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1. INTRODUCTION

In this paper, we are interested in achieving some new a priori estimates of
the solutions to the second-order elliptic interface problem

�r � ðbðxÞruðxÞÞ ¼ f ðxÞ in O ð1:1Þ

and the parabolic interface problem

@

@t
uðx; tÞ � r � ðbðxÞruðx; tÞÞ ¼ f ðx; tÞ in O� ð0; TÞ; ð1:2Þ
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FIG. 1. Domain O; its subregions O1; O2 and interface G:
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where O is a convex polyhedral domain in R3; and bðxÞ is positive and
piecewise constant in O:

bðxÞ ¼ b1; x 2 O1; bðxÞ ¼ b2; x 2 O2: ð1:3Þ

Here, O1 is an open subdomain of O and lies strictly inside O; whereas
O2 ¼ O=O1; see Fig. 1 (for clarity, only a two-dimensional figure is shown
there).

In practical applications, O1 and O2 may represent two distinct materials
or fluids with different conductivities or diffusions. And on the interface
G ¼ @O1 between O1 and O2; the solution uðxÞ satisfies the following jump
conditions:

½u
 ¼ 0; ½b@nu
 ¼ g on G; ð1:4Þ

where ½v
 stands for the jump of a function v across G and n the unit outward
normal to the boundary of O1: Throughout the paper, for any function v

defined on O; we will frequently use v1 and v2 to denote its restrictions in O1

and O2; respectively, and for definiteness, we let ½v
ðxÞ ¼ v2ðxÞ � v1ðxÞ for
x 2 G: On the boundary @O; we assume the following homogeneous
Dirichlet condition:

uðxÞ ¼ 0 on @O: ð1:5Þ

But the subsequent results can be naturally extended to the cases with non-
homogeneous boundary conditions and Neumann boundary conditions.

The interface problem (1.1)–(1.5) is often encountered in material sciences
and fluid dynamics. It is the case when two materials or fluids with different
conductivities or diffusions are involved. Therefore it is of practical interest
to study the behavior of the solution to the system (1.1)–(1.5), and in
particular the effect of the discontinuous coefficient bðxÞ on the solutions.
Also, such behavior and effect may help numerical analysts design more
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efficient numerical methods. The regularities of the solutions to problem
(1.1)–(1.5) and various a priori estimates of the solutions have been widely
investigated in the literature. For example, for the elliptic interface problem
(1.1), (1.4) and (1.5), it is well known (cf. [2, 3, 5, 12, 13, 14, 28, 29] that
the solution u is of good regularity in the individual subdomains O1 and
O2; namely, ui 2 H2ðOiÞ; i ¼ 1; 2: But u has lower regularity in the entire
domain O; usually one has only u 2 H1

0 ðOÞ; even when the interface G is
sufficiently smooth. And in this case, the solution u admits the following a
priori estimate:

jju1jjH2ðO1Þ þ jju2jjH2ðO2Þ4Cðjj f jjL2ðOÞ þ jjgjjH1=2ðGÞÞ; ð1:6Þ

where C is a constant independent of u; f and g; but depends strongly and
implicitly on the coefficients b1; b2 and the jumps in the coefficients across
the interface.

On the other hand, there are also many existing numerical methods for
solving the interface problem (1.1)–(1.5), see [17, 18] for finite difference
methods and [5, 8] for finite element methods. Due to the non-explicit
dependence of the a priori estimate (1.6) on the coefficients b1; b2 and their
jumps across the interface, all the known error estimates of the existing
numerical methods share a common weakness: it is unclear about how the
accuracy of the numerical solutions is affected by the coefficients and the
jumps in the coefficients.

To our knowledge, there seems little existing work in the literature, which
provides the a priori estimates for the interface problem (1.1)–(1.5) with
explicit appearance of the coefficients in the estimates. The purpose of this
paper is to make some efforts in this direction. We will present some uniform
a priori estimates, similar to (1.6), but with an explicit dependence on the
coefficients b1 and b2; and the jumps of the coefficients across the interface.
Such uniform a priori estimates, which are themselves interesting enough
from the mathematical point of view, may provide us with more insights
into physical behaviors of the solutions. On the other hand, the estimates
may also make it possible to achieve error estimates which are uniform with
respect to the jumps in the coefficients of the interface problems.

We end this section with some notations. Throughout the paper, we
assume that the interface G is of C2-smooth. It is well known that the
solutions to the considered interface problem have no H2ðOiÞ-regularity in
each individual subregion Oi ði ¼ 1; 2) if G is only piecewise smooth.

Sobolev spaces will be widely used here. For any m50; HmðOÞ denotes the
standard Sobolev spaces of mth order while H�mðOÞ stands for the dual
space of Hm

0 ðOÞ: The norms and seminorms of HmðOÞ are denoted by jj � jjm; O
and j � jm; O; respectively. We refer to [1, 7, 19, 20] for more details about
Sobolev spaces.
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For ease of exposition, we will frequently use C to denote a generic
constant, which depends only on the geometric property of O1 and O2:
Furthermore, we shall often use the notation ‘‘9 � � �’’, which equals to
‘‘4C � � �’’ for some generic constant C:

2. UNIFORM A PRIORI ESTIMATES FOR ELLIPTIC
INTERFACE PROBLEMS

2.1. Problem Transformation

In this section, we confine ourselves to the elliptic interface problem (1.1).
Note that the coefficients b1 and b2 may differ significantly in
their magnitudes. This is physically more interesting, and is also our
primary focus in the paper. Namely we will consider mainly the cases
with either b15b2 or b25b1: Problem (1.1), (1.4) and (1.5) can be recast as
follows:

�Dui ¼ f=bi in Oi; i ¼ 1; 2; ð2:1Þ

½u
 ¼ 0; ½b@nu
 ¼ g on G; ð2:2Þ

u ¼ 0 on @O: ð2:3Þ

Recall that u1 and u2 are the restrictions of u in O1 and O2; respectively, as
noted earlier in the Introduction. We introduce two auxiliary functions ũi 2
H1

0 ðOiÞ; i ¼ 1; 2; satisfying

�Dũi ¼ f=bi in Oi: ð2:4Þ

It is well known that (cf. [7, 20]) ũi 2 H2ðOiÞ and

jjũi jj2; Oi
9jj f jj0; Oi

=bi; i ¼ 1; 2: ð2:5Þ

Now consider the following difference functions:

%uuiðxÞ ¼ uiðxÞ � ũiðxÞ; x 2 Oi;

g1ðxÞ ¼ b1@nũ1ðxÞ � b2@nũ2ðxÞ; x 2 G:

By (2.5) and the trace theorem, we have

jjg1jj1=2; G9b1jjũ1jj2; O1
þ b2jjũ2jj2; O2

9jj f jj0; O: ð2:6Þ
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While it is easy to see from (2.1)–(2.5) that %uu1 and %uu2 satisfy

D %uui ¼ 0 in Oi; i ¼ 1; 2; ð2:7Þ

½ %uu
 ¼ 0; ½b@n %uu
 ¼ g þ g1 on G; ð2:8Þ

%uu ¼ 0 on @O: ð2:9Þ

This leads to the following estimates for the solution u of (2.1)–(2.3):

jjujj2; Oi
9jj %uui jj2; Oi

þ jj f jj0; Oi
=bi; i ¼ 1; 2: ð2:10Þ

Our subsequent task is to estimate the harmonic functions %uu1 and %uu2:

2.2. Integral Representation

We intend to use the theory of layer potentials for the estimation of the
terms jj %uui jj2; Oi

ði ¼ 1; 2Þ in (2.10). To this end, we first recall some existing
results on the layer potentials, and refer to [4, 15, 26] for more details. Given
a simply connected domain D with Lipschitz continuous boundary @D; for
any density function q; the single layer potential on D is defined by

SDqðxÞ ¼
Z
@D

Eðx � yÞqðyÞ dsy; x 2 R3; ð2:11Þ

where EðxÞ is the fundamental solution associated with the Laplacian:

Eðx � yÞ ¼ �
1

4p
1

jx � yj
;

and dsy is the surface measure. In the subsequent analysis, we shall also
frequently use SD; restricted on @D; as a boundary integral operator on @D:
For ease of notation, we will still use the same notation SD for this
restriction operator when there is no confusion caused. For a function v

defined in R3; we denote

vðxÞ ¼ lim
t!0þ

vðx  tnxÞ; x 2 @D;

@nvðxÞ ¼ lim
t!0þ

hnx;rvðx  tnxÞi; x 2 @D

when the related limits exist. Here nx is the unit outward normal to @D at the
point x: We have the classical trace formulas (cf. [4, 15, 21, 22, 26]):

ðSDqÞðxÞ ¼ SDqðxÞ; ð2:12Þ

@nSDqðxÞ ¼ ð1
2

I þKn

DÞqðxÞ; ð2:13Þ
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where KD is the integral operator given by

KDqðxÞ ¼
1

4p
p:v:

Z
@D

hny; y � xi

jx � yj3
qðyÞ dsy;

and Kn

D is the L2-adjoint of KD; that is,

Kn

DqðxÞ ¼
1

4p
p:v:

Z
@D

hnx; x � yi

jx � yj3
qðyÞ dsy:

For the later use, we now list some known results about these integral
operators. For the basic notation and theory about pseudo-differential
operators used below, we refer to [23, 24, 25].

Lemma 2.1. For the operators SD; KD and Kn

D; we have

1. For any real number l with jlj > 1
2
; lI �Kn

D is an invertible operator

on L2ð@DÞ (cf. [6]).

2. SD maps L2ð@DÞ into H1ð@DÞ; and has a bounded inverse (cf. [15,
p. 56]).

3. SD; KD and Kn

D are all the pseudo-differential operators of order �1
on the compact manifold @D; the principal symbol of SD is �1

2
jxj�1 (cf. [4, pp.

87–93]).

With the above preparations, we can now characterize the solution %uu to
system (2.7)–(2.9) by some simple layer potentials.

Lemma 2.2. The solution %uu of problem (2.7)–(2.9) can be characterized by

%uuðxÞ ¼ ðSO1
fÞðxÞ � ðSOcÞðxÞ; x 2 O; ð2:14Þ

where c ¼ @n %uu2 on @O with n being the unit outward normal to @O; and f 2
H1=2ðGÞ solves

b1 þ b2
2ðb1 � b2Þ

I �Kn

O1

� �
f ¼ �@nðSOcÞ þ

1

b1 � b2
ðg þ g1Þ on G: ð2:15Þ

Proof. We first show that the difference on the right-hand side of (2.14)
makes sense. For this, it suffices to verify that the integral equation (2.15)
has a unique solution f 2 L2ðGÞ: By the definitions of SOc and g1; we know
that the right-hand side of (2.15) lies in H1=2ðGÞ: Then the desired result
follows immediately from the first statement in Lemma 2.1. Moreover,
noting that b1þb2

2ðb1�b2Þ
I �Kn

O1
is a pseudo-differential operator of order 0 with

the principal symbol b1þb2
2ðb1�b2Þ

; it is then an elliptic operator of order 0. By the

basic theory of pseudo-differential operators, we further have f 2 H1=2ðGÞ:
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Secondly, applying a similar technique to the one as used in [10, 11], one
can show that the following problem has at most one solution in H1ðR3Þ:

Dw ¼ 0 in O1 [ O2 [ ðR3= %OOÞ; ð2:16Þ

½w
 ¼ 0; ½b@nw
 ¼ g þ g1 on G; ð2:17Þ

w�
2 � wþ

2 ¼ 0;
@w�

2

@n
�

@wþ
2

@n
¼ c on @O: ð2:18Þ

By the evaluation formulas (2.12) and (2.13) we know that

R1ðxÞ ¼ SO1
fðxÞ �SOcðxÞ

is a solution of (2.16)–(2.18). On the other hand, it is easy to verify that

R2ðxÞ ¼
%uuðxÞ in O;

0 otherwise:

(

also satisfies (2.16)–(2.18). This implies equality (2.14). ]

Remark 2.1. The potential representation (2.14) for the piecewise
harmonic function %uu was initiated by [10, 11], where the representation
plays a crucial role in a different context, the identification of discontinuous
conductivity coefficients. The derivation of such a representation in the
Lipschitz boundary case is very technical (cf. [10, 11]). For the simpler case
of C2-smooth boundary as needed here, one can find a different and more
intuitive derivation of the representation, see [9].

2.3. A Priori Estimates

We are now ready to derive the a priori estimates on the solution u to
system (2.1)–(2.3). For this, it suffices to estimate %uu1 and %uu2 of the solutions
to (2.7)–(2.9) by using (2.10). Since %uu1 and %uu2 are harmonic in O1 and O2;
respectively, we have by (2.15) that

jj %uu1jj2; O1
þ jj %uu2jj2; O2

9jj %uujj3=2;G9jjSO1
fjj3=2;G þ jjSOcjj3=2;G: ð2:19Þ

Since SO1
is an invertible pseudo-differential operator of order �1; we have

(cf. [4, p. 262])

jjSO1
fjj3=2;G9jjfjj1=2;G: ð2:20Þ

On the other hand, for any C2-smooth surface G0 �� O and x 2 G0; the
kernel function Eðx � yÞ of the operator SO is C1-smooth. So we can
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directly see

jjSOcjj3=2;G09jjSOcjj2;G09jjcjja;@O 8a 2 R: ð2:21Þ

This together with (2.19) and (2.20) implies

jj %uu1jj2; O1
þ jj %uu2jj2; O2

9jjfjj1=2;G þ jjcjj0;@O: ð2:22Þ

Further, it follows from the condition %uu2 ¼ 0 on @O and (2.14) that

ðSO1
fÞðxÞ ¼ ðSOcÞðxÞ; x 2 @O;

then by the isomorphism of SO (cf. [4]) and the same argument as for (2.21)
we obtain

jjcjj0; @O9jjSOcjj1; @O ¼ jjSO1
fjj1; @O9jjfjja; G 8a 2 R:

This with (2.22) yields

jj %uu1jj2; O1
þ jj %uu2jj2; O2

9jjfjj1=2; G: ð2:23Þ

Now it remains to bound jjfjj1=2;G: It follows from (2.15) that

b1 þ b2
2jb1 � b2j

jjfjj1=2; G4 jjKn

O1
fjj1=2; G þ jj@nðSOcÞjj1=2; G

þ
1

jb1 � b2j
ðjjgjj1=2; G þ jjg1jj1=2; GÞ: ð2:24Þ

By Lemma 2.1 we know Kn

O1
is a pseudo-differential operator of order �1;

which implies (cf. [4, 23])

jjKn

O1
fjj1=2; G9jjfjj�1=2; G: ð2:25Þ

We next choose a domain O0 such that O0 �� O; with G as its interior
boundary and @O0 2 C2 as its exterior boundary, respectively. Since SOc is
harmonic in O; we obtain from (2.21) and the basic regularity estimates for
elliptic operators (cf. [7, 20]) that

jj@nðSOcÞjj1=2; G 9jjSOcjj2; O09jjSOcjj3=2; G þ jjSOcjj3=2; @O0

9 jjcjj�1=2; @O ¼ jj@n %uu2jj�1=2; @O: ð2:26Þ

Now for any Z 2 H1=2ð@OÞ; we introduce an auxiliary function vZ 2 H1ðO2Þ
satisfying

DvZ ¼ 0 in O2;

vZ ¼ 0 on G;

vZ ¼ Z on @O:
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It is clear that jjvZjj1; O2
9jjZjj1=2; @O and

ð@n %uu2; vZÞ@O ¼
Z
O2

r %uu2 � rvZ dx;

where ð�; �Þ@O denotes the dual product between H�1=2ð@OÞ and H1=2ð@OÞ:We
then have

jð@n %uu2; ZÞ@Oj ¼ jð@n %uu2; vZÞ@Oj4jjr %uu2jj0; O2
jjrvZjj0; O2

9jjr %uu2jj1; O2
jjZjj1=2; @O;

which directly leads to

jj@n %uu2jj�1=2; @O9jjr %uu2jj1; O2
9jj %uujj1=2; G: ð2:27Þ

Combining (2.24)–(2.27) and (2.6) we obtain

b1 þ b2
2jb1 � b2j

jjfjj1=2; G 9jjfjj�1=2; G þ jj %uujj1=2; G

þ
1

jb1 � b2j
ðjjgjj1=2; G þ jj f jj0; OÞ: ð2:28Þ

Moreover, by the representation (2.14) we know

SO1
f ¼ %uu þSOc on G;

which together with (2.21) and (2.27) and the fact that SO1
is an

isomorphism from H�1=2ðGÞ onto H1=2ðGÞ (cf. [4, p. 258]) yields

jjfjj�1=2; G 9jjSO1
fjj1=2; G9jj %uujj1=2; G þ jjSOcjj1=2; G

9 jj %uujj1=2; G þ jjcjj�1=2; G9jj %uujj1=2; G: ð2:29Þ

Combining this with (2.28) gives

b1 þ b2
2jb1 � b2j

jjfjj1=2; G9jj %uujj1=2; G þ
1

jb1 � b2j
ðjjgjj1=2; G þ jj f jj0; OÞ: ð2:30Þ

We now proceed to estimate jj %uujj1=2; G: It is easy to see from (2.7)–(2.9) that
%uu 2 H1

0 ðOÞ and solvesZ
O1

b1r %uu1 � rv1 dx þ
Z
O2

b2r %uu2 � rv2 dx ¼ �
Z
G
ðg þ g1Þv ds 8v 2 H1

0 ðOÞ:

Taking v ¼ %uu; and noting %uui are harmonic in Oi; i ¼ 1; 2; we have by the
extension theorem (cf. [27]) that

b2jj %uujj
2
1=2; G 9

Z
O1

b1r %uu1 � r %uu1dx þ
Z
O2

b2r %uu2 � r %uu2 dx

9 jj %uujj1=2; Gðjjgjj�1=2; G þ jjg1jj�1=2; GÞ;
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that is,

jj %uujj1=2; G9
1

b2
ðjjgjj�1=2; G þ jj f jj�1; OÞ; ð2:31Þ

where we have used the basic fact that jjg1jj�1=2; G9jj f jj�1; O; which can be
easily verified from the definition of g1 and the same duality argument as
used for deriving (2.27).

Plugging (2.31) into (2.30) leads to

b1þb2
2jb1 � b2j

jjfjj1=2; G9
1

b2
ðjjgjj�1=2; Gþjj f jj�1; OÞþ

1

jb1 � b2j
ðjjgjj1=2; G þ jj f jj0; OÞ;

or equivalently,

jjfjj1=2; G 9
2jb1 � b2j
b1 þ b2

1

b2
ðjjgjj�1=2; G þ jj f jj�1; OÞ

þ
2

b1 þ b2
ðjjgjj1=2; G þ jj f jj0; OÞ: ð2:32Þ

Now letting k be the jump of the coefficient across the interface, namely,
k ¼ b1=b2; then by (2.10), (2.23) and (2.32) we have derived the following
theorem:

Theorem 2.1. In the case that the coefficient function bðxÞ of the interface

problem (1.1), (1.4) and (1.5) is piecewise constant, see (1.3), the solution u

satisfies the following a priori estimates:

b1jju1jj2; O1
9jj f jj0; O1

þ
2jk � 1jk

k þ 1
ðjjgjj�1=2; G þ jj f jj�1; OÞ

þ
2k

1þ k
ðjjgjj1=2; G þ jj f jj0; OÞ; ð2:33Þ

b2jju2jj2; O2
9jj f jj0; O2

þ
2jk � 1j
k þ 1

ðjjgjj�1=2; G þ jj f jj�1; OÞ

þ
2

1þ k
ðjjgjj1=2; G þ jj f jj0; OÞ: ð2:34Þ

Corollary 2.1. Under the assumption of Theorem 2.1, the solution u

of the interface problem (1.1), (1.4) and (1.5) satisfies the a priori estimates

b1jju1jj2; O1
9jjgjj1=2; G þ jj f jj0; O; b2jju2jj2; O2

9jjgjj1=2; G þ jj f jj0; O; ð2:35Þ

if b15b2; and

b1jju1jj2; O1
9kðjjgjj1=2; G þ jj f jj0; OÞ; b2jju2jj2; O2

9jjgjj1=2; Gþjj f jj0; O: ð2:36Þ

if b25b1:



HUANG AND ZOU580
Remark. Physically one is more interested in the cases that the jumps in
the coefficients across the interface are very large, that is, either b15b2 or
b25b1: Corollary 2.1 provides some important information about the effects
of the coefficients on the behaviors of the solutions to the interface problem
(1.1), (1.4) and (1.5). In the sense of H2-norm, the (conductivity or diffusion)
coefficient b1 has influence mainly on the behavior of the solution in the
region O1; and has no direct influence on the behavior of the solution in the
region O2; no matter whether b15b2 or b14b2: On the other hand, b2 has
influence only on the behavior of the solution in the region O2 when b15b2:
But it has direct influence on the behavior of the solution both in the regions
O1 and O2 when b14b2:

In the energy-norm case, we have also similar results as stated in the
following theorem:

Theorem 2.2. Under the assumption of Theorem 2.1, the solution u of the

interface problem (1.1), (1.4) and (1.5) satisfies the a priori estimates

b1jju1jj1; O1
9jjgjj�1=2; G þ jj f jj�1; O;

b2jju2jj1; O2
9jjgjj�1=2; G þ jj f jj�1; O; ð2:37Þ

if b15b2; and

b1jju1jj1; O1
9kðjjgjj�1=2; G þ jj f jj�1; OÞ;

b2jju2jj1; O2
9jjgjj�1=2; G þ jj f jj�1; O; ð2:38Þ

if b25b1:

Proof. Noting the definition of ũi (cf. (2.4)), we easily see

jjũjj1; Oi
9

1

bi

jj f jj�1; Oi
; i ¼ 1; 2: ð2:39Þ

Since %uui is harmonic in Oi; by (2.31) and (2.39) we have

jju2jj1; O2
9jjũ2jj1; O2

þ jj %uu2jj1; O2
9jjũ2jj1; O2

þ jj %uujj1=2; G

9
1

b2
jj f jj�1; O2

þ
1

b2
ðjjgjj�1=2; G þ jj f jj�1; OÞ;

which gives

b2jju2jj1; O2
9jjgjj�1=2; G þ jj f jj�1; O:
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Similarly, we obtain

jju1jj1; O1
9jũ1jj1; O1 þ jj %uu1jj1; O1

9jjũ1jj1; O1
þ jj %uujj1=2; G

9
1

b1
jj f jj�1; O1

þ
1

b2
ðjjgjj�1=2; G þ jj f jj�1; OÞ;

or

b1jju1jj1; O1
9jj f jj�1; O1

þ kðjjgjj�1=2; G þ jj f jj�1; OÞ:

The desired result then follows immediately. ]

Now, with a simple example below, we show that the jump k are
indispensable in the estimates (2.36) and (2.38). Consider the following
interface problem:

� Dui ¼ �1=bi in Oi; i ¼ 1; 2;

½u
 ¼ 0; ½b@nu
 ¼ 0 on G;

u ¼ 0 on @O;

where O1 ¼ B1=2ð0Þ and O ¼ B1ð0Þ; with Brð0Þ being a ball of radius r

centered at 0: In view of the symmetry of the domain and the conditions, we
can assume uðx1; x2; x3ÞjOi

¼ uiðrÞ; i ¼ 1; 2; under the polar coordinate
system. Then the above interface problem reduces to

1

r2
@

@r
r2
@u

@r

� �
¼ 1=b1; 05r51=2;

1

r2
@

@r
r2
@u

@r

� �
¼ 1=b2; 1=25r51;

½u
jr¼1=2 ¼ 0; ½bu0ðrÞ
jr¼1=2 ¼ 0;

uðrÞjr¼1 ¼ 0:

By a straightforward computation we find

u1 ¼ ujO1
¼

1

6b1
r2 �

1

24b1
þ

3

24b2

� �
;

u2 ¼ ujO2
¼

1

6b2
r2 �

1

6b2
;

which yields

b1=b29b1jju1jj2; O1
9b1=b2; 19b2jju2jj2; O2

91;
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and

b1=b29b1jju1jj1; O1
9b1=b2; 19b2jju2jj1; O2

91:

This example verifies that in the case with b25b1; the coefficient b2 has
influence not only on the behavior of the solution in the domain O2 but also
strongly on the behavior of the solution in the domain O1: This justifies our
conclusions in Corollary 2.1 and Theorem 2.2.

3. UNIFORM A PRIORI ESTIMATES FOR PARABOLIC
INTERFACE PROBLEMS

In this section, we consider the following parabolic interface problem:

@tu �r � ðbðxÞruÞ ¼ f ðx; tÞ in QT ¼ O� ð0; TÞ ð3:40Þ

with the initial and boundary conditions

uðx; 0Þ ¼ u0ðxÞ in O; u ¼ 0 on @O� ð0; TÞ ð3:41Þ

and the jump conditions on the interface G

½u
 ¼ 0; ½bðxÞ@nu
 ¼ gðx; tÞ across G� ð0; TÞ; ð3:42Þ

where bðxÞ is positive and piecewise constant, that is,

bðxÞ ¼ b1; x 2 O1; bðxÞ ¼ b2; x 2 O2:

Here O; O1; O2 and G are the same as stated in Section 1.
We first introduce some notations. For a Banach space B; we define

Hmð0; T ;BÞ ¼ fuðtÞ 2 B for a:e: t 2 ð0; TÞ and jjujjHmð0;T ;BÞ51g;

where jjujjHmð0;T ;BÞ is the norm of Hmð0; T ;BÞ and given by

jjujjHmð0;T ;BÞ ¼
Xm

k¼0

Z T

0

jjuðkÞðtÞjj2B dt

( )1=2

:

Define H2;1ðQT Þ ¼ H1ð0; T ;L2ðOÞÞ \ L2ð0; T ;H2ðOÞÞ; and its norm by

jjujjH2;1ðQT Þ;l ¼ fl2jjujj2L2ð0;T ;H2ðOÞÞ þ jjujj2H1ð0;T ;L2ðOÞg
1=2;
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where l is a given parameter. We also define

X ¼ H2ðO1Þ \ H2ðO2Þ \ H1
0 ðOÞ;

Y ¼ H1ðO1Þ \ H1ðO2Þ \ L2ðOÞ:

It was shown in [5, 16] that if f 2 H1ð0; T ;L2ðOÞÞ; g 2 L2ð0; T ;H1=2ðGÞÞ
and u0 2 H1ðOÞ; then the parabolic interface problem (3.40)–(3.42) has a
unique solution u 2 L2ð0; T ;X Þ \ H1ð0; T ;Y Þ: In this section, we attempt to
present some uniform a priori estimates for the solution u of (3.40)–(3.42),
similar to the a priori estimates obtained in Section 2.

Theorem 3.1. The solution of the interface problem (3.40)–(3.42) satisfies

the a priori estimates

jju1jjH2; 1ðQ1
T
ÞÞ; b19jj f jj0; QT

þ jjgjjL2ð0; T ; H1=2ðGÞÞ þ b1=2i jjru0jj0; Oi
; ð3:43Þ

jju2jjH2; 1ðQ2
T
Þ; b29jj f jj0; QT

þ jjgjjL2ð0; T ; H1=2ðGÞÞ þ b1=2i jjru0jj0; Oi
ð3:44Þ

if b15b2; and

jju1jjH2; 1ðQ1
T
ÞÞ;b19kðjj f jj0; QT

þ jjgjjL2ð0; T ; H1=2ðGÞÞ þ b1=2i jjru0jj0; Oi
Þ; ð3:45Þ

jju2jjH2; 1ðQ2
T
ÞÞ;b29jj f jj0; QT

þ jjgjjL2ð0; T ; H1=2ðGÞÞ þ b1=2i jjru0jj0; Oi
; ð3:46Þ

if b25b1: Here Q1
T ¼ O1 � ð0; TÞ; Q2

T ¼ O2 � ð0; TÞ:

Proof. We only consider the case that b25b1; the other case can be
handled similarly. It follows from (3.40)–(3.42) that, for a.e. t 2 ð0; TÞ; u ¼
uðx; tÞ solves

�r � ðbruÞ ¼ f � @tu in O;

u ¼ 0 on @O;

½u
 ¼ 0; ½b@nu
 ¼ g on G: ð3:47Þ

Then, by Corollary 2.1 we know

b1jju1jj2; O1
9kðjjf � @tujj0; O þ jjgjj1=2; GÞ; ð3:48Þ

b2jju2jj2; O2
9jjf � @tujj0; O þ jjgjj1=2; G: ð3:49Þ
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It should be emphasized that the generic constants in (3.48) and (3.49) are
independent of the time variable t: Taking the L2ðOÞ-inner product with @tu

on both sides of (3.40) gives

jj@tujj20; O � ðr � ðbðxÞruÞ; @tuÞ ¼
Z
O

f @tu dx: ð3:50Þ

Since u 2 H1ð0; T ;Y Þ and ½u
 ¼ 0 on G; we know

½@tu
 ¼ 0 on G: ð3:51Þ

By the integration by parts and (3.51) we then obtain

ðr � ðbðxÞruÞ; @tuÞ ¼
X2
i¼1

biðr � rui; @tuiÞ

¼ �
X2
i¼1

biðrui; @truiÞ �
Z
G
@tu½b@nu
 ds

¼ �
1

2
@t

X2
i¼1

bi jjruijj
2
0; Oi

 !
�
Z
G
@tug ds:

This together with (3.50) yields

jj@tujj20; O þ
1

2
@t

X2
i¼1

bi jjrui jj20; Oi

 !
¼
Z
O

f @tu dx �
Z
G
@tug ds;

and further by Cauchy–Schwarz inequality, we obtain

jj@tujj20; O þ
1

2
@t

X2
i¼1

bi jjrui jj20; Oi

 !
9jj f jj20; O þ jjgjj20;G: ð3:52Þ

Integrating both sides of (3.52) with respect to t from 0 to T implies

jj@tujj
2
0; QT

þ 1
2
fb1jjru1ð�; TÞjj20; O1

þ b2jjru2ð�; TÞjj20; O2
g

9jj f jj20; QT
þ jjgjj2L2ð0;T ;L2ðGÞÞ

þ 1
2
ðrb1jju1ð�; 0Þjj20; O1

þ b2jjru2ð�; 0Þjj20; O2
Þ: ð3:53Þ
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Now it follows from (3.48), (3.49) and (3.53) that

b1jju1jjL2ð0;T ;H2ðO1ÞÞ 9kfjj f jj0; QT
þ jj@tujj0; QT

þ jjgjjL2ð0;T ;H1=2ðGÞÞg

9 kfjj@tujj20; O þ jjgjjL2ð0;T ;H1=2ðGÞÞ

þ
X2
i¼1

b1=2i jjruið�; 0Þjj0; Oi
g; ð3:54Þ

b2jju2jjL2ð0; T ; H2ðO2ÞÞ 9jj f jj0; QT
þ jj@tujj0; QT

þ jjgjjL2ð0; T ; H1=2ðGÞÞ

9 jj@tujj
2
0; O þ jjgjjL2ð0;T ;H1=2ðGÞÞ

þ
X2
i¼1

b1=2i jjruið�; 0Þjj0; Oi
: ð3:55Þ

Moreover, it follows from (3.40) that

@tui ¼ f þ biDui in Oi; i ¼ 1; 2;

which by (3.54) and (3.55) implies

jj@tuj jjL2ð0;T ;L2ðOjÞÞ9jj f jj0; QT
þ
X2
i¼1

b1=2i jjru0jj0; Oi
; j ¼ 1; 2: ð3:56Þ

So we have proved (3.45) and (3.46). ]
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