
)(

cosωH

) 1
b−1

.

b b cos(bωH )
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In addition, it is readily checked that z − fα(z) maps the sector 
ωH
into 
bωH

with bωH <

π/2 for all α > 0. Obviously, condition (ii) in Theorem 3.15 is satisfied by the qualification 
pair (z−b, α−b), which covers any proper index function ϕ such that the function t �→ tbϕ(t)

is increasing on (0, ∞). In particular, if we choose the index function ϕ(z) = (1 + z)−β with 
0 < β < b, we have

sup
z∈


ωH ,α−1

∣∣∣∣ ϕ(z)

ρc(z)

∣∣∣∣ = sup
z∈


ωH ,α−1

∣∣∣∣ zb

(1 + z)β

∣∣∣∣� sup
t∈(0,α−1)

tb

(1 + t)β
= α−b

(1 + α−1)β
.

Thus we can apply Theorem 3.15. If u(0) ∈ Xϕ , then for each t ∈ [0, T ), using a priori parameter 

choice α(δ) =
[

1
log(1/δ)

]κ

with an appropriate exponent κ > 0 based on the formula (3.22), we 
obtain the logarithmic convergence rate

‖Rα(δ),tf
δ − u(t)‖ = O

([
1

log(1/δ)

]ζ
)

as δ → +0

for some exponent ζ > 0, which depends on β and κ . It is worth mentioning that u(0) ∈ Xϕ if 
and only if u(0) ∈D(Aβ).

3.4. Examples of sectorial operators with a bounded H∞-calculus

The results in subsections 3.2–3.3 were established under assumption (H1) for the sectorial 
operator A. Now we present some examples that fulfill (H1), i.e., some important classes of 
sectorial operators with bounded H∞-calculus. For a general sectorial operator A, let ωH(A)

stand for the minimum of all ω such that A has a bounded H∞-calculus over 
ω. Obviously, 
ωH (A) is larger than the sectorial angle of A [26].

Let us consider Laplacian A = −� defined on Lp(Rn) (1 < p < ∞) as a Fourier multiplier 
operator, i.e.,

A =F−1MmF,

where F denotes the Fourier transform, and Mm is the multiplication operator with a multiplier 
function m(u) = |u|2. Then for each function f in H∞

0 (
σ ) with σ > 0, the operator f (A) is 
identical to the Fourier multiplier operator F−1Mf ◦mF . With the help of Marcinkiewicz’s multi-
plier theorem, one can establish the boundedness of f (A). Moreover, if one considers Laplacian 
−� defined on Lp(Rn, X), then −� has a bounded H∞-calculus over any H∞

0 (
σ ) with σ > 0
whenever X is a UMD-space (cf. [17, Proposition 8.3.4.]).

Now we move to investigate the second order elliptic operators on bounded domains � ⊂R
n

with n ≥ 1. Let Lp(�, μ) denote the usual Lp-space on a measure space (�, μ). It was shown 
in [26, corollary 5.2] that if an operator −A : D(A) ⊂ Lp(�, μ) → Lp(�, μ) (1 < p < ∞) 
generates an analytic contractive and positive semigroup on Lp(�, μ), then ωH(A) < π

2 . In 
particular, we may consider the second order elliptic differential operator on a bounded and 
smooth domain � ⊂R

n (n ≥ 1) of the form:

(Au)(ξ) = −
n∑

∂j (aj,k(ξ)∂ku(ξ)) +
n∑

bj (ξ)∂ju(ξ) + c(ξ)u(ξ) , ξ ∈ �,
j,k=1 j=1
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where c ∈ C(�), aj,k ∈ C1(�) and bj ∈ C(�) for j, k = 1, · · · , n. We denote its Lp(�)-realiza-

tion under Dirichlet boundary condition by Ap, whose domain is D(Ap) := W 2,p(�) ∩W
1,p
0 (�). 

It is known that if Ap satisfies

‖(λ + Ap)u‖Lp(�) ≥ λ‖u‖Lp(�) ∀u ∈ D(Ap) (3.29)

for all λ > 0, then −Ap generates a contraction semigroup (e−tAp)t≥0 (cf. [31, Section 1.4]). Pos-
itivity of the semigroup can be deduced from the maximal principle. Moreover, if Ap is a sectorial 
operator with angle less than π

2 , then −Ap generates an analytic semigroup (e−tAp)t≥0. It was 
shown in [10, theorem 4] and [38, chapter 2, section 6.2] that for bj = 0, the operator Ap is sec-
torial and its induced semigroup is positive, hence Ap possesses a bounded H∞-calculus over a 
sector 
σ with some σ ∈ (0, π2 ). Using the perturbation theorem for H∞-calculus, one can show 
that Ap still has a bounded H∞-calculus if ‖bj‖L∞ is small enough for all j = 1, 2, · · ·n [8]. 
For more elliptic operators with bounded H∞-calculus, we refer to [36] and references therein 
for more detail.

Although the results above have already covered a large class of elliptic differential operators, 
bounded H∞-calculus can also be expected for some �-elliptic pseudo-differential operators. 
Let us consider the system of the form

(Au)(ξ) =
∑

|α|≤2m

aα(Dαu)(ξ), ξ ∈ � ⊂R
n,

where Dα := (−i∂1)
α1 · · · (−i∂n)

αn and the CN×N -valued symbol a(ξ1, ξ2) = ∑
|α|=2m aα(ξ1)ξ

α
2

is elliptic in the sense that

aα ∈ L∞(�), σ (a(ξ1, ξ2)) ⊂ 
ω\{0}, ‖a(ξ1, ξ2)‖ ≤ M

for all ξ1 ∈ R
n and |ξ2| = 1 with ω ∈ (0, π) and M > 0. The boundedness of H∞-calculus 

for A was studied extensively. For � = R
n, one may refer to [1,27] for the Hölder continuous 

coefficients, and [9,19] for continuous coefficients and VMO-coefficients.

4. Convergence of regularizations for half-strip operators

We studied in section 3 the convergence of the regularizing operators constructed by the 
quasi-reversibility method. But as we have seen from section 3, the quasi-reversibility method 
does not take advantage of the semigroup effectively. In this section, we consider the regulariz-
ing operators constructed by the modified quasi-reversibility method for the class of half-strip 
operators. As we will see, this will help us greatly improve our previous convergence results. 
In practical applications, some elliptic operators belong to both sectorial and half-strip classes. 
We will demonstrate (see sections 3.3 and 4.6), the quasi-reversibility method may guarantee 
only the logarithmic-type convergence rates for regularized solutions while the modified quasi-
reversibility method can achieve the Hölder-type convergence rates, under similar assumptions 
on the exact initial value u(0).



3550 D.-H. Chen et al. / J. Differential Equations 265 (2018) 3533–3566
4.1. Definitions of half-strip operators and their functional calculus

In this subsection, we introduce a class of unbounded operators, and establish its abstract 
functional calculus, which is used later as our major analysis tool. We were not aware of the 
discussion about the notion of functional calculus on half-strips in the literature except that it 
was briefly mentioned in [5,6] for the properties of the sum of operator logarithms. We intend to 
provide a more detailed study of the half-strip operators.

Definition 4.17. A densely defined closed operator A : D(A) ⊂ X → X is called half-strip with 
a height ω ∈ [0, +∞) and a parameter a > 0, if the following hold

(1) σ(A) ⊂ Ha,ω.
(2) M1(A, ω′) = sup{‖R(λ, A)‖; |Imλ| ≥ ω′} < ∞ for each ω′ > ω.
(3) M2(A, a′) = sup{‖R(λ, A)‖; Reλ ≤ a′} < ∞ for each a′ ∈ (0, a).

We write the collection of all half-strip operators on X with a height ω and a parameter a by 
H(a, ω). For the sake of exposition, we consider only the parameter a > 0 in the definition of 
H(a, ω), but similar results to what we obtain below still hold for general a ∈ R.

Now, we are going to define a functional calculus for a half-strip operator A ∈ H(a, ω). For 
θ > ω and 0 < a′ < a, we write

E(Ha′,θ ) := {f ∈ H∞(Ha′,θ ) | |f (z)| = O(|Re z|−α) (|z| → +∞) for some α > 1},
then we define the operator f (A) by a Dunford–Riesz integral

f (A) := 1

2πi

∫
�b,θ0

f (z)R(z;A)dz (4.30)

for each f ∈ E(Ha′,θ ), where the integral contour

�b,θ0 := {θ0 + iρ;ρ ∈ [b,+∞)} ∪ {b + it;−θ0 ≤ t ≤ θ0} ∪ {−θ0 + iρ;ρ ∈ [b,+∞)} (4.31)

is positively oriented with a′ < b < a and ω < θ0 < θ . It is easy to see that the integral (4.30)
exists, and f (A) ∈ L(X). An standard argument involving the Cauchy’s theorem shows that the 
definition of f (A) is independent of the actual choice of b and θ0. The following result can be 
obtained by some standard arguments with natural modifications (see, e.g., [17, lemma 2.3.1 and 
proposition 4.2.1]).

Proposition 4.18. For A ∈ H(a, ω), θ > ω and 0 < a′ < a, the following assertions hold

(a) The mapping �A := (f �→ f (A)) : E(Ha′,θ ) −→ L(X) defined above is a homomorphism 
of algebras.

(b) for any f ∈ E(Ha′,θ ),
(1) (f (z)(λ − z)−1)(A) = R(λ, A)f (A) for λ /∈ Ha′,θ ;
(2) if B is a closed operator commuting with the resolvents of A, then B commutes with 

f (A). In particular, f (A) commutes with both A and R(λ, A) for any λ /∈ Ha′,θ .
(c) For any two λ, μ /∈ Ha′,θ , ((λ − z)−1(μ − z)−1)(A) = R(λ, A)R(μ, A).



D.-H. Chen et al. / J. Differential Equations 265 (2018) 3533–3566 3551
We can easily see that the triple (H(Ha′,θ ), E(Ha′,θ ), �A) is an abstract functional cal-
culus. From Proposition 4.18 (c) it follows that z−2(A) is bounded and injective, hence the 
set of regularizers for (H(Ha′,θ ), E(Ha′,θ ), �A) is not empty, so is the domain of the triple 
(H(Ha′,θ ), E(Ha′,θ ), �A). The set of all regularizable functions in (H(Ha′,θ ), E(Ha′,θ ), �A) is 
denoted by MA(Ha′,θ ).

We end this subsection with some basic results from functional calculus for a half-strip op-
erator, and the proof can be in a quite similar manner to the one in [17, lemma 4.2.3 and 
proposition 5.1.7] for strip operators.

Proposition 4.19. Assume A ∈ H(a, ω), 0 < a′ < a, and θ > ω.
(a) If f ∈ H(Ha′,θ ) is regularly decaying at ∞, i.e., |f (z)| ≤ C|z|α as |z| → ∞ for some C ≥ 0
and α > 0, then f belongs to MA(Ha′,θ ), and hence f (A) is well-defined.
(b) Let T > 0 with T ω ∈ [0, π), and λ ∈C\{0} such that | argλ| ∈ (T ω, π], then (λ − e−zT )−1 ∈
H∞(Ha,ω), and (λ − e−zT )(A) is injective. Moreover, e−T A is injective and (C\
T ω) ∩
Pσ(e−AT ) = ∅.
(c) Let {fn}∞n=1 be a net of holomorphic functions on Ha′,θ such that fn converges to f pointwise 
over Ha′,θ as n → ∞.

(1) If β > 1 and

sup
n≥1

sup
z∈Ha′,θ

|fn(z)|(1 + |Re z|β) < ∞,

then f ∈ E(Ha′,θ ) and fn(A) → f (A) strongly as n → ∞.
(2) If {fn}∞n=1 ⊂ H∞(Ha′,θ ), fn(A) ∈ L(X) for all n ≥ 1, and

sup
n≥1

sup
z∈Ha′,θ

|fn(z)| < ∞ , sup
n≥1

‖fn(A)‖ < ∞,

then fn(A) converges strongly to f (A) as n → ∞.

In the sequel, we study the connections between a half-strip operator and a bounded sectorial 
operator. For this purpose, we end this subsection by a composition rule, whose proof is similar 
to the one for the composition rule between sectorial operators and strip operators (see, e.g., [17, 
Theorem 4.2.4]).

Theorem 4.20 (Composition rule). Let A ∈ H(a, ω) and g ∈ M(Ha′,θ ) with a′ ∈ (0, a) and 
θ > ω. Assume that g(A) ∈ Sect(ϕ, b) for some ϕ ∈ (0, π) and b > 0, and for any ϕ′ ∈ (ϕ, π)

and b′ > b, there exist constants c and κ such that 0 < c < a and κ > ω, and g(Hc,κ) ⊂ 
ϕ′,b′ . 
Then f ◦ g ∈MA(Ha′,θ ) and (f ◦ g)(A) = f (g(A)) for all f ∈ Mg(A)(
ϕ′,b′).

4.2. Relations between half-strip and bounded sectorial operators

In this subsection, we first give a condition on the operator A, under which we demonstrate 
that there exists a deep connection between A and A := e−T A, and A is a bounded sectorial 
operator. Via the functional calculus of A, we shall further establish a functional calculus for A, 
which is different from the one for sectorial operators in section 3. This will be crucial for us to 
define the qualification pairs and index functions associated with A. As will be seen later, these 
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concepts are not quite the same as the ones in section 3, and will help us investigate the backward 
evolution equation (1.1) driven by A.

Now we define the class of half-strip operators A we shall study in this section.
(A) A ∈ H(a, ω) and A has a bounded H∞-calculus over a half-strip HωH ,aH

with 0 < ω ≤
ωH < π

2T
and 0 < aH ≤ a, i.e., there exists a constant Ch ≥ 1 such that

‖f (A)‖ ≤ Ch‖f ‖∞ ∀f ∈ H∞(HaH ,ωH
).

Proposition 4.19 implies that A is injective. In addition, one can show that the adjoint A′ is 
also a half-strip operator on X′. Thus, A′ = e−T z(A′) is also injective whence A has a dense 
range in X. Moreover, as shown in the lemma below, A is a bounded sectorial operator.

Lemma 4.21. It holds for each ω′ ∈ (T ωH , π) that

sup{|λ|‖R(λ,A)‖;λ ∈C\
ω′ } < ∞ , (4.32)

and for each h > e−aH T ,

sup{|λ|‖R(λ,A)‖; |λ| > h} < ∞. (4.33)

Moreover, (e−tA)t≥0 is a (real) analytic semigroup generated by −A.

Proof. We choose λ �= 0 ∈ C\
ω′ . From assumption (A) it follows that both λ − A = (λ −
e−zT )(A) and (λ −e−zT )−1(A) are continuous. Then Theorem 2.1 ensures that (λ −e−zT )−1(A)

is indeed the resolvent for λ −A. As λR(λ, A) = λ(λ − e−zT )−1(A), we consider the supreme 
norm of the function g(z) := λ(λ − e−zT )−1 over HaH ,ωH

. It is easy to see that

‖g(z)‖∞ = sup
ξ∈
ϕ,a

|λ(λ − ξ)−1| ≤
⎧⎨⎩

1

sin(| argλ| − ϕ)
if | arg(λ)| − ϕ < π/2,

1 if | arg(λ)| − ϕ ≥ π/2 ,

where ϕ = T ωH and a = e−aH T . Then the boundedness of the H∞-calculus for A implies the 
first estimate (4.32). The second estimate (4.33) can be proven in a quite similar manner.

Finally, for each t ≥ 0, one knows e−tz ∈ H∞(HaH ,ωH
). In addition, by assumption (A)

we have ‖e−tA‖ ≤ Che
−taH for all t ≥ 0. From Proposition 4.18(a) it follows that the 

semigroup property holds: e−tAe−sA = e−(t+s)A for all s, t ≥ 0. It is readily checked that 
supt≥0 ‖e−tA‖ ≤ Ch, and e−tz → 1 over HaH ,ωH

as t → 0+. Thus, Proposition 4.19(c)(2) ap-
plies, so limt→0+ e−Atx = x for any x ∈ X. Then proposition 5.3 in [12, chapter 2] implies that 
(e−tA)t≥0 is a C0-semigroup.

Let us denote by (B, D(B)) the generator of C0-semigroup (e−tA)t≥0. For x ∈ D(A), there 
exists y ∈ X such that x = A−1y. Let τ(z) = z−1 and fα(z) := e−zα−1

α
for α > 0. Then fα(A)x =

gα(A)y for α > 0, with gα := τfα . On the other hand, gα converges to −1 over HaH ,ωH
as 

α → 0+. It is readily checked that there exists C > 0 such that

|gα(z)| ≤ C ∀ z ∈ Ha ,ω .

H H
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Thus, we can apply Proposition 4.19 (c) (2) to obtain that gα(A) → −I strongly as α → +0, 
whence limt→+0(e

−tAx − x)/t = limα→0+ gα(A)y = −Ax. From this it follows that D(A) ⊂
D(B) and B|D(A) = −A. For λ > 0, λ + A is bijective from X to D(A). Since (e−tA)t≥0 is 
uniformly bounded, we have λ ∈ ρ(B). So λ −B is bijective from X to D(B). As λ −B and λ +A

coincide with each other on D(A), we have D(A) = D(B) and −A = B . It remains to show that 
A is a sectorial operator. Indeed, σ(A) is contained in the sector 
γ with angle γ = arctan(ωH

aH
). 

From (A) it follows that ‖λR(λ, A)‖ < ∞ for λ ∈ C\
γ . Therefore the C0-semigroup generated 
by −A is analytic (see. e.g. [12]). �

Lemma 4.21 implies that A is a bounded sectorial operator. More precisely, A ∈ Sect(ω′, b′)
for every ω′ ∈ (ωT , π) and b′ > bT , where

ωT := T ωH , bT := e−aH T . (4.34)

Following the discussion at the end of subsection 3.1, we know that there exists a homomorphism 
�A from E(
ω′,b′) → L(X) and the triple (H(
ω′,b′), E(
ω′,b′), �A) is an abstract functional 
calculus, whose domain is denoted by MA(
ω′,b′). Let us further define

EA :=
⋃

π>ω′>ωT ;b′>bT

EA(
ω′,b′) , MA :=
⋃

π>ω′>ωT ;b′>bT

MA(
ω′,b′).

We can see that (MA, EA, �A) is a proper functional calculus and f (A) is well-defined for 
any f ∈ MA. We now end this subsection with the following important result, which will be 
frequently used in the subsequent sections.

Lemma 4.22. If f ∈MA is uniformly bounded on 
ωT ,bT
, it holds under Assumption (A) that

f (A) ∈ L(X) and ‖f (A)‖ ≤ Ch‖f ‖∞,

where Ch ≥ 1 is the constant in Assumption (A), and ‖f ‖∞ represents the sup-norm of f over 

ωT ,bT

.

Proof. Assume f ∈ MA(
ω′,b′) for some ω′ ∈ (ωT , π) and b′ ∈ (b, +∞). Since the map-
ping z �→ e−T z Hb0,ω0 �→ 
ω′,b′ is a biholomorphic mapping with b0 = 1

T
log 1

b′ , ω0 = ω′
T

and 
H∞(
ω′,b′) ⊂ MA(
ω′,b′), the composition rule (cf. Theorem 4.20) ensures that

f (A) = f (g(A)) = (f ◦ g)(A)

is well-defined for g(A) = (e−T z)(A). As f ◦g is bounded over HaH ,ωH
, Assumption (A) implies

‖f (A)‖ = ‖(f ◦ g)(A)‖ ≤ Ch sup
z∈HaH ,ωH

|(f ◦ g)(z)| = Ch‖f ‖∞. �

Remark 4.23. The result of this subsection can be extended to (strong) strip-type operators. If A
is a strip-type operator of height less than π , then exp(A) can be well-defined but it is not neces-
sarily a sectorial operator. Monniaux’s Theorem states that exp(A) is sectorial provided that iA
generates a C0-group and the underlying space possesses UMD property [17, Theorem 4.4.3.]. 
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Furthermore, if A has bounded H∞-calculus on a strip Stω with the height ω < π , then exp(A)

is a sectorial operator and the natural calculus for it is also bounded.
To see this, consider a complex number λ �= 0 with | argλ| ∈ (ω, π), then we need to an-

alyze the behavior of λR(λ, exp(A)). First, it follows from [17, Theorem 1.3.2 (f)] that (λ −
exp(A))−1 = (λ − exp(z))−1(A). Then the boundedness of the H∞-calculus for A implies that 
(λ − exp(z))−1(A) is bounded, hence a resolvent. That is, λ ∈ ρ(exp(A)) and R(λ, exp(A)) =
(λ − exp(A))−1 is well-defined. One can further show that |λ|‖R(λ, exp(A))‖ is bounded be-
cause the function z �→ λ(λ − exp(z))−1 is bounded on the strip Stω and supz∈Stω

|λ||(λ − ez)−1|
depends on | argλ| −ω. Therefore we can see that exp(A) is indeed a sectorial operator. Next, we 
can apply the composition rule from [17, Theorem 4.2.4], which is also valid for the case when 
A is strip-type and g(A) is sectorial for some g. In our case, we can choose g(z) = exp(z), then 
we can conclude that the natural functional calculus for the sectorial operator exp(A) is bounded 
on some sector.

4.3. Half-strip operators in Hilbert spaces

In order to help us better understand half-strip operators, we shall study their properties in 
Hilbert spaces in this subsection, especially we will establish some criteria for operators in a 
Hilbert space to be half-strip, and then prove that the corresponding half-strip operators possess 
bounded H∞-calculus over some half-strips.

We first recall some concepts. Let H be a complex Hilbert space with inner product (·, ·)H, 
and ω ∈ [0, π2 ]. An operator A : D(A) ⊂ H → H is called ω-accretive if its numerical range 
W(A) := {(Ax, x)H; x ∈D(A), ‖x‖ = 1} is contained in 
ω. Observe that this is equivalent to

|Im (Ax,x)H| ≤ tan(ω)Re (Au,u)H ∀x ∈ D(A).

If ω = π
2 , then A is said to be accretive. The operator A is called m-ω-accretive (resp. 

m-accretive) if it is ω-accretive (resp. m-accretive), and R(A + 1) is dense in H. In addition, 
for ω0 ∈ R, A ≥ ω0 means that A − ω0 is accretive. Then such operators A have the following 
important properties, whose proof can be done similarly to the one for [17, proposition 7.1.2.].

Proposition 4.24. Let A be an operator in the Hilbert space H, ω ∈ [0, π2 ), and a > 0. Then 
A ∈ H(a, ω) if any one of the following assertions holds. Moreover, all the following 5 assertions 
are equivalent.
(1) −A generates a contraction semigroup (S(t))t≥0 with growth order

‖S(t)‖ ≤ e−at ∀ t ≥ 0,

and iA generates a C0-group (T (t))t∈R such that

‖T (t)‖ ≤ eω|t | ∀ t ∈ R.

(2) There are self-adjoint operators B and C such that a ≤ B , −ω ≤ C ≤ ω, and A = B + i C.
(3) The inclusion σ(A) ⊂ Ha,ω , and the following resolvent estimates are satisfied:

‖R(λ,A)‖ ≤ 1 ∀ |Imλ| > ω,
|Imλ| − ω
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‖R(λ,A)‖ ≤ 1

a −Reλ
∀Reλ < a

(4) Both the operators ω ± iA and A − a are m-accretive.
(5) W(A) ⊂ Ha,ω and both of R(A ± (ω + 1)) and R(A + 1) are dense in H.

Similarly to [17, Theorem 7.1.16 ], we can derive the following result.

Proposition 4.25. If A satisfies one of the assertions in Proposition 4.24, then A belongs to 
H(a′, ω) for each 0 < a′ < a, and there exists constant C ≥ 1 such that

‖f (A)‖ ≤ C‖f ‖∞ ∀f ∈ H∞(Ha′,ω) . (4.35)

Proof. We may suppose that f ∈ E(Ha′,ω) and reduce the result to the case when A is bounded. 
More precisely, let A ∈ H(a′, ω′) ∩ L(H) for some 0 < ω′ < ω. Then Proposition 4.24 ensures 
that there exists a decomposition A = B + iC with B and C being self-adjoint operators such 
that B ≥ a′ and −ω′ ≤ C ≤ ω′. We shift the path of integration to ∂Hb,ω for (a′ + a)/2 ≤ b < a

to obtain

f (A) = 1

2πi

∫
∂Hb,ω

f (z)R(z,A)dz

= 1

2πi

∫
γ1

f (z)R(z,A)dz + 1

2πi

∫
γ2

f (z)R(z,A)dz

= 1

2πi

∫
γ1

f (z)R(z,A)dz + 1

2πi

∫
γ2

f (z)[R(z,A) − R(z,A)′]dz

+ 1

2πi

∫
γ2

f (z)R(z,A′)dz

=: (I)1 + (I)2 + (I)3,

where we have used the fact that R(z, A)′ = R(z, A′) for z ∈ ρ(A), and the oriented counter-
clockwise paths γ1 and γ2 are defined by

γ1 = {b + it; −ω ≤ t ≤ ω} and γ2 = {t ± iω; t ≥ b}.

Following the argument in [7, lemma 1] or [17, theorem 7.1.16] with some necessary modifica-
tions, one can estimate (I)2 by ‖(I)2‖ ≤ 2‖f ‖∞. Next we estimate (I)3:

1

2πi

∫
γ2

f (z)R(z,A′)dz

= 1

2πi

∫
f (z)R(z + 2iω,A′)dz − 1

2πi

∫
f (z)R(z − 2iω,A′)dz
Im z=−ω,Rez≥a Im z=ω,Rez≥b
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= 1

2πi

∫
[b,+∞)

f (z)R(z + 2iω,A′)dz − 1

2πi

∫
[b,+∞)

f (z)R(z − 2iω,A′)dz + (J)1

= −2ω

π

+∞∫
b

f (t)R(t + 2iω,A′)R(t − 2iω,A′)dt + (J)1,

where we have used the Cauchy’s theorem and

(J)1 := 1

2πi

0∫
−ω

f (b + is)R(b + is + 2iω,A′)ds + 1

2πi

ω∫
0

f (b + is)R(b + is − 2iω,A′)ds.

From the proof of [7, lemma 1] or [17, theorem 7.1.16] it follows readily that

‖(I)3 − (J)1‖ ≤ 2√
3
‖f ‖∞.

Using Proposition 4.24 (3) we have

‖(I)1‖ + ‖(J)1‖ ≤ 1

2π
sup
z∈γ1

‖R(z,A)‖ × (4ω) × ‖f ‖∞ ≤ 2ω

|a′ − a|π ‖f ‖∞.

The combination of the above estimates yields that (4.35) is valid for the case when A is bounded 
and f ∈ E(Ha′,ω).

For the case when A is unbounded, we consider its bounded approximations

An = (1 − 1

n
)[n(n + ω + iA)−1]′(A − a′)[n(n + ω + iA)−1] + a′, n ∈ N

+.

Clearly, An ∈ H
a′,(1− 1

n
)ω

and limn→∞ Anx = Ax for each x ∈ D(A). Moreover, ‖R(λ, An)‖ is 
uniformly bounded in n ≥ 1 and λ ∈ ∂Hb,ω . This ensures that limn→∞ R(λ, An)x = R(λ, A)x

for all x ∈ X, and thus f (An) → f (A) strongly as n → ∞. Therefore (4.35) is valid when 
f ∈ E(Ha′,ω). Given that f ∈ H∞(Ha′,ω), an interplay of approximation fn(z) := f (z)(n/(n +
ω + iz)2) and Proposition 4.19 yields that fn(A) → f (A) strongly as n → ∞. Thus inequality 
(4.35) is still valid for such f . This completes the proof. �
4.4. Regularizing operators and their convergence

Regularizing operators can be generated in different approaches. In this section, we shall study 
a family of regularizing operators that is constructed by the modified quasi-reversibility method, 
and their regularized solutions. We recall the constant bT in (4.34), then for any interval I :=
(0, a] ⊂ (0, bT ] and a family of functions {fα}α∈I in MA, we can define a family of operators 
{fα(A)}α∈I . To approximate the ill-posed backward evolution equation (1.1), we first solve the 
following regularized system{

u′(t) + fα(A)u(t) = 0, 0 < t < T,

u(T ) = f δ (4.36)
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for each α ∈ I . Let xα,δ be the exact initial value of the solutions for (4.36), i.e., xα,δ :=
eTfα(A)f δ . Using xα,δ as an initial value, we then consider the forward evolution equation

{
u′(t) + Au(t) = 0, 0 < t < T,

u(0) = xα,δ,
(4.37)

which is well-posed due to Lemma 4.21 for each α ∈ I and δ > 0, and use all the solutions 
to construct a family of regularizing operators for the backward evolution equation (1.1). More 
precisely, we approximate the exact solutions of (1.1) by the regularized solutions

Mα,tf
δ := e−tAxα,δ = e−tA(eTfα(A)f δ), t ∈ [0, T ], α ∈ I . (4.38)

To study the convergence behavior of {Mα,t : α ∈ I, t ∈ [0, T ]}, we now introduce some def-
initions and notations that are similar to those used for the unbounded sectorial operators in 
subsection 3.3. ϕ is called an index function (for A) if ϕ ∈ H∞(
ωT ,bT

) and ϕ(A) is injective. 
Then we define a subspace Xϕ ⊂ X, consisting of all elements in D(ϕ(A)−1), endowed with the 
norm:

‖x‖ϕ = ‖ϕ(A)−1x‖ ∀x ∈ D(ϕ(A)−1). (4.39)

It is easy to verify that Xϕ is a Banach space.

Definition 4.26. A pair of functions (ρc, ρr) ∈ MA×C([0, bT ]) is called a qualification pair if it 
holds that ρc(z) �= 0 for z ∈ 
ωT ,bT

, ρr : [0, bT ] �→ R
+ is an increasing function, and ρr(t) → 0

as t → 0+.

Definition 4.27. A family {gα}α∈Is is called a regularization associated with a qualification pair 
(ρc, ρc) if there exists some constant R1 > 0 such that

sup
λ∈
ωT ,bT

|1 − zgα(z)| ≤ R1 ∀α ∈ I, (4.40)

sup
z∈
ωT ,bT

|(1 − zgα(z))ρc(z)| ≤ R1ρr(α) ∀α ∈ I. (4.41)

Definition 4.28. An index function (for A) is said to be a proper index function if there exists 
some cϕ > 0 such that

|ϕ(z)| ≤ cϕϕ(|z|) ∀ z ∈ 
ωT ,bT
, (4.42)

and ϕ|(0,bT ] is a non-negative and increasing function satisfying ϕ(|z|) → 0 as |z| → 0.

There are some significant differences between the index functions for half-strip and secto-
rial operators. In particular, the index function for a half-strip operator is increasing while it is 
decreasing for a sectorial operator.
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Definition 4.29. We say that the qualification (ρc, ρr) covers an index function ϕ if there exists 
a constant c′ > 0 such that

sup
z∈
ωT ,bT

,|z|≥α

∣∣∣∣ ϕ(z)

ρc(z)

∣∣∣∣ ≤ c′ ϕ(α)

ρr(α)
. (4.43)

In this case we say that ϕ is covered by (ρc, ρr) with constant c′.

Following the argument in the proof of Proposition 3.10 with some necessary modifications, 
we can show the following result.

Proposition 4.30. Let {gα}α∈Is be a regularization associated with some qualification pair 
(ρc, ρr). Then, Agα(A) converges strongly to the identity I as α → 0+.

Proposition 4.31. Let {gα}α∈Is be a regularization associated with a qualification pair (ρc, ρr), 
and ϕ a proper index function covered by (ρc, ρr) with constant c′ > 0. Then, we have the fol-
lowing convergence rate

‖(I −Agα(A))x‖ ≤ Cϕ,hϕ(α)‖x‖ϕ ∀x ∈ Xϕ, (4.44)

with Cϕ,h := ChR1(c
′ +cϕ), where the constants R1, cϕ and c′ are from (4.40), (4.42) and (4.43).

Proof. We can derive the result by a reasoning similar to that used in Proposition 3.14. So we 
give only a brief outline of the proof below. For any x ∈ Xϕ , there exists y ∈ X such that x =
ϕ(A)y and ‖y‖ = ‖x‖ϕ . It is easy to see that for each α ∈ I ,

‖(I −Agα(A))ϕ(A)y‖
≤ Ch sup

z∈
ωT ,bT
,|z|≥α

|(1 − zg(z))ϕ(z)|‖y‖ + Ch sup
z∈
ωT ,α,

|(1 − zg(z))ϕ(z)|‖y‖

:= (I)1,α + (I)2,α,

where we apply Theorem 2.1 (c) and assumption (A). Now using the arguments similar to that 
leading to (3.20), one can bound (I)1,α and (I)2,α by ChR1c

′ϕ(α)‖y‖ and ChR1cϕϕ(α)‖y‖, 
respectively. This yields our desired result readily. �
4.5. Convergence rates of the regularized solutions

Now, we are in a position to present our main results. To this end, we first establish a log-
arithmic convexity result under the assumption (A), which follows from the composition rule 
(Theorem 4.20) and the moment inequality for sectorial operators, which goes back to the 1960s 
and can be found in several references (see [17,32], for instance).

Lemma 4.32. Let (e−tA)t≥0 be the analytic semigroup generated by −A. Then, it holds for each 
t ∈ (0, T ) that

‖e−tAx‖ ≤ Cco‖x‖1−t/T ‖e−T Ax‖t/T ,
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where Cco depends only on t , and is uniformly bounded for all t ∈ (0, T ).

Theorem 4.33. Let {fα}α∈Is be a family of functions in MA of the form:

fα(·) = 1

T
ln(gα(·)), α ∈ I,

where {gα}α∈I satisfies the following conditions:
(i) {gα}α∈Is is a regularization associated with a qualification pair (ρc, ρr), which covers a 
proper index function ϕ, and satisfies for a constant C∗

ϕ > 0,

sup
z∈
ωT ,bT

∣∣∣∣zϕ(z)

ρc(z)

∣∣∣∣ ≤ C∗
ϕ . (4.45)

(ii) The following estimate holds for some ̃c > 0 and q > 0,

sup
z∈
ωT ,bT

|gα(z)| ≤ c̃
q
√

α
, α ∈ I .

Then for x† = u(0) ∈ Xϕ with ‖x†‖ϕ ≤ Q, we have the error estimate

‖Mα,tf
δ − u(t)‖ ≤ CH (

δ
q
√

α
+ Qϕ(α))1−t (δ + Qρr(α))t ∀ t ∈ [0, T ], α ∈ I, (4.46)

for some CH > 0. Furthermore, under a priori parameter choice

α(δ) = δκ with 0 < κ/q < 1, (4.47)

we have the following estimate of the convergence rate

‖Mα,tf
δ − u(t)‖ =O

(
(δη + Qϕ(δκ))1−t (δ + Qρr(δ

κ))t
)

as δ → +0,

for all 0 ≤ t ≤ T , with η := 1 − κ/q .

Proof. For any fixed α ∈ I , an interplay of Lemma 4.22 and condition (ii) implies that

xα,δ := eTfα(A)f δ = gα(A)f δ (4.48)

is well-defined, so is the forward evolution equation (4.37). Then we have

‖Mα,0f
δ − u(0)‖ ≤ ‖gα(A)(f δ − f )‖ + ‖(gα(A)A− I )x†‖

:= (J)1,α + (J)2,α.

By Lemma 4.22 and condition (ii), (J)1,α can be bounded by Chc̃δ
q
√

α
. Applying Proposition 4.31, we 

have (J)2,α ≤ Cϕ,hϕ(α)‖x†‖ϕ for some Cϕ,h > 0. Then the combination of these two estimates 
yields
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‖Mα,0f
δ − u(0)‖ ≤ Chc̃δ

q
√

α
+ Cϕ,hQϕ(α). (4.49)

On the other hand, we can compute at t = T :

‖Mα,T f δ − e−AT u(0)‖ ≤ ‖Agα(A)(f δ − f )‖ + ‖A(g(A)A− I )x†‖
:= (J′)1,α + (J′)2,α.

By Definition 4.27 and Proposition 4.31, we can estimate (J′)1,α by Ch(1 + R1)δ. Moreover, we 
can see from Definition 4.27 that

(J′)2,α ≤ Ch sup
z∈
ωT ,bT

|(1 − zgα(z))ρc(z)
zϕ(z)

ρc(z)
|‖x†‖ϕ ≤ ChC

∗
ϕR1‖x†‖ϕρr(α).

Then an application of Lemma 4.32 implies that

‖Mα,tf
δ − u(t)‖ ≤ CH (

δ
q
√

α
+ Qϕ(α))1−t (δ + Qρr(α))t

for all t ∈ [0, T ], where CH := max{Chc̃ + Cϕ,h, Ch(1 + R1,), ChC
∗
ϕR1} max{Cco, 1}. Now the 

application of the parameter choice (4.47) completes the proof. �
Remark 4.34. It is worth mentioning that the condition (4.45) is trivial if ρc(z) decays reasonably 
slowly at origin, i.e., |z|α � |ρc(z)| over the sector 
ωT ,bT

for some 0 < α ≤ 1. In this case, any 
bounded index function will satisfy (4.45). This condition is reasonable in many applications, 
which shall be seen in subsection 4.6. On the other hand, the function g(z) := zϕ(z) is always 
an index function. If ρc is an index function, then an equivalent interpretation of the condition 
(4.45) is that Xg is embedded into Xρc continuously.

To complete the picture of regularization, we now discuss some adaptive strategy. More 
precisely, we discuss a strategy of choosing the regularization parameter α without precise 
knowledge of index functions. Fix q∗ > 1 and α0 >

q
√

δ, and set αk := α0q
k∗ , k = 1, 2, · · · , N

such that N = max{k ≥ 1 : αk−1 ≤ as}, and

�q∗ := {αk; k = 0,1, · · · ,N}.
Now we propose the following adaptive strategy:

Compute xαk,δ successively for α0, α1, · · · as long as the following estimate holds:

‖xαk,δ − xαk−1,δ‖ ≤ 4CK

δ

q
√

αk−1
with CK := CH max{Q,1} .

Then we choose the regularization parameter after the termination:

α̂ := max{αk : ‖xαk,δ − xαk−1,δ‖ ≤ 4CK

δ

q
√

αk−1
}.

Let us define a class of index functions by setting
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Fq∗,D := {ϕ; ϕ(q∗t) ≤ Dϕ(t) ∀t ∈ (0, bT /q∗] with constants D > 0 and q∗ > 1}. (4.50)

If ϕ|(0,bT ] is also a concave function, it is not difficult to verify that ϕ ∈ Fc,c for any c > 1.

Theorem 4.35. Under the same assumptions as in Theorem 4.33, the above adaptive strategy 
yields the following error estimate for any ϕ ∈Fq∗,D:

sup
t∈[0,T ]

‖Mα̂,tf
δ − u(t)‖ ≤ CK,qD q

√
q∗ϕ(�−1

H (δ)),

where CK,q∗ = 2ChCK(
2 q
√

q∗
q
√

q∗−1 + 1) and �H (t) := q
√

tϕ(t), t ∈ I .

Proof. Let

α∗ = max{α ∈ �q∗ ,
q
√

αϕ(α) ≤ δ},
and α∗ = αl and α̂ = αm for some 1 ≤ l, m ≤ N . In addition, we have l ≤ m. We first notice from 
the assumptions that ϕ is a proper index function, then we can use the monotonicity of ϕ|(0,bT ]
and the estimate (4.49) to obtain

‖xαl,δ − xαl−1,δ‖ ≤ ‖x† − xαl,δ‖ + ‖x† − xαl−1,δ‖
≤ CK(ϕ(αl) + δ

q
√

αl

+ ϕ(αl−1) + δ

q
√

αl−1
)

≤ 4CK

δ

q
√

αl−1
.

In view of this and the triangle’s inequality, we derive

‖xα̂,δ − x†‖ ≤ ‖x† − xαl,δ‖ +
m−l−1∑

k=0

‖xαm−k,δ − xαm−k−1,δ‖

≤ CK(ϕ(αl) + δ

q
√

αl

) +
m−l−1∑

k=0

4CKδ

q
√

αm−k−1

≤ 2CKδ

q
√

α∗
+ 4CKδ

q
√

α∗

m−l∑
k=1

1

q

√
qm−l−k∗

≤ CK,q∗
Ch

δ

q
√

α∗
.

As q
√

q∗α∗ϕ(q∗α∗) > δ, we can bound δ/ q
√

q∗α∗ by ϕ(q∗α∗). Then we infer by noting that ϕ ∈
Fq∗,D , the boundedness of semigroup (e−tA)t≥0, and the monotonicity of �H :

‖Mα̂,tf
δ − u(t)‖ ≤ Ch‖xα̂,δ − x†‖ ≤ CK,q∗D

q
√

q∗ϕ(α∗)

≤ CK,q∗D
q
√

q∗ϕ(�−1
H (δ)) ∀ t ∈ [0, T ] . �
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4.6. Application to specific regularizations

We recall that operator A in (1.1) satisfies the condition (A) throughout this subsection. Then 
we consider the regularized backward evolution equation

{
v′
α,δ(t) + Aαvα,δ(t) = 0, 0 < t < T,

vα,δ(T ) = f δ,
(4.51)

where Aα is given by

Aα := − 1

pT
ln(αp + e−pT A), α > 0, (4.52)

with the parameter p ≥ 1 satisfying pT ωH ∈ [0, π2 ). In the sequel we shall use the parameters 
ωT and bT defined by (4.34).

Now we will approximate the backward evolution equation (1.1) with the family of regular-
ized solutions Mα,tf

δ defined by (4.38). Writing A := e−T A, Aα can be rewritten as

Aα := 1

T
lngα(A) α ∈ (0, bT ],

where gα(z) := p

√
1

αp+zp for α ∈ (0, bT ].

Lemma 4.36. We have the following assertions:
(a) There exists some positive constant γ0, depending only on ωT and bT , such that

|z − p
√

αp + zp| ≤ γ0α ∀ z ∈ 
ωT ,bT
, α ∈ (0, bT ].

(b) One can find a constant γ > 0, depending only on ωT and bT , such that

∣∣∣∣ z
p
√

(αp + zp)
− 1

∣∣∣∣ ≤ γ
α

α + |z| ∀ z ∈ 
ωT ,bT
, α ∈ (0, bT ].

Proof. From the binomial series for (1 + z)1/p it follows immediately that

| p
√

(1 + zp) − 1| ≤ Cineq |z| ∀z ∈ 
ωT ,1 (4.53)

for some Cineq > 0. Thus one has

|λ − p
√

1 + λp| = |λ||1 − p
√

λ−p + 1| ≤ Cineq

for |λ| ≥ 1 and λ ∈ 
ωT
. We then conclude that the function f (λ) := |λ − p

√
1 + λp| is uniformly 

bounded on 
ω , which implies the first assertion.

T
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Now let us deal with the assertion (b). By assertion (a), it suffices to show that there exists 
some constant γ1 > 0 such that∣∣∣∣ α + |z|

p
√

(αp + zp)

∣∣∣∣ ≤ γ1 ∀z ∈ 
ωT ,bT
, α ∈ (0, bT ]. (4.54)

To this end, we only need to consider the asymptotic behavior of the function | 1+|z|
p
√

(1+zp)
| as z →

∞. Setting λ = zp , we can easily see that (1+|λ|1/p)

(1+λ)1/p is uniformly bounded on 
pωT
, using the 

fact that pωT < π
2 . This completes the proof. �

From Lemma 4.36 it follows immediately that {gα}α∈(0,bT ] is a regularization associated with 
the qualification pair (z, α). On the other hand, using the following inequality:∣∣∣∣ α

p
√

αp + zp

∣∣∣∣ ≤ 1

cosωT

∀z ∈ 
ωT
,

we know that condition (ii) in Theorem 4.33 holds with q = 1. By Remark 4.34, condition (4.45)
in Theorem 4.33 is always true for any bounded index function. The following proposition gives 
a criterion for a proper index function ϕ to be covered by the qualification pair (z, α).

Proposition 4.37. Let ϕ be a proper index function, then ϕ is covered by the qualification pair 
(z, α) with a constant K > 0 if one of the following conditions holds, where K = cϕ for the cases
(a) and (b), and K = cϕϕ(bT )/ϕ(t̂) for the cases (c) and (d), and cϕ is from Definition 4.28:

(a) ϕ(t)/t is monotonically decreasing on (0, bT ].
(b) ϕ(t) is concave on (0, bT ].
(c) ϕ(t)/t is monotonically decreasing on (0, ̂t] ⊂ (0, bT ].
(d) ϕ(t) is concave on (0, ̂t] ⊂ (0, bT ].

Let us consider the function ϕ(z) := log−β(1/z) with β > 0, which is a holomorphic function 
on 
ωT ,bT

due to the fact that 0 < bT < 1 and 0 < ωT < π
2 . In addition, we can easily check

|ϕ(z)| ≤ log−β(1/|z|) ∀z ∈ 
ωT ,bT
,

and the function ϕ|[0,bT ] is strictly increasing on [0, bT ], and concave on (0, e−(β+1)]. Obviously, 
the identity (4.45) holds trivially. In view of Proposition 4.37, the index function ϕ is covered by 
the qualification pair (z, α). By the reasoning above we know that Theorem 4.33 is applicable, 
and hence the following result follows immediately.

Corollary 4.38. Let x† = u(0) ∈ D(Aβ) with some β > 0, and Mα,t be the family of regularizing 
operators associated with (4.52). Then we have the following convergence rate

‖Mα,tf
δ − u(t)‖ =O(log−β(1−t/T )(1/

√
δ)

√
δ
t/T

) as δ → +0, (4.55)

for any t ∈ [0, T ] with the parameter choice α = √
δ.



3564 D.-H. Chen et al. / J. Differential Equations 265 (2018) 3533–3566
Remark 4.39. By Lemma 3.6, A is also a sectorial operator. For each β ∈ (0, 1), let us denote by 
(B, D(B)) the β power of A as a sectorial operator. Then it raises a natural question that whether 
B is identical to Aβ . The answer is affirmative. Indeed, using [17, corollary 3.3.6] and Fubini’s 
theorem, we have

B−1x = 1

�(β)

∞∫
0

tβ−1e−tAxdt = A−βx ∀x ∈ D(A2).

As D(A2) is dense in X, and both A−β and B belong to L(X), we can extend the identity above 
for all x ∈ X. This proves our claim.

Compared with the existing results, e.g., [3, Theorem 4.4], which were for self-adjoint op-
erators and Hilbert spaces, our results apply to much more general operators and spaces. Even 
for self-adjoint operators A, our smoothness requirement is also much weaker. Indeed, Corol-
lary 4.38 requires that x† ∈ D(Aβ) for some β > 0, while it needs x† ∈ ⋂∞

n=1 D(An) in [3, 
Theorem 4.4].

Example 4.40. Suppose that � is a bounded domain in Rn with smooth boundary ∂�. Consider 
the heat equation with Dirichlet boundary condition of the form:⎧⎪⎨⎪⎩

∂u(t,ξ)
∂t

− ∑n
i,j=1 Dj(α(ξ)Diu(t, ξ)) + β(ξ)u(t, ξ) = 0, (t, ξ) ∈ (0, T ) × �,

u(x, t) = 0, (t, x) ∈ (0, T ) × ∂�,

u(0, x) = u0,

(4.56)

where α ∈ C1(�), and β ∈ C(�). We further assume that α(ξ) is real-valued and strictly positive, 
and Re (β)(ξ) ≥ 0 for all ξ ∈ �. Set a := minξ∈�(a(ξ)) and ω = maxξ∈� Im (β(ξ)). Let H =
L2(�) and A :D(A) ⊂ H → H be defined by

Au = −
n∑

i,j=1

Dj

(
α(ξ)Diu(ξ)

) + β(ξ)u(ξ) ∀u ∈ D(A),

with the domain D(A) := H 2(�) ∩ H 1
0 (�). If we set Cu = Im (β)(ξ)u(ξ) for any u ∈ X, and

Bu = −
n∑

i,j=1

Dj

(
α(ξ)Diu(ξ)

) +Re (β)(ξ)u(ξ) ∀u ∈D(A),

then it is not difficult to see that A = B + iC, and that both B and C are self-adjoint operator with 
B ≥ a

Cp
and −ω ≤ B ≤ ω, where Cp is the constant in Poincaré inequality for the domain �, 

i.e., the minimal eigenvalue of the Laplacian in the domain �. Propositions 4.24 and 4.25 imply 
that A ∈ H(a′, ω) and A has a bounded H∞-calculus over Ha′,ω for any 0 < a′ < a/Cp . So 
assumption (A) is fulfilled if both ω and T are small enough. Therefore, both Theorem 4.33 and 
Corollary 4.38 are applicable. In addition, A is also a sectorial operator, and its fractional power 
spaces have a deep connection with Sobolev spaces. To be more precise, D(Aβ) is equivalent to 
H 2β(�) if β ∈ [0, 3/4) and β �= 1 [38]. Thus Corollary 4.38 implies that
4
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‖uα,δ(t) − u(t)‖ =O(log−β(1−t/T )(1/
√

δ)δ
t

2T ) as δ → +0, ∀t ∈ [0, T ], (4.57)

for the parameter choice α = √
δ if x† = u(0) ∈ H 2β(�) with β ∈ [0, 1/4).
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