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Abstract
We shall study the convergence rates of the Tikhonov regularizations for the
identification of the diffusivity q(x) in a parabolic–elliptic system. The H1

regularization and a mixed Lp–H1 regularization are considered. For the H1

regularization, we present a simple and easily interpretable source condition,
under which the regularized solutions will be shown to converge at the standard
rate in terms of the noise level of the data. The convergence is analyzed
in three different approaches, which result in the same convergence rate but
require quite different conditions on the measurement time and the identifying
parameters. For the mixed Lp–H1 regularization, we will achieve some desired
convergence rate by using the Bregman distance and some new source condition
and nonlinearity condition.

1. Introduction

In this work, we are interested in the following coupled parabolic–elliptic system:⎧⎨
⎩

−∇ · (q0(x)∇u) = 0 in � \ ω̄,

∂u

∂t
− ∇ · (q(x)∇u) = 0 in ω,

(1.1)

where � is an open bounded and connected domain in Rd (d � 3) occupied by two materials,
one in a small domain ω that sits completely in the interior of �, and the other in � \ ω̄.
The two materials are of different physical properties: one with the physical diffusivity q(x)

in ω and the other with the diffusivity q0(x). Function u(x, t) represents the profile of some
physical quantity at time t and location x. The coupled parabolic–elliptic system (1.1) arises
in many engineering and industrial applications; see [14–18] and references therein. One
important application is from electromagnetic metal forming [16–18], where the evolution of
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the deformation field of a mechanical structure of some conducting material is coupled with an
electromagnetic field that generates a Lorentz force, thus driving the metal forming process.
Inside the conducting material region ω, diffusion of the electromagnetic field takes place,
leading to a model equation of parabolic type, while the equilibrium state is instantaneously
assumed outside, resulting in a model equation of elliptic type; see (1.1).

We shall complement the system (1.1) with the following initial and boundary conditions:

u(x, 0) = u0(x) in ω; u(x, t) = 0 on ∂� × (0, T ) (1.2)

and the following physical interface condition on the interface ∂ω:

u− = u+, q0
∂u−

∂n
= q

∂u+

∂n
on ∂ω × (0, T ), (1.3)

where u− and u+ denote the restriction of u from � \ ω̄ and ω onto ∂ω, respectively.
When the physical property q(x) of the medium inside ω is known, one can solve the

system (1.1)–(1.3) to find the profile of the physical quantity u(q) in �. This is called the
direct problem, and there is a unique solution u(q) to the system (1.1). But in this work we are
interested in the following inverse problem: the material property q(x) of the medium occupied
by ω is not available, so we need to recover the distribution q(x) of the material property in ω

by using some extra measurement data. This identification problem is severely unstable, i.e.
small perturbations in the measurement data can cause tremendous effects on the parameter
q(x). Therefore some type of regularization has to be introduced in the numerical identification
process [3]. One most stable and effective approach is to transform it into stabilized output
least-squares problems with Tikhonov regularization. Our major interest in this work is to study
the convergence and convergence rate of the regularized approximation to the true physical
diffusivity q(x) in terms of the noise level in the observation data.

Intensive studies on the stability and convergence of the Tiknohov regularization can be
found in the literature, see, e.g., [19, 4, 12, 2, 7, 10, 11, 13]. Next, we shall briefly review some
existing theories and then point out the new contribution of this work.

Consider a nonlinear ill-posed equation

u(q) = z, (1.4)

where u : K ⊂ Q → U is a nonlinear mapping between Hilbert spaces Q and U , and K is
some admissible set of the parameter q. Let q∗ be some a priori estimate of the true parameter
q; then we consider the output least-squares formulation with Tikhonov regularization

min
q∈K

‖u(q) − zδ‖2
U + β‖q − q∗‖2

Q, (1.5)

where zδ is the measurement of the exact data z with an error of level δ, i.e. ‖z − zδ‖U � δ.
Let q+ be an exact solution of (1.4). If u is Fréchet differentiable and its Fréchet derivative

u′ is Lipschitz continuous with Lipschitz constant L, and there exists a w ∈ U such that the
so-called source condition

q+ − q∗ = u′(q+)∗w (1.6)

holds and such a w is small enough, i.e.

L‖w‖U < 1, (1.7)

then the regularized minimizers qδ
β of (1.5) converge to q+ with the rate

√
δ (cf [3, 4]):

‖q+ − qδ
β‖Q = O(

√
δ). (1.8)

This convergence can be naturally extended to the seminorm-regularization case [12], namely
replacing q − q∗ in (1.5) by D(q − q∗) for some linear operator D.
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It is widely known (cf [5]) that it is not easy to apply the above classical theory for
general inverse problems and to verify the source condition and smallness condition, especially
when the space dimension is higher than 1. In addition, there is no clear comprehension of
the derivative u′(q) and the adjoint u′(q)∗ required in the source condition (1.6), so it is too
complicated to lead to some reasonable geometric or physical interpretation. More importantly,
the smallness condition (1.7) for the source function w appears to be quite restrictive.

Some new techniques were introduced in [5] to avoid the use of those restrictive
requirements in the general convergence theory for a parabolic system. With these new
techniques, the Fréchet differentiability of u(q) and the uniform Lipschitz continuity of the
Fréchet derivative u′(q) can be much weakened or removed, and a simpler source condition
was proposed to get rid of the smallness condition for the source function. Moreover, the
source condition in [5] uses the parameter-to-solution map u(q) itself, instead of its derivative
u′(q) and the adjoint u′(q)∗, so that it can be interpreted more easily and physically. All these
still ensure the usual convergence rates O(

√
δ) under weaker and more realistic conditions.

However, this new theory does not apply directly to elliptic inverse problems, due to the
difficulty of its construction of source functions, which are required to meet homogeneous
boundary conditions. By demanding the identifying parameter take a specified boundary
value, the homogeneous boundary conditions for the source functions in [5] can be relaxed
and the convergence theory can be established; see some recent interesting and important
developments in [8, 9] for identifying diffusivity and radiativity in elliptic systems. But the
identifying parameter may not always be available on the entire boundary.

Next we consider the following Tikhonov regularization with a general penalty term in
Banach spaces:

min
q∈K

‖u(q) − zδ‖2
U + βR(q), (1.9)

where R: Q → [0, ∞] is a convex and lower semi-continuous functional. For further
discussions, we introduce two fundamental concepts. Let ∂R(q) be the subdifferential of
R(q) at q, i.e.

∂R(q) = {ξ ∈ Q∗ : R(q̃) � R(q) + 〈ξ, q̃ − q〉,∀q̃ ∈ Q}.
Here and in the following, we use the notation 〈·, ·〉 to denote both inner products and duality
pairing involved if no confusion is caused. Using the subdifferential, the convergence result
(1.8) was established in [2] under the following source condition: there exists a source function
ω ∈ U such that

u′(q+)∗w = ξ ∈ ∂R(q+),

and the nonlinearity condition of the form

〈u(q) − u(q+) − u′(q+)(q − q+), ω〉 � C‖u(q) − u(q+)‖U‖ω‖U ,

instead of the smallness condition (1.7). By using the Bregman distance

Dξ (q, q̃) = R(q) − R(q̃) − 〈ξ, q − q̃〉,∀ξ ∈ ∂R(q), (1.10)

a new source condition was formulated in [7] as follows: there exist numbers β1 ∈ [0, 1),
β2 � 0, and ξ ∈ ∂R(q+) such that

〈ξ, q − q+〉(Q∗,Q) � β1Dξ (q, q+) + β2‖u(q) − u(q+)‖U ∀q ∈ K.

Under this source condition, convergence and convergence rate were achieved and the results
were applied to a phase retrieval problem and an inverse option pricing problem in [7].
Recently, another weaker nonlinearity condition (see (3.9)) than the smallness requirement
(1.7) was proposed in [10], under which the classical convergence results were derived for a

3



Inverse Problems 28 (2012) 104002 D Jiang et al

general class of nonlinear parameter identification problems, and verified for some concrete
elliptic inverse problems.

In this work, we shall analyze the convergence rate of the Tikhonov regularized solutions
for the identification of the diffusivity coefficient in (1.1). To the best of our knowledge,
existing convergence theories cannot be applied for the coupled parabolic–elliptic system
(1.1). We will establish the convergence for several different regularization techniques such
as the H1 regularization and the mixed Lp–H1 regularization, under a simple and easily
interpretable source condition, and without smallness requirement on the source function.
We shall carry out the convergence analysis using three different approaches, which result
in the same convergence rate, but under some quite different conditions on the length σ of
the observation time [T − σ, T ]: the first one requires σ � Cβ for a generic constant C and
the regularization parameter β; the second one requires σ � C for a generic constant C that
depends on the forward solution u; the last one imposes no restriction on σ .

Throughout the paper, we shall use the symbols ‖ · ‖0,� and ‖ · ‖0,ω to denote the L2-norm
in domains � and ω, respectively.

2. Convergence for the H1 regularization

In this section, we shall formulate the inverse problem of recovering the magnetic diffusivity
q(x) in (1.1) in the interior magnetic diffusion region ω, using the observation data ∇zδ of ∇u
over a time range [T − σ, T ]. Assume that q+ is the exact coefficient and the data noise level
is δ, namely

∫ T

T−σ

‖∇u(q+) − ∇zδ‖2
0,� dt � δ2. (2.1)

As the medium is known in � \ ω, we may assume that the medium is known up to the
boundary of the magnetic diffusion region ω, namely q(x) = q0 on ∂ω. So we may consider
the following constrained sets of parameters for the desired unknown parameter:

K0 = {q ∈ H1(ω); 0 < q � q � q̄ a.e. in ω, q = q0 on ∂ω}, (2.2)

K = {q ∈ H1(ω); 0 < q � q � q̄ a.e. in ω}. (2.3)

We shall first handle the simpler case with the constraint set K0 (see theorems 2.2–2.3), and
then deal with the more general case with the constraint set K (see theorem 2.4).

Now we can formulate our interested parameter identification process into the following
regularized output least-squares minimization:

min
q∈K0

J(q) = min
q∈K0

∫ T

T−σ

‖∇u(q) − ∇zδ‖2
0,� dt + β

2
‖∇q − ∇q∗‖2

0,ω, (2.4)

where β > 0 is the regularization parameter and q∗ is an a priori estimate of the true parameter
q+. We shall write the minimizer of (2.4) as qδ

β . And for convenience, we shall often use

G(q) =
∫ T

T−σ

‖∇u(q) − ∇zδ‖2
0,� dt. (2.5)
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We end this section by giving the important equation satisfied by the Fréchet derivative of
u(q). For every q ∈ K0 and each direction h ∈ H1

0 (ω), the Fréchet derivative η ≡ u′(q)h of u
at q in direction h satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (q0∇η) = 0 in � \ ω̄,

ηt − ∇ · (q(x)∇η) = ∇ · (h∇u(q)) in ω,

η(x, t) = 0 on ∂� × (0, T ),

η+ − η− = 0 on ∂ω × (0, T ),

q0
∂η−

∂n
− q

∂η+

∂n
= 0 on ∂ω × (0, T ),

η(x, 0) = 0 in ω,

(2.6)

where η− and η+ denote the restriction of η from � \ ω̄ and ω onto ∂ω respectively. We shall
often need the variational form of (2.6): for any v ∈ H1

0 (�), η satisfies∫
ω

ηtv dx +
∫

ω

q∇η · ∇v dx +
∫

�\ω̄
q0∇η · ∇v dx = −

∫
ω

h∇u(q) · ∇v dx. (2.7)

2.1. Source conditions

In this section, we shall introduce some source condition required for the subsequent
convergence analysis. First, we define an adjoint operator ∇∗ of ∇ by (cf [5])

〈∇∗ξ, ϕ〉L2(ω) = 〈ξ,∇ϕ〉L2(ω)d , ∀ξ ∈ L2(ω)d,∀ϕ ∈ H1(ω) (2.8)

and the scalar product

〈u, v〉L2(T−σ,T ;H1(ω)) =
∫ T

T−σ

∫
ω

(uv + ∇u · ∇v) dx dt, ∀u, v ∈ L2(T − σ, T ; H1(ω).

Let H1
0 (T−σ, T ; L2(ω)) = {v ∈ H1(T−σ, T ; L2(ω)); v(·, T−σ ) = v(·, T ) = 0 in ω}. Then

we can formulate the source condition that is crucial to the establishment of our convergence
results: there exists v ∈ L2(T − σ, T ; H1(ω)) ∩ H1

0 (T − σ, T ; L2(ω)) such that

−
∫ T

T−σ

∇u(q+) · ∇v dt = ∇∗∇(q+ − q∗). (2.9)

This condition was first proposed in [5]. Note that (2.9) uses the forward operator u(q)

directly, instead of the non-physical quantities u′(q) and u′(q)∗ as adopted in most existing
source conditions. Also unlike the existing ones, condition (2.9) agrees with the important fact
that the true parameter q+ is unidentifiable in those subregions of ω where ∇u(q+) vanishes,
except that an accurate a priori estimate q∗ of q+ is available.

Now we cite a useful result from [9] that may help us verify the source condition (2.9).

Lemma 2.1. Assume thatO is an open bounded domain with aC1-boundary, and u ∈ W 2,∞(O)

such that |∇u| � C0 > 0 a.e. in O. Then for any q ∈ H1(O), there exists v ∈ H1(O) satisfying
the equation ∇u · ∇v = q.

Theorem 2.1. Consider an open bounded domain ω with a C1-boundary, and a given function
u ∈ L2(T − σ, T ;W 2,∞(ω)) satisfying

∣∣ ∫ T
T−σ

(T − t)(T − σ − t)ϕ(t)∇u dt
∣∣ � C0 a.e. in

ω for some C0 > 0 and any ϕ ∈ H1(T − σ, T ). Then for any q ∈ H1(ω), there exists
v ∈ L2(T − σ, T ; H1(ω)) ∩ H1

0 (T − σ, T ; L2(ω)) such that∫ T

T−σ

∇u · ∇v dt = q. (2.10)

5
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Proof. Let P = ∫ T
T−σ

(T − t)(T − σ − t)ϕ(t)∇u dt and v = (T − t)(T − σ − t)ϕ(t)R,
with R ∈ H1(ω) to be decided. By the assumption we have |P| � C0 > 0, and
v ∈ L2(T − σ, T ; H1(ω)) ∩ H1

0 (T − σ, T ; L2(ω)). It is easy to see that

∇v = (T − t)(T − σ − t)ϕ(t)∇R,

and that (2.10) is equivalent to∫ T

T−σ

∇u · ∇v dt = P · ∇R = q. (2.11)

By the assumption, we can verify that P ∈ W 1,∞(ω), which ensures the existence of a
solution R ∈ H1(ω) to equation (2.11) by lemma 2.1, or equivalently a desired solution v to
equation (2.10). �

We shall need the following important consequence of the source condition (2.9).

Lemma 2.2. If there exists a solution v ∈ L2(T − σ, T ; H1(ω))∩ H1
0 (T − σ, T ; L2(ω)) to the

source condition (2.9), then we can find a function ṽ ∈ L2
(
T − σ, T ; H1

0 (ω)
)

such that〈∇(q+ − q∗),∇(
q+ − qδ

β

)〉
L2(ω)2 = 〈

ṽ, u′(q+)
(
q+ − qδ

β

)〉
L2(T−σ,T ;H1

0 (ω))
. (2.12)

Proof. It follows from (2.9) that

−
∫ T

T−σ

∫
ω

(
q+ − qδ

β

) ∇u(q+) · ∇v dx dt = 〈∇(q+ − q∗),∇(
q+ − qδ

β

)〉
L2(ω)2 . (2.13)

Using (2.6) we know that η = u′(q+)(q+ − qδ
β ) solves the equation:

ηt − ∇ · (q+∇η) = ∇ · ((q+ − qδ
β

) ∇u(q+)
)

in ω, (2.14)

and η(x, t) = 0 on ∂ω × (0, T ), η(x, 0) = 0 in ω, and η ∈ L2
(
0, T ; H1

0 (ω) ∩ H2(ω)
)
.

Multiplying both sides of equation (2.14) by v and integrating by parts, we obtain∫
ω

(
u′(q+)

(
q+ − qδ

β

))
t
v dx +

∫
ω

q+∇u′(q+)
(
q+ − qδ

β

) · ∇v dx

−
∫

∂ω

q+ ∂u′(q+)
(
q+ − qδ

β

)
∂n

v ds = −
∫

ω

(
q+ − qδ

β

)∇u(q+) · ∇v dx.

Using this relation and (2.13), we derive〈∇(q+ − q∗),∇(
q+ − qδ

β

)〉
L2(ω)2 = −

∫ T

T−σ

∫
ω

u′(q+)
(
q+ − qδ

β

)
vt dx dt

+
∫ T

T−σ

∫
ω

q+∇u′(q+)
(
q+ − qδ

β

) · ∇v dx dt

−
∫ T

T−σ

∫
∂ω

q0

∂u′(q+)
(
q+ − qδ

β

)
∂n

v ds dt. (2.15)

Now we define a linear functional F : L2
(
T − σ, T ; H1

0 (ω) ∩ H2(ω)
) → R1 by

F(ξ ) = −
∫ T

T−σ

∫
ω

ξvt dx dt +
∫ T

T−σ

∫
ω

q+∇ξ · ∇v dx dt −
∫ T

T−σ

∫
∂ω

q0
∂ξ

∂n
v ds dt (2.16)

for a given v ∈ L2(T −σ, T ; H1(ω))∩H1
0 (T −σ, T ; L2(ω)). It is easy to see that F is bounded

in L2
(
T −σ, T ; H1

0 (ω)∩H2(ω)
)
. By the Riesz representation theorem, there exists an element

μ ∈ L2
(
T − σ, T ; H2(ω) ∩ H1

0 (ω)
)

such that

F(ξ ) = 〈μ, ξ 〉L2(T−σ,T ;H2(ω)) ∀ξ ∈ L2
(
T − σ, T ; H1

0 (ω) ∩ H2(ω)
)
. (2.17)

6
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On the other hand, for any φ ∈ L2
(
T − σ, T ; H1

0 (ω)
)
, define ϕ : L2

(
T − σ, T ; H1

0 (ω) ∩
H2(ω)

) → R1 by

ϕ(v) = 〈φ, v〉L2(T−σ,T ;H1(ω)). (2.18)

Clearly, ϕ is linear and bounded in L2
(
T − σ, T ; H1

0 (ω) ∩ H2(ω)
)
; then by the Riesz

representation theorem, there exists an element � ∈ L2
(
T − σ, T ; H2(ω) ∩ H1

0 (ω)
)

such
that

ϕ(v) = 〈�, v〉L2(T−σ,T ;H2(ω)), (2.19)

and ‖�‖L2(T−σ,T ;H2(ω)) � ‖φ‖L2(T−σ,T ;H1(ω)). So the above process defines a linear mapping

G : L2
(
T − σ, T ; H1

0 (ω)
) → L2

(
T − σ, T ; H1

0 (ω) ∩ H2(ω)
)

by G(φ) = �, which satisfies

‖G(φ)‖L2(T−σ,T ;H2(ω)) � ‖φ‖L2(T−σ,T ;H1(ω)).

Using the density of L2
(
T −σ, T ; H1

0 (ω)∩H2(ω)
)

in L2
(
T −σ, T ; H1

0 (ω)
)

and the definition
of G, we can easily see the existence of the inverse G−1. By the invertibility of G, we can find
an element ṽ ∈ L2

(
T − σ, T ; H1

0 (ω)
)

corresponding to μ ∈ L2
(
T − σ, T ; H2(ω) ∩ H1

0 (ω)
)

in
(2.17) such that G(ṽ) = μ. It follow from (2.18) and (2.19) that

〈ṽ, v〉L2(T−σ,T ;H1(ω)) = 〈μ, v〉L2(T−σ,T ;H2(ω)). (2.20)

Then taking v = u′(q+)
(
q+ − qδ

β

)
above gives

F
(
u′(q+)

(
q+ − qδ

β

) ) = 〈
μ, u′(q+)

(
q+ − qδ

β

)〉
L2(T−σ,T ;H2(ω))

= 〈
ṽ, u′(q+)

(
q+ − qδ

β

)〉
L2(T−σ,T ;H1(ω))

, (2.21)

which along with (2.15) and (2.16) implies the desired relation (2.12) for some ṽ ∈
L2

(
T − σ, T ; H1

0 (ω)
)
. �

2.2. Convergence rates

We are now going to estimate the convergence rate of the regularized solution to the system
(2.4) in terms of the noise level δ and the regularization parameter β. For the purpose, we first
estimate u(q+ + h)− u(q+)− u′(q+)h for a general direction h ∈ H1

0 (ω), under the following
regularity for the unique solution u(q) of system (1.1) at q = q+:

u(q+) ∈ L∞(0, T ; L2(ω)) ∩ L2
(
0, T ; H1

0 (�) ∩ H2(ω)
)
. (2.22)

Lemma 2.3. For the Fréchet derivative u′(q+)h which satisfies (2.6), we have the following
estimate:

‖u(q+ + h) − u(q+) − u′(q+)h‖2
0,ω +

∫ T

0
‖∇(u(q+ + h) − u(q+) − u′(q+)h)‖2

0,� dt

� C‖∇h‖2
L2(ω)

∫ T

0
‖u(q+)‖2

H2(ω)
dt. (2.23)

Proof. Letting η = u′(q+)h, then choosing v = η in (2.7) and integrating over (0, t), we have

‖η‖2
0,ω +

∫ t

0
‖∇η‖2

0,� dt � C
∫ T

0

∫
ω

|h∇u(q+)|2 dx dt � C‖h‖2
L4(ω)

∫ T

0
‖∇u(q+)‖2

L4(ω)
dt.

7
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Then using the upper bound of h, the Poincaré inequality and Sobolev embedding theorem,
we obtain

‖η‖2
0,ω +

∫ t

0
‖∇η‖2

0,� dt � C‖h‖2
L2(ω)

∫ T

0
‖∇u(q+)‖2

L4(ω)
dt

� C‖∇h‖2
L2(ω)

∫ T

0
‖u(q+)‖2

H2(ω)
dt. (2.24)

Now subtracting the variational equation of (1.1) associated with u(q+) from the one associated
with u(q+ + h), we derive for any v ∈ H1

0 (�) that∫ t

0

∫
ω

(u(q+ + h) − u(q+))tv dx dt +
∫ t

0

∫
ω

(q+ + h)∇(u(q+ + h) − u(q+)) · ∇v dx dt

+
∫ t

0

∫
�\ω̄

q0∇(u(q+ + h) − u(q+)) · ∇v dx dt

= −
∫ t

0

∫
ω

h∇u(q+) · ∇v dx dt

=
∫ t

0

∫
ω

ηtv dx dt +
∫ t

0

∫
ω

q+∇η · ∇v dx dt +
∫ t

0

∫
�\ω̄

q0∇η · ∇v dx dt.

This implies∫ t

0

∫
ω

(u(q+ + h) − u(q+) − η)tv dx dt

+
∫ t

0

∫
ω

(q+ + h)∇(u(q+ + h) − u(q+) − η) · ∇v dx dt

+
∫ t

0

∫
�\ω̄

q0∇(u(q+ + h) − u(q+) − η) · ∇v dx dt

= −
∫ t

0

∫
ω

h∇η · ∇v dx dt. (2.25)

Taking v = u(q+ + h) − u(q+) − η in (2.25) and using (2.24) and the upper bound of h, we
obtain

‖u(q+ + h) − u(q+) − η‖2
0,ω +

∫ T

0
‖∇(u(q+ + h) − u(q+) − η)‖2

0,� dt

� C
∫ T

0

∫
�

|h∇η|20,ω dx dt � C
∫ T

0
‖∇η‖2

L2(ω)
dt

� C‖∇h‖2
L2(ω)

∫ T

0
‖u(q+)‖2

H2(ω)
dt.

�

Now we are ready to estimate the convergence rate of the regularized solution to the
system (2.4).

Theorem 2.2. Under the source condition (2.9), there exists a constant σ0 > 0 such that for
σ � σ0β, ∥∥∇(

qδ
β − q+)∥∥2

0,ω
= O

(
δ2

β
+ β

)
,∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β

) − ∇u(q+)
∣∣2

dx dt = O(δ2 + β2).

8
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Proof. As qδ
β is a minimizer of (2.4), then we have J

(
qδ

β

)
� J(q+), which, along with (2.12)

and (2.5), implies the existence of an element ṽ ∈ L2
(
T − σ, T ; H1

0 (ω)
)

such that

G
(
qδ

β

) + β

2

∥∥∇(
q+ − qδ

β

)∥∥2
0,ω

� G(q+) + β〈∇(q+ − q∗),∇(q+ − qδ
β )〉L2(ω)2

= G(q+) + β
〈
ṽ, u′(q+)

(
q+ − qδ

β

)〉
L2(T−σ,T ;H1

0 (ω))
. (2.26)

For any β > 0, we may choose ψβ ∈ H1
0

(
T − σ, T ; H2

0 (ω)
)

by the density result such that∫ T

T−σ

‖ψβ − ṽ‖2
1,ω dt � β2. (2.27)

Using ψβ , we define φβ which solves the following elliptic interface problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (q0∇φβ ) = 0 in � \ ω̄,

−∇ · (q+∇φβ ) = ψβ − �ψβ in ω,

φ+
β − φ−

β = 0, on ∂ω × (0, T ),

q0

∂φ−
β

∂n
− q+ ∂φ+

β

∂n
= 0 on ∂ω × (0, T ),

φβ = 0 on ∂� × (0, T ).

(2.28)

Clearly, φβ has the following variational form:∫
�\ω̄

q0∇φβ · ∇v dx +
∫

ω

q+∇φβ · ∇v dx =
∫

ω

ψβv + ∇ψβ · ∇v dx = 〈ψβ, v〉H1(ω) (2.29)

for any v ∈ H1
0 (�). Taking v = φβ above and using the Poincaré inequality, we obtain∫ T

T−σ

‖φβ‖2
1,� dt � C

∫ T

T−σ

‖∇φβ‖2
0,� dt � C

∫ T

T−σ

‖ψβ‖2
1,ω dt. (2.30)

By taking the time derivative for each equation in (2.28), the same derivation as for (2.30)
gives∫ T

T−σ

‖(φβ )t‖2
1,� dt � C

∫ T

T−σ

‖∇(φβ )t‖2
0,� dt � C

∫ T

T−σ

‖(ψβ )t‖2
1,ω dt. (2.31)

To continue our estimate using (2.26), we take v = u′(q+)
(
q+ − qδ

β

)
in (2.29) and use (2.7) to

obtain〈
ψβ, u′(q+)

(
q+ − qδ

β

)〉
H1(ω)

=
∫

ω

q+∇φβ · ∇u′(q+)
(
q+ − qδ

β

)
dx +

∫
�\ω̄

q0∇φβ · ∇u′(q+)
(
q+ − qδ

β

)
dx

= −
∫

ω

(
u′(q+)

(
q+ − qδ

β

))
tφβ dx −

∫
ω

(
q+ − qδ

β

)∇u(q+) · ∇φβ dx,

and then we derive from (2.26) that

G
(
qδ

β

) + β

2

∥∥q+ − qδ
β

∥∥2
0,ω

� G(q+) + β
〈
ṽ, u′(q+)

(
q+ − qδ

β

)〉
L2(T−σ,T ;H1

0 (ω))

= G(q+) + β〈ṽ − ψβ, u′(q+)(q+ − qδ
β )〉L2(T−σ,T ;H1

0 (ω))

− β

∫ T

T−σ

∫
ω

(
u′(q+)

(
q+ − qδ

β

))
tφβ dx dt

− β

∫ T

T−σ

∫
ω

(
q+ − qδ

β

)∇u(q+) · ∇φβ dx dt.

9
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But it is easy to see by using the variational equations of (1.1) associated with u(q+) and u
(
qδ

β

)
that∫

ω

(
u(q+) − u

(
qδ

β

))
tφβ dx dt +

∫
ω

(
q+∇u(q+) − qδ

β∇u
(
qδ

β

)) · ∇φβ dx

+
∫

�\ω̄
q0

(∇u(q+) − ∇u
(
qδ

β

)) · ∇φβ dx = 0,

which enables us to write

G
(
qδ

β

) + β

2

∥∥∇(
q+ − qδ

β

)∥∥2 � δ2 + β
〈
ṽ − ψβ, u′(q+)

(
q+ − qδ

β

)〉
L2(T−σ,T ;H1

0 (ω))

+ β

∫ T

T−σ

∫
ω

(
u(q+) − u

(
qδ

β

) − u′(q+)
(
q+ − qδ

β

))
tφβ dx dt

+ β

∫ T

T−σ

∫
ω

qδ
β

(∇u(q+) − ∇u
(
qδ

β

)) · ∇φβ dx dt

+ β

∫ T

T−σ

∫
�\ω̄

q0
(∇u(q+) − ∇u

(
qδ

β

)) · ∇φβ dx dt

≡ δ2 + I1 + I2 + I3 + I4. (2.32)

Next, we estimate all the terms Ii for i = 1, 2, 3, 4. First for I1, we can deduce readily from
(2.24) and (2.27) that

|I1| � β

(∫ T

T−σ

‖ψβ − ṽ‖2
1,ω dt

) 1
2
(∫ T

T−σ

‖u′(q+)(q+ − qδ
β )‖2

1,ω dt

) 1
2

� Cβ2

(∫ T

0
‖u(q+)‖2

1,ω dt

) 1
2

.

For I3 and I4, we use the Cauchy–Schwarz and triangle inequalities

|I3| � β

∣∣∣∣
∫ T

T−σ

∫
ω

qδ
β

(∇u(q+) − ∇zδ + ∇zδ − ∇u
(
qδ

β

)) · ∇φβ dx dt

∣∣∣∣
� 1

4
δ2 + 1

4
G

(
qδ

β

) + Cβ2
∫ T

T−σ

‖∇φβ‖2
0,ω dt,

|I4| � β

∣∣∣∣
∫ T

T−σ

∫
�\ω̄

q0
(∇u(q+) − ∇zδ + ∇zδ − ∇u

(
qδ

β

)) · ∇φβ dx dt

∣∣∣∣
� 1

4
δ2 + 1

4
G

(
qδ

β

) + Cβ2
∫ T

T−σ

‖∇φβ‖2
0,� dt.

Finally, for I2, we integrate by parts with respect to t over (T − σ, T ), and then use the
Cauchy–Schwarz inequality to derive

|I2| =
∣∣∣∣−β

∫ T

T−σ

∫
ω

(
u(q+) − u

(
qδ

β

) − u′(q+)
(
q+ − qδ

β

))
(φβ )t dx dt

∣∣∣∣
�

∫ T

T−σ

∥∥u(q+) − u
(
qδ

β

) − u′(q+)
(
q+ − qδ

β

)∥∥2
0,ω

dt + β2

4

∫ T

T−σ

‖(φβ )t‖2
0,ω dt.

But using h = q+ − qδ
β in (2.23), we have∥∥u(q+) − u

(
qδ

β

) − u′(q+)
(
q+ − qδ

β

)∥∥2
0,ω

� C
∥∥∇(

q+ − qδ
β

)∥∥2
0,ω

∫ T

0
‖u(q+)‖2

H2(ω)
dt,

which implies ∫ T

T−σ

∥∥u(q+) − u
(
qδ

β

) − u′(q+)
(
q+ − qδ

β

)∥∥2
0,ω

dt � Cσ
∥∥∇(

q+ − qδ
β

)∥∥2
0,ω

.
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Now we can readily see from (2.32) and the above estimates for Ii for i = 1, 2, 3, 4 when σ is
appropriately small in terms of β that

G
(
qδ

β

) + β
∥∥∇(

q+ − qδ
β

)∥∥2
0,ω

� C(β2 + δ2),

which verifies the convergences in theorem 2.2. �

The convergence rate in theorem 2.2 was achieved under the condition that σ � σ0β

for some constant σ0. This holds obviously when σ = 0, namely the observation data are
available only at the terminal time t = T . Otherwise this may be a restrictive condition. Next
we shall relax this condition by imposing a stronger regularity assumption on the forward
solution u(q+) than (2.22):

u(q+) ∈ L∞(0, T ; L2(ω)) ∩ L2(0, T ; H1
0 (�) ∩ W 1,∞(ω)) and �u(q+) ∈ L2(0, T ; L∞(ω)).

(2.33)

Under this assumption, we will obtain an improved estimate for u(q+ + h)− u(q+)− u(q+)′h
over (2.23), leading to the same convergence rate as in theorem 2.2 but with a weaker
requirement on σ .

Lemma 2.4. For the Fréchet derivative u′(q+)h which satisfies (2.6), we have the following
estimate:

‖u(q+ + h) − u(q+) − η‖2
0,ω +

∫ T

0
‖∇(u(q+ + h) − u(q+) − η)‖2

0,� dt

� C‖∇h‖4
L2(ω)

∫ T

0

(‖∇u(q+)‖2
L∞(ω) + ‖�u(q+)‖2

L∞(ω)

)
dt. (2.34)

Proof. Using (2.6), we know η = u′(q+)h satisfies the parabolic equation in ω:

ηt − ∇ · (q+(x)∇η) = ∇ · (h∇u(q+)) in ω (2.35)

and the boundary and initial conditions η(x, t) = 0 on ∂ω × (0, T ) and η(x, 0) = 0 in ω.
Then we derive from the a priori estimates [6] that∫ T

0

∫
ω

‖ηt‖2
0,ω dt +

∫ t

0
‖η‖2

2,ω dt � C
∫ T

0

∫
ω

|∇ · (h∇u(q+))|2 dx dt

� C‖∇h‖2
L2(ω)

∫ T

0

(‖∇u(q+)‖2
L∞(ω) + ‖�u(q+)‖2

L∞(ω)

)
dt.

(2.36)

Taking v = u(q+ + h) − u(q+) − η in (2.25) and using (2.36), we obtain

‖u(q+ + h) − u(q+) − η‖2
0,ω +

∫ T

0
‖∇(u(q+ + h) − u(q+) − η)‖2

0,� dt

� C
∫ T

0

∫
�

|h∇η|20,ω dx dt � C‖∇h‖2
L2(ω)

∫ T

0
‖η‖2

H2(ω)
dt

� C‖∇h‖4
L2(ω)

∫ T

0

(‖∇u(q+)‖2
L∞(ω) + ‖�u(q+)‖2

L∞(ω)

)
dt.

�

11



Inverse Problems 28 (2012) 104002 D Jiang et al

Theorem 2.3. Under the source condition (2.9), the following estimates hold for all σ � c0

for some constant c0 > 0:∥∥∇ (
qδ

β − q+)∥∥2

0,ω
= O

(
δ2

β
+ β

)
,∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β

) − ∇u(q+)
∣∣2

dx dt = O(δ2 + β2).

Proof. The proof is nearly the same as the one for theorem 2.2, except that we can achieve a
different estimate for I2 using lemma 2.4. To do so, we first obtain by the Cauchy–Schwarz
inequality that

|I2| � Cβ

( ∫ T

T−σ

∥∥u(q+) − u
(
qδ

β

) − u′(q+)
(
q+ − qδ

β

)∥∥2
0,ω

dt

) 1
2

.

But taking h = q+ − qδ
β in (2.34), we further derive

|I2| � Cβσ
1
2

( ∫ T

0

(‖∇u(q+)‖2
L∞(ω) + ‖�u(q+)‖2

L∞(ω)

)
dt

) 1
2 ∥∥∇ (

q+ − qδ
β

)∥∥2

0,ω
.

Now the desired estimates follow by following the proof of theorem 2.2 and choosing σ such
that

Cσ
1
2

( ∫ T

0

(‖∇u(q+)‖2
L∞(ω) + ‖�u(q+)‖2

L∞(ω)

)
dt

) 1
2

� 1

4
. �

For the estimates of convergence rates in theorems 2.2 and 2.3, we have imposed the
restrictive condition that q = q0 on ∂ω in the constrained set, namely the set K0 in (2.2), and
the length of the observation time σ should be either smaller than σ0β or a priori upper bound.
In the remainder of this section, we present a new analysis which enables us to have the same
convergence rates as in theorems 2.2 and 2.3, but without the restriction that q = q0 on ∂ω in
the constrained set, namely the set K in (2.3), nor any restriction on σ .

Theorem 2.4. Under the source condition (2.9), the minimizer qδ
β of the system (2.4) with K0

replaced by K has the following approximation properties:∥∥∇ (
qδ

β − q+)∥∥2

0,ω
= O

(
δ2

β
+ β

)
,∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β

) − ∇u(q+)
∣∣2

dx dt = O(δ2 + β2).

Proof. As qδ
β is a minimizer of (2.4), then we have J

(
qδ

β

)
� J(q+), i.e.

G
(
qδ

β

) + β

2

∥∥∇(
qδ

β − q∗)∥∥2
0,ω

� G(q+) + β

2
‖∇(q+ − q∗)‖2

0,ω.

By using the source condition, we have an element v ∈ L2(T − σ, T ; H1(ω)) ∩
H1

0 (T − σ, T ; L2(ω)) such that (2.9) is satisfied. Combining (2.9) with the above inequality
gives

G
(
qδ

β

) + β

2

∥∥∇(
q+ − qδ

β

)∥∥2
0,ω

� G(q+) + β
〈∇(q+ − q∗),∇(

q+ − qδ
β

)〉
L2(ω)2

= G(q+) − β

∫ T

T−σ

∫
ω

(
q+ − qδ

β

)∇u(q+) · ∇v dx dt. (2.37)

12
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Now, we construct a new element ṽ which extends v from ω to � such that ṽ = v in ω

and ṽ ∈ L2
(
T − σ, T ; H1

0 (�)
) ∩ H1

0 (T − σ, T ; L2(�)). To do so, we first extend v ∈ L2(T −
σ, T ; H1(ω)) ∩ H1

0 (T − σ, T ; L2(ω)) to v̂ ∈ L2(T − σ, T ; H1(Rd )) ∩ H1
0 (T − σ, T ; L2(Rd ))

by the standard extension (cf [1]). Then we introduce a cut-off function ζ ∈ C∞
0 (�) such that

ζ (x) = 1 in ω, and we can verify that ṽ = ζ v̂ ∈ L2(T −σ, T ; H1
0 (�))∩H1

0 (T −σ, T ; L2(�)).
Using this extension ṽ as a test function, we derive from the variational equation associated

with (1.1) that∫
ω

u
(
qδ

β

)
t ṽ dx +

∫
ω

qδ
β∇u(qδ

β ) · ∇ṽ dx +
∫

�\ω̄
q0∇u

(
qδ

β

)) · ∇ṽ dx

=
∫

ω

u(q+)t ṽ dx +
∫

ω

q+∇u(q+) · ∇ṽ dx +
∫

�\ω̄
q0∇u(q+) · ∇ṽ dx,

which can be rewritten as∫
ω

(
u(q+) − u

(
qδ

β

))
t ṽ dx +

∫
ω

(
q+∇u(q+) − qδ

β∇u
(
qδ

β

)) · ∇ṽ dx

+
∫

�\ω̄
q0

(∇u(q+) − ∇u
(
qδ

β

)) · ∇ṽ dx = 0.

Integrating both sides of the above equation over t ∈ (T − σ, T ), we have

β

∫ T

T−σ

∫
ω

(
u(q+) − u

(
qδ

β

))
t
v dx dt + β

∫ T

T−σ

∫
ω

(
q+∇u(q+) − qδ

β∇u
(
qδ

β

)) · ∇v dx dt

+β

∫ T

T−σ

∫
�\ω̄

q0
(∇u(q+) − ∇u

(
qδ

β

)) · ∇ṽ dx dt = 0. (2.38)

It follows easily from (2.38) and (2.37) that

G
(
qδ

β

) + β

2

∥∥∇(
q+ − qδ

β

)∥∥2 � δ2 + β

∫ T

T−σ

∫
ω

(
u(q+) − u

(
qδ

β

))
t ṽ dx dt

+ β

∫ T

T−σ

∫
ω

qδ
β

(∇u(q+) − ∇u
(
qδ

β

)) · ∇ṽ dx dt

+ β

∫ T

T−σ

∫
�\ω̄

q0
(∇u(q+) − ∇u

(
qδ

β

)) · ∇ṽ dx dt

≡ δ2 + I1 + I2 + I3. (2.39)

Next we estimate the three terms I1, I2 and I3 above. For I1, we deduce by integration by parts
with respect to t, using the fact that ṽ ∈ H1

0 (T − σ, T ; L2(�)) and the Poincaré inequality

|I1| =
∣∣∣∣−β

∫ T

T−σ

∫
ω

(
u(q+) − u

(
qδ

β

))
ṽt dx dt

∣∣∣∣ � β

∫ T

T−σ

∥∥u(q+) − u
(
qδ

β

)∥∥
0,ω

‖ṽt‖0,ω dt

� Cβ

∫ T

T−σ

∥∥∇u(q+) − ∇u
(
qδ

β

)∥∥
0,�

‖ṽt‖0,� dt.

Furthermore, using the Young inequality and the triangle inequality we obtain

|I1| � 1

8

∫ T

T−σ

∥∥∇u(q+) − ∇zδ + ∇zδ − ∇u
(
qδ

β

) ∥∥2
0,�

dt + 2Cβ2
∫ T

T−σ

‖ṽt‖2
0,� dt

� 1

4
δ2 + 1

4
G

(
qδ

β

) + 2Cβ2
∫ T

T−σ

‖ṽt‖2
0,� dt.

13
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For I2, using the fact that qδ
β ∈ K, the Cauchy–Schwarz and triangle inequalities we can derive

|I2| � q̄β

∫ T

T−σ

∫
ω

∣∣∇u(q+) − ∇zδ + ∇zδ − ∇u
(
qδ

β

)∣∣|∇ṽ| dx dt

� 1

4
G(q+) + 1

4
G

(
qδ

β

) + 2q̄2β2
∫ T

T−σ

‖∇ṽ‖2
0,� dt

� 1

4
δ2 + 1

4
G

(
qδ

β

) + 2q̄2β2
∫ T

T−σ

‖∇ṽ‖2
0,� dt.

Finally for I3, we can similarly deduce

|I3| � ᾱβ

∫ T

T−σ

∫
�\ω̄

∣∣(∇u(q+) − ∇zδ + ∇zδ − ∇u
(
qδ

β

)) · ∇ṽ
∣∣ dx dt

� 1

4
δ2 + 1

4
G

(
qδ

β

) + 2ᾱ2β2
∫ T

T−σ

‖∇ṽ‖2
0,� dt.

By the above estimates for I1, I2 and I3, we immediately obtain from (2.39) that
1
4 G

(
qδ

β

) + 1
2β

∥∥∇(
q+ − qδ

β

)∥∥2
0,ω

= O(β2 + δ2),

which completes the proof of theorem 2.4. �

Remark 2.1. One can easily see that
∥∥∇(

q+ − qδ
β

)∥∥
0,ω

= O(
√

δ) and
∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β

) −
∇u(q+)

∣∣2
dx dt = O(δ2) by choosing β ∼ δ in theorems 2.2–2.4.

3. Regularization in Banach spaces

In this section, we shall consider some regularizations in Banach spaces and derive the
convergence rate of the corresponding regularized solutions. We will focus on the following
formulation of identifying the diffusivity parameter q(x) in the system (1.1), using the mixed
Lp–H1 regularization:

min
q∈K

J(q) = G(q) + γR(q) + β

2
‖∇q − ∇q∗‖2

0,ω, (3.1)

where G(q) is given in (2.5) and R(q) = 1
p‖q‖p

Lp(ω)
, with p = 1 or p � 2. The case with

1 < p < 2 is not much used in applications, and it also happens that our subsequent analysis
does not extend to this case. The case with γ = 0 was considered in section 2, which results
usually in a reconstructed parameter q(x) that is globally smooth and overly diffusive. But this
may not be physically interesting in some applications. The Lp penalty may promote some
special feature of the identifying parameter. For instance, the L1 regularization preserves the
sparsity or some localized oscillating profiles of the parameter. However, if the L1 penalty is
used alone, i.e. β = 0 in (3.1), the solution tends to be unstable and spiky, and may miss some
physically relevant clustering feature of the parameter. In general the solution to the system
(3.1) will be unstable when only the Lp penalty is used. In view of these facts, we propose a
combined Lp–H1 regularization in (3.1), and the effect of either the Lp regularization or the H1

regularization may be realized by reinforcing the magnitude of one parameter over the other
between γ and β.

We shall first consider the case p = 1 and write the solution to the system (3.1) as qδ
β,γ ,

for which we have the following useful estimate.

Lemma 3.1. There exists a constant C > 0 such that the following inequality holds:∣∣γ 〈
1, qδ

β,γ − q+〉
L2(ω)

∣∣ � 1
4 G

(
qδ

β,γ

) + C(δ2 + γ 2). (3.2)
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Proof. By theorem 2.1 there exists some π ∈ L2(T − σ, T ; H1(ω)) ∩ H1
0 (T − σ, T ; L2(ω))

such that
∫ T

T−σ
∇u · ∇πdt = 1. Using this we can write

〈
1, q+ − qδ

β,γ

〉
L2(ω)

=
∫ T

T−σ

∫
ω

(
q+ − qδ

β,γ

)∇u · ∇π dx dt. (3.3)

Next, we construct a new element π̃ which extends π from ω to � such that π̃ = π in ω

and π̃ ∈ L2
(
T − σ, T ; H1

0 (�)
) ∩ H1

0

(
T − σ, T ; L2(�)

)
. Then we can estimate the right-hand

side of (3.3) in a similar manner to the estimate of the last integral term in (2.37) to obtain (see
(2.39)):

γ
∣∣〈1, q+ − qδ

β,γ

〉
L2(ω)

∣∣ � γ

∫ T

T−σ

∫
ω

(
u(q+) − u

(
qδ

β,γ

))
t π̃ dx dt

+ γ

∫ T

T−σ

∫
ω

qδ
β,γ

(∇u(q+) − ∇u
(
qδ

β,γ

)) · ∇π̃ dx dt

+ γ

∫ T

T−σ

∫
�\ω̄

q0
(∇u(q+) − ∇u

(
qδ

β,γ

)) · ∇π̃ dx dt.

Now the desired result (3.2) can be derived by following a similar estimate to the one for
(2.39) in the proof of theorem 2.4. �

3.1. Estimate of rates of convergence

We first study the convergence of the regularized solution to system (3.1) with L1–H1

regularization.

Theorem 3.1. Let R(q) = ‖q‖L1(ω); then the following convergence holds for the solution
qδ

β,γ to the system (3.1) under the source condition (2.9):

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω
= O

(
β + δ2

β
+ γ 2

β

)
,∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β,γ

) − ∇u(q+)
∣∣2

dx dt = O(δ2 + γ 2 + β2),∣∣∣∣
∫

ω

(
qδ

β,γ − q+)
dx

∣∣∣∣ = O

(
γ + δ2

γ
+ β2

γ

)
.

Proof. As qδ
β,γ is a minimizer of (3.1), J

(
qδ

β,γ

)
� J(q+), which with the fact qδ

β,γ , q+ ∈ K
implies that

G
(
qδ

β,γ

) + γ

∫
ω

qδ
β,γ dx + β

2

∥∥∇qδ
β,γ − ∇q∗∥∥2

0,ω
� δ2 + γ

∫
ω

q+dx + β

2
‖∇q+ − ∇q∗‖2

0,ω,

which can be rewritten as

G
(
qδ

β,γ

) + β

2

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω

� δ2 − γ

∫
ω

(
qδ

β,γ − q+)
dx − β

〈∇(q+ − q∗),∇(
q+ − qδ

β,γ

)〉
L2(ω)

= δ2 − γ
〈
1, qδ

β,γ − q+〉
L2(ω)

− β
〈∇(q+ − q∗),∇(

q+ − qδ
β,γ

)〉
L2(ω)

. (3.4)

By lemma 3.1 we have∣∣γ 〈
1, qδ

β,γ − q+〉
L2(ω)

∣∣ � 1
4 G

(
qδ

β,γ

) + C(δ2 + γ 2). (3.5)
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On the other hand, we can derive in a similar manner to the proof of theorem 2.4 that∣∣β〈∇(q+ − q∗),∇(
q+ − qδ

β,γ

)〉
L2(ω)

∣∣ � 1
4 G

(
qδ

β,γ

) + C(δ2 + β2). (3.6)

Now it follows from (3.4)–(3.6) that
1

2
G

(
qδ

β,γ

) + β

2

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω
� C(δ2 + γ 2 + β2),

which leads immediately to the first result in theorem 3.1 and G
(
qδ

β,γ

) = O(δ2 + γ 2 + β2).
Using this latter estimate, the triangle inequality and (3.2) we come directly to the second and
third results in theorem 3.1. �

Remark 3.1. One can easily see that
∥∥∇(

q+ −qδ
β

)∥∥
0,ω

= O(
√

δ),
∣∣ ∫

ω

(
qδ

β,γ −q+)
dx

∣∣ = O(δ)

and
∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β

) − ∇u(q+)
∣∣2

dx dt = O(δ2), by choosing β ∼ δ ∼ γ in theorem 3.1.

In the remainder of this section, we shall study the convergence of the regularized solution
to the system (3.1) for the Lp–H1 regularization with p � 2, but the constraint set K is replaced
by K0.

We now recall the definition of the subdifferential ∂R(q) of R(q) and the Bregman
distance in (1.10). For p � 2, R(q) is Fréchet differentiable, and we shall write its Fréchet
derivative as R′(q). As R′(q) ∈ ∂R(q), we have for any q, q+ ∈ K0 that

DR′(q+ )(q, q+) = R(q) − R(q+) − 〈R′(q+), q − q+〉
=

∫
ω

(
1

p
qp − 1

p
(q+)p − (q+)p−1(q − q+)

)
dx. (3.7)

Next we shall develop the convergence of the regularized solution to the system (3.1) under
the following source and nonlinearity conditions:

Source condition. There exists θ such that the exact solution q+ satisfies∫ T

T−σ

u′(q+)∗θdt = R′(q+). (3.8)

Nonlinearity condition. There exists some ε > 0 and cr > 0 such that

cr

4

∥∥∇u
(
qδ

β,γ

) − ∇u(q+)
∥∥2

L2(T−σ,T ;L2(�))
+ DR′(q+ )

(
qδ

β,γ , q+) −
∫ T

T−σ

〈
θ, E

(
qδ

β,γ , q+)〉
dt

� εDR′(q+ )

(
qδ

β,γ , q+)
, (3.9)

where E
(
qδ

β,γ , q+) = u
(
qδ

β,γ

)−u(q+)−u′(q+)
(
qδ

β,γ −q+)
and cr = 1−cs

γ
for some 0 < cs < 1

can be very large when γ is small.
We shall verify the above source and nonlinearity conditions mathematically in the

following section. These conditions improve the conditions proposed in [10], which seem
to be more restrictive and cannot be verified for our current inverse problem.

Theorem 3.2. Let R(q) = 1
p‖q‖p

Lp(ω)
for 2 � p < ∞; then the following results hold for the

solution qδ
β,γ to the system (3.1) under conditions (3.8) and (3.9):

DR′(q+)

(
qδ

β,γ , q+) = O

(
γ + δ2

γ
+ β2

γ

)
,

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω
= O

(
β + δ2

β
+ γ 2

β

)
,∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β,γ

) − ∇u(q+)
∣∣2

dx dt = O(δ2 + γ 2 + β2).
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Proof. As qδ
β,γ is a minimizer of (3.1), we have J(qδ

β,γ ) � J(q+), which, along with (1.10),
implies that

G
(
qδ

β,γ

) + γ DR′(q+)

(
qδ

β,γ , q+) + β

2

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω

� δ2 − γ
〈
R′(q+), qδ

β,γ − q+〉 − β
〈∇(q+ − q∗),∇(

q+ − qδ
β,γ

)〉
L2(ω)2 .

Then it follows from (3.6), (3.8) and (3.9) that

1

2
G

(
qδ

β,γ

) + γ DR′(q+ )

(
qδ

β,γ , q+) + β

2

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω

� C(δ2 + β2) − γ
〈
R′(q+), qδ

β,γ − q+〉
= C(δ2 + β2) − γ

∫ T

T−σ

〈
θ, u′(q+)

(
qδ

β,γ − q+)〉
dt

= C(δ2 + β2) + γ

∫ T

T−σ

〈
θ, E

(
qδ

β,γ , q+)〉
dt + γ

∫ T

T−σ

〈
θ, u(q+) − u

(
qδ

β,γ

)〉
dt

� C(δ2 + β2) + cr

4
γ
∥∥∇u

(
qδ

β,γ

) − ∇u(q+)
∥∥2

L2(T−σ,T ;L2(�))
+ γ DR′(q+ )

(
qδ

β,γ , q+)
− εγ DR′(q+)

(
qδ

β,γ , q+) + γ

∫ T

T−σ

〈
θ, u(q+) − u

(
qδ

β,γ

)〉
dt. (3.10)

By using the Cauchy–Schwarz inequality and the relation cr = (1 − cs)/γ , we further derive
from (3.10) that

cs

2
G

(
qδ

β,γ

) + εγ DR′(q+ )

(
qδ

β,γ , q+) + β

2

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω

� C(δ2 + β2) + Cγ

∫ T

T−σ

‖θ‖∥∥∇u(q+) − ∇u
(
qδ

β,γ

)∥∥ dt

� C(δ2 + β2) + C
2γ 2

cs

∫ T

T−σ

‖θ‖2 dt + cs

8

∫ T

T−σ

∥∥∇u(q+) − ∇u
(
qδ

β,γ

)∥∥2
dt.

Now we can use the assumption (2.1) and the triangle inequality to obtain

cs

4
G

(
qδ

β,γ

) + εγ DR′(q+ )

(
qδ

β,γ , q+) + β

2

∥∥∇qδ
β,γ − ∇q+∥∥2

0,ω

� C(δ2 + β2) + C
2γ 2

cs

∫ T

T−σ

‖θ‖2 dt,

which yields immediately the three desired estimates in theorem 3.2. �

Remark 3.2. One can easily see that DR′(q+ )

(
qδ

β,γ , q+) = O(δ),
∥∥∇(

q+ − qδ
β

)∥∥
0,ω

= O(
√

δ)

and
∫ T

T−σ

∫
�

∣∣∇u
(
qδ

β

) − ∇u(q+)
∣∣2

dx dt = O(δ2), by choosing β ∼ δ ∼ γ in theorem 3.2.

3.2. Verification of source and nonlinearity conditions

In this section we demonstrate the source condition (3.8) and nonlinearity condition (3.9). Let

e(q, u) =
{−∇ · (q0∇u) in � \ ω̄,

ut − ∇ · (q(x)∇u) in ω,
(3.11)

We know from (1.1) that e(q, u) = 0 in �. Taking the derivative on both sides of e(q, u) = 0
with respect to q in direction h, we obtain

eq(q, u(q))h + eu(q, u(q))u′(q)h = 0.
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It is direct to verify the existence of the inverse of the operator eu(q, u(q)), so we derive by
taking this inverse on both sides of the above equation:

u′(q)h = −(eu(q, u(q)))−1eq(q, u(q))h;
then the adjoint operator u′(q)∗ can be given by

u′(q)∗θ = −eq(q, u(q))∗((eu(q, u(q)))−1)∗θ.

Therefore, the source condition (3.9) can be expressed explicitly as

−
∫ T

T−σ

eq(q
+, u(q+))∗((eu(q, u(q)))−1)∗θ dt = R′(q+).

Setting ρ = −((eu(q, u(q)))−1)∗θ , we can then replace the source condition (3.8) by requiring
the existence of ρ such that∫ T

T−σ

eq(q
+, u(q+))∗ρ dt = R′(q+). (3.12)

By directly computing, we have

〈θ, E(q, q+)〉 = 〈θ, u(q) − u(q+) − u′(q+)(q − q+)〉
= 〈(((eu(q, u(q)))−1)∗θ, eu(q

+, u(q+))(u(q) − u(q+) − u′(q+)(q − q+))〉
= −〈ρ, eu(q

+, u(q+))(u(q) − u(q+) − u′(q+)(q − q+))〉,
so the nonlinearity condition (3.9) can be rewritten as
cr

4

∥∥∇u
(
qδ

β,γ

) − ∇u(q+)
∥∥2

L2(T−σ,T ;L2(�))
+ DR′(q+ )

(
qδ

β,γ , q+)
+

∫ T

T−σ

〈
ρ, eu(q

+, u(q+))
(
u
(
qδ

β,γ

) − u(q+) − u′(q+)
(
qδ

β,γ − q+))〉
dt

� εDR′(q+ )

(
qδ

β,γ , q+)
. (3.13)

It is easy to verify that

eq(q, u(q))h =
{

0 in � \ ω̄

−∇ · (h∇u(q)) in ω

and

eu(q, u(q))δu =
{

−∇ · (q0∇δu) in � \ ω̄,

(δu)t − ∇ · (q∇δu) in ω.

Hence, for any ρ ∈ Range(eq(q, u(q))∗), we obtain

eq(q, u(q))∗ρ =
{

0 in � \ ω̄,

∇u(q) · ∇ρ in ω

by noting that h = 0 on ∂ω and using the equality

〈eq(q, u(q))h, ρ〉� = 〈−∇ · (h∇u(q)), ρ̃〉ω = 〈h,∇u(q) · ∇ρ̃〉ω,

where ρ̃ = ρ|ω. Now we can see that (3.12) is equivalent to the existence of ρ such that∫ T

T−σ

∇u(q) · ∇ρ̃ dt = R′(q+). (3.14)

But such a ρ̃ ∈ L2(T − σ, T ; H1(ω)) ∩ H1
0 (T − σ, T ; L2(ω)) is guaranteed by theorem 2.1.
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Finally, we are going to verify the nonlinearity condition (3.13). By direct computings,
we have〈
ρ, eu(q

+, u(q+))u
(
qδ

β,γ

)〉
=

∫
ω

u
(
qδ

β,γ

)
tρ dx +

∫
ω

q+∇u
(
qδ

β,γ

) · ∇ρ dx +
∫

�\ω̄
q0∇u

(
qδ

β,γ

) · ∇ρ dx,

〈ρ, eu(q
+, u(q+))u(q+)〉

=
∫

ω

u(q+)tρ dx +
∫

ω

q+∇u(q+) · ∇ρ dx +
∫

�\ω̄
q0∇u(q+) · ∇ρ dx.

But using (2.7) with v = ρ and h = qδ
β,γ − q+, we derive〈

ρ, eu(q
+, u(q+))u′(q+)

(
qδ

β,γ − q+)〉
=

∫
ω

(
u′(q+)

(
qδ

β,γ − q+))
tρ dx +

∫
ω

q+∇u′(q+)
(
qδ

β,γ − q+) · ∇ρ dx

+
∫

�\ω̄
q0∇u′(q+)

(
qδ

β,γ − q+) · ∇ρ dx

= −
∫

ω

(
qδ

β,γ − q+)∇u(q+) · ∇ρ dx.

Now it follows from the above three relations that

I ≡
∫ T

T−σ

〈
ρ, eu(q

+, u(q+))
(
u
(
qδ

β,γ

) − u(q+) − u′(q+)
(
qδ

β,γ − q+))〉
dt

=
∫ T

T−σ

∫
ω

(
q+ − qδ

β,γ

)∇(
u
(
qδ

β,γ

) − u(q+)
) · ∇ρ dx dt

� cr

8

∫ T

T−σ

∥∥∇u
(
qδ

β,γ

) − ∇u(q+)
∥∥2

L2(�)
dt + 2

cr

∥∥q+ − qδ
β,γ

∥∥2
L2(ω)

∫ T

T−σ

‖∇ρ‖2
L∞(ω) dt.

Next we estimate
∥∥q+ − qδ

β,γ

∥∥2
L2(ω)

. We have (cf [13]) the following inequality for p � 2:

DR′(q+ )

(
qδ

β,γ , q+)
� C

(∥∥q+ − qδ
β,γ

∥∥p

Lp(ω)
+

∫
ω

∣∣q+ − qδ
β,γ

∣∣2|q+|p−2 dx
)

for some generic constant C > 0. Noting q+, qδ
β,γ ∈ K, we deduce∫

ω

∣∣q+ − qδ
β,γ

∣∣2
dx � 1

qp−2

∫
ω

∣∣q+ − qδ
β,γ

∣∣2|q+|p−2 dx � CDR′(q+ )

(
qδ

β,γ , q+)
.

This, with the relation cr = (1 − cs)/γ , gives

I � cr

8

∫ T

T−σ

∥∥∇u
(
qδ

β,γ

) − ∇u(q+)
∥∥2

L2(�)
dt + 2Cγ

1 − cs
DR′(q+)

(
qδ

β,γ , q+) ∫ T

T−σ

‖∇ρ‖2
L∞(ω) dt.

Now the nonlinearity condition (3.13) follows from the following estimate
cr

4

∥∥∇u
(
qδ

β,γ

) − ∇u(q+)
∥∥

L2(T−σ,T ;L2(�))
+ (1 − ε)DR′(q+ )

(
qδ

β,γ , q+)
+

∫ T

T−σ

〈
ρ, eu(q

+, u(q+))
(
u
(
qδ

β,γ

) − u(q+) − u′(q+)
(
qδ

β,γ − q+))〉
dt

� cr

8

∥∥∇u
(
qδ

β,γ

) − ∇u(q+)
∥∥

L2(T−σ,T ;L2(�))

+
(

1 − ε − 2Cγ

1 − cs

∫ T

T−σ

‖∇ρ‖2
L∞(ω) dt

)
DR′(q+ )

(
qδ

β,γ , q+)
� 0

by taking γ to be small enough.
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Remark 3.3. From the derivation of this subsection, we can see that the source condition (3.8)
can be eventually converted into condition (3.14), which is similar to the source condition
(2.9), for the formulation (3.1) with the Lp–H1 regularization for p � 2. And conditions (2.9)
and (3.8) are consistent when the regularization R(q) is taken to be ‖∇q − ∇q∗‖2

0,ω.
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