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Abstract
In this work we present a novel sampling method for time harmonic inverse
medium scattering problems. It provides a simple tool to directly estimate the
shape of the unknown scatterers (inhomogeneous media), and it is applicable
even when the measured data are only available for one or two incident
directions. A mathematical derivation is provided for its validation. Two- and
three-dimensional numerical simulations are presented, which show that the
method is accurate even with a few sets of scattered field data, computationally
efficient, and very robust with respect to noises in the data.

(Some figures may appear in colour only in the online journal)

1. Introduction

The aim of this work is to numerically study a time harmonic inverse medium scattering
problem (IMSP), i.e. imaging inhomogeneous media from near-field measurements [7].
Suppose that a bounded domain � in the homogeneous background space R

d (d = 2, 3)

is occupied by some inhomogeneous media. Let uinc = eik x·d be an incident plane wave, with
the incident direction d ∈ S

d−1 and the wavenumber k. Then the total field u induced by the
inhomogeneous media satisfies the Helmholtz equation [7]

�u + k2 n2(x)u = 0. (1)

This equation is generally used to describe time harmonic acoustic wave propagation, where the
function n(x) refers to the refractive index, i.e. the ratio of the wave speed in the homogeneous
background to that in the local medium at x. We note that the Helmholtz equation (1) also
arises in the mathematical modeling of the TM (transverse magnetic) or TE (transverse
electric) modes of time harmonic electromagnetic wave propagation in electrically or
magnetically inhomogeneous media. Then physically, the function u represents the component
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of the electric field E or the magnetic field H in the direction of wave propagation; see
[16, pp 72–75] for physical motivations and the appendix for derivation details. We introduce
the function η(x) = (n2(x) − 1)k2, which combines the relative refractive index n2 − 1 with
the wavenumber k, to characterize the medium inhomogeneity. In particular, η(x) vanishes
outside the inhomogeneous media �. Denote by I the induced current, i.e. I = η u. Then, the
total field u satisfies [7]

u = uinc +
∫

�

G(x, y)I(y) dy, (2)

where G(x, y) is the fundamental solution for the open field and given by

G(x, y) =

⎧⎪⎪⎨⎪⎪⎩
i

4
H1

0 (k|x − y|), d = 2,

1

4π

e−ik|x−y|

|x − y| , d = 3,

where the function H1
0 refers to the zeroth-order Hankel function of the first kind. By

multiplying both sides of equation (2) by η, we arrive at the following second-kind integral
equation for the induced current I:

I(x) = η uinc + η

∫
�

G(x, y)I(y) dy. (3)

Let us ≡ u − uinc be the scattered field. Then, the IMSP is to retrieve the shape of the medium
scatterer � and its distribution η from noisy measurements of the scattered field us on a curve
� (d = 2) or surface � (d = 3), corresponding to one or multiple incident fields [2, 7, 10].
The reliable yet efficient extraction of such information is of great significance in analyzing
acoustic/electromagnetic wave propagation.

We shall present a novel direct sampling method to get a stable and accurate approximation
to the shape of the scatterers, or equivalently the support of the inhomogeneity coefficient
η = (n2 − 1)k2. It is based on a scattering analysis and involves only computing the inner
product of the measured scattered field us with fundamental solutions located at the sampling
points over the measurement curve/surface �. The method is strictly direct and does not use any
matrix operations, and its implementation is very straightforward. Our numerical experiments
indicate that it can provide an accurate and reliable estimate of the support of the unknown
scatterers/coefficient η, even in the presence of a fairly large amount of noises in the measured
data. Hence, it can serve as an effective yet simple computational alternative to existing tools
for locating a reliable approximate position of the unknown scatterers, which can then be used
as the initial guess in any existing method [2, 10, 17] for further refinement to get a more
accurate estimate of the scatterer support and the inhomogeneity distribution.

The proposed method uses a sampling-type technique, see [13] for an overview of related
strategies, and its flavor closely resembles multiple signal classification (MUSIC) [8, 9, 15,
11, 4] and the linear sampling method (LSM) [6, 12, 3]. The relation between MUSIC and the
LSM was addressed in [5]. Our method differs significantly from these two existing techniques.
Firstly, it requires only a few (e.g., one or two) incident waves for reconstructing the location of
scatterers/inhomogeneities, whereas the latter two require the full map (multi-static response
matrix/far-field operator). Secondly, our method does not perform any matrix operations, such
as eigenvalue decomposition or projection onto the noise space in MUSIC or solving ill-posed
linear integral equations in the LSM, and thus is computationally inexpensive. Lastly, the noise
is treated directly, and thus the method is highly tolerant to noise.
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2. New sampling method

In this section, we develop a novel direct sampling method to determine the shape of the
scatterers/inhomogeneities. The derivation is carried out for a circular curve/spherical surface
�. It uses the fundamental solution G(x, xp) associated with the Helmholtz equation in the
homogeneous background:

�G(x, xp) + k2G(x, xp) = −δ(x − xp), (4)

where δ(x − xp) refers to the Dirac delta function located at the point xp ∈ �� (the domain
enclosed by �). By multiplying both sides of (4) by the conjugate G(x, xq) of the fundamental
solution G(x, xq) and then integrating over the domain �� , we derive∫

��

(�G(x, xp) + k2G(x, xp))G(x, xq) dx = −G(xp, xq). (5)

Next we consider equation (4) with xq ∈ �� in place of xp, and take its conjugate. Then by
multiplying both sides of the resulting equation by G(x, xp) and integrating over the domain
�� , we obtain ∫

��

(�G(x, xq) + k2G(x, xq))G(x, xp) dx = −G(xp, xq). (6)

Using integration by parts for the terms involving Laplacians in (5)–(6), we readily deduce

G(xp, xq) − G(xp, xq) =
∫

�

[
G(x, xq)

∂G(x, xp)

∂n
− G(x, xp)

∂G(x, xq)

∂n

]
ds. (7)

Next we approximate the right-hand side of identity (7) by means of the Sommerfeld radiation
condition for the Helmholtz equation, i.e.

∂G(x, xp)

∂n
= ikG(x, xp) + h.o.t.

Thus, we use the following approximations:

∂G(x, xp)

∂n
≈ ikG(x, xp) and

∂G(x, xq)

∂n
≈ −ikG(x, xq),

which are valid if the points xp and xq are not close to the boundary �. Consequently, we arrive
at the following approximate relation:∫

�

{ikG(x, xp)G(x, xq) + ikG(x, xq)G(x, xp)} ds ≈ 2i�(G(xp, xq)),

i.e. ∫
�

G(x, xp)G(x, xq)ds ≈ k−1�(G(xp, xq)). (8)

Now, we consider a sampling domain �̃ that contains the scatterer support �. To motivate
the new method, we divide the domain �̃ into a set of small elements {τ j}. Then by using the
rectangular quadrature rule, we arrive at the following simple approximation from the integral
representation (2):

us(x) =
∫

�̃

G(x, y)I(y) dy ≈
∑

j

w j G(x, y j), (9)

where the point y j is in the jth element τ j, and the weight w j is given by w j = |τ j|I(y j),
with |τ j| being the volume of the element τ j. Since the induced current I vanishes identically
outside the support �, the summation in (9) is actually only over those elements intersecting
with �. We remark that the support � may consist of several separated subregions, each of

3
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which is occupied by a different physical medium. By standard elliptic regularity theory, the
induced current I = η u is smooth in each subregion of the same physical medium. Therefore,
according to classical approximation theory [14, 18], the approximation in (9) can be made
arbitrarily accurate by refining the elements {τ j}. It also works for the general refractive index
n(x) as long as it is regular in each subregion (e.g., piecewise smooth media that are frequently
encountered in applications). Nonetheless, we reiterate that relation (9) serves only the goal
of motivating our method, and will not be needed in the implementation. Physically, (9) also
admits an interesting interpretation: the scattered field us at any fixed point x ∈ � can be
regarded as a weighted average of that due to the point scatterers located at {y j} within the
true scatterer �.

Multiplying both sides of (9) by G(x, xp) for any point xp that lies in the sampling domain
�̃, then integrating over the boundary � and using (8), we obtain the following approximate
relation: ∫

�

us(x) G(x, xp) ds ≈ k−1
∑

j

w j�(G(y j, xp)). (10)

Relation (10) is valid under the premises that the point scatterers {y j} and the sampling points
{xp} are far apart from the measurement surface �, and the elements {τ j} are sufficiently
refined.

Relation (10) underlies the essential idea of our new method. We observe directly that if
a point xp is close to some physical point scatterer located at y j ∈ �, then G(y j, xp) is nearly
singular and takes a very large value; hence, it contributes significantly to the summation in
(10). Conversely, if xp is far away from all physical point scatterers, then the sum will be very
small due to the decay property of the fundamental solution G(x, y).

These facts lead us to the following index function for any point xp ∈ �̃:


(xp) = |〈us(x), G(x, xp)〉L2(�)|
‖us(x)‖L2(�)‖G(x, xp)‖L2(�)

.

In practice, if a point xp satisfies 
(xp) ≈ 1, then it is most likely within the scatterer
support � according to the preceding discussions, whereas if 
(xp) ≈ 0, then the point
xp likely lies outside the support. Compared with MUSIC and the LSM, the index 
(xp)

provides the likelihood of the point xp lying within � and hence probably also the coefficient
distribution η. The index 
 involves only evaluating the free-space fundamental solution and
its inner product with the measured data us; thus, it is computationally very inexpensive. Also,
the data noise enters the index 
 through the integration of the measured data us on the
boundary � and no unstable matrix inversion as in the LSM is required. Note that the energy
of the (random) noise is expected to be equally distributed in all Fourier modes, whereas the
fundamental solution G(x, xp) is very smooth on the curve/surface � and concentrates on
only low-frequency Fourier modes. Consequently, the high-frequency modes (i.e. noises) in
the noisy data are roughly orthogonal to G(x, xp) and contribute little to the index function

. Hence, the method should be robust with respect to the noise, which is confirmed by our
subsequent numerical experiments.

3. Numerical experiments

We shall present several examples to illustrate the accuracy of our method for determining
the scatterers from both exact and noisy data. We denote the wavelength by λ = 1, and
the wavenumber k is 2π . In 2D examples, unless otherwise specified, one incident direction

4
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(a) (b) (c)

Figure 1. Numerical results for example 1: (a) true scatterer, (b) reconstruction for exact data and
(c) reconstruction for noisy data with ε = 20%.

d = 1
2 (1, 1)T is employed, and the scattered field us is measured at 30 points uniformly

distributed on a circle of radius 5λ. The noisy data us
δ are generated pointwise by the formula

us
δ (x) = us(x) + εζ max

x
|us(x)|,

where ε refers to the relative noise level, and both real and imaginary parts of the noise ζ

follow the standard normal distribution. The index 
 is normalized so that its maximum value
is 1. The sampling domain �̃ is fixed at [−2λ, 2λ]2, which is divided into small squares of
equal width h = 0.01λ. The index 
 as an estimate to the coefficient η will be displayed.

The first example shows the method for one single point scatterer, which provides some
insights into the mechanism of the index 
.

Example 1. The example considers one square scatterer of width 0.02λ located at the origin.
The coefficient η of the scatterer is 1.

The numerical results are shown in figure 1. We observe that for sampling points close
to the physical scatterer at the origin, the index 
 is relatively large; otherwise, it takes
relatively small values. Hence, it does provide an accurate and reliable indicator for the
location of the scatterer. The presence of ε = 20% noise in the measured data only marginally
affects the shape of the index 
, concurring with the intuitive explanations in section 2.
Therefore, the method is very robust to noises.

The second example illustrates the method for two separate scatterers.

Example 2. We consider two square scatterers of side length 0.3λ. The coefficient η in both
regions is 1. The following two cases are investigated.

(a) The two scatterers are located at (−0.8λ,−0.7λ) and (0.3λ, 0.8λ), respectively.
(b) The two scatterers are located at (−0.25λ, 0) and (0.25λ, 0), respectively.

The two scatterers in example 2(a) are well apart from each other. The recovery of the
locations of the scatterers is quite satisfactory, noting the fact that we have just used one
incident field; see figure 2, where two distinct scatterers are observed for both exact data and
the data with ε = 20% noise.

The two scatterers in example 2(b) stay very close to each other, less than one half of
the wavelength (λ/2) in distance, which is known to be rather challenging for numerical
reconstruction. Nonetheless, the estimate of the location of the scatterers (cf figure 3) is still
very impressive, especially by noting the fact that only one incident field was employed. In
particular, the method allows us to distinguish two scatterers of the distance less than λ/2,
the physical resolution limit. However, the origin of such a reconstruction strength remains
elusive. Furthermore, the two scatterers are still well separated, with their locations correctly

5
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(a) (b) (c)

Figure 2. Numerical results for example 2(a): (a) true scatterer, (b) reconstruction for exact data
and (c) reconstruction for noisy data with ε = 20%.

(a) (b) (c)

(d) (e) (f)

Figure 3. Numerical results for example 2(b): (a) true scatterer, (b) reconstruction for exact data
and (c)–(f) reconstructions for noisy data with ε = 10%–40%, respectively.

estimated, for up to ε = 30% noise in the data. In the case of very high noise levels, e.g.,
ε = 40%, the estimate tends to connect the supports of the two separate scatterers, and also
some spurious modes have emerged in the estimate.

Compared with the case of one point scatterer in example 1, the size of the estimated
scatterer support here also agrees well with that of the true one. This is attributed to
collective contributions of neighboring pixels, thereby further illuminating the mechanism of
the method. However, due to the ill-posed nature of the IMSP and the oscillating behavior of
the fundamental solution, the estimate is not free from small spurious oscillations, although the
overall profile stands out clearly. This observation is also valid for other examples. In practice,
one may use the estimate from the index 
 as an initial guess for other more expensive but
more accurate methods, e.g., the regularized least-squares, Gauss–Newton method or contrast
source inversion [2, 10, 17], to achieve an enhanced resolution.

Next we consider a ring-shaped scatterer.

Example 3. The scatterer is one ring-shaped square located at the origin, with the outer and
inner side lengths being 0.6λ and 0.4λ, respectively. The coefficient η of the scatterer is 1.
Two incident directions d1 = 1√

2
(1, 1)T and d2 = 1√

2
(1,−1)T are considered.

6
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(a) (b) (c) (d)

Figure 4. Numerical results for example 3: (a) true scatterer; (b), (c) and (d), reconstructions
respectively for the incident direction d1 = 1√

2
(1, 1)T and d2 = 1√

2
(1, −1)T, and both directions

d1 and d2. The first and second rows are respectively for the exact data and noisy data with
ε = 20%.

The ring-shaped scatterer represents one of the most challenging objects to resolve, and
it is highly nontrivial even with multiple data sets, especially noting the fact that the ring
has a very small thickness. It is observed from panels (b) and (c) of figure 4 that one single
incident wave is insufficient to recover the ring structure, and only some parts of the ring can
be resolved, depending on the incident direction d. Hence, we add one more incident wave to
yield sufficient information. In order to fully utilize multiple data sets, we extend the index
function 
 as follows:


(xp) = max
i

{
i(xp)} ∀xp ∈ �̃,

where 
i refers to the index function for the ith data set. The results with the exact and
ε = 20% noise in the data are shown in panel (d) of figure 4. It is observed that with just two
incident waves, the method can provide a quite reasonable estimate of the ring shape. The
estimate remains very stable for up to ε = 20% noise in the data.

The last example shows the feasibility of the method for three-dimensional problems.

Example 4. We consider two cubic scatterers of width 2
5λ centered at

(
2
5λ, 3

10λ, 3
10λ

)
and(− 2

5λ, 3
10λ, 3

10λ
)
, respectively. One single incident field with direction d = 1√

3
(1, 1, 1)T is

used, and the coefficient η of the scatterers is taken to be 1. The scattered field us is measured
at 600 points uniformly distributed on the surface � of a cube of width 5λ.

This example is challenging since the distance between two scatterers is 2
5λ and is very

close. For the simulation, we take the sampling domain �̃ for evaluating the index 
 to be[− 3
2λ, 3

2λ
]3

. The problem is discretized with a mesh size 1
10λ. The numerical results are shown

in figure 5, where each row represents a cross-sectional image along the second coordinate
axis x2. We observe that the support estimated by the index 
 agrees excellently with the
exact one, and away from the boundary of the true scatterers, the magnitude of 
 decreases
quickly. The presence of ε = 20% data noise seems to cause no obvious deterioration of the
accuracy of the index 
 as compared to that for exact data. Lastly, we would like to point out
that the measurement surface � here is not spherical as was utilized in the derivation of the
index function 
. Hence, the method is applicable to general geometries.

7
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(a) (b) (c)

Figure 5. Numerical results for example 4: (a) true scatterer, (b) reconstruction for exact data and
(c) reconstruction for noisy data with ε = 20%. From top to bottom are cross-sectional images for
x2 = 0, 1

10 λ, 2
10 λ, . . . , 6

10 λ.
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4. Conclusions

We have presented a novel direct sampling method for inverse medium scattering problems,
applicable even to few scattered field data. It involves computing only the inner product
of the scattered field with fundamental solutions located at sampling points and hence it is
strictly direct. Numerically, it does not require any matrix operations like solving ill-posed
integral equations or performing eigenvalue decompositions as most existing techniques do.
The experimental results indicate that it can provide an accurate estimate of the scatterer
support from the measured data corresponding to only one or two incident directions, and it is
also very robust to data noise.

In this preliminary study, we have focused on the direct sampling method. It is
natural to use the estimate obtained from the method as an initial guess for other existing
methods, e.g., the Tikhonov regularization, Gauss–Newton method or contrast source inversion
[2, 10, 17], which are more expensive yet more accurate, so as to obtain images with
an enhanced resolution. We would also like to mention that the method might also be
applied to other interesting scattering scenarios, e.g., scattering from lines (cracks), far-field
measurements and multiple frequencies, which can often provide additional information on
the scattering medium. These extensions and their mathematical analysis are ongoing.
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Appendix A. Deriving the models for TM and TE modes

In this appendix, we show that the Helmholtz equation (1) arises also in the TM and TE modes
in time harmonic electromagnetic wave propagation. Recall that, in the absence of interior
sources, the Maxwell system for time harmonic waves reads [1, p 57;7]⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl H = (−iωε + σ )E,

curl E = iωμH,

div(εE) = 0,

div(μH) = 0,

(A.1)

where the vector fields H and E denote the magnetic and electric fields, respectively, the
constant ω is the angular frequency, and the functions ε, σ and μ refer to electrical permittivity,
electrical conductivity and magnetic permeability of the medium, respectively.

A.1. TM waves

For the TM mode, we set H = (Hx(x, y), Hy(x, y), 0)T and E = (0, 0, Ez(x, y))T. Then the
Maxwell system (A.1) reduces to

curl H̃ = (−iωε + σ )Ez, curl Ez = iωμH̃, div(μH̃) = 0,

with H̃ = (Hx(x, y), Hy(x, y))T. By eliminating H̃, we arrive at

curl(μ−1curl Ez) − (ω2ε + iωσ )Ez = 0.

9
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Suppose that the medium is nonmagnetic, i.e. μ = μ0, the constant in the background medium.
Then we have div H̃ = 0 and curl2 = −�, which imply

�Ez + (ω2εμ0 + iωσμ0)Ez = 0.

Let k = ω/c0, c0 = 1√
ε0μ0

and c = 1√
εμ0

, where ε0 is the electric permittivity in the background

medium, then we get ω2εμ0 = k2c2
0

/
c2. Hence, in the case of σ = 0, the desired model (1)

follows directly by setting n = c0/c. Since the electrical permittivity ε can be spatially varying,
the model can appropriately describe electrically inhomogeneous media. Generally, one may
take a complex-valued refraction index n to accommodate the presence of (possibly also
spatially varying) conductivity σ .

A.2. TE waves

For the TE mode, we set E = (Ex(x, y), Ey(x, y), 0)T and H = (0, 0, Hz(x, y))T. Then the
Maxwell system (A.1) reduces to

curl Hz = (−iωε + σ )Ẽ, curl Ẽ = iωμHz, div(εẼ) = 0,

with Ẽ = (Ex(x, y), Ey(x, y))T. By eliminating Ẽ, we arrive at

curl((−iωε + σ )−1 curl Hz) − iωμHz = 0.

Suppose ε = ε0 and σ = σ0, the permittivity and conductivity of the background medium,
from which it follows that div Ẽ = 0 holds. Consequently, the component Hz satisfies

�Hz + (ω2ε0μ + iωσ0μ)Hz = 0.

By letting k2 = ω2ε0μ0, c0 = 1√
ε0μ0

and c = 1√
ε0μ

, where μ0 is the permeability of the

background medium, we get ω2ε0μ = k2c2
0

/
c2. Hence, in the case of σ0 = 0, the desired

model (1) follows immediately by setting n = c0/c, and it models magnetically inhomogeneous
media since the permeability μ is spatially dependent.
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