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Abstract
We shall study in this paper the convergence rates of the Tikhonov regular-
ized solutions for the recovery of the radiativities in elliptic and parabolic
systems in general dimensional spaces. The conditional stability estimates are
first derived. Due to the difficulty of the verification of the existing source
conditions or nonlinearity conditions of the inverse radiativity problems in
high dimensional spaces, some new variational source conditions are pro-
posed. The conditions are rigorously verified in general dimensional spaces
under the conditional stability estimates. We will also derive the reasonable
convergence rates under the new source conditions, and the results reveal the
explicit relation between the regularity of the radiativities and the convergence
rates.

Keywords: inverse radiativity problem, Tikhonov regularization, Lipschitz type
stability, convergence rates, variational source condition

1. Introduction

In this work, we shall investigate the identification of the radiativities in the elliptic boundary
value problem {

−∇ · (a(x)∇u) + q(x)u = f (x) in Ω,

u = g(x) on ∂Ω,
(1.1)

3Author to whom any correspondence should be addressed.

1361-6420/20/075001+21$33.00 © 2020 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6420/ab8449
https://orcid.org/0000-0003-3496-0053
https://orcid.org/0000-0002-4809-7724
mailto:dehan.chen@uni-due.de
mailto:jiangdaijun@mail.ccnu.edu.cn
mailto:zou@math.cuhk.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ab8449&domain=pdf&date_stamp=2020-6-15


Inverse Problems 36 (2020) 075001 D-H Chen et al

and the time-dependent parabolic system

⎧⎪⎪⎨
⎪⎪⎩
∂tu −∇ · (a(x)∇u) + q(x)u = f (x, t) in Ω× (0, T],

u(x, 0) = u0(x) in Ω,

u(x, t) = g(x, t) on ∂Ω× (0, T],

(1.2)

where Ω ⊂ R
d (d = 2, 3) is the interested physical domain, an open bounded and connected

domain with C2 boundary ∂Ω. The source density f(x) or f(x, t), the ambient temperature g(x)
or g(x, t), the conductivity a(x) and the initial temperature u0(x) in the model systems (1.1) and
(1.2) are all given, while the radiativity q(x) is the focus of our interest to be reconstructed in
the following admissible constraint set

K =
{

q ∈ L2(Ω); 0 < q � q � q̄ a.e. in Ω
}
. (1.3)

Here q and q̄ are two positive constants. For convenience, we often write the solutions of
systems (1.1) and (1.2) as u(q) to emphasize their dependence on the radiativities q(x).

Throughout this work, we use δ to denote the noise level in the measurement data.
Then the elliptic and parabolic inverse radiativity problems of our interest are stated as
follows:

Elliptic Inverse Radiativity Problem. Given a(x), f(x) and g(x) in (1.1), recover the
radiativity q(x) in Ω from the available noisy data ∇zδ (or zδ) of ∇u (or u) in Ω.

Parabolic Inverse Radiativity Problem. Given a(x), f(x, t), g(x, t) and u0(x) in (1.2),
recover the radiativity q(x) in Ω from the available noisy data ∇zδ (or zδ) of ∇u (or u) in
Ω× I, where I is a general open subinterval of the entire time range (0, T].

Convergence rates have been well studied for Tikhonov regularizations for inverse conduc-
tivity and radiativity problems [11, 12, 20, 22, 26]. Most convergence results are established
under the well recognised classical convergence theory for general inverse problems developed
in [11]. This classical framework requires the forward map u(q) to be Fréchet differentiable
and the Fréchet differentive u′(q) to be Lipschitz continuous. The essence of the classical reg-
ularization theory lies in its source condition which involves the adjoint operator u′(q)∗ and
requires the existence of a small source function in certain sense. A new convergence the-
ory was proposed in [12] for an inverse conductivity problem in a parabolic system to relax
the restrictive requirements in the classical convergence theory [11]. A much simpler source
condition was presented in [12], which involved only the forward map u(q) itself, instead of
its derivative and the adjoint, and does not require the smallness of the source function and
the Fréchet differentiability of u(q) and the Lipschitz continuity of the Fréchet differentive
u′(q). Same convergence rates as the ones from the classical theory were achieved under these
much weaker and more realistic conditions. However, this new theory works only for the time-
dependent inverse conductivity problems and does not apply to elliptic inverse problems, and
more importantly, the proposed source conditions can be verified only in the one-dimensional
spaces. Convergence rates of the Tikhonov regularizations were further studied in [20] for
identifying conductivity and radiativity respectively in elliptic systems, where the identifying
parameters were assumed to be known over all the boundaries and then the source conditions
in [12] can be relaxed and the convergence rates can be established for elliptic systems. But
the identifying parameters may not be accessible over the entire boundary in most applica-
tions. Moreover, there is a critical technical issue in the development in [20]; a linear mapping
Θ : H1

0(Ω) → H1
0(Ω) ∩ H2(Ω) was defined there as Θ(φ) = Φ by 〈φ,ψ〉H1(Ω) = 〈Φ,ψ〉H2(Ω) for

any ψ ∈ H1
0(Ω) ∩ H2(Ω). The mapping Θ was claimed to be bijective, but its surjection is gen-
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erally not easy to verify and may not hold. A novel convergence theory was developed in [22]
for general nonlinear inverse operator equation, under a special source condition and a strong
nonlinearity condition, which can also get rid of the smallness for the source function. Inverse
conductivity problem was investigated [26] for a coupled elliptic and parabolic system, and the
convergence rate was established for the H1 regularization and mixed Lp–H1 regularization,
under a simple and easily interpretable source condition, again without smallness for the source
function. As far as the stationary or instationary inverse conductivity and radiativity problems
are concerned, the aforementioned convergence theories need some source conditions [11] or
the required nonlinearity conditions [22], which may not be easy to verify in general dimen-
sional spaces, unless adding some restrictive conditions on the identified parameters or forward
solutions.

Variational source condition (VSC) and the resulting convergence rates results were ini-
tiated by Hofmann et al [21] and its extensions were proven independently in [5, 13, 14].
In comparison with the classical source condition, VSC does not involve the computation of
Fréchet differentiability of the forward operator, and its resulting convergence rates for the reg-
ularized solutions follow immediately from VSC under an appropriate parameter choice rule
(see e.g. [18]). But the verifications of VSC are a nontrivial and highly technical problem. For
example, VSC was verified for some abstract linear inverse problems with �p penalties [2, 3,
6], in particular, for elastic-net regularizations in [6]. The main techniques used there are the
operator theory and a delicate construction of index functions. For inverse problems of PDEs,
Hohage and Weidling [15, 16] verified the validity of VSC for the Tikhonov regularization of
inverse scattering problems, by using the conditional stability estimates via geometrical optics
solutions and variational regularization theory. Recently, the validity of VSC was shown for
the ill-posed backward nonlinear Maxwell’s equations in [7], where the semigroup theory and
extrapolation of Hilbert spaces were used. It is worth mentioning that the techniques in all these
verifications are quite different in each case. For more details about the connections between
VSC and classical source conditions, we refer the reader to [15–17]. In this work, we shall
first derive some Lipschitz-type stability estimates for the proposed inverse problems and then
propose some new variational source conditions to achieve reasonable convergence rates of
the Tikhonov regularizations for the inverse problems. There are several important novelties
in this work. The first one is its rigorous verification of the proposed VSC in general dimen-
sional spaces under the newly established Lipschitz-type stabilities. The second one is that the
convergence rates can be achieved without the knowledge of the identifying radiativities over
the boundaries; this has significantly improved the results established in [20] for the inverse
elliptic radiativity problem. Moreover, if we know the boundary information of the dentifying
radiativities, higher convergence rates will be established (see remark 3.6). As the third novelty,
our results reveal the relation between the regularity of the radiativities and the convergence
rates. One more important novelty we like to emphasize in this work is that the main conver-
gence results are established for both the pointwise and gradient-type measurement data, and
when the measurement data is available over an arbitrary small range in time for the parabolic
inverse problem.

The remainder of this work is arranged as follows. In section 2, some preliminaries are
presented. In section 3, the conditional stability estimates are derived and some new VSCs
are proposed for the elliptic inverse radiativity problem. We shall verify the VSCs rigorously
and derive the results about the reasonable convergence rates. In section 4, we shall get some
conditional stability estimates for the parabolic inverse radiativity problem and propose some
new VSCs to achieve reasonable convergence rates. Some concluding remarks are given in
section 5.
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2. Preliminaries

In this section, we present some auxiliary notation and results for our subsequent use. We first
recall some terminologies and notation. Given a linear operator T : X → X on a complex Hilbert
space X, the notation D(T), stand for the domain of T respectively. A linear operator T : D(T) ⊂
X → X is said to be closed, if its graph {(x, Tx), x ∈ D(T)} is closed in X × X. Furthermore, the
adjoint of a densely defined operator T : D(T) ⊂ X → X is denoted by T∗ : D(T∗) ⊂ X → X.
We call T : D(T) ⊂ X → X symmetric, if Tx = T∗x holds true for all x ∈ D(T), i.e. (Tx, y)X =
(x, Ty)X for all x, y ∈ D(T). If a symmetric operator T satisfies that D(T) = D(T∗), then T is said
to be self-adjoint.

Then for any s ∈ (−∞,∞), we define the following fractional Sobolev space:

Hs(Rd) :=

{
u ∈ S(Rd)′|‖u‖2

Hs(Rd ) :=
∫
Rd

(1 + |ξ|2)s|(Fu)(ξ)|2dξ < +∞
}

,

where F : S(Rd)′ → S(Rd)′ is the Fourier transform and S(Rd)′ denotes the tempted distribu-
tion space (see, e.g. [24, 31, 32]). For a bounded domain U ⊂ R

d with a Lipschitz boundary
∂U, the space Hs(U) with a possibly non-integer exponent s � 0 is defined as the space of all
complex-valued functions v ∈ L2(U) satisfying V|U = v for some V ∈ Hs(Rn), endowed with
the norm

‖v‖s,U := inf
V|U=v

V∈Hs(Rn)

‖V‖Hs(Rn).

When no confusion may be caused, we simply drop U in the subscription of ‖ · ‖s,U. For every
s ∈ [0,∞), we denote by 
s� ∈ [0, s] the largest integer less or equal to s. In the case of s ∈
(0,∞) with s = 
s�+ σ and 0 < σ < 1, the norm ‖ · ‖s,U is equivalent to (see [32])

⎛
⎝ ∑

|α|�
s�
‖Dαu‖2

L2(U) +
∑

|α|�
s�

∫∫
U×U

|Dαu(x) − Dαu(y)|2
|x − y|n+2σ

dxdy

⎞
⎠

1
2

.

If s is a non-negative integer, then Hs(U) coincides with the classical Sobolev space. We set
Hs

0(U) to be the completion of C∞
c (U) under the norm ‖ · ‖s,U, and H−s(U) to be the dual space

of Hs
0(U) with respect to the inner product of L2(U). It is also well-known that the inner product

(·, ·)U =
∫

U f g dx extends to a bounded sesquilinear form on H−s(U) × Hs
0(U), where g denotes

the complex conjugate of g, which satisfies

|〈 f , g〉H−s(U),Hs
0(U)| � ‖ f ‖H−s(U)‖g‖Hs

0(U) ∀ f ∈ H−s(U), g ∈ Hs
0(U).

Throughout the paper, C is often used for a generic positive constant. We shall often use the
symbol 〈·, ·〉 for the general duality pairing.

Lemma 2.1. The following estimates will be used frequently [30, 32].

(a) Let r, s ∈ R such that r, s < d
2 and r + s > 0. Then for t = r + s − d

2 and distributions
u ∈ Hr(Rd), v ∈ Hs(Rd), we have uv ∈ Ht(Rd), with the following estimate

‖uv‖t,Rd � C‖u‖s,Rd‖v‖r,Rd .
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(b) Let r > d
2 . Then Hs(Ω) is an algebra under pointwise multiplication, i.e. for all functions

u, v ∈ Hr(Ω), it holds

‖uv‖Hr(Ω) � C‖u‖Hr(Ω)‖v‖Hr(Ω).

We end this section by recalling the following two well-posedness results, which can be
found, e.g. in [19] (corollary 2.2.2.4) and [25] (chapter VI, section 9) for the elliptic system
(1.1) and the parabolic system (1.2) respectively.

Lemma 2.2. Assume that a(x) ∈ W1,∞(Ω) with a positive lower bound, q(x) ∈ K, f(x) ∈
L2(Ω) and g(x) ∈ H

3
2 (∂Ω). Then there exists a unique solution u ∈ H2(Ω) to the system (1.1)

with the estimate

‖u‖2,Ω � C
(
‖ f ‖0,Ω + ‖g‖ 3

2 ,∂Ω

)
. (2.1)

Lemma 2.3. Assume that a(x) ∈ W1,∞(Ω) with a positive lower bound, q(x) ∈ K, f(x, t) ∈
L2(0, T; L2(Ω)), g(x, t) ∈ L2(0, T; H

3
2 (∂Ω)) ∩ H

3
4 (0, T; L2(∂Ω)) and u0(x) ∈ H1(Ω). Then there

exists a unique solution u ∈ L2(0, T; H2(Ω)) ∩ H1(0, T; L2(Ω)) to the system (1.2) with the
estimate

‖u‖L2(0,T;H2(Ω)) + ‖u‖H1(0,T;L2(Ω))

� C(‖ f ‖L2(0,T;L2(Ω)) + ‖g‖
L2(0,T;H

3
2 (∂Ω))

+ ‖g‖
H

3
4 (0,T;L2(∂Ω))

+ ‖u0‖1,Ω).

(2.2)

3. Convergence rates of Tikhonov regularization for elliptic inverse radiativity
problem

We will study in this section the conditional stabilities and convergence rates of the Tikhonov
regularization for the recovery of the radiativity in the elliptic system (1.1). Throughout this
section, we always assume that a(x) ∈ W1,∞(Ω) has a positive lower bound, f(x) ∈ L2(Ω) and
g(x) ∈ H

3
2 (∂Ω) in (1.1).

3.1. Measurement data in gradient form

We assume that the measurement data ∇zδ of ∇u(q) is available, with a noise level δ, namely

‖∇u(q†) −∇zδ‖0,Ω � δ, (3.1)

where q† is the true physical radiativity. The elliptic inverse radiativity problem is highly ill-
posed [10], and is usually transformed into an effective and stable minimisation system with
Tikhonov regularization:

min
q∈K

Jδ,β(q) = min
q∈K

(
1
2
‖∇u(q) −∇zδ‖2

0,Ω +
β

2
‖q − q∗‖2

0,Ω

)
, (3.2)

where β > 0 is the regularization parameter and q∗ is an a priori estimate of the true parameter
q†. Note that q∗ may not need to be selected from the constraint set K, and q∗ plays the role of
a selection criterion, i.e. if the minimizer to (3.2) is not unique, the choice of q∗ helps choose
a more desired approximate parameter [12].
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We refer to [8, 20] (theorem 3.1) for the following existence of the minimizers to the
optimization problem (3.2).

Theorem 3.1. There exists at least a minimizer qδ
β to the optimization problem (3.2).

In the following, we shall first derive a Lipschitz-type stability estimate for the elliptic
inverse radiativity problem. This Lipschitz-type stability estimate does not look so strong, but
it is of fundamental importance and sufficient enough for us to rigorously verify the subsequent
VSC.

Theorem 3.2. Assume |u(q†)| � c0 a.e. in Ω for some constant c0 > 0 , then for a fixed
ε ∈

(
0, 1

2

)
, there exists a constant C such that

‖q − q†‖H−1−ε(Ω) � C‖u(q) − u(q†)‖1,Ω ∀q ∈ K. (3.3)

Proof of Theorem 3.2. We know easily from system (1.1) that for all q ∈ K,

−∇ · (a(x)∇(u(q†) − u(q))) + q(u(q†) − u(q)) = u(q†)(q − q†). (3.4)

Since (u(q†) − u(q)) ∈ H1
0(Ω), we can multiply (3.4) by a function ϕ ∈ H1

0(Ω) and obtain

∣∣∣∣
∫
Ω

u(q†)(q − q†)ϕ dx

∣∣∣∣ � q
∫
Ω

|(u(q†) − u(q))ϕ|dx + ‖a‖L∞(Ω)‖∇(u(q†) − u(q)) · ∇ϕ‖0,Ω,

which implies that

c1‖u(q†)(q − q†)‖H−1(Ω) � ‖u(q) − u(q†)‖H1
0(Ω) (3.5)

for some constant c1 > 0. By the definition of the H−1−ε(Ω) norm, we have

‖q − q†‖H−1−ε(Ω) = sup
‖ϕ‖

H1+ε
0 (Ω)

=1

∣∣∣∣
∫
Ω

(q − q†)ϕ(x)dx

∣∣∣∣
= sup

‖ϕ‖
H1+ε

0 (Ω)
=1

∣∣∣∣
∫
Ω

u(q†)(q − q†)
ϕ(x)
u(q†)

dx

∣∣∣∣ . (3.6)

Since u(q†) ∈ H2(Ω) (by lemma 2.2) with |u(q†)| � c0, it follows that 1
u(q†)

∈ H2(Ω) by Leibniz’
rule.

Now let w ∈ H2(Rd) be an extension of 1
u(q†)

such that ‖w‖H2(Rd ) � 2‖ 1
u(q†)

‖2,Ω, then

ϕ/u(q†) = wϕ|Ω. For the space dimension d = 3, one has 1 + ε+ ( 3
2 − ε

2 ) − d
2 > 1 and 1 +

ε � d
2 for the fixed ε ∈ (0, 1/2), and we obtain by using lemma 2.1 (a) that

‖wϕ‖1,Rd � ‖wϕ‖1+ ε
2+

3
2−

d
2 ,Rd � C‖w‖ 3

2 ,Rd‖ϕ‖H1+ε
0 (Rd) � C‖ 1

u(q†)
‖2,Ω‖ϕ‖H1+ε

0 (Ω),

(3.7)
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where we have used the continuous embedding H
3
2 (Rd) � H

3−ε
2 (Rd). For the space dimension

d = 2, 3/2 > d/2 and 1 + ε > d/2 for the fixed ε ∈ (0, 1/2). Then we obtain by lemma 2.1
(b) that for any r ∈ (1, min{3/2, 1+ ε}),

‖wϕ‖1,Ω � ‖wϕ‖r,Ω � C‖w‖r,Ω‖ϕ‖r,Ω � C‖w‖ 3
2 ,Ω‖ϕ‖H1+ε

0 (Ω) � C‖ 1
u(q†)

‖2,Ω‖ϕ‖H1+ε
0 (Ω).

From this estimate, (3.6) and (3.7) and noting that 1
u(q†)

∈ H2(Ω) and ‖ϕ‖H1+ε
0 (Ω) = 1, we get

‖q − q†‖H−1−ε(Ω) � ‖u(q†)(q − q†)‖H−1(Ω)‖
ϕ(x)
u(q†)

‖1,Ω

� C‖u(q†)(q − q†)‖H−1(Ω)‖
1

u(q†)
‖2,Ω‖ϕ‖H1+ε

0 (Ω)

� C‖u(q†)(q − q†)‖H−1(Ω). (3.8)

This together with (3.5) implies that

‖q − q†‖H−1−ε(Ω) � C‖u(q†)(q − q†)‖H−1(Ω) � C‖u(q) − u(q†)‖H1
0(Ω).

�

Remark 3.1. By the same arguments as in the proof of theorem 3.2, we can actually prove
that if w ∈ H3/2(Ω) and ε ∈ (0, 1/2), then

‖wϕ‖1,Ω � C‖w‖3/2,Ω‖ϕ‖1+ε,Ω ∀ϕ ∈ C∞
0 (Ω).

Remark 3.2. Since the embedding H−s(Ω) � H−t(Ω) is continuous whenever t > s � 0, we
obtain from theorem 3.2 that for all s > 1 and q ∈ K, it holds

‖q − q†‖H−s(Ω) � C‖u(q) − u(q†)‖1,Ω.

Remark 3.3. As u(q) − u(q†) ∈ H1
0(Ω), then by theorem 3.2 and the Poincáre’s inequality,

we have for all s > 1 and q ∈ K,

‖q − q†‖H−s(Ω) � C‖u(q) − u(q†)‖H1
0(Ω) � C‖∇u(q) −∇u(q†)‖0,Ω. (3.9)

Remark 3.4. We present a sufficient condition to ensure that the true solution u(q†) fulfills
the required positiveness sassumptions in theorem 3.2. As u(q†) ∈ H2(Ω) by lemma 2.2, we
have by Sobolev’s embedding theorem that u(q†) is Hölder continuous. If f and g are both
nonnegative and u(q†) �= 0, then the result from [23, theorem 4] implies that u(q†) is strictly
positive. i.e. there exists a positive constant c0 such that u(q†) � c0 in Ω.

Now, following the general principle of the VSC [21] for inverse problems, we propose a
variational source condition of the specific form for the least-squares formulation (3.2) with
Tikhonov regularization:

1
4
‖q − q†‖2

0,Ω � 1
2
‖q − q∗‖2

0,Ω − 1
2
‖q† − q∗‖2

0,Ω + C‖u(q) − u(q†)‖α1,Ω ∀ q ∈ K,

(3.10)

7
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where α is selected in theorem 3.3. Then using parallelogram law in Hilbert spaces, it is easy
to see that (3.10) is equivalent to the following inner product form:

(q† − q∗, q† − q)Ω � 1
4
‖q − q†‖2

0,Ω + C‖u(q) − u(q†)‖α1,Ω ∀ q ∈ K. (3.11)

The rest of this section is devoted to verifying the source condition (3.11) rigorously. Before
this verification, we first introduce some auxiliary tools. Assume that A := −Δ with domain
D(A) = H1

0(Ω) ∩ H2(Ω). It is well-known that the operator A : D(A) ⊂ L2(Ω) → L2(Ω) is
densely defined, closed, self-adjoint and m-accretive. Then, in view of the compactness of the
embedding D(A) ⊂ L2(Ω), we infer that there exists a complete orthonormal basis {en}∞n=1 ⊂
L2(Ω) such that

(Au, u)L2(Ω) =

∞∑
n=1

λn|(u, en)L2(Ω)|2 ∀ u ∈ D(A), (3.12)

where λn are the eigenvalues of A satisfying 0 < λ1 � λ2 � · · · , limn→∞λn = +∞, and for
any n, en is the eigenfunction of A for the eigenvalue of λn, i.e. Aen = λnen. For every θ ∈ R,
the fractional power Aθ of A can be defined as

Aθu :=
∞∑

n=1

λθ
n(u, en)L2(Ω)en ∀ u ∈ D(Aθ), (3.13)

where the domain D(Aθ) is given by

D(Aθ) =

{
u ∈ L2(Ω)|

∞∑
n=1

λ2θ
n |(u, en)L2(Ω)|2 < ∞

}
. (3.14)

Moreover, Aθ : D(Aθ) ⊂ L2(Ω) → L2(Ω) is also self-adjoint, and D(Aθ) is a Banach space
equipped with the norm

‖u‖D(Aθ) := ‖Aθu‖0,Ω =

( ∞∑
n=1

λ2θ
n |(u, en)L2(Ω)|2

)1/2

∀u ∈ D(Aθ), (3.15)

which is also equivalent to the corresponding graph norm of (Aθ, D(Aθ)) (for more details, we
refer to [31]). Let us mention that for all θ ∈ [0, 1/4)

⋃
(1/4, 3/4), it holds that [24]

D(Aθ) = H2θ
0 (Ω). (3.16)

Remark 3.5. For completeness, we provide a proof of (3.16) and explain why it is not true
for θ = 1/4.

Following the results [32, theorems 1.40 and 16.12], we have

D(Aθ) = [L2(Ω), D(A)]θ =

{
H2θ

0 (Ω)(= H2θ(Ω)) θ ∈ (0, 1/4),

{H2θ(Ω)|γu = 0} θ ∈ (1/4, 3/4),

(3.17)

8
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where γ : H2θ(Ω) → H2θ−1/2(∂Ω) is the trace. On the other hand, the combination of theo-
rems 1.4.5.2 and 1.5.1.2. in [19] ensures that

{H2θ(Ω)|γu = 0} = H2θ
0 (Ω) (3.18)

for any 1/4 < θ < 3/4. Then, the relation (3.16) follows from (3.17) and (3.18).
Next, we show that if θ = 1/4, the relation (3.16) is not true. From the first identity in (3.17),

we have

D(A1/4) = [L2(Ω), D(A)]1/4.

Then using the reiteration property of complex interpolation (see theorem 4.6.1. in [4]) and the
identity (3.16) when θ = 1/2, it follows that

D(A1/4) = [L2(Ω), D(A)]1/4 = [L2(Ω), D(A1/2)]1/2 = [L2(Ω), H1
0(Ω)]1/2.

However, it is known that if Ω is smooth, then one has

[L2(Ω), H1
0(Ω)]1/2 = H1/4

00 (Ω),

and the Hilbert space H1/4
00 (Ω) is strictly contained in H1/4

0 (Ω) with strictly finer topology (see.
e.g. [24, theorem 11.4, chapter 1] for more details).

We are now ready to verify the variational source condition (3.11).

Theorem 3.3. Assume |u(q†)| � c0 a.e. in Ω and q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2,

then VSC (3.11) holds with some positive parameter α such that

⎧⎪⎨
⎪⎩
α = 1 if κ > 1,

α <
2κ

1 + κ
(α can be chosen arbitrarily close to

2κ
1 + κ

) if κ ∈
(

0,
1
2

)
∪
(

1
2

, 1

]
.

Proof. Firstly, it is immediate to see that (3.11) holds if q† − q∗ = 0. In the sequel, we shall
consider the case when q† − q∗ �= 0.

Now if q† − q∗ �= 0 and κ > 1, then by making use of theorem 3.2, we have

|(q† − q∗, q† − q)Ω| � ‖q† − q∗‖Hκ
0 (Ω)‖q† − q‖H−κ(Ω)

� C‖q† − q∗‖Hκ
0 (Ω)‖u(q†) − u(q)‖1,Ω � C‖u(q†) − u(q)‖1,Ω,

which verifies (3.11) with α = 1.
Next, we consider the case with κ ∈

(
0, 1

2

)
∪ ( 1

2 , 1]. For each λ > 0, we define a family of
orthogonal projections

Pλu :=
∑
λn<λ

(u, en)Ωen.

And if λ < λ1, we set Pλ = 0. Then the Young’s inequality yields

9
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|((I − Pλ)(q† − q∗), q† − q)Ω| � ‖q† − q‖0,Ω‖(I − Pλ)(q† − q∗)‖0,Ω

� ‖q† − q‖2
0,Ω

4
+ ‖(I − Pλ)(q† − q∗)‖2

0,Ω.

(3.19)

As q† − q∗ ∈ Hκ
0 (Ω), we have from (3.16) that q† − q∗ ∈ D(Aκ/2). Hence, by the definition of

Pλ, it is ready to see that

‖(I − Pλ)(q† − q∗)‖2
0,Ω =

∑
λn�λ

|(q† − q∗, en)Ω|2

�

∑
n�1

λκ
n |(q† − q∗, en)|2

λκ
=

‖q† − q∗) ‖2
D(Aκ/2)

λκ
. (3.20)

On the other hand, let us fix s ∈
(
1, 3

2

)
, then it follows from theorem 3.2 that

|(Pλ(q† − q∗), q† − q)Ω| � ‖
(
Pλ(q† − q∗)‖

Hs
0(Ω)

‖q† − q‖H−s(Ω)

� C‖
(
Pλ(q† − q∗)‖

Hs
0(Ω)

‖u(q†) − u(q)‖1,Ω. (3.21)

We then estimate ‖
(
Pλ(q† − q∗) ‖Hs

0(Ω). Indeed, by (3.16) one has

‖
(
Pλ(q† − q∗) ‖2

Hs
0(Ω)

� C‖
(
Pλ(q† − q∗) ‖2

D(A
s
2 )

=
∑
λn<λ

λs
n|(q† − q∗, en)|2

=
∑
λn<λ

λs−κ
n · λκ

n |(q† − q∗, en)|2 � λs−κ‖q† − q∗‖2
D(Aκ/2)

,

which, together with (3.21), implies

|(Pλ(q† − q∗), q† − q)Ω| � Cλ
s−κ

2 ‖q† − q∗‖D(Aκ/2)‖u(q†) − u(q)‖1,Ω. (3.22)

Combining (3.19) and (3.20) with (3.22), we have

(q† − q∗, q† − q)Ω (3.23)

� ‖q† − q‖2

4
+ CAinf

λ>0

(
A
λκ

+ λ
s−κ

2 ‖u(q†) − u(q)‖1,Ω

)
∀ q ∈ K,

where A = ‖(q† − q∗)‖D(Aκ/2). Since ‖u(q†) − u(q)‖1,Ω �= 0 when q �= q† by theorem 3.2, we
can choose λ > 0 such that

A
λκ

= λ
s−κ

2 ‖u(q†) − u(q)‖1,Ω,

10
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i.e. λ
s+κ

2 = A
‖u(q†)−u(q)‖1,Ω

in (3.23), and deduce that

(q† − q∗, q† − q)Ω � ‖q† − q‖2

4
+ 2CAA

s−κ
s+κ ‖u(q†) − u(q)‖ 2κ

s+κ ∀ q ∈ K.

(3.24)

On the other hand, if q = q†, (3.24) still holds. Since s > 1 � k > 0, then we have AA
s−κ
s+κ � C

and 2κ
s+κ

< 2κ
1+κ

, which completes the proof.
�

We end this section by establishing the following main results about the convergence
rates.

Theorem 3.4. Assume |u(q†)| � c0 a.e. in Ω and q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2,

and α is the parameter chosen as in theorem 3.3, then we have the following convergence
rates:

‖∇u(qδ
β) −∇u(q†)‖0,Ω = O(δ), (3.25)

‖qδ
β − q†‖0,Ω = O(δ

α
2 ), (3.26)

under the parameter choice β = O(δ2−α).

Proof. By the definition of qδ
β in (3.2) and using (3.1), we have

1
2
‖∇u(qδ

β) −∇zδ‖2
0,Ω +

β

2
‖qδ

β − q∗‖2
0,Ω �1

2
‖∇u(q†) −∇zδ‖2

0,Ω +
β

2
‖q† − q∗‖2

0,Ω

�1
2
δ2 +

β

2
‖q† − q∗‖2

0,Ω, (3.27)

which implies

1
2
‖qδ

β − q∗‖2
0,Ω − 1

2
‖q† − q∗‖2

0,Ω � δ2

2β
− 1

2β
‖∇u(qδ

β) −∇zδ‖2
0,Ω � δ2

2β
.

(3.28)

Using (3.10), (3.28) and triangle inequality, we have

0 �1
2
‖qδ

β − q∗‖2
0,Ω − 1

2
‖q† − q∗‖2

0,Ω + C‖u(qδ
β) − u(q†)‖α1,Ω

� 1
2β

(
δ2 − ‖∇u(qδ

β) −∇zδ‖2
0,Ω

)
+ C‖u(qδ

β) − u(q†)‖α1,Ω

� 1
2β

(
2δ2 − 1

2
‖∇u(qδ

β) −∇u(q†)‖2
0,Ω

)
+ C‖u(qδ

β) − u(q†)‖α1,Ω. (3.29)

As u(qδ
β) − u(q†) ∈ H1

0(Ω), then by the Poincáre’s inequality, we have

‖u(qδ
β) − u(q†)‖1,Ω � C‖∇u(qδ

β) −∇u(q†)‖0,Ω,

11



Inverse Problems 36 (2020) 075001 D-H Chen et al

which together with (3.29) implies that

‖∇u(qδ
β) −∇u(q†)‖2

0,Ω � 4δ2 + Cβ‖∇u(qδ
β) −∇u(q†)‖α0,Ω. (3.30)

Now if ‖∇u(qδ
β) −∇u(q†)‖0,Ω < δ, then we readily have the convergence rate (3.25).

Otherwise, if ‖∇u(qδ
β) −∇u(q†)‖0,Ω � δ, one has (noting that α � 1)

‖∇u(qδ
β) −∇u(q†)‖α0,Ω � ‖∇u(qδ

β) −∇u(q†)‖0,Ωδ
α−1.

Taking the above inequality into (3.30) and choosing β = O(δ2−α), we get

‖∇u(qδ
β) −∇u(q†)‖2

0,Ω � 4δ2 + Cδ2−α‖∇u(qδ
β) −∇u(q†)‖0,Ωδ

α−1

= 4δ2 + Cδ‖∇u(qδ
β) −∇u(q†)‖0,Ω

� (4 + C)δ‖∇u(qδ
β) −∇u(q†)‖0,Ω,

which implies (3.25).
Finally, using (3.10), (3.28) and Poincáre’s inequality, we obtain

1
4
‖qδ

β − q†‖2
0,Ω � 1

2
‖qδ

β − q∗‖2
0,Ω − 1

2
‖q† − q∗‖2

0,Ω + C‖u(qδ
β) − u(q†)‖α1,Ω

� δ2

2β
+ C‖∇u(qδ

β) −∇u(q†)‖α0,Ω.

Then choosing β = O(δ2−α) and using (3.25), we obtain

1
4
‖qδ

β − q†‖2
0,Ω � δ2

2Cδ2−α
+ Cδα � Cδα,

which verifies (3.26). �

Remark 3.6. Recalling the results about the convergence rate in theorem 3.4 of [20], it was

assumed that q†−q∗

u(q†)
∈ H1(Ω) for the convergence rate ‖qδ

β − q†‖0,Ω = O(
√
δ). In order to verify

the source condition in [20], the rediativity q† needs to be known on the whole boundary. It
is well-known that Hκ

0 (Ω) = Hκ(Ω) for κ ∈ (0, 1/2) (see, e.g. [32, theorem 1.40]). Therefore,
we do not need to assume any priori knowledge of q† on the boundary, but only that q† − q∗ ∈
Hκ(Ω) for κ ∈ (0, 1/2).

For the case with κ > 1/2, if the boundary knowledge of q† is unknown, i.e. q† − q∗ ∈
Hκ(Ω), we have q† − q∗ ∈ Hs(Ω) = Hs

0(Ω) for any s ∈ (0, 1/2). Hence, from theorem 3.4, we
can still obtain the convergence rate ‖qδ

β − q†‖0,Ω = O(δ
γ
2 ) for any γ < 2s

1+s <
2
3 . Moreover,

if the boundary knowledge of q† is given, i.e. q† − q∗ ∈ Hκ
0 (Ω), then the higher convergence

rate (3.26) can be achieved.

Remark 3.7. We like to mention two existing related results in the literature.
(a) Convergence rates were estimated in [9] under some conditional stability. But in order
to apply the convergence results there, we need to prove the conditional stability estimates
between any two element q1, q2 ∈ K, which we do not know if it is true. Instead, our conditional
stability estimate is required only between the true parameter q† and any other feasible q ∈ K.

Now let us assume that we can establish the stability estimate

‖q1 − q2‖−1−ε,Ω � C‖∇u(q1) −∇u(q2)‖0,Ω ∀ q1, q2 ∈ K,

12
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and let qδ
β ∈ K be chosen such that

F(qδ
β) � inf

q∈K
F(q) + C0δ

2

where C0 > 0 is a constant and F(q) :=‖∇u(q1) −∇u(q2)‖2
0,Ω + β‖q‖2

0,Ω. By choosing β ∼
δ2 as δ → 0, we can then get the following convergence rate from [9]:

‖qδ
β − q†‖−1−ε,Ω = O(δ) as δ → 0.

But we can not derive the convergence in L2-norm as in our results.
(b) We may also consider the following a posteriori parameter choice strategy. For the pre-
scribed τ 1, τ 2 with 1 � τ 1 � τ 2, the Morozov discrepancy principle suggests to choose the
regularization parameter β∗ = βSDP such that qδ

βSDP
satisfies

τ1δ � ‖∇u(qδ
βSDP

) −∇uδ‖0,Ω � τ2δ. (3.31)

Then, we can infer from [29, theorem 4.13] the following convergence rate

‖qδ
βSDP

− q†‖0,Ω = O(δ
α
2 ) as δ → 0+.

Corollary 3.1. Under the hypothesises and settings of theorem 3.4, we have the convergence
rate for 2 � p < +∞,

‖qδ
β − q†‖Lp(Ω) = O(δ

α
p ), (3.32)

under the parameter choice β = O(δ2−α).

Proof. Since ‖qδ
β − q†‖L∞(Ω) � 2q̄ for all qδ

β ∈ K, we can obtain by Hölder’s inequality that
for any 2 � p < +∞,

‖qδ
β − q†‖Lp(Ω) � (2q̄)

p−2
p ‖qδ

β − q†‖
2
p

L2(Ω)
,

which, together with theorem 3.4, completes the proof. �

3.2. Measurement data in L2-norm

In this subsection, we aim at recovering q(x) from the L2-noisy data of u(q†). We assume that
the measurable data zδ of u(q) is available with a noise level δ, namely

‖u(q†) − zδ‖0,Ω � δ, (3.33)

where q† is the true physical radiativity. The elliptic inverse radiativity problem is transformed
into an effective and stable minimisation system with Tikhonov regularization:

min
q∈K

Jδ,β(q) = min
q∈K

(
1
2
‖u(q) − zδ‖2

0,Ω +
β

2
‖q − q∗‖2

0,Ω

)
, (3.34)

where β > 0 is the regularization parameter and q∗ is an a priori estimate of the true solution.
We shall denote by qδ

β the minimizer of (3.34). To study the convergence rate of qδ
β , we first

present some Hölder-type stability estimate for the elliptic inverse radiativity problem.

Theorem 3.5. Assume |u(q†)| � c0 a.e. in Ω, then for fixed ε ∈
(
0, 1

2

)
, we have

‖q − q†‖H−1−ε(Ω) � C‖u(q) − u(q†)‖
1
2
0,Ω ∀q ∈ K. (3.35)

13
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Proof. From theorem 3.2 and the well-known interpolation inequality (see [1, theorem 5.2])

‖u‖1,Ω � C‖u‖
1
2
2,Ω‖u‖

1
2
0,Ω ∀ u ∈ H2(Ω), (3.36)

it suffices to show that

‖u(q) − u(q†)‖2,Ω � C ∀q ∈ K. (3.37)

In view of (3.4), we know that

−∇ · (a(x)∇(u(q†) − u(q))) + q(u(q†) − u(q)) = u(q†)(q − q†).

Then by lemma 2.2, we have

‖u(q†) − u(q)‖2,Ω � C‖u(q†)(q − q†)‖0,Ω � 2Cq‖u(q†)‖0,Ω, (3.38)

which yields (3.37). �
Then we can prove the following analogue of theorem 3.3, whose proof is basically the

same except that we use the results in theorem 3.5 here instead of theorem 3.2.

Theorem 3.6. Assume |u(q†)| � c0 a.e. in Ω and q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2,

then the following VSC holds for some constant C > 0,

1
4
‖q − q†‖2

0,Ω � 1
2
‖q − q∗‖2

0,Ω − 1
2
‖q† − q∗‖2

0,Ω + C‖u(q) − u(q†)‖α0,Ω ∀ q ∈ K,

(3.39)

where the parameter α behaves as follows:⎧⎪⎨
⎪⎩
α = 1/2 if κ > 1,

α <
κ

1 + κ
(α can be chosen arbitrarily close to

κ

1 + κ
) if κ ∈

(
0,

1
2

)
∪
(

1
2

, 1

]
.

With the aid of theorem 3.6, we can establish the convergence of u(qδ
β), whose proof is

basically the same as in theorem 3.4 and we only need to replace ‖u(qδ
β) − u(q†)‖1,Ω (or

‖∇u(qδ
β) −∇u(q†)‖0,Ω) with ‖u(qδ

β) − u(q†)‖0,Ω, which is valid due to (3.39).

Theorem 3.7. Assume |u(q†)| � c0 in Ω and q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2, and

α is the parameter chosen as in theorem 3.6, then we have the following convergence rates:

‖u(qδ
β) − u(q†)‖0,Ω = O(δ)

‖qδ
β − q†‖0,Ω = O(δ

α
2 ),

under the parameter choice β = O(δ2−α).

Following the same arguments used in the proof of theorems 3.4 and 3.7, we can establish
a more general result. For a general Hilbert space Y that is continuously embedded into H2(Ω),
we consider the following Tikhonov regularization:

min
q∈K

Jδ,β(q) = min
q∈K

(
1
2
‖u(q) − zδ‖2

Y +
β

2
‖q − q∗‖2

0,Ω

)
, (3.40)

14
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where the noisy data zδ ∈ Y satisfies

‖zδ − u(q†)‖Y � δ.

Then we have the following results.

Theorem 3.8. If there exist some s0 ∈ (0, 1], C > 0 and α0 � 0 such that

‖q† − q‖H−s0 (Ω) � C‖u(q†) − u(q)‖α0
Y ∀ q ∈ K (3.41)

holds, and q† − q∗ ∈ Hs0θ(Ω) for some θ ∈ (0, 1] with θs0 �= 1
2 , then the minimizer qδ

β of (3.40)

enjoys the convergence rate ‖qδ
β − q†‖0,Ω = O(δα/2) with α = α0θ under a priori parameter

choice β = O(δ2−α).

In conclusion, the space Y in (3.41) quantifies the regularity condition on the noisy measur-
able data zδ and α0 is the ‘maximal’ convergence rate when q† − q∗ ∈ Hs0

0 (Ω). If the regularity
of q† − q∗ is weaker, then the convergence rate is smaller.

4. Convergence rates of Tikhonov regularization for parabolic inverse
radiativity problem

In this section, we shall study the parabolic inverse radiativity problem proposed in section 1.
Throughout this section, we always assume that a(x) ∈ W1,∞(Ω), f(x, t) ∈ L2(0, T; L2(Ω)),
g(x, t) ∈ L2(0, T; H

3
2 (∂Ω)) ∩ H

3
4 (0, T; L2(∂Ω)) and u0 ∈ H1(Ω).

4.1. Measurement data in gradient form

We assume that the measurement data ∇zδ of ∇u(q) is available in Ω× I, with a noise level δ,
namely ∫

I
‖∇u(q†) −∇zδ‖2

0,Ωdt � δ2, (4.42)

where q† is the true physical radiativity, and I is an arbitrary open subinterval of the entire
time range (0, T]. We transform the inverse problem into the following output least-squares
formulation with Tikhonov regularization:

min
q∈K

Jδ,β(q) = min
q∈K

(
1
2

∫
I

∫
Ω

|∇u(q) −∇zδ|2dx dt +
β

2
‖q − q∗‖2

0,Ω

)
, (4.43)

where β > 0 is the regularization parameter and q∗ is an a priori estimate of the true parameter
q†.

The following theorem states the existence of the minimizers to the optimization problem
(4.43), whose proof is omitted and is very similar to the one of theorem 2.1 in [27, 28].

Theorem 4.1. There exists at least a minimizer qδ
β to the optimization problem (4.43).

We are now going to derive some Lipschitz-type stability estimate for the parabolic inverse
radiativity problem. This Lipschitz-type stability estimate is very critical in the subsequent
rigorous verification of the VSC.

Lemma 4.1. Assume |u(q†)| � c̄0 a.e. in I × Ω for some constant c̄0 > 0.
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(a) If the space dimension d = 2, then it holds for fixed ε ∈ (0, 1/2) that

‖q − q†‖H−1−ε(Ω) � C‖u(q) − u(q†)‖L2(I;H1
0 (Ω)) ∀ q ∈ K. (4.44)

(b) If the space dimension d = 3 and

∂tu(q†) ∈ L2(I; L3(Ω)), (4.45)

then (4.44) also holds for fixed ε ∈ (0, 1/2).

Proof. It is easy to see from (1.2) that

∂tu(q) − ∂tu(q†) −∇ · (a∇ · (u(q) − u(q†))) + q(u(q) − u(q†)) = u(q†)(q† − q) in I × Ω.

Multiplying both sides of the equation by an arbitrary function φ ∈ H1
0(I, L2(Ω)) ∩

L2(I; H1
0(Ω)) and integrating over I × Ω, we have

∣∣∣∣
∫

I

∫
Ω

(q† − q)u(q†)φdx dt

∣∣∣∣ �
∣∣∣∣
∫

I

∫
Ω

(u(q) − u(q†))∂tφdx dt

∣∣∣∣+
∣∣∣∣
∫

I

∫
Ω

a∇(u(q) − u(q†)) · ∇φdx dt

∣∣∣∣
+

∣∣∣∣
∫

I

∫
Ω

q(u(q) − u(q†))φdx dt

∣∣∣∣ ,

from which we obtain by the Cauchy–Schwarz inequality that∣∣∣∣
∫

I

∫
Ω

(q† − q)u(q†)φ dx dt

∣∣∣∣
� ‖u(q) − u(q†)‖L2(I;L2(Ω))‖∂tφ‖L2(I;L2(Ω)) + ‖a‖L∞(Ω)‖∇(u(q) − u(q†))‖L2(I;L2(Ω))

× ‖∇φ‖L2(I;L2(Ω)) + ‖q‖L∞(Ω)‖u(q) − u(q†)‖L2(I;L2(Ω))‖φ‖L2(I;L2(Ω)) (4.46)

� (1 + ‖a‖L∞(Ω) + ‖q‖L∞(Ω))‖u(q)− u(q†)‖L2(I;H1
0 (Ω))(‖∂tφ‖L2(I;L2(Ω)) + ‖φ‖L2(I;H1

0 (Ω))).

Further, let us fix some ϕ ∈ C∞
c (I) such that

∫
Iϕ(t)dt = 1 and set

φh := hG , with G :=
ϕ

u(q†)
(4.47)

for any h ∈ H1+ε
0 (Ω). From the hypothesis |u(q†)| � c̄0 and the fact that u(q†) ∈ L2(I; H2(Ω))

(by lemma 2.3), we can infer by Leibniz’s rule that

G ∈ L2(I; H2(Ω)) ∩ H1
0(I; L2(Ω)). (4.48)

Then using remark 3.1 and (4.48), we have

‖φh‖2

L2(I;H1
0 (Ω))

=

∫
I
‖hG‖2

H1
0(Ω)

dt � C
∫

I
‖h‖2

1+ε,Ω‖G‖2
2,Ω dt

=C‖h‖2
1+ε,Ω‖G‖2

L2(I;H2(Ω)) � C‖h‖2
1+ε,Ω. (4.49)

For the space dimension d = 2, we know that h ∈ L∞(Ω) and ‖h‖L∞(Ω) � C‖h‖1+ε,Ω for all
h ∈ H1+ε

0 (Ω) by the Sobolev embedding theorem. Therefore, we obtain
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‖∂tφh‖2
L2(I,L2(Ω)) =

∫
I
‖h∂tG‖2

L2(Ω) dt � ‖h‖2
L∞(Ω)

∫
I
‖∂tG‖2

L2(Ω) dt � C‖h‖2
1+ε,Ω.

(4.50)

For the space dimension d = 3, from the hypothesis |u(q†)| � c̄0 and (4.45), we get ∂ tG ∈
L2(I; L3(Ω)). Therefore, it holds by the Hölder inequality and the Sobolev embedding theorem
H1(Ω) � L6(Ω) that

‖∂tφh‖2
L2(I,L2(Ω)) =

∫
I
‖h∂tG‖2

L2(Ω) dt � ‖h‖2
L6(Ω)

∫
I
‖∂tG‖2

L3(Ω) dt � C‖h‖2
1+ε,Ω.

(4.51)

Taking φ = φh in (4.47) and using the estimates (4.49)–(4.51), we can conclude that for all
q ∈ K and h ∈ H1+ε

0 (Ω),∣∣∣∣
∫

I

∫
Ω

(q† − q)u(q†)φh dx dt

∣∣∣∣ =
∣∣∣∣
∫

I

∫
Ω

(q† − q)hϕ dx dt

∣∣∣∣
=

∣∣∣∣
∫
Ω

(q† − q)h dx

∣∣∣∣ � C‖u(q) − u(q†)‖L2(I;H1
0 (Ω))‖h‖1+ε,Ω, (4.52)

which implies (4.44).
�

Remark 4.1. The assumption (4.45) holds provided that the source term f(x, t), the ambi-
ent temperature g(x, t) and the initial value u0(x) are smooth enough. For example, if f(x, t) ∈
L3(I × Ω), g(x, t) ∈ W

5
3 , 5

6
3 (I × ∂Ω) and u0(x) ∈ W4/3

3 (Ω), then ∂ tu(q†) ∈ L3(I × Ω) (see [25,
chapter VI]) and hence (4.45) is true. For the definitions of the Sobolev–Slobodeckij type

spaces W
5
3 , 5

6
3 (I × ∂Ω) and W4/3

3 (Ω), we refer to [25].

Remark 4.2. We present a sufficient condition under which the true solution u(q†) fulfills
the required positiveness assumption. If f, g and u0 are nonnegative a.e. in Ω, then u(q†) is
nonnegative by theorem 1 in [23]. Hence, it follows that

∂tu(q†) −∇ · (a(x)∇u(q†)) + q̄u(q†)

� ∂tu(q†) −∇ · (a(x)∇u(q†)) + q†u(q†) = f � 0. (4.53)

Assuming that there exists some c∗ > 0 such that u0 � c∗ a.e. in Ω and g(t, x) � c∗ a.e. on
∂Ω× (0, T) and letting w := u(q†) − c∗e−q̄t, we get from (4.53) that

∂tw −∇ · (a(x)∇w) + q̄w

= ∂t(u(q†) − c∗e−q̄t) −∇ · (a(x)∇(u(q†) − c∗e−q̄t)) + q̄(u(q†) − c∗e−q̄t)

= ∂tu(q†) + q̄c∗e−q̄t −∇ · (a(x)∇u(q†)) + q̄u(q†) − q̄c∗e−q̄t

= ∂tu(q†) −∇ · (a(x)∇u(q†)) + q̄u(q†) � 0.

Since w(t, x) = g(t, x) − c∗e−q̄t � c∗ − c∗ = 0 a.e. on ∂Ω× (0, T) and w(0, x) = u0 − c∗ � 0
a.e in Ω, we can infer that w = u(q†) − c∗e−q̄t � 0 a.e. in Ω× (0, T) by theorem 1 in [23]. This
implies u(q†) � c∗e−q̄t � c∗e−q̄T a.e. in Ω× (0, T).
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Now we shall propose the following variational source condition: for any q ∈ K,

1
4
‖q − q†‖2

0,Ω � 1
2
‖q − q∗‖2

0,Ω − 1
2
‖q† − q∗‖2

0,Ω + C‖u(q) − u(q†)‖α
L2(I;H1

0 (Ω))

(4.54)

and its equivalent form

(q† − q∗, q† − q)Ω � 1
4
‖q − q†‖2

0,Ω + C‖u(q) − u(q†)‖α
L2(I;H1

0 (Ω))
, (4.55)

where the parameter α behaves as follows:

⎧⎪⎨
⎪⎩
α = 1 if κ > 1

α <
2κ

1 + κ
(α can be chosen arbitrarily close to

2κ
1 + κ

) if κ ∈
(

0,
1
2

)
∪
(

1
2

, 1

)
.

(4.56)

Following the same arguments used as in theorem 3.3 and using lemma 4.1, we can obtain
the following results.

Theorem 4.2. Assume |u(q†)| � c̄0 a.e. in I × Ω, q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2,

and in addition, (4.45) holds for the space dimension d = 3, then the VSC (4.55) holds.

With the aid of the proposed VSC (4.54), we are ready to establish the following results
about the convergence rate, whose proof follows the same techniques used in theorem 3.4.

Theorem 4.3. Assume |u(q†)| � c̄0 in I × Ω, q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2,

and in addition, (4.45) holds for the space dimension d = 3. Let α be the parameter defined in
(4.56), then the following convergences hold under the parameter choice β = O(δ2−α):

‖∇u(qδ
β) −∇u(q†)‖L2(I;L2(Ω)) = O(δ), (4.57)

‖qδ
β − q†‖0,Ω = O(δ

α
2 ). (4.58)

Similar to corollary 3.1, we can obtain the following result.

Corollary 4.1. Under the hypothesises and settings of theorem 4.3, we have the convergence
rate for 2 � p < +∞,

‖qδ
β − q†‖Lp(Ω) = O(δ

α
p ) (4.59)

under the parameter choice β = O(δ2−α).

4.2. Measurement data in L2-norm

In this subsection, we aim at recovering q(x) from the L2-noisy data of u(q†) in I × Ω. We
assume that the measurable data zδ of u(q) is available with a noise level δ, namely∫

I

∫
Ω

|u(q†) − zδ |2dx dt � δ2. (4.60)
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Let qδ
β is the minimizer of the output least-squares formulation with Tikhonov regularization:

min
q∈K

Jδ,β(q) = min
q∈K

(
1
2

∫
I

∫
Ω

|u(q) − zδ|2dx dt +
β

2
‖q − q∗‖2

0,Ω

)
, (4.61)

where β > 0 is the regularization parameter and q∗ is an a priori estimate of the true parameter
q†. Our goal is to study the convergence rate of the regularized solution qδ

β . To this end, we
follow the same procedure used in subsection 4.1 and first establish the following Hölder type
estimate for the parabolic inverse radiativity problem.

Lemma 4.2. Assume |u(q†)| � c̄0 a.e. in I × Ω for some constant c̄0 > 0.

(a) If the space dimension d = 2, then it holds for fixed ε ∈ (0, 1/2) that

‖q − q†‖H−1−ε(Ω) � C‖u(q) − u(q†)‖
1
2
L2(I;L2(Ω))

∀ q ∈ K. (4.62)

(b) If the space dimension d = 3 and (4.45) is fulfilled, then (4.62) also holds for fixed ε ∈
(0, 1/2).

Proof. From (3.36) and the Cauchy–Schwarz inequality, it follows that

‖u‖L2(I;H1(Ω)) � C‖u‖
1
2
L2(I;H2(Ω))

‖u‖
1
2
L2(I;L2(Ω))

∀ u ∈ L2(I; H2(Ω)). (4.63)

Hence, from (4.44), it suffices to show that

‖u(q) − u(q†)‖L2(I;H2(Ω)) � C. (4.64)

In view of (1.2), we know that w = u(q) − u(q†) satisfies⎧⎪⎪⎨
⎪⎪⎩
∂tw −∇ · (a(x)∇w) + q(x)w = u(q†)(q† − q) in Ω× (0, T],

w(x, 0) = 0 in Ω,

w(x, t) = 0 on ∂Ω× (0, T],

(4.65)

Then by making use of lemma 2.3, we get

‖u(q) − u(q†)‖L2(I;H2(Ω)) � C‖u(q†)(q† − q)‖L2(0,T;L2(Ω)) � 2Cq‖u(q†)‖L2(0,T;L2(Ω)),

which infers (4.64). �

We are now ready to establish the analogues of theorems 4.2 and 4.3, whose proofs are
basically the same except that we use the results in lemma 4.2 here instead of lemma 4.1.

Theorem 4.4. Assume |u(q†)| � c̄0 a.e. inΩ× I, q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2,

and in addition, (4.45) holds for the space dimension d = 3, then the following VSC holds:

1
4
‖q − q†‖2

0,Ω � 1
2
‖q − q∗‖2

0,Ω − 1
2
‖q† − q∗‖2

0,Ω + C‖u(q) − u(q†)‖αL2(I;L2(Ω)),

(4.66)

where the parameter α is specified by
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⎧⎪⎨
⎪⎩
α = 1/2 if κ > 1

α <
κ

1 + κ
(α can be chosen arbitrarily close to

κ

1 + κ
) if κ ∈

(
0,

1
2

)
∪
(

1
2

, 1

)
.

(4.67)

Theorem 4.5. Assume |u(q†)| � c̄0, q† − q∗ ∈ Hκ
0 (Ω) with κ > 0 and κ �= 1/2, and in addi-

tion, (4.45) holds for the space dimension d = 3. Let α be the parameter defined in (4.67), then
the following convergences hold under the parameter choice β = O(δ2−α):

‖u(qδ
β) − u(q†)‖L2(I;L2(Ω)) = O(δ),

‖qδ
β − q†‖0,Ω = O(δ

α
2 ).

5. Concluding remarks

We have established some important Lipschitz-type stability estimates for both the ellip-
tic and parabolic inverse radiativity problems, which are then applied to help us rigorously
verify the variational source conditions in general dimensional spaces. With these varia-
tional source conditions, reasonable convergence rates are achieved for both the elliptic
and parabolic inverse radiativity problems. The convergence results have explicitly revealed
the relation between the regularity of the radiativities and the convergence rates we may
achieve.

The analytical strategies developed in this work, especially for the Lipschitz-type stabil-
ity estimates and convergence rates, appear to be very promising for the future development
of the variational source conditions and convergence rates for other nonlinear inverse prob-
lems, including the elliptic and parabolic inverse conductivity problems, inverse acoustic and
Maxwell medium scattering problems.
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[25] Ladyženskaja O A, Solonnikov V A and Ural’ceva N N 1988 Linear and Quasi-Linear Equations

of Parabolic Type vol 23 (Providence, RI: American Mathematical Society)
[26] Jiang D J, Feng H and Zou J 2012 Convergence rates of Tikhonov regularizations for parameter

identification in a parabolic-elliptic system Inverse Problems 28 104002
[27] Li J Z and Zou J 2007 A multilevel model correction method for parameter identification Inverse

Problems 23 1759–86
[28] Keung Y L and Zou J 1998 Numerical identifications of parameters in parabolic systems Inverse

Problems 14 83–100
[29] Schuster T, Kaltenbacher B, Hofmann B and Kazimierski K S 2012 Regularization Methods in

Banach Spaces (Radon Ser. Comput. Appl. Math of vol 10) (Berlin: Walter de Gruyter)
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