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In this work, we propose a novel direct sampling method (DSM) to recover the support 
of two different types of electromagnetic inhomogeneous inclusions simultaneously, with 
only one or two sets of noisy boundary measurement data. The DSM leverages upon an 
important mutually almost orthogonality property between the fundamental solutions of 
the forward problem and some proper families of probing functions. Two proper families of 
probing functions that possess desired properties are proposed to reconstruct the support 
of inhomogeneous inclusions accurately in the direction that is parallel to or vertical to the 
measurement surface separately. For the two families of probing functions, the mutually 
almost orthogonality property is carefully verified through both theoretical justifications 
and numerical experiments. The novel DSM is fast to compute, effective under limited 
measurement data, and very stable and robust against random noise of reasonable size. All 
these features are verified through extensive numerical experiments.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

We will propose a direct sampling method (DSM) to recover the support of electromagnetic inhomogeneous inclusions 
of different physical nature, i.e., the electric permittivity ε and the magnetic permeability μ in a physical media, where 
both unknown coefficients can be fully anisotropic in a time-harmonic Maxwell equation, with just one or two sets of noisy 
boundary measurements in R3.

The inverse problem is highly nonlinear, ill-posed and challenging numerically, and finds wide applications in various 
fields, including non-destructive testing [18], subsurface objects detection [22], earth surface mapping [30], and biomedical 
imaging [7]. In particular, the new DSM will be very useful for real scenarios when we are interested in both electric 
and magnetic properties of a physical domain, such as in reconstructing physical properties of metamaterials [1], detecting 
ferromagnetic minerals [22, Chapter 2], tracking synthetic nanoparticles with special electric and magnetic properties in 
complex biological environments [26], and the test for the hepatic iron overload in patients [29]. Moreover, since our method 
features its robustness and effectiveness under noisy and inadequate measurement data, the reconstruction from DSM can 
also serve as some fast, reliable, and reasonable initial estimates for computationally much more expensive optimization 
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type methods or be applied to the cases where general qualitative information regarding inhomogeneous inclusions is 
required in a fast and stable manner.

As the inverse coefficient problem associated with the time harmonic Maxwell equation appears frequently in practical 
applications, many numerical methods have been proposed to solve this highly ill-posed non-linear inverse problem. In gen-
eral, iterative methods that minimize an optimization functional with certain regularization are most popular which at the 
same time may be time consuming to solve and easily trapped by some local minima. In this case, many non-iterative meth-
ods are proposed to avoid the optimization process, for instance, linear sampling method [9], factorization type methods 
[23], multiple signal classification imaging method [3,33], methods using topological derivative [27], and reverse time migra-
tion [12]. For an in-depth introduction to non-iterative numerical methods for recovering electromagnetic inhomogeneous 
inclusions, we refer to recent monographs [10,13]. All these methods are applicable only for recovering inhomogeneous 
media of a single physical nature. To our knowledge, there are still no sampling type numerical methods in the literature 
that apply for more practical and challenging cases of recovering inhomogeneous inclusions of different physical nature si-
multaneously, which is the main focus of this work. There are some existing numerical methods for recovering two different 
types of electromagnetic inhomogeneous inclusions simultaneously, but these are mostly traditional type iterative methods 
for minimizing a large optimization functional with certain regularization [6,32], which are computationally very demanding 
and expensive and also require good and quantitative initial starting values (both geometric shapes and physical properties) 
of unknown inhomogeneous inclusions. These traditional type methods are essentially different from our direct sampling 
type methods to be developed in this work.

In this paper, motivated by the previous direct sampling type methods for wave and non-wave type inverse problems 
developed for recovering inhomogeneous media of a single physical nature, see, e.g., [15–17,20,21,24,28], we propose a 
novel DSM for more practical and challenging cases of recovering inhomogeneous inclusions of different physical nature 
simultaneously [14], while it still preserves the features of the existing direct sampling type methods, i.e., easy to implement, 
fast to compute, highly parallelable, and robust under noisy and limited measurement data. In order to be able to identify 
the support of inhomogeneous inclusions associated with different types of anisotropic coefficients, we will construct two 
new families of probing functions, and each family consists of two sets of probing functions that only interact well with 
the signal that comes from electric or magnetic inhomogeneous inclusions separately. The crucial property associated with 
probing functions is called the mutually almost orthogonality property, which will be described explicitly in the next section 
and verified. This crucial property allows the new DSM to be able to identify both the support of inhomogeneous inclusions 
and their physical features.

Following the above mentioned general idea of direct sampling type methods, we construct and investigate two families 
of probing functions for a representative measurement surface, i.e., the unit sphere. The construction of the first family is 
based on our unique observation that the sharpness of index functions can be improved through a surface Laplacian. Our 
investigation on the corresponding imaging kernel functions with this new family of probing functions shows a significant 
improvement of the accuracy in recovering the support of inhomogeneous inclusions distributed in the direction that is 
parallel to the measurement surface. On the other hand, in order to improve the accuracy of the reconstruction in the radial 
direction, i.e., the direction that is vertical to the measurement surface, we construct the probing functions such that their 
corresponding kernel functions approximate Gaussian kernels in the radial direction. For both of the two families of probing 
functions, the desired mutually almost orthogonality property is carefully verified.

The remaining of the paper is organized as follows. In section 2, with an introduction for the inverse problem under 
consideration, we discuss the motivation and general formulation of direct sampling type methods. In section 3, assuming 
the incident field is known, we propose two families of probing functions that possess the mutually almost orthogonality 
property and can generate quite satisfactory reconstruction results in the direction that is parallel to or vertical to the mea-
surement surface separately. The desired mutually almost orthogonal property is investigated in detail through theoretical 
justifications and numerical experiments. In section 4, we further consider the inverse problem of recovering the support of 
inhomogeneous inclusions from the measurement data for both the electric and magnetic field on the boundary, with no 
prior knowledge of the incident field. The design and analysis of the corresponding DSM are very similar to section 3, hence 
we highlight the difference and provide key steps for this scenario in constructing suitable index functions. In section 5, 
a set of numerical experiments are conducted to verify the accuracy, robustness, and stability of the proposed DSM under 
measurement data with reasonably large noise.

We end this section with an introduction to some frequently used notation in the following sections. �a and �a represent 
the real and imaginary parts of a complex number a, and S2 and B(0, 1) are the unit sphere and unit ball in R3. jn(x) and 
h(1)

n are the spherical Bessel function of the first kind and the spherical Hankel function of the first kind of order n, and 
Pm

n (t) denotes the associated Legendre polynomial of order (n, m).

2. General principles of direct sampling type methods

In this section, we consider an inverse electromagnetic scattering problem, where the electromagnetic field is induced by 
a known incident field Ei , and study the more practical and challenging case that the incident field is unknown in section 4. 
Consider the time-harmonic electric field system

∇ × (
1 ∇ × E) − k2εE = 0 in R3 , (2.1)

μ

2
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where k is a fixed wavenumber, and ε and μ are the electric permittivity and magnetic permeability of the physical media, 
which we aim to recover. We allow the medium to be anisotropic, namely,

ε = diag(ε1, ε2, ε3), μ = diag(μ1,μ2,μ3) , (2.2)

where �{εi} and �{μi} are positive for i = 1, 2, 3. Letting Ei and Es := E − Ei be the incident and scattered fields, then Ei

satisfies a similar equation to (2.1), while Es is imposed to meet the standard radiation condition:

∇ × (μ0
−1∇ × Ei) − k2ε0 Ei = 0 in R3 , (2.3)

lim
rx→∞ rx(∇ × Es × x̂ − ikEs) = 0 , (2.4)

where rx = |x| and x̂ = x/rx for any x ∈R3, and ε0 and μ0 are the coefficients of the homogeneous background.
Consider a bounded domain � in R3 with a C1,1 boundary, on which one or two sets of data of ν × E is measured 

associated with one frequency k. Assume there are some inhomogeneous inclusions of different physical nature lying in �, 
induced from the electric permittivity and magnetic permeability, respectively, i.e.,

�μ := supp{μ − μ0} ⊂ �, �ε := supp{ε − ε0} ⊂ �. (2.5)

The main objective of this work is to construct a DSM to recover all these inhomogeneous inclusions of different physical 
nature simultaneously.

The primary motivation of direct sampling type methods is the approximate orthogonality property between fundamental 
solutions of the forward problem and properly chosen families of probing functions in some dual products. We now recall 
the free space Green’s function �x for the Maxwell equation, satisfying

∇ × ∇ × �x(y) − k2�x(y) = δx(y)I 3 , ∇y · �x(y) = 0 , (2.6)

and radiation condition (2.4). For any p0 ∈C3, we can represent �x as

�x · p0 = (Gx p0) + 1

k2
∇∇ · (Gx p0) , ∇ × (�x · p0) = ∇ × (Gx p0) , (2.7)

where Gx is the Green’s function for the Helmholtz equation:

Gx(y) := 1

4π

eik|y−x|

|y − x| . (2.8)

In order to design a direct sampling type method, we would like to represent the boundary measurement, i.e., ν × Es , 
with a discrete sum of the fundamental solutions of the forward problem. Hence, we first substitute Es = E − Ei and (2.3)
into (2.1) to derive

∇ × ∇ × Es − k2 Es = −∇ ×
[( 1

μ
− 1

μ0

)
∇ × E

]
+ k2(ε − ε0)E . (2.9)

Then with an application of the Green’s representation formula, we have

Es(x) = −
∫
�

�x

{
∇ ×

[( 1

μ
− 1

μ0

)∇ × E
]
− k2(ε − ε0)E

}
dy . (2.10)

For the case that μ is a smooth function, Es can be written as

Es(x) =
∫
�ε

k2(ε − ε0)�x Edy −
∫

�μ

( 1

μ
− 1

μ0

)
(∇ × �x)(∇ × E)dy ; (2.11)

and if μ is a piecewise constant, we may write Es as

Es(x) =
∫
�ε

k2(ε − ε0)�x Edy −
( 1

μ
− 1

μ0

)( ∫
�μ

(∇ × �x)(∇ × E)dy +
∫

∂�μ

(ν × ∇ × �x)Edsy

)
. (2.12)

For either case, we notice that the scattered field can be approximated by a linear combination of the Green’s function 
�x(yi) and its curl ∇ × �x(z j), namely, it holds for some ai , b j ∈C and c i , d j ∈C3 that

Es(x) ≈
∑

ai(�x(yi) · c i) +
∑

b j∇ × (�x(z j) · d j) , x ∈ ∂�, yi ∈ �ε , z j ∈ �μ . (2.13)

i j

3
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In the sequel, we will call �yi and ∇ × �z j the electric monopole and magnetic monopole, respectively.
As we will see, the new direct sampling type method reconstructs the inhomogeneous media �ε and �μ by means of 

two index functions:

Imo(z) = 〈ν × Es , w1
z · pz〉L2(∂�)

n(z)
, Idi(z) = 〈ν × Es , w2

z · qz〉L2(∂�)

n(z)
, ∀ z ∈ �, (2.14)

which are formed basically by the measurement data and two probing functions w1
z and w2

z . In (2.14), pz , qz ∈ C3 are 
two probing directions to be determined, and n(z) is some normalization. We know the magnetic monopole associated with 
∇ × �x can be considered as an analog of the electric dipole, which will be used in the second index function above. This 
is why we add the subscript “di” there. We would like to remark that, as we see from (2.14), the evaluation of the index 
functions mainly involves the inner products between the measurement data and the probing functions associated with the 
sampling point z. Hence, the index functions at all sampling points are able to evaluate completely independently of each 
other and the resulting direct sampling method is therefore implementable fully in parallel.

We now illustrate the basic principle for the above index functions to reconstruct inhomogeneous inclusions. For this, 
we define four kernel functions:

K 1
cx,pz

(x, z) = 〈ν × (�1
x · cx) , w1

z · pz〉L2(∂�)

n(z)
, K 2

dx,pz
(x, z) = 〈ν × (∇ × �2

x · dx) , w1
z · pz〉L2(∂�)

n(z)
; (2.15)

K 3
cx,qz

(x, z) = 〈ν × (�1
x · cx) , w2

z · qz〉L2(∂�)

n(z)
, K 4

dx,qz
(x, z) = 〈ν × (∇ × �2

x · dx) , w2
z · qz〉L2(∂�)

n(z)
. (2.16)

With these kernel functions and the approximation (2.13), we can rewrite the index functions approximately:

Imo(x) ≈
∑

i

ai K 1
cx,p yi

(x, yi) +
∑

j

b j K 2
dx,pz j

(x, z j) , (2.17)

Idi(x) ≈
∑

i

ai K 3
cx,qyi

(x, yi) +
∑

j

b j K 4
dx,qz j

(x, z j) . (2.18)

Then the following mutually almost orthogonality property will be crucial to our numerical reconstruction.

Mutually almost orthogonality property (MAOP):

• The magnitude of K 1
cx,pz

(x, z) and K 4
dx,qz

(x, z) reach a maximum at z = x under a proper choice of probing directions 
pz and qz;

• The magnitude of K 2
dx,pz

(x, z) and K 3
cx,qz

(x, z) are small compared with that of K 1
cx,pz

(x, z) and K 4
dx,qz

(x, z) for any x, z

under any choices of probing directions pz and qz .

We can also restate the above property as follows: when x is close to z, the first set of probing functions w1
z interact well 

with �x while the second set of probing functions w2
z interact strongly with ∇ × �x . However, the interactions between 

w1
z and ∇ × �x and between w2

z and �x are relatively weak for any choices of x and z. Therefore, the index Imo(z) will be 
relatively large only when z ∈ �ε while Idi(z) will be relatively large only when z ∈ �μ . These behaviors are used to help 
locate inhomogeneous inclusions and identify their physical properties. Moreover, the resolution and the accuracy of the 
reconstruction can be improved if the kernel functions are sharper in the sense that 

∣∣K 1
cx,pz

(x, z)
∣∣ and 

∣∣K 4
dx,qz

(x, z)
∣∣ decay 

faster for z along any direction that points away from x. This motivates us to mainly investigate the properties of the kernel 
functions corresponding to some special choices of probing functions in section 3.

Under the settings above, two index functions in (2.14) give rise to our direct sampling method (DSM):

Given the measurement data ν × Es on ∂�, and a set of discrete sampling points z ∈ �,
(i) evaluate Imo to recover the electric permittivity inclusions, i.e., supp(ε − ε0);
(ii) evaluate Idi to recover the magnetic permeability inclusions, i.e., supp{μ − μ0}.

Before we proceed to explicitly define probing functions, we would like to remark that for the reconstruction of the 
anisotropic medium, especially for the common case that ε and μ are symmetric matrices, we can write

ε = Q ∗D Q , D = diag(ε1, ε2, ε2) ,

μ = Q̃ ∗ D̃ Q̃ , D̃ = diag(μ1,μ2,μ2)

where Q and Q̃ are two unitary matrices. Then the almost orthogonality property that we shall rely on to reconstruct ε
and μ is still valid, by using the above diagonalizations of ε and μ and following the basic analyzes in the subsequent 
sections with some technical modifications. However, for the sake of presentation, we mainly focus on the cases that ε and 
μ are scalar or diagonal matrices in this work, while the method is indeed applicable to more general cases which will be 
demonstrated in example 3 of section 5.
4
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3. Probing functions and verification of the mutually almost orthogonality property

In this section, we construct some appropriate families of probing functions for us to use in recovering the support of 
inhomogeneous inclusions of different nature via the index functions proposed in (2.14). Based on the general principles 
for direct sampling type methods we introduced in section 2, we verify the desired mutually almost orthogonality property 
for two new families of probing functions, and for the most representative measurement surface in real applications, i.e., 
∂� = S2 and � = B(0, 1) where B(0, 1) is the unit ball.

We start with a brief overview of the arrangements in the subsequent subsections.

• Two sets of probing functions are introduced in section 3.1, and the mutually almost orthogonality property is verified.
• To improve the reconstruction accuracy in the direction that is parallel to the measurement surface, we apply in sec-

tion 3.2 the spherical Laplacian to the probing functions and then make necessary modifications to enhance numerical 
stability. The proposed strategy is carefully verified with the help of spherical vector waves through both theoretical 
justification and numerical experiments.

• To improve the reconstruction accuracy in the direction that is vertical to the measurement surface, i.e., the radial 
direction, we construct in section 3.3 the probing functions such that the resulting kernel functions approximate a 
Gaussian kernel in the radial direction with a relatively small error. The corresponding mutually almost orthogonality 
property is justified.

We remark that the families of probing functions to be constructed in sections 3.2 and 3.3 can be used either indepen-
dently or simultaneously for more desirable reconstruction results in applications.

3.1. A family of probing functions motivated by back-propagation

In this subsection, we construct probing functions that are directly motivated by the idea of back-propagation, that is, 
using the imaginary part of the Green’s function as the kernel function. This family of probing functions will be a reasonable 
candidate for our DSM when the wavenumber k is relatively large, and also provide a convenient starting point for our 
upcoming construction of other probing functions that can generate more accurate reconstruction results.

Let us consider a typical and frequently used measurement surface ∂� = S2. We will use the completeness and orthog-
onality of the spherical vector waves (see vτ ,m,n and uτ ,m,n defined in (A.5) and (A.7) in Appendix A, where the definitions 
and some important properties are also given).

We first recall the representation of the free space Green’s function (cf. (2.6)) by spherical vector waves [31]:

�x(y) = ik
∑

−n≤m≤n,n∈N

[
v1,m,n(x)u†

1,m,n(y) + v2,m,n(x)u†
2,m,n(y)

]
, ry > rx , (3.1)

where and in the sequel, v†
τ ,m,n and u†

τ ,m,n are the vector functions obtained by replacing all spherical harmonics Y m
n in 

the definitions of spherical vector waves (see (A.5), (A.7)) by their complex conjugate and then taking the non-conjugate 
transpose. For the notational sake, we shall write 

∑
−n≤m≤n,n∈N simply as 

∑
m,n below.

We can rewrite the curl of �x in the formula (3.2) below by using (3.1), while the imaginary part of �x can be repre-
sented similarly (Lemma 3.1 below, whose proof follows from section 10-2 of [31], with radiating spherical vector waves 
replaced by regular spherical vector waves):

∇ × �x(y) = ik2
∑
m,n

[
v2,m,n(x)u†

1,m,n(y) + v1,m,n(x)u†
2,m,n(y)

]
. (3.2)

Lemma 3.1. For any x, y ∈R3 , we have

�{�x(y)} =ik
∑
m,n

[
v1,m,n(x)v†

1,m,n(y) + v2,m,n(x)v†
2,m,n(y)

]
. (3.3)

It is well-known that �{�x(z)} is used in the time reversal imaging [19] to recover the support of inhomogeneous inclu-
sions. This motivates us to design two sets of probing functions w1

z and w2
z such that the kernel functions (cf. (2.15))-(2.16)) 

are the imagery part of the free space Green’s function and its curl separately. Using this idea, the representation (3.1) and 
the orthogonality of spherical vector waves (cf. (A.10)), we propose to construct a family of probing functions w z(y) by 
expressing the interaction between w z and �x in the form:

〈ν × (�x · cx), w z〉L2(∂�) =
∑
m,n

[〈
ν × u†

1,m,n , a2,m,n(z)u†
2,m,n + a3,m,n(z)u†

3,m,n

〉
L2(∂�)

v1,m,n(x) · cx

+ 〈
ν × u†

2,m,n , a1,m,n(z)u†
1,m,n + a4,m,n(z)u†

4,m,n

〉
L2(∂�)

v2,m,n(x) · cx

]
(3.4)
5
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for any cx ∈ C3, where the choices of coefficients aτ ,m,n in (3.4) are totally free. Then for any function K (x, z), e.g., a 
function that admits an expansion K (x, z) = ∑

τ=1,2
m,n

bτ ,m,n(z)vτ ,m,n(x), we may find a corresponding probing function w z

of the form w z(y) := ∑
τ=1,2,3,4,

m,n
aτ ,m,n(z)u†

τ ,m,n(y) such that

〈ν × (�x · cx), w z〉L2(∂�) = K (x, z) · cx .

Indeed we can determine aτ ,m,n by solving (comparing the coefficients between (3.4) and K (x, z))

b1,m,n(z) = 〈ν × u†
1,m,n , a2,m,n(z)u†

2,m,n + a3,m,n(z)u†
3,m,n

〉
L2(∂�)

, (3.5)

b2,m,n(z) = 〈ν × u†
2,m,n , a1,m,n(z)u†

1,m,n + a4,m,n(z)u†
4,m,n

〉
L2(∂�)

(3.6)

for all −n ≤ m ≤ n, n ∈N . Using this process, by choosing b1,m,n(z) = v†
1,m,n(z), b2,m,n(z) = v†

2,m,n(z) in (3.5), we can readily 
obtain two sets of probing functions w1,0

z and w2,0
z for z ∈ � and y ∈ ∂�:

w1,0
z (y) :=

∑
m,n

[
v2,m,n(z)(u†

1,m,n(y) + c4,nu†
4,m,n(y)) + v1,m,n(z)(u†

2,m,n(y) + c3,nu†
3,m,n(y))

]
, (3.7)

w2,0
z (y) := 1

k

∑
m,n

[
v1,m,n(z)(u†

1,m,n(y) + c4,nu†
4,m,n(y)) + v2,m,n(z)(u†

2,m,n(y) + c3,nu†
3,m,n(y))

]
, (3.8)

where c3,n = (−cn,1,2 + 1)/cn,1,3 and c4,n = (cn,1,2 + 1)/cn,2,4, with cn,i, j from (A.10). This leads to the explicit representa-
tions of the kernel functions as introduced in (2.15):

K 1,0
cx,pz

(x, z) = 〈ν × (�x · cx), w1,0
z · pz〉L2(∂�) =

∑
τ=1,2,

m,n

vτ ,m,n(x)v†
τ ,m,n(z) = cT

x �{�x(z)}pz , (3.9)

K 2,0
dx,pz

(x, z) = 〈ν × (∇ × �x · dx), w1,0
z · pz〉L2(∂�) = k

∑
τ=1,2,

m,n

vτ ,m,n(x)v†
τ ,m,n(z) = kdT

x ∇ × �{�x(z)}pz , (3.10)

K 3,0
cx,qz

(x, z) = 〈ν × (�x · cx), w2,0
z · qz〉L2(∂�) = 1

k

∑
τ=1,2,

m,n

vτ ,m,n(x)v†
τ ,m,n(z) = 1

k
cT

x ∇ × �{�x(z)}qz , (3.11)

K 4,0
dx,qz

(x, z) = 〈ν × (∇ × �x · dx), w2,0
z · qz〉L2(∂�) =

∑
τ=1,2,

m,n

vτ ,m,n(x)v†
τ ,m,n(z) = dT

x �{�x(z)}qz , (3.12)

where the 0’s that appeared in the superscripts are used to distinguish different families of probing functions to be intro-
duced. Hence, the index functions in (2.14) become (without the normalization term)

I0
mo(z) = 〈ν × Es , w1,0

z · pz〉L2(∂�) , I0
di(z) = 〈ν × Es , w2,0

z · qz〉L2(∂�) . (3.13)

We observe from (3.9)-(3.12) that the expressions of K 1,0
cx,pz

(x, z) and K 4,0
cx,pz

(x, z) are the same, so are the expressions of 
K 2,0

dx,pz
(x, z) and k2 K 3,0

dx,pz
(x, z). This will simplify our subsequent verification of the mutually almost orthogonality property 

of kernel functions.

Verification of the mutually almost orthogonality property. Using (3.9)-(3.12), it suffices to verify if the pair of the 
imaginary part of the Green’s function and its curl possesses the desired mutually almost orthogonality property, namely, if 
the magnitude of cT

x �{�x(z)}pz reaches the maximum when x ≈ z, cx ≈ pz , and if the magnitude of cT
x �{∇z × �x(z)}qz is 

small for any choices of x and z. From (2.7), we have

�{�x(z)} =k|x − z| cos(k|x − z|) + (k2|x − z|2 − 1) sin(k|x − z|)
|x − z|3 I 3

− 3k|x − z| cos(k|x − z|) + (k2|x − z|2 − 3) sin(k|x − z|)
|x − z|3 D(x, z) ; (3.14)

�{∇ × �x(z)} =
[
∇z ×

( sin(k|x − z|)
|x − z| I 3

)]
=

⎛⎜⎝ 0 − ∂
∂z3

∂
∂z2

∂
∂z3

0 − ∂
∂z1

− ∂
∂z2

∂
∂z1

0

⎞⎟⎠( sin(k|x − z|)
|x − z| I 3

)
,

where di = (x − z)i , D(x, z) = (d1, d2, d3)
T (d1, d2, d3)/|x − z|2 and I 3 is the 3 × 3 identity matrix.
6
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Now we examine the i j-entry of �{�x(z)} and �{∇ × �x(z)} for i, j = 1, 2, 3 when x ≈ z. Applying the small angle 
approximation to trigonometric functions up to the order O(|x − z|4), we derive

(�{�x(z)})i, j =δi, j

[
− 2k5|x − z|2

15
+ 2k3

3

]
− did j

|x − z|2
(k7|x − z|4

120
− k5|x − z|2

15

)
+O(|x − z|4) , (3.15)

|(�{∇ × �x(z)})i, j| =
∣∣∣(k3

3
− k5|x − z|2

30

)
(di − d j)

∣∣∣+O(|x − z|4) . (3.16)

To be more precise on the assumption cx ≈ pz , we consider a quite general scenario that (cx)i = αi(p)i for some αi ≥ 0. 
From the above two expansions, we observe the following:

• For K 1,0
cx,pz

(x, z) = cT
x �{�x(z)}pz defined in (3.9), it follows from (3.15) that

cT
x �{�x(z)})pz = 2k3cT

x pz − 2k5

5

(
cT

x pz − 1

6
cT

x D(x, z)pz

)
|x − z|2 +O(|x − z|4) .

By the assumption on cx and pz , and noting that every entry of D(x, z) is bounded by 1, we have cT
x pz ≥ 0 and 

cT
x pz − 1

6 cT
x D(x, z)pz ≥ 0. Then K 1,0

cx,pz
(x, z) is a quadratic polynomial with respect to |x − z| and the only maximum 

point is at x = z, up to a small term O(|x − z|4). This verifies the first part of the mutually almost orthogonality 
property that we proposed at the end of section 2.

• When |x − z| → 0, we have from (3.15)-(3.16) that (�{�x(z)})i,i = 2k3/3 + O(|x − z|2) and |(�{∇ × �x(z)})i, j | ≤ 2|x −
z|k3/3 +O(|x − z|2) (i, j = 1, 2, 3), respectively. Hence, the magnitude of the kernel function K 1,0

cx,pz
(x, z) is much larger 

than K 2,0
dx,pz

(x, z) when x and z are close enough for any possible choices of direction dx associated with point x. This 
verifies the second part of the mutually almost orthogonality property.

Although the probing functions in (3.7)-(3.8) possess our desired mutually almost orthogonality property that helps 
locate inhomogeneous inclusions of different types, it is insufficient in some cases. To see this, we consider a special case 
of two electric monopoles locating at x and −x, with the direction d = (1, 0, 0)T , then

K 1,0
d,d(x, z) + K 1,0

d,d(−x, z) = dT [�{�x(z)} + �{�−x(z)}]d = k2
( sin(k|x − z|)

|x − z| + sin(k|(−x) − z|)
|(−x) − z|

)
.

In order to separate two electric monopoles from the boundary measurement, we may require 2K 1,0
d,d(x, 0) < K 1,0

d,d(x, x), 
i.e. two distinct maximum points can be observed at both x and −x. This requirement is satisfied approximately when 
k|x| > 2.2. Hence, for relative small wavenumber, we may need more effective families of probing functions that can also 
separate inhomogeneous inclusions that are close to each other.

3.2. A family of probing functions that improves the accuracy of reconstruction in angular direction

In this subsection, we propose a family of probing functions that can recover the support of inhomogeneous inclusions of 
different types more accurately compared with the family (3.7)-(3.8). In particular, the resulting kernel functions are sharper 
in the angular direction, i.e., the direction parallel to the measurement surface, which would enhance the resolution effect. 
We choose a second order differential operator acting component-wisely on the kernel function �{�x(z)}.

Considering the symmetry of the sampling domain B(0, 1), we first apply the spherical Laplacian (−�S2 ) on the kernel 
function �{�x(z)} to improve the sharpness of reconstruction in the angular direction. Using the spherical Laplacian of 
spherical vector waves (cf. (A.8)) and the expansion of �{�x(z)} in (3.3), we have

|(−�S2)�{�x(z)}| = −
∑
m,n

(n2 + n)
[

v1,m,n(x)v†
1,m,n(z) + v2,m,n(x)v†

2,m,n(z)
]

+
∑
m,n

2(n2 + n)
1
2 v2,m,n(x)v†

3,m,n(z) . (3.17)

However, this kernel function seems to be not so satisfactory from the numerical perspective since the maximum can not 
be ensured at x = z. Intuitively, it is expected that the first part in the representation (3.17) should reach a maximum at 
x = z due to the symmetry of all the terms associated.

Hence, we choose to keep only the first part in the representation (3.17) as our desired imaging kernel function and 
verify that it can provide more accurate reconstruction results compared with those in section 3.1. For the notational sake, 
we define for γ ∈N the auxiliary matrix-valued functions:
7
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�
γ
1 (x, z) :=

∑
m,n

(n2 + n)γ
[

v1,m,n(x)v†
1,m,n(z) + v2,m,n(x)v†

2,m,n(z)
]
, (3.18)

�
γ
2 (x, z) :=

∑
m,n

(n2 + n)γ
[

v1,m,n(x)v†
2,m,n(z) + v†

2,m,n(x)v1,m,n(z)
]
. (3.19)

Then we shall construct a new family w i,γ
z of probing functions for i = 1, 2 and z ∈ � such that

〈ν × (�x · cx), w1,γ
z · pz〉L2(∂�) = cT

x �
γ
1 (x, z)pz , 〈ν × (�x · cx), w2,γ

z · qz〉L2(∂�) = cT
x �

γ
2 (x, z)qz .

Using (3.4), we derive

w1,γ
z (y) :=

∑
m,n

(n2 + n)γ
[

v2,m,n(z)(u†
1,m,n(y) + c4,nu†

4,m,n(y)) + v1,m,n(z)(u†
2,m,n(y) + c3,nu†

3,m,n(y))
]
, (3.20)

w2,γ
z (y) :=

∑
m,n

(n2 + n)γ

k

[
v1,m,n(z)(u†

1,m,n(y) + c4,nu†
4,m,n(y)) + v2,m,n(z)(u†

2,m,n(y) + c3,nu†
3,m,n(y))

]
, (3.21)

and the corresponding index functions for reconstructing �ε and �μ:

Iγmo(z) := 〈ν × Es , w1,γ
z · pz〉L2(∂�)

nγ (z)
, Iγdi(z) := 〈ν × Es , w2,γ

z · qz〉L2(∂�)

nγ (z)
, (3.22)

where nγ (z) := | ∑diag{�γ
1 (z, z)}| 1

2 , whose choice will be explained in section 3.2.2.

3.2.1. Verification of the mutually almost orthogonality property in angular direction
We now verify the previous probing functions w1,γ

z (y) and w2,γ
z (y) have the desired mutually almost orthogonality 

property through a careful investigation of the kernel functions as defined in (2.15):

K 1,γ
cx,pz

(x, z) = K 4,γ
cx,pz

(x, z) = cx�
γ
1 (x, z)pz

nγ (z)
,

1

k
K 2,γ

dx,pz
(x, z) = kK 3,γ

dx,pz
(x, z) = dx�

γ
2 (x, z)pz

nγ (z)
. (3.23)

Especially, we show that K 1,γ
cx,pz

(x, z) reaches a maximum at ẑ = x̂ and becomes sharper, i.e. decaying faster, as γ becomes 
larger in the angular direction in section 3.2.1, and it reaches a maximum when rz = rx in section 3.2.2. The decoupling 
effect, i.e. the magnitude of K 2,γ

dx,pz
(x, z) is small under any circumstances, is verified through theoretical justifications in this 

subsection and numerical experiments in section 3.2.2.
To check if K 1,γ

cx,pz
(x, z) becomes sharper in angular direction as γ grows, we notice that the expansion (3.18) can be 

formulated by summing up the first and second kind of spherical vector waves along with the m indices first and then 
summing up along with the n indices under the weight (n2 + n)γ . Hence, we may define

Ln(x, z) :=
∑

m

[
f n
1 (krx) f n

1 (krz)A1,m,n(x̂)A†
1,m,n(ẑ) (3.24)

+ ( f n
2 (krx)A2,m,n(x̂) + (n2 + n)

1
2 f n

3 (krx)A3,m,n(x̂))( f n
2 (krz)A†

2,m,n(ẑ) + (n2 + n)
1
2 f n

3 (krz)A†
3,m,n(ẑ))

]
,

where 
∑

m represents the summation over −n ≤ m ≤ n and

f n
1 (kr) := jn(kr) , f n

2 (kr) := (kr jn(kr))′

kr
, f n

3 (kr) := jn(kr)

kr
, (3.25)

with jn(kr) being the spherical Bessel function of first kind of order n.
For simplicity, we write f n

i,x = f n
i (krx), f n

i,z = f n
i (krz) for i = 1, 2, 3 below. We first see �γ

1 (x, z) = ∑
n(n2 + n)γ Ln(x, z). 

We notice that if dT Ln(x, z)d achieves the maximum at z = x with dT Ln(x, x)d ≥ 0 for each n and some direction d, then 
dT �

γ
1 (x, z)d = ∑

n(n2 + n)γ dT Ln(x, z)d also achieves the maximum at z = x. Moreover, if Ln(x, z) becomes sharper as n
grows, then �γ

1 will be also sharper since (n2
2 + n2)

γ /(n2
1 + n1)

γ increases with γ for any n2 > n1.
With the above observation, we next work out a closed form of Ln(x, z) and then study its properties. We first recall an 

identity and a transformation matrix from Cartesian to spherical coordinates:

4π

2n + 1

∑
m

Y m
n (x̂)Y m

n (ẑ) = Pn(x̂ · ẑ) , γ (x̂) =
⎛⎝ sin θx cosφx sin θx sinφx cos θx

cos θx cosφx cos θx sinφx − sin θx

− sin φx cosφx 0

⎞⎠ .

Assuming cx = pz = d, and denoting dx = γ (x̂)d = dx
r r̂x + dx θ̂ x + dx φ̂x , we have dz = γ (ẑ)γ T (x̂)dx .
θ φ

8
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Now, writing t = x̂ · ẑ, denoting Pm
n as the associated Legendre polynomial, and using the products of vector spherical 

harmonics in (A.4), we derive

4π

2n + 1
dT Ln(x, z)d = f n

3,x f n
3,zdx

r dz
r Pn(t) (3.26)

+ f n
2,x f n

2,z

n2 + n

[ dx
φdz

φ

sin θx sin θz

{ ∂2t

∂φx∂φz

−P 1
n(t)√

1 − t2
+ ∂t

∂φx

∂t

∂φz

P 2
n(t)

1 − t2

}
+ dx

θdz
θ

{ ∂2t

∂θx∂θz

−P 1
n(t)√

1 − t2
+ ∂t

∂θx

∂t

∂θz

P 2
n(t)

1 − t2

}
+

{ dx
θdz

φ

sin θz

∂t

∂φz

∂t

∂θx
+ dx

φdz
θ

sin θx

∂t

∂φx

∂t

∂θz

} P 2
n(t)

1 − t2
+

{ dx
θdz

φ

sin θz

∂2t

∂φz∂θx
+ dx

φdz
θ

sin θx

∂2t

∂φx∂θz

} (−P 1
n(t))√

1 − t2

]
+ f n

1,x f n
1,z

n2 + n

[ dx
θdz

θ

sin θx sin θz

{ ∂2t

∂φx∂φz

−P 1
n(t)√

1 − t2
+ ∂t

∂φx

∂t

∂φz

P 2
n(t)

1 − t2

}
+ dx

φdz
φ

{ ∂2t

∂θx∂θz

−P 1
n(t)√

1 − t2
+ ∂t

∂θx

∂t

∂θz

P 2
n(t)

1 − t2

}
−

{ dx
φdz

θ

sin θz

∂t

∂φz

∂t

∂θx
+ dx

θdz
φ

sin θx

∂t

∂φx

∂t

∂θz

} P 2
n(t)

1 − t2
−

{ dx
φdz

θ

sin θz

∂2t

∂φz∂θx
+ dx

θdz
φ

sin θx

∂2t

∂φx∂θz

} (−P 1
n(t))√

1 − t2

]
+ f n

3,x f n
2,z√

n2 + n

[
dx

r dz
θ

∂t

∂θx
+ dx

r dz
φ

sin θx

∂t

∂φx

] (−P 1
n(t))√

1 − t2
+ f n

2,x f n
3,z√

n2 + n

[
dx

θdz
r

∂t

∂θz
+ dx

φdz
r

sin θz

∂t

∂φz

] (−P 1
n(t))√

1 − t2
.

With the closed form above, we now study its behavior in the angular direction by assuming rz = rx = r0. Moreover, 
considering the symmetry of domain B(0, 1), without loss of generality, we further assume φz = φx and investigate the 
behavior of dT Ln(x, z)d for fixed x, d, and θz ∈ [0, π ]. In particular, we will show that the normalization term nγ (z) in 
(3.22) depends only on rz (see (3.44)), so we write nγ (r0) = nγ (z) below.

Using the identity dz = γ (ẑ)γ T (x̂)dx to convert the dependence of direction with respect to z to x, i.e.,

dz
r = cos(θx − θz)d

x
r − sin(θx − θz)d

x
θ , dz

θ = sin(θx − θz)d
x
r + cos(θx − θz)d

x
θ , dz

φ = dx
φ , when φx = φz ,

we can simplify (3.26) as

4π

2n + 1
dT Ln(x, z)d = | jn(kr0)|2

k2r2
0(n2 + n)

|dx
φ |2

[
(n2 + n)Pn(t) + t P 1

n(t)√
1 − t2

]
+ |(kr0 jn(kr0))

′|2
k2r2

0(n2 + n)
|dx

φ |2 −P 1
n(t)√

1 − t2

+ t
{ | jn(kr0)|2

k2r2
0

Pn(t) + |dx
θ |2

|(kr0 jn(kr0))
′|2

k2r2
0(n2 + n)

[
(n2 + n)Pn(t) + t P 1

n(t)√
1 − t2

]
+ | jn(kr0)|2

k2r2
0(n2 + n)

|dx
θ |2

−P 1
n(t)√

1 − t2

}
+

√
1 − t2 g(t) , (3.27)

where

g(t) =dx
θ

{ |(kr0 jn(kr0))
′|2

k2r2
0(n2 + n)

[
(n2 + n)Pn(t) + t P 1

n(t)√
1 − t2

]
− | jn(kr0)|2

n2 + n

P 1
n(t)√

1 − t2

+ | jn(kr0)|2
k2r2

0

Pn(t) + 2
√

1 − t2 (kr0 jn(kr0))
′ jn(kr0)

k2r2
0

√
n2 + n

P 1
n(t)√

1 − t2

}
.

Noting that g(t) is bounded for all t and 
√

1 − t2 vanishes at t = 1 (i.e., x̂ = ẑ), we may treat 
√

1 − t2 g(t) as a small term 
when ẑ is close to x̂. We now recall properties of Legendre polynomials and can show that

Pn(t) , (n2 + n)Pn(t) + t P 1
n(t)√

1 − t2
, and − P 1

n(t)√
1 − t2

as well as these terms multiplied by t all achieve a positive maximum at t = 1 for t ∈ [−1, 1] (i.e., ẑ = x̂), by using their 
generating functions. Therefore, using the fact that the coefficients associated with those Legendre polynomials are all 
positive in (3.27), dT Ln(x, z)d achieves its maximum at ẑ ≈ x̂ when rz = rx .

Furthermore, by the recursive relations of Legendre polynomials, we can compute their derivatives at t = 1:

d

dt
t Pn(t)

∣∣∣
t=1

= n2 + n + 2

2
,

d

dt

−P 1
n(t)√

1 − t2

∣∣∣
t=1

= (n3 − n)(n + 2)

8
,

d

dt

−t P 1
n(t)√

1 − t2

∣∣∣
t=1

= n(n + 1)(n2 + 2n + 2)

8
,

d

dt

(
(n2 + n)Pn(t) + t P 1

n(t)√
1 − t2

)∣∣∣
t=1

= (n2 + n)(3n2 + 3n − 2)

8
, (3.28)

d

dt
t
[(

(n2 + n)Pn(t) + P 1
n(t)√

1 − t2

)]∣∣∣
t=1

= (n2 + n)(3n2 + 3n + 2)

8
.

9
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Fig. 1. Values of cT
x Ln(x, z)pz for rz = rx = 0.5, φx = φx = π

2 , θx = π
2 , and θz ∈ [0.5, π − 0.5] with different n. Left plot: cx = pz = (1, 1, 1)T /

√
3 for 

n = 2, 4, 7, 11; Right plot: cx = (1, 1, 1)T /
√

3, pz = cx + 0.1(ε1, ε2, ε3)T , with εi ∼ N (0, 1) for i = 1, 2, 3; n = 4, 11.

We see that as n grows, all the above functions decay faster when t decreases from 1, hence the magnitude of dT Ln(x, z)d
decays also faster for z along any direction that points away from x when rz = rx .

In Fig. 1, we plot cT
x Ln(x, z)pz for n = 2, 4, 7, 11 and rz = rx = 0.5, φz = φx = π

2 , θx = π
2 , and θz ∈ [0.5, π − 0.5]. In the 

plots on the left and right, we assume cx = pz = (1, 1, 1)T /
√

3 for all z, and cx = (1, 1, 1)T /
√

3 and pz = cx +0.1(ε1, ε2, ε3)
T , 

respectively, with εi ∼ N (0, 1) for i = 1, 2, 3. The left plot validates our previous prediction on the property of dT Ln(x, z)d
that it achieves the maximum at z ≈ x for all n, and as n becomes larger the function decays faster when z goes away from 
x. The right plot considers the case that pz is only a very rough approximation to cx , i.e., pz = cx + +0.1(ε1, ε2, ε3)

T , with 
εi ∼ N (0, 1) for i = 1, 2, 3 which is the usual situation in practice. We notice that the orthogonality property still holds as 
the value of dT Ln(x, z)d achieve the maximum at z ≈ x and decays faster as n becomes larger.

Therefore, based on our discussions at the beginning part of this subsection about the relation between Ln(x, z) and 
K 1,γ

cx,pz
(x, z) under pz ≈ cx , the kernel function K 1,γ

cx,pz
(x, z) = ∑

n(n2 + n)γ cT
x Ln(x, z)pz/nγ (r0) will achieve a maximum at 

z ≈ x when rz = rx = r0. Moreover, as γ increases, K 1,γ
cx,pz

(x, z) decays faster when z moves away from x.

We can extend the above discussions for �γ
1 (x, z) to �γ

2 (x, z) (cf. (3.18)) to validate that K 2,γ
dx,pz

(x, z) does not achieve a 
local maximum at z = x. Similarly to the definition of Ln in (3.24), we introduce

L̃n(x, z) :=
∑

m

[
f n
1,x A1,m,n(x̂)( f n

2,z A†
2,m,n(ẑ) + (n2 + n)

1
2 f n

3,z(A†
3,m,n(ẑ)) (3.29)

+ ( f n
2,x A2,m,n(x̂) + (n2 + n)

1
2 f n

3,x A3,m,n(x̂)) f n
1,z A†

1,m,n(ẑ)
]
,

then we have �γ
2 (x, z) = ∑

n(n2 + n)γ L̃n(x, z), where f i,x , f i,z are defined as in (3.24).
To work out a closed form of L̃n , we use the products of vector spherical harmonics (cf. (A.4)) to obtain for arbitrary 

directions dx and pz ,

4π

2n + 1
dT

x L̃n(x, z)pz (3.30)

=dx
r pz

θ f n
3,x f n

1,z
dPn(t)

sin θxdφx
+ dx

θ pz
r f n

3,z f n
1,x

dPn(t)

sin θzdφz
− dx

r pz
φ f n

3,x f n
1,z

dPn(t)

dθz
− dx

φ pz
r f n

3,z f n
1,x

dPn(t)

dθx

+ dx
θ pz

θ

n2 + n

[
f n
1,x f n

2,z
d2 Pn(t)

sin θxdφxdθz
+ f n

2,x f n
1,z

d2 Pn(t)

sin θzdθxdφz

]
− dx

φ pz
φ

n2 + n

[
f n
1,x f n

2,z
d2 Pn(t)

sin θzdθxdφz
+ f n

2,x f n
1,z

d2 Pn(t)

sin θxdφxdθz

]
+ dx

θ pz
φ

n2 + n

[
f n
1,x f n

2,z
d2 Pn(t)

sin θx sin θzdφxdφz
− f n

2,x f n
2,z

d2 Pn(t)

dθxdθz

]
− dx

φdz
θ

n2 + n

[
f n
1,x f n

2,z
d2 Pn(t)

dθxθz
− f n

2,x f n
2,z

d2 Pn(t)

sin θx sin θzdφxdφz

]
.

This can be simplified under the condition that φz = φx:

4π
dT

x L̃n(x, z)pz =
√

1 − t2 g̃(t) −
( f n

2,x f n
2,z

2
dx

θ pz
φ + f n

1,x f n
2,z

2
dx

φ pz
θ

)[
(n2 + n)Pn(t) + t P 1

n(t)√
2

]

2n + 1 n + n n + n 1 − t

10
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−
( f n

2,x f n
2,z

n2 + n
dx

φ pz
θ + f n

1,x f n
2,z

n2 + n
dx

θ pz
φ

) P 1
n(t)√

1 − t2
, (3.31)

where g̃(t) = −(dx
r pz

φ f n
3,x f n

1,z − dx
φ pz

r f n
3,z f n

1,x)
P 1

n (t)√
1−t2

is bounded for all t . At z = x, we can see from (3.31) that

4π

2n + 1
dT

x L̃n(x, x)pz =
√

1 − (cx · pz)
2 (krz jn(krx))

′

2krx

[
(1 + n

krx
) jn(krx) − jn−1(krx)

]
.

Hence the above term and also K 2,γ
dx,pz

(x, x) = ∑
n dT

x L̃n(x, x)pz/nγ (r0) are approximately 0 when pz ≈ dx . This implies that 
Imo(x) has no local maximum at the point x associated with a magnetic monopole. In fact, by our earlier discussions about 
K 1,γ

cx,pz
(x, z), a local maximum will appear for Idi(x). As we see from Fig. 2 in the next subsection, numerical experiments for 

more general cases are conducted to verify that the magnitude of K 2,γ
dx,pz

(x, z) is much smaller compared with K 1,γ
cx,pz

(x, z)
in the whole sampling domain.

3.2.2. Verification of the mutually almost orthogonality property in the radial direction and the whole sampling domain
In the previous section 3.2.1, we have shown that the family of probing functions (3.20)-(3.21) has the desired mutually 

almost orthogonality property in the angular direction. In particular, the sharpness of the corresponding kernel function can 
be clearly improved as γ increases. In this subsection, to verify the mutually almost orthogonality property in the radial 
direction, we first present a closed form of the kernel function K 1,1

cx,pz
in (2.15) for us to have a better understanding of the 

normalization term nγ (z) we chose in (3.22). To simplify our upcoming discussion, we will focus on the case γ = 1, which 
is a preferable choice in practice. More illustrations about the parameter choice can be found at the end of this subsection.

Firstly, with a similar argument as in proving Lemma 3.1, we can derive

sin(k|x − z|)
|x − z| I 3 = ik

∑
m,n

[
v1,m,n(x)v†

1,m,n(z) + v2,m,n(x)v†
2,m,n(z) + v3,m,n(x)v†

3,m,n(z)
]
. (3.32)

For the notational sake, we write

F (x, z) := r2
x (−�S2(x))

sin(k|x − z|)
|x − z| , (3.33)

then by means of the spherical Laplacian of spherical vector waves (cf. (A.8)), we obtain

F (x, z)I 3 = −
∑

τ=1,2,3
m,n

(n2 + n)vτ ,m,n(x)v†
τ ,m,n(z) (3.34)

−
∑
m,n

2
[

v3,m,n(x)v†
3,m,n(z) − 2

√
n2 + n

(
v3,m,n(x)v†

2,m,n(z) + v2,m,n(x)v†
3,m,n(z)

)]
.

Comparing (3.34) and the definition of �1
1(x, z) in (3.18), we can get �1

1(x, z) by removing the terms in F (x, z) that are 
associated with v3,m,n . Indeed, we obtain by noting ∇x × v3,m,n(x) = 0 and ∇ × ∇ × v i,m,n = k2 v i,m,n for i = 1, 2,

k2�1
1(x, z) = ∇x × ∇z × (F (x, z)I 3) =

⎡⎢⎢⎣
∂2 F

∂z3∂x3
+ ∂2 F

∂z2∂x2
− ∂2 F

∂z1∂x2
− ∂2 F

∂z1∂x3

− ∂2 F
∂z2∂x1

∂2 F
∂z1∂x1

+ ∂2 F
∂z3∂x3

− ∂2 F
∂z2∂x3

− ∂2 F
∂z3∂x1

− ∂2 F
∂z3∂x2

∂2 F
∂z1∂x1

+ ∂2 F
∂z2∂x2

⎤⎥⎥⎦ . (3.35)

Hence, it is possible to compute explicit representations of kernel functions defined in (2.15) by using F (x, z) due to the 
relationship between �1

1 and the kernel function in (3.23). Firstly, we present a closed form of F (x, z) by its definition in 
(3.33):

F (x, z) =r2
x k2s0(x − z) +

(2(r2
x − x · z)

|x − z| + r2
x

|x − z| − (r2
x − x · z)2

|x − z|3
)

s1(x − z) + (r2
x − x · z)2

|x − z|2 s2(x − z) ,

where s j(x − z) := ∂ j

∂|x−z| j
sin(k|x−z|)

|x−z| . Then we can compute the partial derivative of F (x, z) (i, j = 1, 2, 3):

∂2

∂xi∂z j
F (x, z) = s1(x − z)

[∂2t1(x, z)

∂xi∂z j
+

(∂2|x − z|
∂xi∂z j

+ ∂|x − z|
∂xi

∂

∂z j
+ ∂|x − z|

∂z j

∂

∂xi

)
t0(x, z)

]
︸ ︷︷ ︸ (3.36)
c1(x,z)

11
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+ s2(x − z)
[∂2t2(x, z)

∂xi∂z j
+

(∂|x − z|2
∂xi∂z j

+ ∂|x − z|
∂xi

∂

∂z j
+ ∂|x − z|

∂z j

∂

∂xi

)
t1(x, z) − did j

|x − z|2 t0(x, z)
]

︸ ︷︷ ︸
c2(x,z)

+ s3(x − z)
[(∂2|x − z|

∂xi∂z j
+ ∂|x − z|

∂xi

∂

∂z j
+ ∂|x − z|

∂z j

∂

∂xi

)
t2(x, z) − did j

|x − z|2 t1(x, z)
]

︸ ︷︷ ︸
c3(x,z)

−s4(x − z)
[ did j

|x − z|2 t2(x, z)
]

︸ ︷︷ ︸
c4(x,z)

,

where di = (x − z)i and

t0(x, z) = r2
x k2 , t1(x, z) = 2(r2

x − x · z)

|x − z| + r2
x

|x − z| − (r2
x − x · z)2

|x − z|3 , t2(x, z) = (r2
x − x · z)2

|x − z|2 .

Denoting ci(x, z) as the coefficient associated with si in (3.36), that is ∂2 F (x,z)
∂xi∂z j

= ∑
i=1,2,3,4 si(x − z)ci(x, z). Then c4(x, z) can 

first be simplified as

c4(x, z) = − did j

|x − z|4 (r2
x − x · z)2 . (3.37)

Noting that ∂2|x−z|
∂xi∂z j

= −δi, j/|x − z| + did j/|x − z|3, then c3(x, z) becomes

c3(x, z) = − δi, j
(r2

x − x · z)2

|x − z|3 + did j

(
− r2

x

|x − z|3 − 4
(r2

x − x · z)

|x − z|3 + 6
(r2

x − x · z)2

|x − z|5
)

− 2
(r2

x − x · z)(di x j + xid j)

|x − z|3 . (3.38)

For c2(x, z) and c1(x, z), we first keep the term ∂2

∂xi∂z j
t1(x, z) as a whole, then

c2(x, z) = − 2δi, j − k2r2
x

did j

|x − z|2 − |x − z| ∂2

∂xi∂z j
t1(x, z) , (3.39)

c1(x, z) = ∂2

∂xi∂z j
t1(x, z) +

(
− δi, j

|x − z| + did j

|x − z|3
)

k2r2
x − 2k2d jxi

|x − z| . (3.40)

For the term ∂2

∂xi∂z j
t1(x, z), we have

∂2

∂xi∂z j
t1(x, z) =δi, j

( −2

|x − z| + r2
x + 4(r2

x − x · z)

|x − z|3 − 3(r2
x − x · z)2

|x − z|5
)

+ 2
2di x j + 2xid j + did j + xix j

|x − z|3

− 3did jr2
x

|x − z|5 − 6
(r2

x − x · z)(2did j + di x j + xid j)

|x − z|5 + 15did j
(r2

x − x · z)2

|x − z|7 .

(3.41)

Recall that we are mainly interested in the behavior of kernel functions in the radial direction in this subsection, so we 
assume x̂ = ẑ that leads to x · z = rxrz and r2

x − x · z = rx(rx − rz). Denoting βi = xi/rx = zi/rz , then from (3.37) to (3.40), 
ci(x, z) for i = 1, 2, 3, 4 can be simplified as

c4(x, z) = − βiβ jr
2
x , c3(x, z) = −δi, j

r2
x

|x − z| + βiβ j

(4rxrz − 3r2
x

|x − z|
)

,

c2(x, z) =δi, j

( 2r2
z

|x − z|2 − 2
)

− βiβ j

[
k2r2

x + 2r2
z

|x − z|2
]
, (3.42)

c1(x, z) = − δi, j

[ 2r2
z

|x − z|3 + k2r2
x

|x − z|
]
+ βiβ j

[ 2r2
z

|x − z|3 + k2r2
x

|x − z| − 2k2rx

]
.

For the notational sake, we split the partial derivative of F (x, z) in (3.36) into two parts such that ∂2 F (x,z)
∂xi∂z j

= δi, j g1(x, z) +
βiβ j g2(x, z), i.e., g1 is the diagonal invariant part. Hence, for �1

1(z, z) defined in (3.18), combining (3.35) and definitions of 
g1(x, z), g2(x, z), we have

(k2�1
1(x, z))i, j = 3δi, j g1(x, z) − βiβ j g2(x, z) . (3.43)

To continue further, we write rd = rx − rz , and 1{rz−rx} = 1 for rz − rx > 0 and 0 otherwise. Then we derive
12
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g1(x, z) =2
sin(krd) − krd cos(krd)

r3
d

+ 4rxrz
(3 − k2r2

d) sin(krd) − 3krd cos(krd)

r5
d

,

g2(x, z) =2
3krd cos(krd) − (3 − k2r2

d) sin(krd)

r3
d

+ 2(r2
x − rx)

krd(−k2r2
d + 12) cos(krd) + (5k2r2

d − 12) sin(krd)

r5
d

+ 4rxrz
3kr cos(krd) − (3 − k2r2

d) sin(krd)

r5
d

−1{rz−rx}4k2rx
sin(krd) − krd cos(krd)

r2
d

.

The denominator n1(z) defined in (3.22) can now be computed explicitly by choosing x = z for both g1(x, z) and g2(x, z). 
This gives g1(z, z) = 2(2r2

z k5/15 + k3/3) and g2(z, z) = −2k5r2
z /15 − 2k5/15rz , implying

[�1
1(z, z)]i, j = δi, j

(4k5

5
r2

z + 2k3
)

+ βiβ j

(2k5

15
r2

z + 2k5

15
rz

)
,

n1(z) =
∣∣∣∑diag{�1

1(z, z)}
∣∣∣ 1

2 =
∣∣∣38k5

15
r2

z + 2k5

15
rz + 6k3

∣∣∣ 1
2
. (3.44)

We observe that the normalization n1(z) is only a function of rz and independent of (θz, φz). Hence, it has no influence 
towards our discussion in section 3.2.1 as we considered the desired mutually almost orthogonality properties for points 
with the same radial component in that subsection, i.e., with the same value for the normalization n1(z).

We now explain how K 1
cx,pz

(x, z) reaches a maximum at z = x along the radial direction. From (3.43), since βi ≤ 1 for 
i = 1, 2, 3, the coefficient associated with g1(x, z) is much larger than the coefficient associated with g2(x, z). Hence, we can 
now focus only on the diagonal invariant term, i.e., g1(x, z), and compute its second order Taylor expansion with respect to 
rd = rx − rz to derive

g1(x, z) = 2k3

3
− k5r2

d

15
+ rxrz

(4k5

15
− 2k7r2

d

105

)
+O(r4

d) . (3.45)

We observe that for both 2k3/3 − k5r2
d/15 and 4k5/15 − 2k7r2

d/105, they are second order polynomials that achieve the 
positive maximum at rd = rx − rz = 0. However, the term rxrz for fixed rx is undesired as it will shift the maximum point to 
the boundary when rz is larger. Hence, a normalization term n1(z) of the order O(rz), i.e. | ∑diag{�1

1(z, z)}|1/2 as in (3.44), 
is necessary to ensure that K 1,1

cx,pz
(x, z) = cT

x �1
1(x, z)pz/n1(z) can achieve a maximum at x ≈ z.

In Fig. 2, we examine the full version of the mutually almost orthogonality property between probing functions defined 
in (3.20) and Green’s functions in (2.6) under k = 5. Two points x1 = (−0.45, −0.15, 0), x2 = (0.45, 0.05, 0) that are denoted 
by crosses in black represent the location of electric monopoles for plots in the first two columns, and the location of an 
electric monopole at x2 and a magnetic monopole at x1 for plots in the third column. The parameter γ is chosen as 1 for 
plots in the first two rows and as 3 for plots in the third row. The polarization direction cx is selected as (1, −1, 1)T /

√
3 in 

all scenarios. The probing direction is chosen as pz = cx for plots in the first row and as pz = cx + 0.25(ε1, ε2, ε3)
T , where 

εi ∼N (0, 1) for plots in the second and the third row. In each row, from left to right, we plot K 1,0
cx1 ,pz

(x1, z) + K 1,0
cx2 ,pz

(x2, z), 

K 1,1
cxγ ,pz

(x1, z) + K 1,γ
cx2 ,pz

(x2, z), K 2,γ
cx1 ,pz

(x1, z) + K 1,γ
cx2 ,pz

(x2, z) as defined in (2.15) with respect to z ∈ [−√
2, 

√
2] ×[−√

2, 
√

2] ×
0 ⊂ �. We have the following observations from Fig. 2:

• Comparing the first and second columns for kernel functions corresponding to probing functions in (3.7) and (3.20), 
the proposed new family of probing functions improves the sharpness of reconstruction significantly, i.e., successfully 
separates two electric monopoles that are close to each other.

• Looking at the third column for the case where an electric monopole and a magnetic monopole coexist in �, the 
magnitude of the kernel function K 1,γ

cx,pz
(x2, z) is much larger than K 2,γ

cx,pz
(x1, z), namely, it is not influenced by the 

existence of the magnetic monopole but the interaction between the measurement data and w 1,γ
z can help locate the 

electric monopole.
• Comparing the first and second rows for the case pz = cx and pz equals to cx with 25% random perturbation, the 

desired mutually almost orthogonality property still holds with a very rough approximation to cx that is the usual case 
in practice.

• Comparing the second column in the second and third rows for the cases γ = 1, 3, as γ increases, the reconstruction 
for the location of the electric monopole will be more accurate in the angular direction. Nonetheless, this improvement 
is only mild compared with the significant difference in the first and second columns for γ = 0, 1.

We conclude from the above analytical and numerical discussions that the family of probing functions w i,γ
z (i = 1, 2) in 

(3.20) is a proper candidate to recover inhomogeneous inclusions of different types simultaneously with improved accuracy 
in the angular direction.
13
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Fig. 2. In each row, from left to right: K 1,0
cx1 ,pz

(x1, z) + K 1,0
cx2 ,pz

(x2, z), K 1,γ
cxγ ,pz

(x1, z) + K 1,γ
cx2 ,pz

(x2, z), K 2,γ
cx1 ,pz

(x1, z) + K 1,γ
cx2 ,pz

(x2, z) (cf. (2.15)) with respect 
to z ∈ [−√

2, 
√

2] × [−√
2, 

√
2] × 0 under cx = (1, −1, 1)T , and x1 = (−0.45, −0.15, 0), x2 = (0.45, 0.05, 0) (the crosses in black). For plots in the first 

row: γ = 1, and pz = cx; for plots in the second row: γ = 1 and pz = cx + 0.25(ε1, ε2, ε3)T with εi ∼ N (0, 1); for plots in the third row: γ = 3, and 
pz = cx + 0.25(ε1, ε2, ε3)T with εi ∼ N (0, 1). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.3. A family of probing functions that improves the accuracy of reconstruction in the radial direction

In the previous subsection, we proposed a family of probing functions that can induce kernel functions decaying fast 
in the angular direction but probably not in the radial direction. We now construct another family of probing functions 
that induce kernel functions being able to decay fast in the radial direction, which can be used either independently or 
simultaneously with the family of probing functions (3.20).

We first present a closed form of the kernel functions with undetermined radial components. It will be clear from the 
closed form that the Fourier transform of the kernel function in the radial direction is related to the Fourier transform of 
the radial component of the probing function. Then we may choose a proper probing function such that the kernel function 
can approximate a sharp Gaussian kernel, i.e., exp(−λ|rx − rz|2) for λ > 0 in the radial direction with respect to the L2 norm. 
The mutually almost orthogonality properties are then verified through numerical experiments.

We recall our discussions in section 3.2 that a probing function of the form (3.20) possesses the mutually almost orthog-
onality property in the angular direction with different choices of γ . Hence, we shall assume the new family of probing 
functions have the same angular component as in (3.20) but different radial components to be determined, i.e.,

w1,R
z (y) =

∑
m,n

[(
gn

2(krz)A2,m,n(z) + gn
3(krz)A3,m,n(z)

)(
u†

1,m,n(y) + c4,nu†
4,m,n(y)

)
(3.46)

+ gn
1(krz)A1,m,n(z)

(
u†

2,m,n(y) + c3,nu†
3,m,n(y)

)]
,

w2,R
z (y) =

∑
m,n

[
gn

1(krz)A1,m,n(z)
(
u†

1,m,n(y) + c4,nu†
4,m,n(y)

)
(3.47)

+ (
gn

2(krz)A2,m,n(z) + gn
3(krz)A3,m,n(z)

)(
u†

2,m,n(y) + c3,nu†
3,m,n(y)

)]

14
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for z ∈ �, where gn
i (i = 1, 2, 3) will be determined later so that the resulting DSM is also accurate in reconstructing the 

location of inhomogeneous inclusions in the radial direction.
For the notational sake, we define an auxiliary matrix valued function:

�R
1 (x, z) :=

∑
m,n

2n + 1

4π

[
v2,m,n(x)(gn

2(krz)A†
2,m,n(z) + gn

3(krz)A†
3,m,n(z)) + v1,m,n(x)gn

1(krz)A†
1,m,n(z)

]
, (3.48)

then we have (without the normalization term as in (2.14))

K 1,R
cx,pz

(x, z) = cT
x �R

1 (x, z)pz = 〈ν × (�x · cx) , w1,R
z · pz〉L2(∂�) = 〈ν × (∇ × �x · cx) , w2,R

z · pz〉L2(∂�) . (3.49)

We now focus on the first characteristic of the mutually almost orthogonality property, i.e., K 1,R
cx,pz

(x, z) achieves the 
maximum when z ≈ x by requiring it approximates a Gaussian kernel for any directions d, and the second characteristic 
regarding the decoupling effect will be verified numerically later; see Fig. 3. To determine the numerical value of gn

i (krz), 
we use the definition in (3.48) and recall the derivation of the expansion of �γ

1 in section 3.2.1 and f n
i,x in (3.25) to get

dT �R
1 (x, z)d =

∑
n

2n + 1

4π

[
f n
3,x gn

3hn
3,3(x̂, ẑ,d) + f n

2,x gn
2

n2 + n
hn

2,2(x̂, ẑ,d) (3.50)

+ f n
1,x gn

1

n2 + n
hn

1,1(x̂, ẑ,d) + f n
3,x gn

2hn
3,2(x̂, ẑ,d) + f n

2,x gn
3hn

2,3(x̂, ẑ,d)√
n2 + n

]
,

with t = x̂ · ẑ and d = dx
r r̂x + dx

θ θ̂ x + dx
φ φ̂x , and

hn
3,3(x̂, ẑ,d) = dx

r dz
r Pn(t) ,

hn
2,2(x̂, ẑ,d) = dx

φdz
φ

sin θx sin θz

[ ∂2t

∂φx∂φz

−P 1
n(t)√

1 − t2
+ ∂t

∂φx

∂t

∂φz

P 2
n(t)

1 − t2

]
+ dx

θdz
θ

[ ∂2t

∂θx∂θz

−P 1
n(t)√

1 − t2
+ ∂t

∂θx

∂t

∂θz

P 2
n(t)

1 − t2

]
+

[ dx
θdz

φ

sin θz

∂t

∂φz

∂t

∂θx
+ dx

φdz
θ

sin θx

∂t

∂φx

∂t

∂θz

] P 2
n(t)

1 − t2
−

[ dx
θdz

φ

sin θz

∂2t

∂φz∂θx
+ dx

φdz
θ

sin θx

∂2t

∂φx∂θz

] P 1
n(t)√

1 − t2
,

hn
1,1(x̂, ẑ,d) = dx

θdz
θ

sin θx sin θz

[ ∂2t

∂φx∂φz

−P 1
n(t)√

1 − t2
+ ∂t

∂φx

∂t

∂φz

P 2
n(t)

1 − t2

]
+ dx

φdz
φ

[ ∂2t

∂θx∂θz

−P 1
n(t)√

1 − t2
+ ∂t

∂θx

∂t

∂θz

P 2
n(t)

1 − t2

]
−

[ dx
φdz

θ

sin θz

∂t

∂φz

∂t

∂θx
+ dx

θdz
φ

sin θx

∂t

∂φx

∂t

∂θz

] P 2
n(t)

1 − t2
+

[ dx
φdz

θ

sin θz

∂2t

∂φz∂θx
+ dx

θdz
φ

sin θx

∂2t

∂φx∂θz

] P 1
n(t)√

1 − t2
,

hn
3,2(x̂, ẑ,d) =

[
dx

r dz
θ

∂t

∂θx
+ dx

r dz
φ

sin θx

∂t

∂φx

] (−P 1
n(t))√

1 − t2
, h2,3(x̂, ẑ,d) =

[
dx

θdz
r

∂t

∂θz
+ dx

φdz
r

sin θz

∂t

∂φz

] (−P 1
n(t))√

1 − t2
.

Since we are interested in this section in constructing a family of probing functions that can induce kernel functions 
that decay very fast in the radial direction, we first focus on the case x̂ = ẑ. Similarly to the simplification in (3.26), using 
specific values of the Legendre polynomial, dT �R

1 (x, z)d becomes

dT �R
1 (x, z)d (3.51)

=
∑

n

2n + 1

4π

[
(n2 + n) f n

3 (krx)gn
3(krz)d

x
r dz

r +
( f n

1 (krx)gn
1(krz)

2
+ f n

2 (krx)gn
2(krz)

2

)(
dx

θdz
θ + dx

φdz
φ

)]
.

We see from (3.51) that there are no interaction terms among gn
i (krz) for i = 1, 2, 3. Hence, if we can compute gn

i such that ∑
n cn gn

i (krz) f n
i (krx) ≈ exp(−λ|rx − rz|2) for each i, then dT �R

1 (x, z)d will approximate exp(−λ|rx − rz|2) for every direction 
d.

To approximate a Gaussian kernel, for a fixed rz , we first observe that the convolution of j0(krx) with general grz ∈ L2(R)

can be written as∫
R

j0(k|rx − ry|)grz (ry)dry ≈
∑

j

j0(k|rx − ry j |)grz (ry j )h =
∑

n

h
2n + 1

k
jn(krx)

∑
y j

[
jn(kry j )grz (ry j )

]
=

∑
n

jn(krx)gn
1(krz) , with gn

1(krz) = h(2n + 1)/k
∑

y j

[
jn(kry j )grz (ry j )

]
, (3.52)

where we have used j0(k|x − y|) = ∑
n(2n + 1)/kjn(kx) jn(ky), f n

1 (krx) = jn(krx), and h := ry j+1 − ry j for all j. From the 
above equation, the sum 

∑
n jn(krx)gn(krz) can be used to approximate the convolution between j0 and grz . We remark 
1
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that all infinite sums can be truncated to a finite sum with desired accuracy since jn(kr) decays exponentially with respect 
to n for fixed r.

To achieve the almost orthogonality property, we know from (3.52) that it suffices to require 
∫
R j0(k|rx − ry|)grz (ry)dry

to approximate exp(−λ|rx − rz|2). We recall the Fourier transform of j0 and the Gaussian kernel:∫
R

j0(k|rx|)exp(−iωrx)drx = π

2

[
sign(ω − k) − sign(ω + k)

] ; (3.53)

∫
R

exp(−λ|rz − rx|2)exp(−iωrx)drx = exp(−iωrz)

√
π

λ
exp

(− ω2

4λ

)
. (3.54)

To determine gn
1, as the Fourier transform of j0(k|rx|) is band-limited, the best approximation to the Gaussian kernel by 

(3.52) is given by

ming∈L2(R)

∣∣∣∣∣∣∑
n

jn(krx)gn
1(krz) − exp(−λ|rx − rz|2)

∣∣∣∣∣∣
L2(R)

= 2π

λ

∞∫
k

exp
(− ω2

2λ

)
dω . (3.55)

From this expression, we observe that the function 
∑

n jn(krx)gn
1(krz) can approximate a Gaussian kernel with a relatively 

small error along the radial direction and the error can be obtained from the specific value of the cumulative distribution 
function associated with the normal distribution.

Hence, to achieve the almost orthogonality property, we may expect two important and reasonable requirements on the 
kernel function that are used for the following numerical computation of the probing functions:

1. When x̂ = ẑ, we like the coefficients of dT �R
1 (x, z)d in (3.51) are approximately to be a Gaussian kernel, i.e., ∑

n f n
i (krx)gn

i (krz) to be exp(−λ|rx − rz|2) approximately for i = 1, 2, 3;
2. When x̂ �= ẑ, we like the coefficients of dT �R

1 (x, z)d in (3.51) are small for any x and z.

In the following, we will solve a minimization problem to determine the numerical value of the probing function. With the 
help of our analysis on the kernel function in (3.50) and (3.51), the computation can be simplified. We remark that gn

2 and 
gn

3 can be computed in a similar manner as the above.

Computing the probing functions. In the numerical implementation of DSM, we need to compute the probing functions 
in a discretized setting. Consider a set of nodal points in the radial direction rb = {rβ | 0 < rβ < 1, 1 ≤ β ≤ b}, a set of 
points on the sphere T = {(θτ , φτ )| 1 ≤ τ ≤ t} ⊂ S2, a set of points in the sampling domain as zτ = {zτ ,β = (rβ, θτ , φτ )| rβ ∈
rb , (θτ , φτ ) ∈ T }, and three choices of directions d = e1, e2, e3, which are basis vectors in R3. We remark that the set T
and zτ are used to achieve the almost orthogonality property when x̂ �= ẑ. From our numerical experiments, we observe 
that two points, that is (θτ , φτ ), on the sphere are already satisfactory to ensure the kernel function introduced in (3.49)
reaches the maximum at z ≈ x in the angular direction, which are (θx + π, φx) and (θx + π/2, φx). Denoting

Gi =

⎛⎜⎜⎜⎜⎝
g0

i (kr1) g1
i (kr1) · · · gN

i (kr1)

g0
i (kr2)

. . . gN
i (kr2)

...
. . .

...

g0
i (krb) g1

i (krb) · · · gN
i (krb)

⎞⎟⎟⎟⎟⎠ , Fi =

⎛⎜⎜⎜⎜⎝
f 0

i (kr1) f 1
i (kr1) · · · f N

i (kr1)

f 0
i (kr2)

. . . f N
i (r2)

...
. . .

...

f 0
i (krb) f 1

i (krb) · · · f N
i (krb)

⎞⎟⎟⎟⎟⎠ , (3.56)

then the first requirement after equation (3.55) can be reformulated as finding Gi such that F1G T
1 ≈ Lb where Lb is the 

b × b discretization matrix for exp(−λ|rx − rz|2) for rx and rz ∈ (0, 1). We choose λ = 3k in numerical experiments.
For the second requirement after equation (3.55), we write

Hd,τ
1,1 =

⎛⎜⎜⎜⎜⎜⎝
h0

1,1(x̂0, ẑτ ,1,d) h1
1,1(x̂0, ẑτ ,1,d) · · · hN

1,1(x̂0, ẑτ ,1,d)

h0
1,1(x̂0, ẑτ ,2,d)

. . . hN
1,1(x̂0, ẑτ ,2,d)

...
. . .

...

h0
1,1(x̂0, ẑτ ,b,d) h1

1,1(x̂0, ẑτ ,b,d) · · · hN
1,1(x̂0, ẑτ ,b,d)

⎞⎟⎟⎟⎟⎟⎠ , �2 = diag
{ 2n + 1

4π(n2 + n)

}
. (3.57)

Then the second requirement for gn
1 above can be reformulated as finding G1 such that ||F1 Hd

1,1�2G T
1 ||2 is small.

Combining the above requirements, we can solve G1, i.e., numerical values of gn
1(krz) for 0 ≤ n ≤ N and rz ∈ rb , by 

solving

min
∣∣∣∣F1

(
�1 H1�2 H2�2

)T
G T

1 − (
Lb 0b,b 0b,b

)T ∣∣∣∣
2 , (3.58)
G1
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Fig. 3. From left to right: K 1,0
cx1 ,pz

(x1, z) + K 1,0
cx2 ,pz

(x2, z), K 1,2
cx1 ,pz

(x1, z) + K 1,2
cx2 ,pz

(x2, z), K 1,R
cx1 ,pz

(x1, z) + K 1,R
cx2 ,pz

(x2, z), and K 2,R
cx1 ,pz

(x1, z) + K 1,R
cx2 ,pz

(x2, z) induced 
by probing functions defined in (3.7), (3.20), and (3.46) with respect to z ∈ [−√

2, 
√

2] × [−√
2, 

√
2] × 0 under k = 4, and x1 = (0.25, 0.25, 0), x2 =

(−0.25, −0.25, 0) which are denoted by crosses in black. Directions are cx = (1, 1, −1)T /
√

3, pz = cx + 0.1(ε1, ε2, ε3)T , with εi ∼ N (0, 1).

where H j = (He1, j
1,1 , He2, j

1,1 , He3, j
1,1 ) and 0b,b is the b × b zero matrix. The minimization problem can be solved by using the 

pseudo-inverse of (F1 , F1 H1�2 , F1 H2�2)
T . We remark that the jth column of G T

1 which represents the radial component 
of probing functions for sampling points z with rz = rz j is given by the jth column of [(F1 , F1 H1�2 , F1 H2�2)

T ]†. The value 
of gn

2(krτ ) and gn
3(krτ ) can be computed similarly.

We remark that the singular value decomposition (SVD) may be used for the computation of the pseudo-inverse for 
solving (3.58), but this can be conducted offline.

Numerical verification of the mutually almost orthogonality property. We numerically examine the mutually almost 
orthogonality property between probing functions proposed in this subsection and Green’s functions; see Fig. 3. For sim-
plicity, we write K i,R

d,p(x, z) similarly as in (2.15) with probing functions constructed in (3.46). We consider the case 
k = 4 with cx = (1, 1, −1)T /

√
3, pz = cx + 0.05(ε1, ε2, ε3)

T , where εi ∼ N (0, 1) for i = 1, 2, 3. For x1 = (0.25, 0.25, 0), 
x2 = (−0.25, −0.25, 0) denoted by crosses in black, two electric monopoles are located at both x1 and x2 for the first 
three plots; and one electric monopole is located at x1, one magnetic monopole is located at x2 for the fourth plot. The 
minimization problem (3.58) is solved by using the truncated singular value decomposition for the first six singular val-
ues. From left to right, we plot K 1,0

cx1 ,pz
(x1, z) + K 1,0

cx2 ,pz
(x2, z), K 1,2

cx1 ,pz
(x1, z) + K 1,2

cx2 ,pz
(x2, z), K 1,R

cx1 ,pz
(x1, z) + K 1,R

cx2 ,pz
(x2, z), and 

K 2,R
cx1 ,pz

(x1, z) + K 1,R
cx2 ,pz

(x2, z) induced by probing functions defined in (3.7), (3.20), and (3.46) respectively with respect to 
z ∈ [−√

2, 
√

2] × [−√
2, 

√
2] × 0 ⊂ �. We observe from Fig. 3 the following:

• Comparing the first three plots for the kernel functions corresponding to the probing functions defined in (3.7), (3.20)
and (3.46), respectively, K 1,R

cx,pz
(x, z) in the third plot induced by w1,R

z proposed in this subsection is the only kernel 
function that can well separate the two electric monopoles at x1, x2 due to the improved sharpness in the radial 
direction.

• Looking at the fourth plot, for the case that an electric monopole at x2 and a magnetic monopole at x1 coexist in 
the domain, it is important to note that the interaction between the measurement data and w 1,R

z can help locate the 
electric monopole and the result is not influenced by the existence of the magnetic monopole.

Hence, we conclude that the family of probing functions w i,R
z for i = 1, 2 in (3.46) is an appropriate candidate to recover 

inhomogeneous inclusions of different type simultaneously with improved accuracy in radial direction.
To summarize, for probing functions defined in (3.46), the corresponding index functions in (2.14) for recovering the 

inhomogeneous inclusions �ε and �μ are defined as (without the normalization term):

I R
mo(z) := 〈ν × Es , w1,R

z · pz〉L2(∂�) , I R
di(z) := 〈ν × Es , w2,R

z · qz〉L2(∂�) . (3.59)

We remark that, in the current work, we are primarily focused on the cases when there are very limited observation data 
available, e.g., the measurement data from only one or two incident fields with the same frequency. When the measurement 
data is available at multiply frequencies, some special strategy, e.g., similar to the one in the paper [25], might be considered 
to improve the accuracy of the reconstruction of the DSM by combining the index functions of several frequencies together 
in some appropriate manner.

We conclude this section with one remark about the probing directions that we should choose in real applications for 
index functions appeared in (3.22) and (3.59). Our discussions in this section suggest us to choose pz ≈ cx and qz ≈ dx , 
where cx and dz are defined in (2.13). From the derivation of (2.13), we know that cx and dx can be taken to be about the 
same vector as E(x) and ∇ × E(x), respectively, for all x ∈ �, if the inhomogeneous inclusions are isotropic. For the case that 
the incident field is known as we consider in this section, we see from the above numerical experiments that the desired 
mutually almost orthogonality properties hold when the probing directions are taken to be very rough approximations of 
E(z) and ∇ × E(z). For example, we have chosen pz = cx + δ(ε1, ε2, ε3)

T , with εi ∼ N (0, 1) and δ ≥ 0.1, in Figs. 2 and 3. 
Hence, when the incident field Ei is explicitly available as the discussion in this section, we would suggest to employ it as 
appropriate approximations, i.e., choosing pz = Ei(z) and qz = ∇ × Ei(z).
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4. Recovering inhomogeneous inclusions with no prior knowledge of the incident field

In this section, we consider the inverse problem of recovering the support of inhomogeneous inclusions from a pair of 
boundary measurements for both the electric and magnetic fields, with no prior knowledge of the incident field in R3. All 
the notations are carried over from the previous sections.

In terms of the electric field, our problem is stated as follows: for a fixed k and E that satisfies

∇ × (μ−1∇ × E) − k2εE = 0 in �, (4.1)

we aim to recover the inhomogeneous inclusions �μ=supp{μ −μ0} and �ε=supp{ε −ε0} simultaneously, when only one or 
two pairs of measurements ν × E and ν × ∇ × E is available on the boundary ∂�. We know from the Maxwell theory that 
ν × ∇ × E is basically the tangential component of the magnetic field. The uniqueness and stability of the reconstruction 
for this inverse problem can be found in [8,11]. Let E0 be the electric field associated with the homogeneous background, 
satisfying

∇ × ∇ × E0 − k2 E0 = 0 in �. (4.2)

We shall write Es := E − E0 in the sequel, and can easily see that it satisfies

∇ × ∇ × Es − k2 Es = k2(ε − ε0)E − ∇ × ( 1

μ
− 1

μ0

)∇ × E in �. (4.3)

Similarly to our derivations in section 2 (see equations (2.9)-(2.13)), we can represent the measurement on the boundary 
with Green’s function and its curl. To achieve that, we introduce the Green’s function of the second kind, denoted by �x , 
satisfying

∇ × ∇ × �x(y) − k2�x(y) = δx(y)I 3 in �, ν × ∇ × �x(y) = 0 on ∂� . (4.4)

Using the Green’s representation formula, we derive [4]

Es(x) =
∫
�

�x

[
k2(ε − ε0)E − ∇ × ( 1

μ
− 1

μ0

)∇ × E
]
dz (4.5)

=
∫
�ε

k2(ε − ε0)�x Edz −
∫

�μ

( 1

μ
− 1

μ0

)
(∇z × �x)(∇ × E)dz +

∫
∂�μ

( 1

μ
− 1

μ0

)
(∇ × �x)(ν × E)ds(z) ,

when μ is piecewise constant. From (4.5), an appropriate numerical integration approximation leads to

Es(x) ≈
∑

i

ai(�yi (x) · c i) +
∑

j

b j(∇z × �z j (x) · d j) , x ∈ ∂�, yi ∈ �ε , z j ∈ �μ , (4.6)

where ai , b j ∈C, and c i , d j ∈C3.
For the reconstruction with respect to (4.1), all the definitions of index functions and kernel functions in section 2 are 

carried over here. The remaining task is to construct a proper family of probing functions, w̃1
z and w̃2

z , for recovering �ε

and �μ .
We continue the discussions by considering the typical measurement surface ∂� = S2. Firstly, we will represent the 

Green’s function of the second kind by spherical vector waves. We notice that one particular solution for (4.4) can be 
constructed by �x(y) = �x(y) + �̃x(y) where �x(y) is the free space Green’s function in (2.6) and �̃x(y) satisfies

∇ × ∇ × �̃x(y) − k2�̃x(y) = 0 in �, ν × ∇ × �̃x(y) = ν × ∇ × �x(y) on ∂� . (4.7)

Combining the expansion in (3.1) and orthogonality properties of spherical vector waves in (A.10), we have

�x(y) = ik
∑
m,n

[
v1,m,n(x)

(
bn v†

1,m,n(y) + u†
1,m,n(y)

) + v2,m,n(x)
(
an v†

2,m,n(y) + u†
2,m,n(y)

)]
, (4.8)

where the coefficients an and bn can be determined by using the boundary condition ν × ∇ × �̃x(y) = ν × ∇ × �x(y) on 
S2, and are given by

an = −h(1)
n (k)

jn(k)
, bn = − (d/dρ)[ρh(1)

n (ρ)]
(d/dρ)[ρ jn(ρ)]

∣∣∣
ρ=k

, (4.9)

with h(1)
n being the spherical Bessel function of the first kind of order n.
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Similarly, the curl field can be expressed as

∇x × �x(y) = ik2
∑
m,n

[
v2,m,n(x)

(
bn v†

1,m,n(y) + u†
1,m,n(y)

) + v1,m,n(x)
(
an v†

2,m,n(y) + u†
2,m,n(y)

)]
. (4.10)

To design a set of proper probing functions, we follow the similar idea as in section 3, i.e., to choose probing functions 
that can induce certain kernel functions that we desire. For the convenience of the following discussions, as in (3.5), we 
first compute a set of coefficients d3,n and d4,n which satisfy

〈ν × (
an v†

2,m,n + u†
2,m,n) , u†

1,m′,n′ + d4,n′ u†
4,m′,n′ 〉L2(∂�) =δ(m − m′)δ(n − n′), (4.11)

〈ν × (
bn v†

1,m,n + u†
1,m,n) , u†

2,m′,n′ + d3,n′ u†
3,m′,n′ 〉L2(∂�) =δ(m − m′)δ(n − n′) . (4.12)

Their explicit values can be computed by

d4,n = −1 + anc jh
n + cn,1,2

anc jh
n,2,4 + cn,2,4

, d3,n = 1 − (bnchj
n,1,2 + cn,1,2)

bnc jh
n,1,3 + cn,1,3

, (4.13)

where cn,τ1,τ2 are defined in (A.10), and

d jh
n = (n + 1) jn(k) − kjn+1(k)

k
h(1)

n (k) , chj
n = (n + 1)h(1)

n (k) − kh(1)
n+1(k)

k
j(1)
n (k) , c jh

n,1,3 = jn(k)h(1)
n (k)

k

√
n2 + n .

Similarly to the derivations of (3.20)-(3.21), we can derive a family of probing functions that can induce kernel functions 
appeared in equations (3.18) and (3.19) with respect to �x:

w̃1,γ
z (y) =

∑
m,n

(n2 + n)γ
[

v2,m,n(z)
(
u†

1,m,n(y) + d4,nu†
4,m,n(y)

) + v1,m,n(z)
(
u†

2,m,n(y) + d3,nu†
3,m,n(y)

)]
, (4.14)

w̃2,γ
z (y) =

∑
m,n

(n2 + n)γ
[

v1,m,n(z)(u†
1,m,n(y) + d4,nu†

4,m,n(y)) + v†
2,m,n(z)

(
u†

2,m,n(y) + d3,nu†
3,m,n(y)

)]
. (4.15)

The numerator of corresponding kernel functions as defined in (2.15) for w̃ i,γ
z (i = 1, 2) will then be

〈ν × (�x · cx) , w̃1,γ
z · pz〉L2(∂�) =〈ν × (∇x × �x · cx) , w̃2,γ

z · qz〉L2(∂�) = cT
x �

γ
1 (x, z)pz , (4.16)

〈ν × (�x · cx) , w̃2,γ
z · pz〉L2(∂�) =〈ν × (∇x × �x · cx) , w̃1,γ

z · pz〉L2(∂�) = dT
x �

γ
2 (x, z)pz , (4.17)

where �γ
1 and �γ

2 are the same as in (3.18).
Therefore, since the kernel functions are the same, the verification of the mutually almost orthogonality property for 

the current case is identical with our previous verification in section 3. In summary, we are ready to introduce the index 
functions for the inverse problem (4.1):

Ĩγmo(z) := 〈ν × Es , w̃1,γ
z · pz〉L2(∂�)

nγ (z)
, Ĩγdi(z) := 〈ν × Es , w̃2,γ

z · qz〉L2(∂�)

nγ (z)
(4.18)

for recovering �ε and �μ separately, where nγ (z) = ∣∣∑diat{�γ
1 (z, z)}∣∣ 1

2 .
Similar to our discussions in section 3.3, we can derive a family of probing functions that improves the accuracy of 

reconstruction in the radial direction and the corresponding index functions.
We end this section with an important remark about the choice of probing directions that are needed in (4.18). Unlike 

in the previous section, we do not know the incident field now. To do so, we first notice that the inner product between 
the measurement data and probing functions can be written as

〈ν × Es , w̃1,γ
z · pz〉L2(∂�) =

∫
∂�

(ν × Es) · w̃1,γ
z · pzdy =

∫
∂�

w̃1,γ
z · (ν × Es)dy pz . (4.19)

Hence, by taking pz =
∫
∂� w̃1,γ

z ·(ν×Es)dy

|| ∫∂� w̃1,γ
z ·(ν×Es)dy||2

and qz =
∫
∂� w̃2,γ

z ·(ν×Es)dy

|| ∫∂� w̃2,γ
z ·(ν×Es)dy||2

, then

Ĩγmo(z) = 1

nγ (z)

| ∫
∂�

w̃1,γ
z · (ν × Es)dy|2

|| ∫ w̃1,γ · (ν × E )dy||
, Ĩγdi(z) = 1

nγ (z)

| ∫
∂�

w̃2,γ
z · (ν × Es)dy|2

|| ∫ w̃2,γ · (ν × E )dy||
. (4.20)
∂� z s 2 ∂� z s 2
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For each sampling point z, the above choices of probing directions ensure that we maximize the magnitude of the absolute 
value of index functions in all possible choices of pz , qz and allow us to preserve all possible maximum points of index 
functions.

Moreover, the above choices of pz and qz are also approximations to E(z) and ∇ × E(z) as in the previous section. For 
instance, considering pz , recalling the expansion of boundary measurement in (4.6), then the numerator of the above choice 
of pz equals to∫

∂�

w̃1,γ
z · (ν × Es)dy ≈

∑
i

ai〈ν × (�xi · E(xi)), w̃1,γ
z · pz〉L2(∂�) +

∑
j

b j〈ν × (∇ × �y j · ∇ × E(x j)), w̃1,γ
z 〉L2(∂�)

≈
∑

i

ai E(xi)
T �

γ
1 (xi, z) +

∑
j

b j(∇ × E(x j))
T �

γ
2 (y j, z) . (4.21)

We have verified in section 3 that the magnitude of �γ
1 (xi, z) and �γ

2 (y j, z) are small for xi , y j not close to z, therefore 
we see 

∑
i ai E(xi)

T �
γ
1 (xi, xn) + ∑

j b j(∇ × E(x j))
T �

γ
2 (y j, xn) ≈ ancT

n �
γ
1 (xn, xn) for xn that is associated with an electric 

monopole. Therefore, our choice of pz is approximately equal to E(xn)�1(xn, xn) after normalization. We may further recall 
from the expressions of kernel functions in (3.15) that the kernel function that we obtained as a matrix valued function is 
diagonally dominant when z ≈ x, and with approximately the same positive diagonal entry. In this case, we conclude that 
pxn

, �γ
1 (xn, xn)E(xn), and E(xn) are approximately equal after normalization.

5. Numerical experiments

We will present a series of numerical experiments in R3 to demonstrate the robustness, accuracy, and efficiency of the 
novel DSM. The sampling domain � is taken to be the unit ball B(0, 1), with the homogeneous background ε0 = μ0 =
1. The forward problem is solved using the second-order edge elements with the maximum volume being 2 × 10−3. To 
obtain an accurate solution in a bounded simulation domain, a perfectly matched layer is placed in [−5, 5]3 \ �. After 
formulating the corresponding stiffness matrix and the load vector, we employ the software MUMPS [2] to obtain the 
noise-free measurement data.

The measurement data, i.e., ν × Es for examples 1 to 4, or ν×s and ν ×∇ × E for example 5, are assumed to be available 
on a set of discrete measurement points �S2 that is uniformly distributed on the unit sphere S2. An additive Gaussian 
noise is added to the data to illustrate the robustness of the DSM against noise, with the noisy data given by

ν × Ẽ s(yi) = (ν × Es(yi))(1 + εδ) , yi ∈ �S2 , (5.1)

where ν × Es(y) is the exact data of the scattered field. We add a quite big noise in the data in all the experiments, namely, 
we will take ε = 10%, and δ to be randomly and uniformly distributed in [−1, 1].

In addition to the index functions defined in (3.22) and (3.59), we will also use two combined index functions, which 
are defined by the geometric mean of the previous two index functions as follows:

Imo(z) =
∣∣∣ Iγmo(z)

maxx∈�|Iγmo(x)| · I R
mo(z)

maxx∈�|I R
mo(x)|

∣∣∣ 1
2

, Idi(z) =
∣∣∣ Iγdi(z)

maxx∈�|Iγdi(x)| · I R
di(z)

maxx∈�|I R
di(x)|

∣∣∣ 1
2
. (5.2)

An intuitive motivation for using the geometric mean for a combined index function is the index can be regarded as a 
likelihood that represents the likelihood of a sampling point lying in �ε or �μ . Hence, the method is expected to identify 
a region that has a large likelihood to be the support of inhomogeneous inclusions with very limited data, e.g., the data 
from a single or two incident fields with the same frequency. Therefore, the product index function is approximately a joint 
likelihood if we assume the likelihood along the angular and radial directions are almost independent.

We remark that we will choose γ = 1 or 0 for all our numerical experiments. The first reason is that the improvement 
of the reconstruction accuracy is mild with γ > 1, based on our numerical observations in section 3.2.2. The second reason 
is that as γ becomes larger, the proposed index functions are usually more sensitive to inhomogeneous inclusions that 
are close to the measurement surface. To see that, we can observe from (3.45) that there is a term associated with rx
which makes the magnitude of K 1,1

cx,px
(x, x) larger as x gets closer to ∂�. This sensitivity is also confirmed by our numerical 

experiences. Hence, we suggest choosing γ = 1 in practice to ensure reasonable reconstructions, especially in the case of 
multiple inhomogeneous inclusions.

In our numerical experiments, we first carry out an offline computation, namely, to compute the probing functions 
defined in (3.20), (3.46), and (4.14) with 0 ≤ n ≤ 15 for the summation of spherical vector waves and z ∈ �� , where �� is a 
set of points that are approximately uniformly distributed in � with the distance between two points smaller than 0.1. Then 
we compute the index functions defined in (3.22), (3.59), and (5.2) accordingly to recover the support of inhomogeneous 
inclusions.

In the figures below, the leftmost plot is the distribution of the true inhomogeneous inclusions, where the yellow color 
represents inhomogeneous inclusions associated with ε while the blue color represents inhomogeneous inclusions associ-
ated with μ. The second plot is the reconstruction of �ε , marked in yellow, by I1

mo , I R
mo , or their combined index. The 
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Fig. 4. Example 1. Two inhomogeneous inclusions associated with ε = 1.3 are located at balls B(x1, 0.15) and B(x2, 0.15), with x1 = (0.35, −0.35, 0) and 
x2 = (−0.35, −0.35, 0); one inhomogeneous inclusion associated with μ = 0.55 is located at the ball B(x3, 0.15), with x3 = (−0.35, 0.35, 0). Only one single 
measurement data is available with Ei(x) = pei6x·d for p = (0, 1, 1)/

√
2, d = (0, −1, 1)/

√
2. From left to right: true inhomogeneous inclusions, recovered 

ones by I1
mo(z), I1

di(z), and Idi(z).

remaining plots are the reconstruction of �μ , marked in blue, by I1
di , I R

di , or their combination. For all index functions, we 
always plot the normalized absolute value by their maximum values so that the maximum value of each index function is 
1 in the entire sampling domain �. For each index function, two cross-sections are plotted, which are chosen to be two of 
S1 = [−√

2, 
√

2] × [−√
2, 

√
2] × 0, S2 = −0.35 × [−√

2, 
√

2] × [−√
2, 

√
2], and S3 = 0.35 × [−√

2, 
√

2] × [−√
2, 

√
2].

Example 1. This example first examines the accuracy and robustness of the index functions I1
mo(z) and I1

di(z) defined in 
(3.22) with γ = 1 for recovering the support of inhomogeneous inclusions with different physical nature, and then compare 
the accuracy of the reconstruction by I1

di(z) and the combined index function defined in (5.2); see Fig. 4. The first two 
inhomogeneous inclusions associated with ε = 1.3 are located within two balls B(x1, 0.15) and B(x2, 0.15), with x1 =
(0.35, −0.35, 0) and x2 = (−0.35, −0.35, 0). And an inhomogeneous inclusion associated with μ = 0.55 is located within 
the ball B(x3, 0.15), with x3 = (−0.35, 0.35, 0). Only one single set of boundary measurement data is available which is 
induced by the incident field pei6x·d with p = (0, 1, 1)/

√
2 and d = (0, −1, 1)/

√
2.

Comparing the second and third plots in Fig. 4, the index functions I1
mo and I1

di can both identify the physical proper-
ties of inhomogeneous inclusions of two different nature and recover their locations, with only one single set of boundary 
measurement data. Moreover, we observe from the third plot that the reconstruction of the inhomogeneous inclusion asso-
ciated with μ, whose real boundary is marked in black, is less accurate, i.e., the size of the reconstructed inhomogeneous 
inclusions by I1

di is clearly larger than the real one. However, the combined index function can provide a much more accu-
rate reconstruction of �μ (see the fourth plot). Therefore, we will use the combined index function defined in (5.2) in the 
following examples.

Example 2. This example compares the reconstruction performance with two different wave numbers. Two inhomogeneous 
inclusions are present, with the first one associated with ε = 2.2, being a rectangular bar located at [0.3, 0.4] ×[−0.4, 0.4] ×
[−0.05, 0.05], and the second one associated with μ = 0.8 located within the ball B(x1, 0.15), with x1 = (−0.35, 0.35, 0); 
see Fig. 5 where the boundaries of true inhomogeneous inclusions are marked in black. Only the measurement data from 
a single incident field is used, i.e., from peikx·d for p = (1, 1, −1)/

√
3 and d = −(1, 1, 2)/

√
6. The combined index functions 

(5.2) are employed for reconstructions.
We can observe from Fig. 5 that the location of ε and μ are recovered for both k = 4 and k = 8, with the data from only 

a single incident field. The shapes of two inhomogeneous inclusions, especially the rectangular bar associated with ε , are 
recovered clearly more accurately with the incident field from the larger frequency (i.e., k = 8).

Example 3. This example examines the reconstructions of anisotropic inhomogeneous inclusions by the combined index 
functions (5.2). We consider the following ε1 and ε2:

ε1 =
⎛⎝ 3 0.3 0.4

0.3 2.8 0.2
0.4 0.2 1.8

⎞⎠ , ε2 =
⎛⎝2.5 0.3 0.4

0.3 3 0.2
0.4 0.2 2

⎞⎠ , (5.3)

with the corresponding inhomogeneous inclusions being located at balls B(x1, 0.15) and B(x2, 0.15), with x1 = (0.4, 0.1, 0)

and x2 = (−0.4, −0.1, 0). For μ1 and μ2, we consider the following matrices:

μ1 =
⎛⎝1/3 10 4

10 1/6 5
4 5 1/6

⎞⎠ , μ2 =
⎛⎝0.2 5 8

5 0.2 4
8 4 0.2

⎞⎠ , (5.4)

with the corresponding inhomogeneous inclusions being located at balls B(x3, 0.15) and B(x4, 0.15), with x3 = (−0.1, 0.4, 0)

and x4 = (0.1, −0.4, 0). Only the boundary data from a single incident field is used, i.e., pei8x·d for p = (−1, 1, 1)/
√

3 and 
d = −(2, 1, 1)/

√
6.

This is a quite difficult example: the inhomogeneous inclusions are associated with two fully anisotropic parameters 
ε and μ; four inhomogeneous inclusions are close to each other; many components of ε and μ differ significantly (the 
21
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Fig. 5. Example 2. The first inhomogeneous inclusion associated with μ = 0.8 is located at the ball B(x1, 0.15), with x1 = (−0.35, 0.35, 0); the second 
inhomogeneous inclusion associated with ε = 2.2 is located at [0.3, 0.4] × [−0.4, 0.4] × [−0.05, 0.05]. The data used is from the single incident Ei(x) =
peikx·d , with p = (1, 1, −1)/

√
3, d = −(1, 1, 2)/

√
6. First row from left to right: true inhomogeneous inclusions, recovered ones by Imo and Idi with k = 4; 

second row from left to right: recovered ones by Imo and Idi with k = 8.

Fig. 6. Example 3. Two inhomogeneous inclusions associated with ε1 and ε2 defined in (5.4) are located at balls B(x1, 0.15) and B(x2, 0.15), with x1 =
(0.4, 0.1, 0) and x2 = (−0.4, −0.1, 0). Two inhomogeneous inclusions associated with μ1 and μ2 defined in (5.3) are located at B(x3, 0.15) and B(x4, 0.15)

with x3 = (−0.1, 0.4, 0) and x4 = (0.1, −0.4, 0). The data is from a single incidence Ei(x) = pei8x·d , with p = (−1, 1, 1)/
√

3 and d = −(2, 1, 1)/
√

6. From 
left to right: true inhomogeneous inclusions, recovered ones by Imo , and Idi .

maximum ratio between ε and μ in the diagonals is as high as 16.8, while the ratios between the off-diagonal entries are 
as high as 30). But we can observe from Fig. 6 that the numerical reconstructions are still quite satisfactory to recover the 
locations, shapes, and sizes of all inhomogeneous inclusions, in view of the measurement data from only one single incident 
field.

Example 4. This example examines a very challenging case where one type of inhomogeneous inclusions is totally embedded 
in the other type. An inhomogeneous inclusion associated with μ = 0.4 is located at B(x1, 0.1) with x1 = (−0.2, 0, 0) and 
fully embedded in another type of inhomogeneous inclusions associated with ε = 2.5, which is located in a spherical 
shell centered at the origin with an inner sphere and an outer sphere of radii being 0.35 and 0.38 respectively. For this 
challenging example, we combine the index functions Imo and Idi that are generated by two sets of boundary measurement 
data, similarly to what we did in (5.2) by using their geometric mean. The two sets of boundary measurement data are 
induced by the incident fields p1ei8x·d1 and p2ei8x·d2 , with p1 = (1, −1, 1)/

√
3, d1 = (0, 1, 1)/

√
2, p2 = (0, −1, 1)/

√
2 and 

d2 = (0, −1, −1)/
√

2.
We can observe from Fig. 7 that the DSM still works quite effectively for this very challenging reconstruction: the shape 

of the spherical shell is recovered quite properly by Imo (second plot) while the inhomogeneous inclusion associated with 
μ, that is completely embedded in the outer shell, can be also recovered from Idi (third plot).
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Fig. 7. Example 4. One inhomogeneous inclusions associated with μ = 0.4 is located at the ball B(x1, 0.1), with x1 = (−0.2, 0, 0); one inhomogeneous 
inclusion associated with ε = 2.5 is located at the spherical shell centered at the origin with the radii of the inner and outer spheres being 0.35 and 
0.38 respectively. Two sets of measurement data are available with Ei(x) = pi e

i8x·di with i = 1, 2, where p1 = (1, −1, 1)/
√

3, d1 = (0, 1, 1)/
√

2 and p2 =
(0, −1, 1)/

√
2, d2 = (0, −1, −1)/

√
2. From left to right: true inhomogeneous inclusions, recovered ones by Imo , and Idi .

Fig. 8. Example 5. One inhomogeneous inclusion associated with ε1 = 2 is located at the spherical shell centered at the origin with the radii of the inner 
and outer spheres being 0.45 and 0.5 respectively; the other inhomogeneous inclusions associated with ε2 = 1.5 (middle) and 4 (right) is located at the 
ball B(x1, 0.1) with x1 = (−0.05, 0, 0). The used data is from two incident fields, p1ei10x·d1 and p2ei10x·d2 , with p1 = (0, −1, 1)/

√
2, d1 = (0, 1, 1)/

√
2, 

p2 = (1, 1, 0)/
√

2 and d2 = (−1, 1, 0)/
√

2. From left to right: true inhomogeneous inclusions, recovered ones by Imo with ε2 = 1.5 and 4, respectively.

Example 5. In this example, we apply the DSM to the case when there are two inhomogeneous inclusions of the same type 
(i.e., both from electric permittivities but with different values). The first inhomogeneous inclusion is associated with ε1 = 2
and located in a spherical shell centered at the origin, with the inner sphere and the outer sphere of radii being 0.45 and 
0.5 respectively. The second inhomogeneous inclusion is associated with a different ε2 and located at B(x1, 0.1) with x1 =
(−0.05, 0, 0). The electromagnetic field is induced by two incidences, p1ei10x·d1 and p2ei10x·d2 , with p1 = (0, −1, 1)/

√
2, 

d1 = (0, 1, 1)/
√

2, p2 = (1, 1, 0)/
√

2 and d2 = (−1, 1, 0)/
√

2.
The index function Imo is computed twice for ε2 = 1.5 (middle plot) and ε2 = 4 (right plot), and the slice of the index 

function at z = 0 is plotted in Fig. 8, where the boundaries of two true inclusions are marked in black. We can observe from 
the second plot of Fig. 8 that the DSM can recover inhomogeneous inclusions of the same type quite accurately when one 
of them is completely embedded by the other. But we can see from the right plot where ε2 is much larger than ε1, only 
the embedded inclusion associated with the larger ε is recovered accurately. This is reasonable, considering the extremely 
limited observation data used.

Example 6. In this example, we examine the reconstruction by DSM for the case that was discussed in section 4 when 
the incident field is unknown, with a single set of the measurement data ν × E and ν × ∇ × E collected on the boundary 
and no any prior information of the incident field. The first inhomogeneities inclusion associated with ε = 1.2 is located at 
the ball B(x1, 0.1), with x1 = (−0.15, 0.35, 0), while another inhomogeneous inclusion associated with μ = 0.85 is located 
at the ball B(x2, 0.1), with x2 = (0.15, −0.35, 0). The electromagnetic field is induced by Ei = p1 expi8d1 +p2 expi8d2 , with 
p1 = (0, 1, 1)/

√
2, d1 = (0, −1, 1)/

√
2, p2 = −(1, 1, 1)/

√
3 and d2 = (−2, 1, 1)/

√
6. Two index functions are computed with 

only one single set of measurement data for both ν × E|∂� and ν × ∇ × E|∂� . The probing directions are chosen based on 
(4.20).

From the second plot by Imo and the third plot by Idi in the reconstructions in Fig. 9, we can observe that the DSM can 
still identify the locations and physical properties of the inhomogeneous inclusions associated with ε and μ, respectively, 
quite satisfactorily, with only one single set of noisy measurement data.

6. Concluding remarks

We have proposed a novel DSM to recover the support of electromagnetic inhomogeneous inclusions of different phys-
ical nature simultaneously with highly limited data, only one or two sets of noisy boundary measurement data. The new 
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Fig. 9. Example 6. One inhomogeneous inclusions associated with ε = 1.2 is located at the ball B(x1, 0.1), with x1 = (−0.15, 0.35, 0); one inho-
mogeneous inclusion associated with μ = 0.8 is located at the ball B(x2, 0.1), with x2 = (0.15, −0.35, 0). The electromagnetic field is induced by 
Ei = p1 expi8d1 +p2 expi8d2 , with p1 = (0, 1, 1)/

√
2, d1 = (0, −1, 1)/

√
2; p2 = −(1, 1, 1)/

√
3, d2 = (−2, 1, 1)/

√
6. One single set of boundary measure-

ments for both ν × E and ν × ∇ × E is available, with no prior information on the incident field. From left to right: true inhomogeneous inclusions, 
recovered ones by Imo , and Idi .

DSM leverages upon the important mutually almost orthogonality property between fundamental solutions of the forward 
problem and two proper sets of probing functions.

Two novel families of probing functions are constructed to obtain accurate reconstruction results in the direction that is 
parallel to and vertical to the measurement surface separately. The design of the first family is based on the observation 
that applying a surface Laplacian operator on the probing function can improve the accuracy of the reconstruction. For the 
second family, it is constructed such that the corresponding kernel function approximates a Gaussian kernel in the direction 
that is vertical to the measurement surface. Therefore, it can recover inhomogeneous inclusions distributed in the radial 
direction satisfactorily. The desired mutually almost orthogonality property is carefully verified for the two new families 
of probing functions by both theoretical analysis and numerical demonstration. From our extensive numerical experiments, 
the method is shown to be completely parallel, easy to implement, fast to compute, and robust under noisy and limited 
measurement data.

For future research, several topics can be further explored along with the current work. Firstly, it is interesting to extend 
the proposed DSM to a broader class of coefficients inverse problems with more complicated interaction terms, for instance, 
fully anisotropic linear and nonlinear elasticity model, shallow water wave equation, Boltzmann transport equation, Klein-
Gordon, and Sine-Gordon equations, etc. More generally, it is important to develop a consistent and unified framework of 
direct sampling type methods for general inverse problems. This framework could provide us concrete guidance on the 
optimal choice of probing functions, allow a more rigorous justification of the proposed method, and validate the direct 
sampling type methods in many other inverse problems arising in real applications.
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Appendix A. Review on spherical vector waves

Some fundamental results related to spherical vector waves that will be used repeatedly throughout our discussion are 
reviewed in this appendix. The primary motivation for introducing them is that they provide a convenient way to represent 
differential operators on the unit sphere. In the following, we shall write x = (rx, θx, φx) in spherical coordinates.
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Firstly, denoting spherical harmonics of order (m, n) as

Y m
n (x̂) =

√
2n + 1

4π

(n − |m|)!
(n + |m|)! P |m|

n (cos θx)eimφx , −n ≤ m ≤ n , n ∈N , m ∈Z , (A.1)

where Pm
n is the associated Legendre polynomial. The Laplacian operator on the unit sphere acting on spherical harmonics 

leads to

(−�S2)Y m
n (x̂) = −(n2 + n)Y m

n (x̂) . (A.2)

Since the electromagnetic field is a vector field, we need to introduce vector spherical harmonics on S2 under spherical 
basis (r̂, ̂θ, φ̂) which are⎧⎪⎪⎨⎪⎪⎩

A1,m,n(x̂) = (n2 + n)− 1
2 ∇Y m

n (θ, φ) × r̂ = (n2 + n)− 1
2

(
θ̂ 1

sin θ

∂Y m
n (x̂)
∂φ

− φ̂
∂Y m

n (x̂)
∂θ

)
,

A2,m,n(x̂) = (n2 + n)− 1
2 ∇Y m

n (x̂) = (n2 + n)− 1
2

(
θ̂

∂Y m
n (x̂
∂θ

+ φ̂ 1
sin θ

∂Y m
n (x̂)
∂φ

)
,

A3,m,n(x̂) = r̂Y m
n (x̂) ;

(A.3)

and A1,0,0 = A2,0,0 = 0. The system of vector spherical harmonics {Aτ ,m,n| τ = 1, 2, 3 , −n ≤ m ≤ n , n ∈ N} forms a com-
plete and orthonormal basis for vector fields on the spherical surface.

In our work, we have also used repeatedly the product of two vector spherical harmonics, which are

A1,m,n(x̂)A†
1,m,n(ẑ) = 1

n2 + n

[ 1

sin θx sin θz

∂Y m
n (x̂)

∂φx

∂Y m
n (ẑ)

∂φz
θ̂ xθ̂ z − 1

sin θx

∂Y m
n (x̂)

∂φx

∂Y m
n (ẑ)

∂θz
θ̂ xφ̂z

− 1

sin θz

∂Y m
n (x̂)

∂θx

∂Y m
n (ẑ)

∂φz
φ̂xθ̂ z + ∂Y m

n (x̂)

∂θx

∂Y m
n (ẑ)

∂θz
φ̂xφ̂z

]
;

A2,m,n(x̂)A†
2,m,n(ẑ) = 1

n2 + n

[∂Y m
n (x̂)

∂θx

∂Y m
n (ẑ)

∂θz
θ̂ xθ̂ z + 1

sin θz

∂Y m
n (x̂)

∂θx

∂Y m
n (ẑ)

∂φz
θ̂ xφ̂z

+ 1

sin θx

∂Y m
n (x̂)

∂φx

∂Y m
n (ẑ)

∂θz
φ̂xθ̂ z + 1

sin θx sin θz

∂Y m
n (x̂)

∂φx

∂Y m
n (ẑ)

∂φz
φ̂xφ̂z

]
;

A3,m,n(x̂)A†
3,m,n(ẑ) =Y m

n (x̂)Y m
n (x̂)r̂xr̂z ; (A.4)

A2,m,n(x̂)A†
3,m,n(ẑ) = 1√

n2 + n

[∂Y m
n (x̂)

∂θx
Y m

n (ẑ)θ̂ xr̂z + 1

sin θx

∂Y m
n (x̂)

∂φx
Y m

n (ẑ)φ̂xrz

]
A1,m,n(x̂)A†

2,m,n(ẑ) = 1

n2 + n

[ ∂Y m
n (x̂)

sin θx∂φx

∂Y m
n (ẑ)

∂θz
θ̂ xθ̂ z + 1

sin θx sin θz

∂Y m
n (x̂)

∂φx

∂Y m
n (ẑ)

∂φz
θ̂ xφ̂z

− ∂Y m
n (x̂)

∂θx

∂Y m
n (ẑ)

∂θz
φ̂xθ̂ z − ∂Y m

n (x̂)

∂θx

∂Y m
n (ẑ)

sin θz∂φz
φ̂xφ̂z

]
,

A2,m,n(x̂)A†
1,m,n(ẑ) = 1

n2 + n

[∂Y m
n (x̂)

∂θx

∂Y m
n (ẑ)

sin θz∂φz
θ̂ xθ̂ z − ∂Y m

n (x̂)

∂θx

∂Y m
n (ẑ)

∂θz
θ̂ xφ̂z

+ 1

sin θx sin θz

∂Y m
n (x̂)

∂φx

∂Y m
n (ẑ)

∂φz
φ̂xθ̂ z − ∂Y m

n (x̂)

sin θx∂φx

∂Y m
n (ẑ)

∂θz
φ̂xφ̂z

]
,

A1,m,n(x̂)A†
3,m,n(ẑ) = 1√

n2 + n

[ ∂Y m
n (x̂)

sin θx∂φx
Y m

n (ẑ)θ̂ xr̂z − ∂Y m
n (x̂)

∂θx
Y m

n (ẑ)φ̂xr̂z

]
.

Next, to include the dependence in the radial direction, for x ∈ R3, we further define the following spherical vector 
waves with k > 0 as⎧⎪⎪⎨⎪⎪⎩

u1,m,n(x) = h(1)
n (krx)A1,m,n(x̂) ,

u2,m,n(x) = (krxh(1)
n (krx))

′
krx

A2,m,n(x̂) + (n2 + n)
1
2

h(1)
n (krx)

krx
A3,m,n(x̂) ,

u3,m,n(x) = 1
k ∇(h(1)

n (krx)Y m
n (x̂) = (h(1)

n )′(krx)A3,m,n(x̂) + (n2 + n)
1
2

h(1)
n (krx)

krx
A2,m,n(x̂) ,

(A.5)

where h(1)
n is the spherical Bessel function of the third kind. The first two types of spherical vector waves are divergence free 

which can be employed to represent an electromagnetic field. Moreover, they can be considered as electric fields induced 
by electric multipoles or magnetic multipoles separately that satisfy
25
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∇ × u1,m,n(x) = ku2,m,n(x) , ∇ × u2,m,n(x) = ku1,m,n(x) .

Furthermore, the third type of spherical vector waves is curl free, i.e., ∇ × u3,m,n = 0, which completes the system of 
spherical vector waves for any vector field on the spherical surface [5]. The family of uτ ,m,n is also called radiating spherical 
vector waves due to the choice of h(1)

n in the radial direction. For the notational sake, we also write

u4,m,n(x) := u3,m,n × r̂ = (n2 + n)
1
2

h(1)
n (kr)

kr
A1,m,n(x̂) . (A.6)

At the same time, if the vector field under investigation is regular inside �, we have to employ regular spherical vector 
waves which are defined as{

v1,m,n(x) = jn(krx)A1,m,n(x̂) ,

v2,m,n(x) = (krx jn(krx))
′

krx
A2,m,n(x̂) + (n2 + n)

1
2

jn(krx)
krx

A3,m,n(x̂) ,
(A.7)

where jn is the spherical Bessel functions of the first kind.
The spherical Laplacian applied on spherical vector waves lead to⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−�)S2 u1,m,n(x) = −(n2 + n)u1,m,n(x) ,

(−�)S2 u2,m,n(x) = −(n2 + n)u2,m,n(x) + 2(n2 + n)
1
2 v3,m,n(x) ,

(−�)S2 u3,m,n(x) = −(n2 + n + 2)u3,m,n(x) + 2(n2 + n)
1
2 u2,m,n(x) ,

(−�)S2 u4,m,n(x) = −(n2 + n)u4,m,n(x) .

(A.8)

As the measurement of the electromagnetic field is usually the tangential field on the boundary, we also need to compute 
the tangential field of vector spherical harmonics and radiating spherical vector waves, which are

⎧⎪⎨⎪⎩
r̂ × A1,m,n(x̂) = A2,m,n(x̂) ,

r̂ × A2,m,n(x̂) = −A1,m,n(x̂) ,

r̂ × A3,m,n(x̂) = 0 ;
⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r̂ × u1,m,n(x) = h(1)
n (krx)A2,m,n(x̂) ,

r̂ × u2,m,n(x) = − (krxh(1)
n (krx))

′
krx

A1,m,n(x̂) ,

r̂ × u3,m,n(x) = −(n2 + n)
1
2

h(1)
n (kr)

kr A1,m,n(x̂) ,

r̂ × u4,m,n(x) = (n2 + n)
1
2

h(1)
n (kr)

kr A2,m,n(x̂) .

(A.9)

We now list some orthogonality relationship between spherical vector waves of different types under L2 inner product 
on S2:

〈ν × u1,m,n, uτ ,m′,n′ 〉L2(S2) = δ(m − m′)δ(n − n′)cn,1,τ , where τ = 2,3 , (A.10)

〈ν × u2,m,n, uτ ,m′,n′ 〉L2(S2) = δ(m − m′)δ(n − n′)cn,2,τ , where τ = 1,4 ;
where those constants are defined as

cn,1,2 = (krh(1)
n (kr))′|r=1

k
h(1)

n (k) , cn,1,3 = |h(1)
n (k)|2

k
, cn,2,4 = cn,1,2

(n2 + n)
1
2

k
, cn,2,1 = cn,1,2 .

At the same time, the remaining possible inner product between radiating spherical vector waves are all zero, i.e.,

〈ν × u1,m,n, u4,m′,n′ 〉L2(S2) = 0 , 〈ν × u2,m,n, u3,m′,n′ 〉L2(S2) = 0 ;
〈ν × u1,m,n, u1,m′,n′ 〉L2(S2) = 0 , 〈ν × u2,m,n, u2,m′,n′ 〉L2(S2) = 0 .

We notice that, due to the definition of u†
τ ,m,n does not take the complex conjugate on h(1)

n , all the above relationships hold 
after replacing all uτ ,m,n by u†

τ ,m,n .
We would like to remark that all the above relationships hold for the case using regular spherical vector waves vτ ,m,n

after replacing h(1)
n (kr) by jn(kr).
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