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Abstract
We present a two-stage least-squares method for inverse medium problems of
reconstructing multiple unknown coefficients simultaneously from noisy data.
A direct sampling method is applied to detect the location of the inhomogeneity
in the first stage, while a total least-squares method with a mixed regularization
is used to recover the medium profile in the second stage. The total least-squares
method is designed to minimize the residual of the model equation and the data
fitting, along with an appropriate regularization, in an attempt to significantly
improve the accuracy of the approximation obtained from the first stage. We
shall also present an analysis on the well-posedness and convergence of this
algorithm. Numerical experiments are carried out to verify the accuracies and
robustness of this novel two-stage least-squares algorithm, with high tolerance
of noise in the data.
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1. Introduction

We are concerned in this work with recovering multiple medium parameters in a forward model
of the general form

L(u, q) = g, (1.1)

where L is a bilinear operator on X × Z, u ∈ X is the state variable, while q ∈ Z represents
one or multiple parameters in the model. The inverse problem of our interest is to recover the
medium parameters q, under some measurement data of f :=Cu ∈ Y. Here X, Y and Z are three
Hilbert spaces, and C is an observation map from X to Y.

There are many applications where it is necessary to recover multiple parameters or coef-
ficients simultaneously, for instance, the diffusive optical tomography (DOT) and the inverse
electromagnetic medium problem. DOT aims at recovering the diffusion and absorption coef-
ficients σ and μ from the governing equation [1, 2]:

−∇ · (σ(x)∇u) + μ(x) u = 0 in Ω, (1.2)

using the Cauchy data ( f , h) collected at the boundary Γ of Ω:

f = u|Γ, h =
∂u
∂ν

|Γ. (1.3)

Another example would be the inverse electromagnetic medium problem to recover the
unknown magnetic and electric coefficients μ and λ in the Maxwell’s system [3, 4]:

∇× �H + iωμ(x) �E = 0 in Ω,

∇× �E − iωλ(x) �H = 0 in Ω,

using some measurement data of the electric or magnetic field �E or �H.
The inverse reconstruction of multiple medium coefficients is generally much more tech-

nical and difficult than the single coefficient case. We shall propose a total least-squares
formulation with appropriate regularization to transform the inverse problem into an optimiza-
tion problem. The total least-squares strategy is actually not uncommon. One conventional
approach for inverse medium problems is to seek an optimal parameter q from a feasible set
K ⊂ Z such that it minimizes an output least-squares functional j of the form

j(q) = ‖Cu(q) − f ‖2
Y + αψ(q), (1.4)

where u(q) solves the forward model (1.1) when q is given, ψ is a regularization term and
α > 0 is a regularization parameter. We refer the readers to [2, 5, 6] for more details about
this traditional approach. A relaxed variational method of the least-squares form was proposed
and studied in [7, 8] for the impedance computed tomography. The least-squares functional
consists of a residual term associated with the governing equation while the measurement data
is enforced at the feasible set. Different from the aforementioned approaches, we shall follow
some basic principle of a total least-squares approach from [9] and treat the governing equation
and the data fitting separately, along with a regularization. That is, we look for an optimal
parameter q from Z and a state variable u from X together such that they minimize an extended
functional of the form
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J(u, q) = ‖L(u, q) − g‖2
X + ‖Cu − f ‖2

Y + αψ(q). (1.5)

This functional combines the residual of model equation, data fitting and constraints on param-
eters in the least-squares criterion. The combination in (1.5) results in a regularization effect
to treat the model equation and allows a robustness as a quasi-reversibility method [9, 10].
Solving the minimization problem (1.4) with the Lagrangian approach is similar to our least-
squares approach. Compared with the conventional approaches, the domain of J(u, q) is much
more regular and the semi-norm defined by the formulation is much stronger. More precisely,
the total least-squares formulation aims to find a solution pair (u, q) simultaneously in a smooth
class and is less sensitive to the noise and uncertainty in the inverse model. Another important
feature of this formulation is that the functional J(u, q) is quadratical and convex with respect to
each variable u and q, if the regularization ψ is chosen to be quadratical and convex, while the
traditional one j(q) in (1.4) is highly nonlinear and non-convex in general. This special feature
facilitates us naturally to minimize the functional J(u, q) effectively by some natural alternating
direction iterative (ADI) method so that only two quadratical and convex suboptimizations are
needed to solve at each iteration in terms of the variables u and q respectively.

In addition to the functional (1.5) that uses the residual of the forward model (1.1), we
will also address another least-squares functional that makes use of the equivalent first-order
system of the forward model (1.1) and replaces the first term in (1.5) by the residuals of the
corresponding first-order system. Using the first-order system has been the fundamental idea
in modern least-squares methods in solving second-order PDEs [13–15]. The advantages of
using first-order formulations are much more significant to the numerical solutions of inverse
problems, especially when we aim at simultaneously reconstructing multiple coefficients as we
do in this work. First, the multiple coefficients appear in separated first-order equations, hence
are naturally decoupled. This would greatly reduce the nonlinearity and enhance the convexity
of the resulting optimization systems. Second, the first-order formulation relaxes the regularity
requirement of the solutions in the resulting analysis.

A crucial step to an effective reconstruction of multiple coefficients is to seek reasonable
initial approximations to capture some general (possibly rather inaccurate) geometric and phys-
ical profiles of all the unknown multiple coefficients. This is a rather technical and difficult
task in numerical reconstruction processes. Several effective approaches have been proposed
recently to help find some reasonable initial approximations for solving the multidimensional
hyperbolic coefficient inverse problems; see, e.g., [25–28]. In this work we shall propose
to adopt the direct sampling-type methods (DSMs) that we have been developing in recent
years (cf [16, 17, 23, 24]). Using the index functions provided by DSM, we shall determine
a computational domain that is often much smaller than the original physical domain, then
the restricted index functions on the computational domain serve as the initial guesses of the
unknown coefficients. In this work, we will apply a newly developed DSM [18], where two
groups of probing and index functions are constructed to identify and decouple the multiple
inhomogeneous inclusions of different physical nature, which is principally different from the
classical DSMs targeting the inhomogeneous inclusions from one single physical nature. As
we shall see, DSMs turn out to be very effective, fast and reliable to provide some reasonable
initial approximations.

The rest of the paper is structured as follows. In section 2, we justify the well-posedness
of the least-squares formulation for the general inverse medium problems. In section 3, we
propose an ADI method for solving the minimization problem and prove the convergence of
the iterative method. We illustrate in section 4 how this total least-squares method applies
to a concrete inverse problem, by taking the DOT problem as a benchmark problem. We
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present numerical results in section 5 for a couple of different types of inhomogeneous coef-
ficients for the DOT problem to demonstrate the stability and effectiveness of this proposed
method. Throughout the paper, c, c0 and c1 denote generic constants which may differ at each
occurrence.

2. Well-posedness of the least-squares formulation for inverse medium
problems

Recall that we proposed in section 1 the following least-squares formulation

min
u∈X,q∈Z

J(u, q) = ‖L(u, q) − g‖2
X + ‖Cu − f ‖2

Y + αψ(q) (2.1)

to solve the inverse medium problems modeled by (1.1). This section is devoted to the well-
posedness of the total least-squares formulation (2.1), namely, the existence of a solution to
(2.1) and the conditional stability of the reconstruction with respect to the measurement. To
provide a mathematical justification of the well-posedness, we present several assumptions
on the least-squares formulation. We will verify these assumptions in section 4 for a concrete
example of such inverse medium problems.

Let us first introduce several notation. For simplicity, for a given q ∈ Z (resp.u ∈ X), we will
write Lq (resp.Φu) as

Lqu :=L(u, q) (resp.Φuq :=L(u, q)). (2.2)

We denote the subdifferential of the regularization term ψ at q by ∂ψ(q), and denote the inner
products of the Hilbert spaces X, Y and Z by (·, ·)X, (·, ·)Y and 〈·, ·〉 respectively.

2.1. Existence of a minimizer

We present the following assumptions on the regularization term ψ and operators L and C in
the forward model:

Assumption 1. The regularization term ψ is strictly convex and weakly lower semicontin-
uous. Furthermore, ψ is also coercive [6], i.e., ψ(q) � c‖q‖2

Z.

This assumption implies that the level set {q ∈ Z : ψ(q) � c0} defines a bounded set in Z.

Assumption 2. Given a constant c0, for q in the level set {q ∈ Z : ψ(q) � c0},
Lq : dom(L) → X, where dom(L) ⊂ {u ∈ X : L(u, q) ∈ X and Cu ∈ Y for all q ∈
Z satisfying ψ(q) � c0}, is a closed linear operator and is uniformly coercive, i.e., the
graph norm |u|W,q := ‖L(u, q)‖X satisfies |u|W,q � c1‖u‖X uniformly in q for some constant
c1 > 0, and thus L(u, q) = g ∈ X has a unique solution in dom(L).

Under assumption 2, we can define the inverse operator L−1
q : X → dom(L), which is uni-

formly bounded by the coercivity of Lq. We also need the following assumption on the
sequentially closedness of operators L and C.

Assumption 3. The operators L and C are weakly sequentially closed, i.e., if a sequence
{(un, qn)}∞n=1 converges to (u, q) weakly in X × Z, then the sequence {L(un, qn)}∞n=1 converges
to L(u, q) weakly in X and the sequence {Cun}∞n=1 converges to Cu weakly in Y.

Then we can verify the existence of the minimizers to the least-squares formulation (2.1).

Theorem 1. Under assumptions 1–3, there exists a minimizer (u
, q
) in X × Z of the least-
squares formulation (2.1).
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Proof. Since X and Z are nonempty, there exists a minimizing sequence {(un, qn)}∞n=1 in
X × Z such that

lim
n→∞

J(un, qn) = inf
(u,q)∈X×Z

J(u, q). (2.3)

By assumptions 1 and 2, ψ is a coercive functional and the graph norm | · |W,q is uniformly
coercive, thus it follows from (1.5) that the sequence {(un, qn)}∞n=1 is uniformly bounded. Then
there exists a subsequence of {(un, qn)}∞n=1, still denoted by {(un, qn)}∞n=1, and some (u
, q
) ∈
X × Z such that un converges to u
 weakly in X and qn converges to q
 weakly in Z. As L and
C are weakly sequentially closed by assumption 3, there hold that

L(un, qn) converges to L(u
, q
) weakly in X;

Cun converges to Cu
 weakly in Y.
(2.4)

From the weak lower semicontinuity of the norms ‖ · ‖X and ‖ · ‖Y, we have

‖L(u
, q
) − g‖2
X + ‖Cu
 − f ‖2

Y � lim
n→∞

inf
(
‖L(un, qn) − g‖2

X + ‖Cun − f ‖2
Y

)
.

Together with the lower semicontinuity of the regularization term ψ, we can deduce that

J(u
, q
) � lim
n→∞

inf J(un, qn).

Hence it follows from (2.3) that (u
, q
) is indeed a minimizer of the functional J in X × Z. �

2.2. Conditional stability

In this subsection, we present some conditional stability estimates of the total least-squares
formulation (2.1) for the general inverse medium problems. First we introduce two pairs (ū, q̄)
and (ḡ, f̄ ) that satisfy

L(ū, q̄) = ḡ, Cū = f̄ . (2.5)

Letting (u
, q
) be the unique minimizer of (2.1) in a neighborhood of (ū, q̄), we study the
approximation error (δu, δq) := (u
 − ū, q
 − q̄) to illustrate the stability of the least-squares
formulation (2.1) with respect to the measurement f and also the term g in the governing
equation (1.1). Denote the residual of the governing equation by ε1 := L(u
, q
) − g. As (u
, q
)
is the local minimizer of functional J in (1.5), we have J(u
, q
) � J(ū, q̄). Therefore, by the
definition of J we have the inequality that

‖ε1‖2
X + ‖C(u
 − ū) − ( f − f̄ )‖2

Y + αψ(q
) � ‖g − ḡ‖2
X + ‖ f − f̄‖2

Y + αψ(q̄), (2.6)

which directly leads to the following observation on ψ(q
):

αψ(q
) � ‖g − ḡ‖2
X + ‖ f − f̄‖2

Y + αψ(q̄). (2.7)

If ψ is coercive, (2.7) provides a rough estimate of the reconstruction q
 with respect to the
data noise.

We can further derive an estimate of the approximation error δq, under the following
assumption on the operator L.

Assumption 4. There exists a norm ‖ · ‖W on Z and a subspace S of Z such that δq ∈ S and
it holds for any q ∈ q̄ + S that
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‖CL−1
q Φū(q − q̄)‖2

Y � ‖q − q̄‖2
W .

Assumption 4 is satisfied when S is a subspace of Z with finite rank. We can now deduce
the following result of the approximation error δq.

Lemma 1. Under assumptions 1–4, the approximation error δq is bounded in W-norm by
the data noise and the regularization term, i.e.,

‖δq‖2
W + αψ(q
) � c0

(
‖g − ḡ‖2

X + ‖ f − f̄‖2
Y + αψ(q̄)

)
. (2.8)

Proof. Using the bilinear property of L, one can rewrite the difference L(u
, q
) − L(ū, q̄) as

L(u
, q
) − L(ū, q̄) = Lq
(δu) +Φū(δq). (2.9)

By assumption 2, Lq admits an inverse operator L−1
q from X to dom(L), which, together with

(2.5) and (2.9) and the definition of ε1, implies

δu = L−1
q
 (ε1 + g − ḡ − Φū(δq)). (2.10)

Plugging (2.10) into (2.6) leads to an inequality:

‖CL−1
q
 Φūδq − (ε1 + L−1

q
 (g − ḡ)) + f − f̄‖2
Y + ‖ε1‖2

X + αψ(q
)

� ‖g − ḡ‖2
X + ‖ f − f̄‖2

Y + αψ(q̄). (2.11)

It follows from assumption 4 that there exists a norm ‖ · ‖W such that

‖CL−1
q Φūδq‖2

Y � ‖δq‖2
W . (2.12)

Then we can deduce from (2.11), the triangle inequality, the boundedness of L−1
q and (2.12)

that

‖δq‖2
W + αψ(q
) � c0(‖g − ḡ‖2

X + ‖ f − f̄‖2
Y + αψ(q̄)),

where c0 is a constant, which completes the proof. �
The rest of this section is devoted to verifying the consistency of the least-squares formu-

lation (2.1) as the noise level of measurement goes to zero, which is an essential property of a
regularization scheme. If we choose an appropriate regularization parameterα according to the
noise level of the data, we can deduce the convergence result of the reconstructed coefficients
associated with the regularization parameter α. More precisely, given a set of exact data (ḡ, f̄ ),
we consider a parametric family {(gα, fα)} such that ‖gα − ḡ‖2

X + ‖ fα − f̄‖2
Y = o(α). In the

rest of this section, we denote the functional J in (1.5) with g = gα and f = fα by Jα, and
the minimizer of Jα by (uα, qα). Then we justify the consistency of the least-squares formu-
lation (2.1) by proving the convergence of the sequence of minimizers {qα} to the minimum
norm solution [6] of the system (2.5) as α→ 0.

Theorem 2. Let {αn}∞n=1 ⊂ R
+ be a sequence converging to zero, and {(uαn, qαn)}∞n=1

be the corresponding sequence of minimizers of Jαn . Then under assumptions 1–3,
{(uαn, qαn)}∞n=1 has a subsequence that converges weakly to a minimum norm solution (û, q̂)
of the system (2.5), i.e.,

L(û, q̂) = ḡ, Cû = f̄ .

ψ(q̂) � ψ(q̄) for all (ū, q̄) satis fying (2.5).
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Proof. As (uαn , qαn) is the minimizer of Jαn , there holds that

Jαn(uαn , qαn) � Jαn(ū, q̄). (2.13)

By definition, Jαn(ū, q̄) = ‖L(ū, q̄) − gαn‖2
X + ‖Cū − f αn‖2

Y + αn ψ(q̄), and thus {Jαn(uαn ,
qαn)}∞n=1 is uniformly bounded. Following the similar argument in the proof of theorem 1,
there exists a subsequence of {(uαn , qαn)}∞n=1, still denoted as {(uαn , qαn)}∞n=1, and some (û, q̂)
such that {(uαn , qαn)}∞n=1 converges to (û, q̂) weakly in X × Z. By assumption 3, we have

L(uαn , qαn) converges to L(û, q̂) weakly in X;

Cuαn converges to Cû weakly in Y.

From (2.13) one can also derive that

‖L(uαn , qαn) − gαn‖2
X + ‖Cuαn − f αn‖2

Y + αn ψ(qαn)

� ‖ḡ − gαn‖2
X + ‖ f̄ − f αn‖2

Y + αn ψ(q̄), (2.14)

which implies

L(uαn , qαn) converges to ḡ strongly in X;

Cuαn converges to f̄ strongly in Y.

Therefore, as αn → 0, {(uαn, qαn)}∞n=1 converges to (û, q̂) satisfying

L(û, q̂) = ḡ, Cû = f̄ . (2.15)

Recall that one has an estimate of ψ(qαn) from (2.14) that

αnψ(qαn) � ‖gαn − ḡ‖2
X + ‖ f αn − f̄‖2

Y + αn ψ(q̄),

which leads to

ψ(qαn) � ψ(q̄) + o(1),

as αn → 0. Using the lower semicontinuity of functional ψ, one obtain that

ψ(q̂) � ψ(q̄) for all (ū, q̄) satisfying (2.5).

Together with (2.15), we conclude that (û, q̂) is a minimum norm solution of (2.5). �

3. Alternating direction iterative method and its convergence

An important feature of the least-squares formulation (2.1) is that the functional J(u, q) is
quadratical and convex with respect to each variable u and q. This unique feature facilitates
us naturally to minimize the functional J effectively by the ADI method [11, 12] so that only
two quadratical and convex suboptimizations of one variable are required at each iteration. We
shall carry out the convergence analysis of the ADI method in this section for general inverse
medium problems.

Alternating direction iterative method for the minimization of (1.5).
Given an initial pair (u0, q0), find a sequence of pairs (uk, qk) for k � 1 as follows:
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• Given qk, find u = uk+1 ∈ X by solving

min
u∈X

‖L(u, qk) − g‖2
X + ‖Cu − f ‖2

Y . (3.1)

• Given uk+1, find q = qk+1 ∈ Z by solving

min
q∈Z

‖L(uk+1, q) − g‖2
X + αψ(q). (3.2)

We shall establish the convergence of the sequence {(uk, qk)}∞k=1 generated by the above
ADI method, under assumptions 1–3 on the least-squares formulation (2.1). For this purpose,
we would like to introduce the Bregman distance [19] with respect to ξ ∈ ∂ψ(p),

E(q, p) :=ψ(q) − ψ(p) − 〈ξ, q − p〉 ∀ q, p ∈ Z, (3.3)

which is always nonnegative for convex function ψ. Now we are ready to present the conver-
gence of the sequence {(uk, qk)}∞k=1 generated by (3.1) and (3.2).

Lemma 2. Under assumptions 1–3, the sequence {(uk, qk)}∞k=1 generated by the ADI
method (3.1) and (3.2) converges to a pair (u
, q
) that satisfies the optimality condition of
(2.1):

(Lq)∗(Lqu − g) + C∗(Cu − f ) = 0,−2(Φu)∗(Φuq − g) ∈ ∂(αψ(q)). (3.4)

Proof. Using the optimality condition satisfied by the minimizer uk+1 of (3.1), we can deduce
that

0 =
(
L∗

qk
(Lqk uk+1 − g), uk+1 − uk

)
X
+

(
C∗(Cuk+1 − f ), uk+1 − uk

)
Y

=
1
2

(
‖Lqkuk+1 − g‖2

X + ‖Cuk+1 − f ‖2
Y −

(
‖Lqkuk − g‖2

X + ‖Cuk − f ‖2
Y

)
+ ‖Lqk (uk+1 − uk)‖2

X + ‖C(uk+1 − uk)‖2
Y

)
. (3.5)

Similarly, from the optimality condition satisfied by the minimizer qk+1 of (3.2), we can
obtain that

−2Φ∗
uk+1

(Φuk+1qk+1 − g) ∈ ∂
(
αψ(qk+1)

)
.

On the other hand, we derive by taking q = qk, p = qk+1 and ξ = −2Φ∗
uk+1

(Φuk+1qk+1 − g) in
(3.3) that

〈−2Φ∗
uk+1

(Φuk+1qk+1 − g), qk − qk+1〉+ αψ(qk+1) − αψ(qk) + E(qk, qk+1) = 0. (3.6)

We can readily rewrite the first term in (3.6) as

〈Φ∗
uk+1

(Φuk+1qk+1 − g), qk+1 − qk〉

= 〈Φuk+1qk+1 − g,Φuk+1(qk+1 − qk)〉

=
1
2
〈(Φuk+1qk+1 − g) + (Φuk+1qk − g),Φuk+1qk+1 − g − (Φuk+1qk − g)〉

+
1
2
〈(Φuk+1qk+1 − g) − (Φuk+1qk − g),Φuk+1qk+1 − g − (Φuk+1qk − g)〉

=
1
2

(
‖Φuk+1qk+1 − g‖2

X − ‖Φuk+1qk − g‖2
X + ‖Φuk+1(qk+1 − qk)‖2

X

)
. (3.7)
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Plugging this into (3.6), we can get that

‖Φuk+1qk+1 − g‖2
X + αψ(qk+1) −

(
‖Φuk+1qk − g‖2

X + αψ(qk)
)

+ ‖Φuk+1(qk+1 − qk)‖2
X + E(qk, qk+1) = 0. (3.8)

As the sequence {(uk, qk)}∞k=1 is generated by ADI method (3.1) and (3.2), the updated uk+1

(resp. qk+1) minimizes the functional J(u, qk) (resp. J(uk+1, q)) at each iteration, which would
lead to

J(uk, qk) � J(uk+1, qk) � J(uk+1, qk+1)

for all k � 0. Then we can further derive from (3.5) and (3.8) that for any m � 1, J(um, qm)
satisfies

J(um, qm) +
m−1∑
k=0

E(qk, qk+1) +
m−1∑
k=0

(
‖L

(
uk+1, qk

)
− L(uk, qk)‖2

X

+ ‖C
(
uk+1 − uk

)
‖2

Y + ‖L(uk+1, qk+1) − L(uk+1, qk)‖2
X

)
� J(u0, q0). (3.9)

This implies that
∑∞

k=0‖L(uk+1 − uk, qk)‖2
X is bounded. Then we can conclude using

assumption 2 that {uk}∞k=1 forms a Cauchy sequence and hence converges to some u
 ∈
dom(L). Since

∑m−1
k=0 E(qk, qk+1) is uniformly bounded for all m, we can derive that {qk}∞k=1

converges to some q
 ∈ Z from the strict convexity of ψ. As the sequence {J(uk, qk)}∞k=1 is
monotonely decreasing, there exists a limit J
. Following the similar argument in the proof of
theorem 1, we conclude that J
 = J(u
, q
) by assumption 3. This completes the proof of the
convergence. �

Remark 1. If (3.4) has a unique solution in a neighborhood of initial guess (u0, q0), then
the solution is a local minimizer of the least-squares formulation (2.1), and we can apply
the ADI method to generate a sequence that converges to this local minimizer as a plausible
approximation of the exact coefficients.

4. Diffusive optical tomography

In this section, we take the DOT as a concrete example of inverse medium problems to illus-
trate the total least-squares approach we proposed and analysed in the previous sections. We
will introduce an effective mixed regularization term, present the least-squares formulation
of the first-order system of DOT, and then verify the assumptions in section 2 for the pro-
posed formulation. We shall use the standard notation for Sobolev spaces. The objective of
the DOT problem is to determine the unknown diffusion and absorption coefficients σ and μ
simultaneously in a Lipschitz domain Ω ∈ R

d (d = 2, 3) from the model equation

−∇ · (σ(x)∇u) + μ(x) u = 0 in Ω (4.1)

with a pair of Cauchy data ( f , h) on the boundary ∂Ω, i.e.,

f = u|∂Ω, h =
∂u
∂ν

|∂Ω.

9
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Throughout this section, we shall use the notation g := δ∂Ωh in the total least-squares formu-
lation, where δ∂Ω denotes the Neumann to source map. To define the Neumann to source map,
we first introduce the boundary restriction mapping γ0 on D(Ω), i.e., γ0u denotes the boundary
value of u ∈ D(Ω). Then we use T to denote the trace operator [20], which is formally defined
to be the unique linear continuous extension of γ0 as an operator from L2(Ω) onto H−1/2(∂Ω).
Using Riesz representation theorem, there exists a function in L2(Ω), denoted by δ∂Ωh, such
that for any v ∈ L2(Ω),

(δ∂Ωh, v)L2(Ω) = 〈h, Tv〉H1/2(∂Ω),H−1/2(∂Ω).

Then δ∂Ωh will be viewed as g in the least-squares formulation.

4.1. Mixed regularization

In this subsection, we present an effective mixed regularization for solving the DOT problem.
As the regularization termψ in the least-squares formulation (2.1) shall encode the priori infor-
mation, e.g., sparsity, continuity, lower or upper bound and other properties of the unknown
coefficients, it is essential to choose an appropriate regularization term for a concrete inverse
problem to ensure satisfactory reconstruction. In this work, we introduce a mixed L1–H1

regularization term φ for a coefficient q : Ω→ R:

φ(q;α, β, q0, q1) =
∫
Ω

α

2
(|∇q|2 + q2)dx +

∫
Ω

β|q| dx + χ(q; q0, q1), (4.2)

where χ(q; q0, q1) is given by

χ(q; q0, q1) =

{
0 q0 � q � q1,

∞ otherwise,

and q0 and q1 are some priori lower and upper bounds of the coefficient q respectively. The
first term

∫
Ω

α
2 (|∇q|2 + q2)dx in (4.2) is the H1 regularization, the second term

∫
Ω β|q|dx cor-

responds to the L1 regularization, and the third term χ(q; q0, q1) enforces the reconstruction
to meet the constrains of the coefficient. Two constants α and β are used to balance the two
regularization terms.

In practice, the L1 regularization enhances the reconstruction and helps find geometrically
sharp inclusions, but might generate spiky results. The H1 regularization generates the recon-
structions with overall clear structure, while the retrieved background may be blurry. Compared
with other more conventional regularization methods, this mixed regularization technique in
(4.2) combines two penalty terms and effectively promotes multiple features of the target solu-
tion, that is, it enhances the sparsity of the solution while it still preserves the overall structure
at the same time.

4.2. First-order formulation of DOT

As we have emphasized in the Introduction, it may have some advantages to make use of the
residuals of the first-order system of the model equation (4.1), instead of the residual of the
original equation in the formulation (2.1), when we aim at recovering two unknown coefficients
σ and μ simultaneously. Similarly to the formulation (2.1), we now have q = (σ, μ), and the
operator L is given by

L(u, p, σ,μ) =

(
−∇ · p + μ u

p − σ∇u

)
, (4.3)

10
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where we have introduced an auxiliary vector flux p and each entry of L is of a first-order form
such that two coefficients are separated naturally. Clearly, L(v, q) is still bilinear with respect
to the state variables v = (u, p) and coefficients q = (σ, μ). Using the first-order system, we
can then come to the following total least-squares functional:

J(u, p, σ,μ) = ‖ − ∇ · p + μ(x)u − g‖2
L2(Ω) + ‖p − σ(x)∇u‖2

(L2(Ω))d

+ ‖Cu − f ‖2
L2(∂Ω) + ψ1(σ) + ψ2(μ), (4.4)

where C is the trace operator, and ψ1(σ) = φ(σ; ασ , βσ , σ0, σ1) and ψ2(μ) =
φ(μ; αμ, βμ, μ0, μ1) are the corresponding mixed regularization terms of σ and μ defined as
in (4.2), μ0, μ1 are the lower and upper bounds of μ, and σ0, σ1 are the lower and upper bounds
of σ. We shall minimize (4.4) over (u, p, σ,μ) ∈ L2(Ω) × (L2(Ω))d × L2(Ω) × L2(Ω), that is,
we have the spaces X = L2(Ω) × (L2(Ω))d and Z = L2(Ω) × L2(Ω) at the current setting.

We will apply the ADI method to solve the least-squares formulation of v = (u, p) and
q = (σ, μ):

min
(v,q)∈X×Z

J(u, p, σ,μ) = ‖ − ∇ · p + μ(x)u − g‖2
L2(Ω)

+ ‖p − σ(x)∇u‖2
(L2(Ω))2 + ‖Cu − f ‖2

L2(∂Ω) + ψ1(σ) + ψ2(μ). (4.5)

Given an initial guess (u0, p0, σ0, μ0), we find a sequence (uk, pk, σk, μk) for k � 1 as below:

• Given σk, μk, find u = uk+1, p = pk+1 by solving

min
(u,p)∈X

J1(u, p) = ‖ − ∇ · p + μk(x)u − g‖2
L2(Ω) + ‖p − σk(x)∇u‖2

(L2(Ω))d

+ ‖Cu − f ‖2
L2(∂Ω),

• Given uk+1, pk+1, find σ = σk+1, μ = μk+1 by solving

min
(σ,μ)∈Z

J2(σ,μ) = ‖ − ∇ · pk+1 + μ(x)uk+1 − g‖2
L2(Ω) + ‖pk+1

− σ(x)∇uk+1‖2
(L2(Ω))d + ψ1(σ) + ψ2(μ).

4.3. Well-posedness of the least-squares formulation for DOT

Recall that we have proved the well-posedness of the least-squares formulation in section 2 for
general inverse medium problems. This subsection is devoted to the verification of assumptions
in section 2 for the formulation (4.5) to ensure its well-posedness.

Firstly we consider assumption 1 on the regularization terms. It is observed from the formula
(4.2) that each term of ψ1(σ) and ψ2(μ) in (4.5) is convex and weakly lower semicontinuous.
As the first term of (4.2) is the H1 regularization term, ψ1(σ) and ψ2(μ) are strictly convex by
definition. One can also observe that there exists a positive constant c such that

ψ1(σ) =
∫
Ω

α

2
(|∇σ|2 + σ2)dx +

∫
Ω

β|σ| dx + χ(σ;σ0, σ1) � c‖σ‖2
H1(Ω),

ψ2(μ) =
∫
Ω

α

2
(|∇μ|2 + μ2)dx +

∫
Ω

β|μ| dx + χ(μ;μ0,μ1) � c‖μ‖2
H1(Ω),

(4.6)

which imply that ψ1 and ψ2 are coercive in H1-norm.
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Next we verify assumption 2 on the closedness of Lq and the coercivity of its graph norm.
For fixed q = (σ, μ), we denote the entries of the operator Lq in (4.3) by Lq,1, Lq,2, i.e., for
δv = (δu, δp) ∈ dom(L),

Lq,1δv = −∇ · δp + μδu, Lq,2δv = δp − σ∇δu.

By means of the Hölder’s inequality, we can readily have

‖Lqδv‖X � ‖δp‖H(div,Ω) + ‖δu‖H1(Ω)‖μ‖L∞(Ω) + ‖δu‖H1(Ω)‖σ‖L∞(Ω) (4.7)

for q in the level set {q ∈ Z : ψ(q) = ψ1(σ) + ψ2(μ) � c0} for some constant c0. Then we can
deduce from (4.7) that Lq is a closed linear operator. Next, we verify the coercivity of the
graph norm. For simplicity, we consider the model problem with the homogeneous Neumann
boundary condition h = 0 for the state variable, and set a side constraint for dom(L) as p · ν = 0
on ∂Ω. Introduce the following notations

σ∇u − p = m̃, −∇ · p + μ u = g̃. (4.8)

From (4.8) and by integration by part, we can derive∫
Ω

σ∇u · ∇udx +

∫
Ω

μu · udx =

∫
Ω

∇u · m̃dx +

∫
Ω

u · g̃dx,

which implies

‖∇u‖2
(L2(Ω))d + ‖u‖2

L2(Ω) + ‖∇ · p‖2
L2(Ω) + ‖p‖2

(L2(Ω))d

� c (‖m̃‖2
(L2(Ω))d + ‖g̃‖2

L2(Ω)) (4.9)

for some constant c > 0, when q = (σ, μ) satisfies ψ1(σ) � c0 and ψ2(μ) � c0 for some con-
stant c0 > 0, as we did for (4.7). In this way we have verified that the graph norm corresponding
to Lq defined as

|(u, p)|2W,q = ‖σ∇u − p‖2
(L2(Ω))d + ‖ − ∇ · p + μ u‖2

L2(Ω)

is uniformly coercive.
We next consider assumption 3 on the weakly sequentially closedness of operators L and

C. It is noted that assumption 3 is applied in section 2 for general inverse medium problems
to prove that the operator L maps a subsequence of a bounded sequence {(un, qn)}∞n=1 to a
converging sequence {L(un, qn)}∞n=1 with its limit equal to L(u, q), where (u, q) is the limit of
{(un, qn)}∞n=1. In the analysis of the concrete DOT problem (4.1), the corresponding sequence
{(un, pn, σn,μn)}∞n=1 is actually bounded in a stronger norm than ‖ · ‖X and ‖ · ‖Z, as shown in
(4.6) and (4.9). To prove the well-poseness of the least-squares formulation (4.5), it suffices
to verify that for a sequence {(un, pn, σn,μn)}∞n=1 bounded in H1(Ω) × H(div, Ω) × H1(Ω) ×
H1(Ω), there exists a subsequence weakly converging to (u, p, σ, μ), and the operator L defined
in (4.3) satisfies that {L(un, pn, σn,μn)}∞n=1 weakly converges to L(u, p, σ, μ) in X.

For this verification, we first note that for a given bounded sequence {(un, pn, σn,μn)}∞n=1,
there exists a subsequence, still denoted as {(un, pn, σn,μn)}∞n=1, weakly converging to
(v, q) := (u, p, σ, μ) in H1(Ω) × H(div, Ω) × H1(Ω) × H1(Ω). Denoting (un, pn) by vn and
(σn, μn) by qn, there holds for any V = (V1, V2) ∈ X that

12
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lim
k→∞

(L(vn, qn), V)X − (L(v, q), V)X

= lim
k→∞

((
Lqn(vn − v), V

)
X
+ (L(v, qn − q), V)X

)
= lim

k→∞

(
(−∇ · (pn − p) + μn(un − u), V1)L2(Ω)

+ ((pn − p) − σn∇(un − u), V2)(L2(Ω))d

+ ((μn − μ)u, V1)L2(Ω) − ((σn − σ)∇u, V2)(L2(Ω))d

)
= 0,

where we have used the weak convergence of {(un, pn, σn,μn)}∞n=1 and Hölder’s inequality.
Therefore, {L(un, pn, σn,μn)}∞n=1 weakly converges to L(u, p, σ, μ) in X. On the other hand, as
C is the trace operator on ∂Ω in the DOT problem, it is linear and thus weakly sequentially
closed, which completes our verification.

5. Numerical experiments

In this section, we carry out some numerical experiments for the DOT problem with different
scenarios to illustrate the efficiency and robustness of the proposed two-stage algorithm in
this work. Throughout these examples, we shall assume that we apply the Neumann boundary
data h on ∂Ω and measure the corresponding Dirichlet data f to reconstruct the diffusion and
absorption coefficients σ and μ simultaneously. The basic algorithm involves two stages: we
apply the direct sampling method (DSM) in the first stage to get some initial approximations
of the two unknown coefficients, and then adopt the total least-squares method to achieve more
accurate reconstructions of the coefficients.

5.1. Direct sampling method for initialization

For all the numerical experiments, we shall use the DSM in the first stage of our algorithm,
in an attempt to effectively locate the multiple inclusions inside the computational domain
with limited measurement data. Here we give a brief description of DSM and refer the read-
ers to [18] for more technical details about this DSM that can identify multiple coefficients.
The DSM develops two separate families of probing functions, i.e., the monopole and dipole
probing functions, for constructing separate index functions for multiple physical coefficients.
The coefficients of the inhomogeneities can be approximated based on index functions due to
the following two observations: the difference of scattered fields caused by inclusions can be
approximated by the sum of Green’s functions of the homogeneous medium and their gradi-
ents; and the two sets of probing functions have the mutually almost orthogonality property, i.e.,
they only interact closely with the Green’s functions and their gradients respectively. Thus we
can decouple the monopole and dipole effects and derive index functions for separate physical
properties.

In practice, if the value of an index function φ for one physical coefficient at a sampling
point x is close to 1, the sampling point is likely to stay in the support of inhomogeneity;
whereas if φ(x) is close to 0, the sampling point x stays most probably outside the support.
Hence the index functions give an image of the approximate support of the inhomogeneity, and
we can determine a subdomain D to locate the support from index functions. The subdomain
D could be chosen as D = {x ∈ Ω : φ(x) � θ} with θ being a suitable cut-off value, then we
restrict the index functionφ on D. We adopt this choice in the numerical experiments to remove
the spurious oscillations in the homogeneous background. Once we have the restricted index
function φ|D, we set the value of the approximation φ̃ in D as φ̃|D = cφφ|D, where the constant

13
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cφ is some priori estimate of the true coefficient, and set the value of φ̃ outside of D as the
background coefficient. In this way, we obtain φ̃ as the initial guess for the total least-squares
method for our further reconstruction in the second stage.

5.2. Examples

In all our numerical results with the proposed two-stage least-squares method for inverse
medium problems, we discretize the objective functional J in (4.4) by a staggered finite differ-
ence scheme [21, 22]. The computational domain Ω = [0, 1] × [0, 1] is divided into a uniform
mesh consisting of small squares of width h = 0.01. The measurements uδ of the true boundary
data u are assumed to be of the noisy form:

uδ(x) = u(x) + εη max
x∈∂Ω

|u(x)|

where ε is the relative noise level and η follows the standard Gaussian distribution. The sub-
domain D is chosen by

D = {x ∈ Ω : φ(x) � θ}, (5.1)

where φ is the index function from DSM and the cutoff value θ is taken in the range (0.4, 0.7).
The choice of the cut-off value θ will affect the size of the subdomain D, but it is insensitive
to the reconstructed coefficients in the second stage. Without loss of generosity, we assume
that the background diffusion and absorption coefficients σ = 1 and μ = 1. The regularization
parameters (ασ , βσ ,αμ, βμ) involved in the functional in (4.4) may be determined by various
strategies for multiple-parameter regularizations, such as the balancing principle in [6]. But
in this work, all the parameters are chosen in a trial and error manner, which are presented in
more detail in table 1 for different examples. The numerical iterations are terminated either
when the number of iterations reaches the maximum number K (it is set to be 50) or when the
following stopping criteria are satisfied:

‖σk+1 − σk‖L2(Ω)

‖σk+1‖L2(Ω)
< 0.01 and

‖μk+1 − μk‖L2(Ω)

‖μk+1‖L2(Ω)
< 0.01.

In all the experiments presented in this section, the above stopping criteria are achieved
within about 20 iterations. All the computations were performed in MATLAB (R2018B) on a
desktop computer.

Example 1. We consider the discontinuous diffusion and absorption coefficients σ and μ
with one inclusion each. The inclusion of σ is of width 0.05 and centered at (0.25, 0.65) as
shown in figure 1(a); the inclusion of μ is of width 0.05 and centered at (0.35, 0.3) as shown
in figure 1(e). The magnitudes of the coefficients inside the inclusions are 20.

We shall use only one set of measurements to reconstruct the diffusion and absorption coef-
ficients. It is shown in figures 1(b) and (f) that the index functions from the DSM separate
inclusions of different physical nature well and give the initial approximate locations, while
the exact locations of small inclusions are difficult to detect. If we simply take the maximal
points of the index functions in figures 1(b) and (f) as the locations of the reconstructed inclu-
sions, we may not be able to identify the true locations of inhomogeneity. Then we set the
subdomain D using information from the first stage by (5.1), see figures 1(c) and (g), and
set the value of approximation out of the subdomain to be the background coefficients. As
in figures 1(d) and (h), this example illustrates that the least-squares formulation in the sec-
ond stage works very well to improve the reconstruction and provides a much more accurate
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Table 1. The regularization parameters (α,β) in each example for σ and μ without noise and with noise.

Noise level ε = 0 ε > 0

Example (ασ ,βσ) (αμ,βμ) (ασ ,βσ) (αμ,βμ)

1 (1.0 × 10−2, 2.0 × 10−2) (5.0 × 10−4, 5.0 × 10−4) (1.0 × 10−2, 2.0 × 10−2) (5.0 × 10−4, 1.0 × 10−3)
2 (1.0 × 10−3, 5.0 × 10−3) N/A (1.0 × 10−3, 1.0 × 10−2) N/A
3 (1.0 × 10−6, 1.0 × 10−3) N/A (1.0 × 10−6, 2.0 × 10−3) N/A
4 (1.0 × 10−3, 1.0 × 10−2) (1.0 × 10−2, 5.0 × 10−3) (1.0 × 10−3, 2.0 × 10−2) (1.0 × 10−2, 5.0 × 10−3)
5 (1.0 × 10−5, 5.0 × 10−4) N/A (1.0 × 10−5, 1.0 × 10−3) N/A
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Figure 1. Numerical results for example 1 with exact data: (a) true σ; (b) index Φ
from DSM; (c) index Φ|D (constrained to the chosen subdomain D); (d) least-squares
reconstruction. (e)–(h) are the corresponding graphs for μ.

Figure 2. Numerical results for example 1 using the data with 10% noise: (a) true σ;
(b) index Φ from DSM; (c) index Φ|D (constrained to the chosen subdomain D); (d)
least-squares reconstruction. (e)–(h) are the corresponding graphs for μ.

location than that provided by DSM. This can be further evidenced by the centers of mass of
the inhomogeneous part of the reconstructed σ
 and μ
, which are located at (0.30, 0.62) and
(0.34, 0, 37) respectively. With 10% noise in the measurements, the centers of mass of the
inclusions in the reconstructed σ
 and μ
 are located at (0.29, 0.62) and (0.35, 0, 34) respec-
tively. We can observe that the reconstructions remain accurate in the noisy case, as shown in
figure 2, which indicates that the two-stage algorithm gives quite stable reconstructions with
respect to a big noise even though the DSM reconstructions become more blurry in figures 2(b)
and (f). The regularization parameters (ασ , βσ ,αμ, βμ) are presented as in table 1.
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Figure 3. Numerical results for example 1 with different regularization methods in the
least-squares formulation: (a) true σ; (b) reconstruction with L1 regularization; (c) recon-
struction with H1 regularization; (d) reconstruction with mixed regularization. (e)–(h)
are the corresponding graphs for μ.

Compared with the reconstructions derived from the DSM, the improvement of the approxi-
mations for both σ and μ is significant: the recovered background is now mostly homogeneous,
and the magnitude and size of the inhomogeneity approximate those of the true coefficients
well. These results indicate clearly the significant potential of the proposed least-squares
formulation with the mixed regularization for inverse medium problems.

From table 1 we obtain an insightful observation about the mixed regularization: the mag-
nitude of parameter β is mostly larger than that of α. We can conclude that the L1 penalty plays
a predominant role in improving the performance of reconstruction for such inhomogeneous
coefficients, whereas the H1 penalty yields a locally smooth structure. This is why the mixed
regularization has been applied for all the numerical examples in this section. We have also run
the reconstructions with the single-parameter regularization and observed that the reconstruc-
tion with only the L1 regularization often leads to a rather sparse and spiky result, while the
reconstruction with only the H1 regularization usually gives a more blurry and diffusive result;
see figure 3 for a comparison.

Example 2. We implement the algorithm to reconstruct the discontinuous diffusion coef-
ficient σ with two inclusions. We assume that μ is known, being the same as the background
coefficient μ. One set of data is measured to locate two inclusions of σ, which are centered
at (0.15, 0.5) and (0.5, 0.85) respectively, both of width 0.05. σ is taken to be 20 inside the
regions as shown in figure 4(a).

The reconstructions for σ using exact measurements and measurements with 20% noise are
shown in figure 4. In the first stage, the DSM gives the index function that separates these
two inclusions well using only one set of data as in figure 4(b), while some inhomogene-
ity is observed in the background. This phenomenon comes from the ill-posedness of inverse
medium problems and also the oscillation of fundamental solutions used in the DSM. Even
so, the approximations in figures 4(b) and (f) still provide the basic modes of the inhomo-
geneity. We can identify that there are two inclusions, and capture the subdomain D for the
second stage in figures 4(c) and (g). The least-squares formulation with mixed regularization
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Figure 4. Numerical results for example 2 using the data with no noise (first row) and
20% noise (second row): (a) true σ; (b) indexΦ from DSM; (c) indexΦ|D (constrained to
the chosen subdomain D); (d) least-squares reconstruction. (e)–(h) are the corresponding
graphs with 20% noise.

Figure 5. Numerical results for example 3 using the data without noise (first row) and
with 2% noise: (a) true σ; (b) index Φ from DSM; (c) index Φ|D (constrained to the
chosen subdomain D); (d) least-squares reconstruction. (e)–(h) are the corresponding
graphs using the data with 2% noise.

significantly improves the reconstruction: the locations of both inclusions are captured better
with clear background and accurate size in figures 4(d) and (h), and the centers of mass of
the two inclusions in the reconstructed σ
 (figure 4(d)) are located at (0.14, 0.43) and (0.48,
0, 81) respectively. Comparing figures 4(d) and (h), one can observe that the reconstruction
deteriorates only slightly in that the left inclusion shrinks a little bit when the noise level ε
increases from 0 to 20%, and the centers of mass of these two inclusions of inhomogeneity
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Figure 6. Numerical results for example 4 using the exact data: (a) true σ; (b) index
Φ for σ from DSM; (c) index Φ|D for σ (constrained to the chosen subdomain D); (d)
least-squares reconstruction. (e)–(h) are the corresponding graphs for μ.

Figure 7. Numerical results for example 4 using the data with 20% noise: (a) true σ; (b)
index Φ for σ from DSM; (c) index Φ|D for σ (constrained to the chosen subdomain D);
(d) least-squares reconstruction. (e)–(h) are the corresponding graphs for μ.

are now located at (0.12, 0.44) and (0.48, 0, 81) respectively. This example verifies that the
proposed two-stage algorithm is very robust with respect to the data noise.

Example 3. In this example we reconstruct two inclusions of diffusion coefficient σ that
stay very close to each other. We assume that μ is the same as the background coefficient μ.
The two inclusions of diffusion coefficient σ are centered at (0.45, 0.425) and (0.55, 0.575)
respectively and of width 0.1 as shown in figure 5(a). The coefficient σ is 20 in both regions.

The two inclusions in example 2 are relatively far from each other, while example 3 consid-
ers the case when two inclusions are quite close to each other, which is more challenging as it

19



Inverse Problems 38 (2022) 125004 K Ito et al

Figure 8. Numerical results for example 5 using the data without noise (first row) and
with 20% noise (second row): (a) true σ; (b) index Φ from DSM; (c) index Φ|D (con-
strained to the chosen subdomain D); (d) least-squares reconstruction. (e)–(h) are the
corresponding graphs using data with 20% noise.

would be difficult to distinguish these two separated inclusions and reconstruct their locations
and magnitudes precisely. As shown in figure 5(b), the index function from DSM presents lim-
ited information on the diffusion coefficient with only one set of data, and shows one connected
inclusion. With 2% noise, the index function is blurred a lot as shown in figure 5(f). In both
noisy and noiseless cases, only one subdomain can be detected from this index function from
the first stage. The second stage still presents well separated reconstructions with the size and
magnitude that match the exact diffusion coefficient well as shown in figure 5(d), and the cen-
ters of mass of the two inclusions in the reconstructed σ
 are located at (0.47, 0.43) and (0.61,
0, 57) respectively. For the case with 2% noise, this two-stage algorithm also gives satisfactory
reconstruction (see figure 5(h)), and the centers of mass of the two inclusions are now located at
(0.53, 0.32) and (0.60, 0, 48) respectively. Compared with figure 5(d), it is observable that the
left inclusion moves towards x-axis and elongates a little bit, while we can still tell the sizes and
locations of two inclusions from the reconstruction. This shows that the least-squares method
provides much more details than DSM and is relatively robust with respect to the noise in the
measurement.

Note that for the noise level higher than 2%, the DSM cannot provide a feasible initial guess
for the least-squares method in the second stage with only one set of measurement data. But
with an initial guess that can reflect some basic mode of the true coefficient, the least-squares
method in the second stage has great tolerance of noise as shown in other examples.

Example 4. With this example, we reconstruct σ and μ simultaneously, with two inclusions
for each coefficient. The inclusions are in the following scenario: the inclusions of diffusion
coefficient σ are of width 0.1 and centered at (0.5, 0.25), (0.5, 0.75) respectively, and the mag-
nitude inside the region is 20; the inclusions of absorption coefficient μ are of width 0.1 and
centered at (0.25, 0.5), (0.75, 0.5) respectively, and the magnitude inside the region is 20, as
shown in figures 6(a) and (e).

In example 1, we have only one inclusion for coefficients μ and σ each, and it is shown that
this algorithm can reconstruct both medium coefficients well. Example 4 is more challenging
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than example 1, as the existence of two inclusions for each coefficient will influence the recon-
struction of the other coefficient. As shown in figures 6(b) and (f), the index functions separate
these inclusions well and give a rough approximation for their locations with only one set of
data. However, it can be observed that the maximal points of index functions differ signifi-
cantly from the exact coefficients. In the second stage of the proposed algorithm, the locations
are improved significantly, as shown in figures 6(d) and (h), where the centers of mass of the
two inclusions in the reconstruction σ
 are located at (0.51, 0.29) and (0.48, 0.68), while the
centers of mass of the two inclusions in the reconstruction μ
 are centered at (0.22, 0.46) and
(0.79, 0.52). When we consider the case with 20% noise, DSM provides blurry approxima-
tions as shown in figures 7(b) and (f). In the second stage of reconstruction, figures 7(d) and
(h) present results almost the same as figures 6(d) and (h), where the centers of mass of the two
inclusions in figure 7(d) are located at (0.51, 0.29) and (0.48, 0.67), while the centers of mass
of the two inclusions in figure 7(h) are centered at (0.22, 0.46) and (0.79, 0.53). This example
demonstrates again the robust performance of the new method.

Example 5. In this example we assume that μ is the same as the background coefficient
μ and reconstruct the diffusion coefficient σ with ring-shaped square inclusion as shown in
figure 8(a), with two sets of measurement data. The outer and inner side length of the ring are
0.2 and 0.15, and the rectangle ring is centered at (0.5, 0.6). The coefficient σ is taken to be 20
inside the region.

We apply the two-stage least-squares method with two sets of measurement data from dif-
ferent directions for this very challenging case. As we see from figure 8(b), the index function
from the DSM can only reflect an approximated location of the inclusion, and it does not give
any clue about the actual shape of the inclusion. But from figure 8(d), we can clearly see that
the least-squares formulation can reconstruct the edges of the ring-shape inclusion. When 20%
noise is present in the data, one has the reconstruction (see figure 8(h)) that is very similar to
the results without noise, which shows the approximation is quite stable with respect to the
noise.

6. Concluding remarks

We have presented a novel two-stage least-squares approach to reconstruct multiple unknown
coefficients simultaneously for a class of inverse medium problems. A DSM is applied to
provide an approximate initial support of the inhomogeneity in the first stage, then a total
least-squares method with a mixed regularization is used to recover the medium profile in the
second stage. The total least-squares formulation combines the residual of the model equation,
the data fitting and the regularizations in the least-squares criterion. Analyses are provided to
prove the well-posedness and convergence of the algorithm, and numerical results are provided
to demonstrate the robustness and effectiveness of the algorithm. We are currently investigat-
ing this new methodology in several directions. Firstly, it is of great interest to explore how the
formulations of the least L1 criterion perform, which is expected to remove the potential out-
liers in the measurements and retain several good features of the total least-squares approach.
Secondly, the robustness of the two-stage algorithm might be further improved with differ-
ent DSMs in the first stage. Thirdly, it is very interesting and important to develop an effective
deterministic strategy for providing desired regularization parameters for the total least-squares
method. Although this paper concerns the inverse medium problem with multiple parameters,
we believe that the proposed least-squares framework can be applied to solve other important
parameter identification problems, and even more general stochastic inverse problems.
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