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Abstract
This paper addresses the uniqueness for an inverse acoustic obstacle scattering
problem. It is proved that a general sound-hard polyhedral scatterer in
R

N(N � 2), possibly consisting of finitely many solid polyhedra and subsets
of (N − 1)-dimensional hyperplanes, is uniquely determined by N far-field
measurements corresponding to N incident plane waves given by a fixed wave
number and N linearly independent incident directions. A simple proof, which
is quite different from that in Alessandrini and Rondi (2005 Proc. Am. Math.
Soc. 6 1685–91), is also provided for the unique determination of a general
sound-soft polyhedral scatterer by a single incoming wave.

1. Introduction

In this paper, we are interested in an inverse acoustic scattering problem by an impenetrable
obstacle D. To describe the scattering system, we shall use ui, us and u to represent the
incident, scattered and total field, respectively, where u = ui + us , and ui(x) = exp{jkx · d}
with j = √−1, d ∈ S

N−1 being the incident direction and k > 0 being the wave number.
Then, the direct scattering problem is described by the following Helmholtz equation:

�u + k2u = 0 in G = R
N\D. (1)

The Helmholtz equation (1) is complemented by the Sommerfeld radiation condition

lim
r→∞ r(N−1)/2

(
∂us

∂r
− jkus

)
= 0, (2)

with r = |x| for x ∈ R
N and either of the following boundary conditions:

u = 0 on ∂G (the sound-soft obstacle), (3)
∂u

∂ν
= 0 on ∂G (the sound-hard obstacle), (4)

where ν is the unit normal to ∂G pointing to the interior of G.
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Throughout, we assume that the obstacle D is a general compact set in R
N(N � 2) with

an open connected complement G = R
N\D.

It is known (cf [9]) that there exists a unique solution u = u(D; k, d) ∈ H 1
loc(G) to (1)–(3)

or (1), (2) and (4) if ∂G is Lipschitz continuous, and u is analytic on any compact set in G. The
Sommerfeld radiation condition (2) characterizes the outgoing wave and enables us to have
the following asymptotic behaviour for the scattered wave us :

us(x) = ejk|x|

|x|(N−1)/2

{
u∞(x̂) + O

(
1

|x|
)}

as |x| → ∞, (5)

where x̂ = x
|x| ∈ S

N−1 and u∞(x̂) is defined on the unit sphere S
N−1, known as the far-field

pattern (cf [2]). We shall also write u∞(x̂;D, k, d) to specify its dependence on the obstacle
D, the wave number k and the incident direction d.

Now the inverse acoustic obstacle scattering problem (IAOSP) is to determine ∂G from
the far-field pattern u∞(x̂;D, k, d) which can be observed. We remark that, due to the
analyticity of the solution to the Helmholtz equation, if the far-field pattern is available in a
surface element of the unit sphere S

N−1, then it is also known in the whole unit sphere by the
unique continuation. An important theoretical issue in IAOSP is the uniqueness, i.e., is the
correspondence between u∞(x̂;D, k, d) and D one to one? This uniqueness is also closely
related to finding effective reconstruction algorithms in practical applications.

This paper shall consider the uniqueness issue for the IAOSP with polyhedral scatterers.
Let us first follow [1] to exactly describe the terminology polyhedral scatterer. An obstacle D
is said to be a polyhedral scatterer if it is a compact subset of R

N with connected complement
G = R

N\D, and the boundary of G is composed of a finite union of cells. A cell, as defined
in [1], is the closure of an open subset of an (N − 1)-dimensional hyperplane. Based on this
definition, we can write a two-dimensional polyhedral scatterer D as

D =
(

m⋃
i=1

Si

)
∪

(
n⋃

l=1

Ll

)
,

where each Si is a polygon (screen) and each Ll is a line segment (crack), and write a
three-dimensional polyhedral scatterer D as

D =
(

m⋃
i=1

Pi

)
∪

(
n⋃

l=1

Sl

)
,

where each Pi is a polyhedron (real body) and each Sl is a cell (screen). We emphasize that
a cell need not be an (N − 1)-dimensional polyhedron. Clearly, such a polyhedral scatterer
is very general and it admits the simultaneous presence of finitely many solid- and crack-type
obstacles. A very important and sharp result about the uniqueness for such general sound-soft
polyhedral scatterers was obtained recently in [1], where it was proved that a single far-
field measurement of one single incident plane wave with a fixed wave number and incident
direction is sufficient for the unique determination of such a scatterer D. The proof in [1] is
based on the study of the structure of the nodal set Nu (see definition 2.3 in [1]) of u in the
interior of G. A key step is to construct a so-called ‘hidden path’ which connects a point on
∂D to infinity, avoiding the critical points of Nu but intersecting Nu orthogonally. However,
such construction heavily depends on ordering all the nodal domains, i.e., the connected
components of the open set G\Nu, in a special desired manner. But to our regret, there seems
to be a gap in the proof of such an ordering. More accurately speaking, the induction argument
of [1] (see the proof of proposition 3.2 in [1]) does not necessarily go through all the nodal
domains, but only a countable subset of them. This is one of the barriers for the extension of
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the method in [1] to our current sound-hard case. In fact, there are more difficulties caused by
the essential difference between the Dirichlet problem and the Neumann problem.

There are few results concerning the unique determination of a sound-hard obstacle with
a finite number of incident waves. The uniqueness for the simple balls with a single incident
wave was given in [10]. In [4], a uniqueness result for a two-dimensional sound-hard polygon
is presented by two incident plane waves under an extra ‘non-trapping’ condition, which was
then relaxed in [6]. A more recent important advance in the uniqueness for the sound-hard
polyhedral obstacle case was announced in [7]. It was demonstrated that a single sound-hard
two-dimensional polygon D is uniquely determined by one single incident plane wave. The
proof in [7] was based on the investigation of behaviours of the Neumann hyperplanes of the
solution u (see definition 1) near ∂G. It is hard to extend the proof of [7] to higher dimensions.
The main difficulty is caused by the much more complicated behaviours of the Neumann
hyperplanes near ∂G in higher dimensions, and most of the arguments for the R

2 case in [7]
seem not to work for the higher dimensions.

The focus of this paper is on the uniqueness of an inverse acoustic scattering problem for
a very general sound-hard case: the space can be any dimension larger than 1; the obstacle D
is a general polyhedral scatterer as described earlier. For example, in two dimensions, D may
contain finitely many polygons and line segments. Our main result will demonstrate that N
far-field patterns, corresponding to N incident plane waves given by a fixed wave number and
N linearly independent incident directions, uniquely determine a polyhedral scatterer D in R

N .
This seems to be the best known uniqueness result in the literature for sound-hard scatterers
of our general setting in R

N(N � 2). Our proof shall rely on the reflection principle for the
solutions to the Helmholtz equation, the same as in [1, 7]. But our arguments are carried out
in a more elementary and simple manner, and work for both sound-hard and sound-soft cases,
as well as for general dimensions and general polyhedral scatterers.

The rest of the paper is organized as follows. The next section is devoted to the sound-hard
case. In section 3, uniqueness for the sound-soft case is treated.

2. Uniqueness for the sound-hard case

We first introduce some notation and definitions for the subsequent use. Let ul(x), l =
1, 2, . . . , N , be the total fields of (1), (2) and (4) corresponding to the incident waves
exp{jkx · dl}, where {dl}Nl=1, with each dl ∈ S

N−1, are assumed to be linearly independent.
We shall write U = {u1, u2, . . . , uN } and the operations on U are always understood to be
elementwise. For example, for any ν ∈ S

N−1,

∂U
∂ν

=
{

∂u1

∂ν
,
∂u2

∂ν
, . . . ,

∂uN

∂ν

}
,

and
∂U
∂ν

= 0 on S implies
∂ul

∂ν
= 0 on S for l = 1, 2, . . . , N,

where S can be any hypersurface in G and ν is its outward normal. Throughout, we will denote
an open ball in R

N with centre x and radius r by Br(x), the closure of Br(x) by B̄r (x) and the
boundary of Br(x) by Sr(x). Based on the earlier definition of a general polyhedral scatterer
D of our interest, we can write the boundary of G = R

N\D as

∂G =
n⋃

l=1

Cl (6)

where each Cl is a cell in R
N .
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Definition 1. ZU is called a Neumann set of U in G if

ZU =
{

x ∈ G; ∂U
∂ν

∣∣∣∣
�∩Br(x)∩G

= 0 for some r > 0 and hyperplane � passing through x

}
.

We have the following useful result:

Lemma 1. For any x ∈ ZU , let � be the corresponding hyperplane involved in the definition
of ZU and �̃ be the open connected component of �\D containing x, then

∂U
∂ν

∣∣∣∣
�̃

= 0. (7)

Proof. By definition 1, we know that ∂U
∂ν

= 0 on � ∩ Br(x) ∩ G. Since U is analytic in G
(cf [2]), then ∂U

∂ν
is analytic in N − 1 variables on �\D, which clearly lies in G. Now

observing that � ∩ Br(x) ∩ G is an open set on � ∩ D, we have ∂U
∂ν

= 0 on �̃ by analytic
continuation. �

We will refer to �̃ in the above lemma as the Neumann hyperplane in what follows, and
obviously, it must be an open connected subset of a hyperplane and its boundary lies on ∂G.

Now, we derive some important properties of the Neumann set ZU .

Lemma 2. The Neumann set ZU and all Neumann hyperplanes are bounded. And ZU is
closed in the sense that for any sequence {xn}∞n=1 ⊂ ZU , which converges to a point x0 ∈ G,
we must have x0 ∈ ZU , i.e., there exists a Neumann hyperplane �̃0 passing through x0.

Proof. We first show the boundedness of ZU . Set U s(x) = U − exp{jkx · d}, with
d = {d1, d2, . . . , dN } be the scattered fields, then we have

lim
|x|→∞

|∇U s(x)| = 0, (8)

i.e., lim|x|→∞
∣∣∇us

l (x)
∣∣ = 0 (l = 1, 2, . . . , N). The limit (8) can be shown following the

proof of lemma 9 in [4]. Now we demonstrate the boundedness of ZU by contradiction. If
ZU is unbounded, then there must exist a Neumann hyperplane �̃ which connects to infinity.
To see this, we first note that D is bounded, so one can bound D by a ball BR(0) with
sufficiently large radius R. By the unboundedness of ZU , we know there must exist a point
y ∈ ZU ∩ (RN\B̄R(0)), then the corresponding Neumann hyperplane �̃y containing y must
connect to infinity. Next, using (7) and (8), we have

lim
x∈�̃:|x|→∞

|∂ν exp{jkx · d}| = 0,

where ν ∈ S
N−1 is the unit normal to �̃. Hence,

lim
x∈�̃:|x|→∞

|jk(d · ν) exp{jkx · d}| = 0.

Noting that k 	= 0, we have d · ν = 0, or equivalently,

ν · dl = 0, l = 1, 2, . . . , N.

But this is impossible since ν ∈ S
N−1 and {dl}Nl=1 are linearly independent. Therefore, ZU must

be bounded. Clearly, the above proof has also demonstrated that all Neumann hyperplanes
must be bounded.

Next, we shall show the closeness of ZU . Let {xn}∞n=1 be a sequence in ZU and x0 ∈ G,
such that limn→∞ xn = x0. Taking a sufficiently small hypercube Tr(x0) of edge length r and
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centred at x0 such that the closure of Tr(x0) lies entirely in G. Without loss of generality, we
may assume that {xn}∞n=1 ⊂ Tr(x0). Let �̃n be the Neumann hyperplane through xn such that

∂U
∂νn

∣∣∣∣
�̃n∩Tr (x0)

= 0,

where νn is the unit normal to �̃n. Let us write ν(xn) = νn, then by possibly extracting a
subsequence, we may assume that ν(xn) → ν0 as n → ∞ and write ν(x0) = ν0 ∈ S

N−1.
Let �0 be a hyperplane through x0 and have ν0 as its normal, then we can show that for
any P0 ∈ �0 ∩ Tr(x0), there exists a sequence of points {Pn}∞n=1 such that Pn ∈ �n for
each n, where �n is the hyperplane in R

N containing the Neumann hyperplane �̃n and
limn→∞ Pn = P0. To see this, let L be the straight line through P0 with direction ν0, then any
point P ∈ L is given by

P = P0 + tν0 for some t ∈ R.

Noting that the equation for the hyperplane �n is given by

(P − xn) · νn = 0 for any P ∈ �n.

Since νn → ν0 as n → ∞, we can assume that νn · ν0 	= 0 for n ∈ N. Then by straightforward
calculations, we can show that L intersects with each �n, and the intersection point is given
by

Pn = P0 + tnν0 with tn = (xn−P0)·νn

ν0·νn
, n = 1, 2, . . . .

Using the facts that

(P0 − x0) · ν0 = 0, lim
n→∞ xn = x0,

we see

lim
n→∞ tn = lim

n→∞
(xn − P0) · νn

ν0 · νn

= lim
n→∞

(xn − x0) · νn

ν0 · νn

+ lim
n→∞

(x0 − P0) · νn

ν0 · νn

= 0,

this implies

lim
n→∞ Pn = P0.

Since Pn converges to P0 ∈ �0 ∩ Tr(x0) along the ν0-direction, we may assume that for all
n, Pn ∈ Tr(x0), i.e., Pn ∈ �̃n ∩ Tr(x0). Noting that ∇U is continuous in the closure of Tr(x0),
we have

∂U
∂ν0

(P0) = ∇U(P0) · ν0 = lim
n→∞ ∇U(Pn) · νn = 0.

Thus, we have x0 ∈ ZU . The proof is completed. �

Next, we recall a fundamental property for a connected set (see theorem 3.19.9 in [5]),
which will be used in our subsequent arguments.

Lemma 3. Let E be a metric space, A ⊂ E be a subset and B ⊂ E be a connected set such
that A ∩ B 	= ∅ and (E\A) ∩ B 	= ∅, then ∂A ∩ B 	= ∅.

Now, we are ready to present our main uniqueness result for a sound-hard polyhedral
scatterer.

Theorem 1. Let dl ∈ S
N−1, l = 1, 2, . . . , N , be N linearly independent directions and k > 0

be fixed. A polyhedral scatterer D described in (6) is uniquely determined by the far-field
patterns U∞ = {u1,∞, u2,∞, . . . , uN,∞}.
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Proof. We shall prove the theorem by contradiction. First, we follow [1] and [7] to show that
if theorem 1 does not hold, then we can assume that there exists a Neumann hyperplane �̃1 in
G = R

N\D. To see this, let D′ be a polyhedral scatterer different from D and u′ be the solution
to (1), (2) and (4) when D is replaced by D′. And similarly, we write U ′ = {u′

1, u
′
2, . . . , u

′
N }

and U ′
∞ = {u′

1,∞, u′
2,∞, . . . , u′

N,∞} for the total fields and far-field patterns corresponding to
the incident waves exp{jkx · dl}, l = 1, 2, . . . , N .

If the theorem is not true, then we can assume U∞ = U ′
∞ for N given linearly independent

dl ∈ S
N−1, l = 1, 2, . . . , N , and fixed k > 0. Letting � be the unbounded connected

component of R
N\(D ∪ D′), then by theorem 2.13 [2] we infer that U = U ′ over �.

First, we can see ∂�⊂\ D ∩ D′ from the connectedness of both G and G′ = R
N\D′.

Indeed, if ∂� ⊂ D ∩ D′, then we must have � = R
N\D = R

N\D′. To see this, we first
observe that � ⊂ R

N\D and � ⊂ R
N\D′ by noting � ⊂ R

N\(D ∪ D′). On the other
hand, if there exist x ∈ R

N\D and x ′ ∈ R
N\D′ such that x ∈\ � and x ′ ∈\ �, we obtain

from lemma 3 (with A = � and B = R
N\D or B = R

N\D′) that ∂� ∩ (RN\D) 	= ∅
and ∂� ∩ (RN\D′) 	= ∅, which contradicts the assumption that ∂� ⊂ D ∩ D′, thus leading
to R

N\D ⊂ � and R
N\D′ ⊂ �. Therefore, � = R

N\D = R
N\D′, which implies

D = D′ = R
N\�. But this contradicts the fact that D and D′ are two different polyhedral

scatterers.
Using the previous conclusion that ∂�⊂\ D ∩ D′, we must have (∂G′\D) ∩ ∂� 	= ∅

or (∂G\D′) ∩ ∂� 	= ∅. Without loss of generality, we may assume the first case held and
therefore there exists a point x̃ ′ ∈ (∂G′\D) ∩ ∂�. We can also assume that x̃ ′ belongs to the
interior of one of the cells composing ∂G′, and so there exists a hyperplane �1 and r > 0
such that x̃ ′ ∈ S1 = �1 ∩ Br(x̃

′) ⊂ (∂G′\D) ∩ ∂�. Since U = U ′ in �, by noting ∂U ′
∂ν

= 0 on
S1 ⊂ ∂G′, we have ∂U

∂ν
= 0 on S1. Hence, x̃ ′ is contained in the Neumann set of U in G and

S1 is contained in a Neumann hyperplane of U in G, which we denote by �̃1.
Next, we start from this Neumann hyperplane �̃1 to build up a contradiction.
In the following, a curve γ = γ (t)(t � 0) is said to be regular if it is C1-smooth and

d
dt

γ (t) 	= 0. And the notation �l , with l being an integer, shall always represent a hyperplane
in R

N , which contains a Neumann hyperplane �̃l . Since G is an unbounded open connected
set, hence the open set G\�̃1 must contain an open connected component, denoted as G̃,
which connects to the infinity. In fact, G̃ is unique because �̃1 is bounded by lemma 2 and
G cannot be divided by �̃1 into more than one unbounded open component, otherwise ∂G is
unbounded. Thus, �̃1 lies on ∂G̃, due to the fact that every point on �̃1 is in G and so can
be connected to the infinity. Next, we fix an arbitrary point x1 ∈ �̃1. Let γ = γ (t)(t � 0) be
a regular curve such that γ (0) = x1, γ (t)(t > 0) lies entirely in G̃ and limt→∞ |γ (t)| = +∞.
Clearly, γ lies on one side of �1, that is, γ (t) ∈ �1 iff t = 0, and we set t1 = 0 (we refer
to [8, 11] for the properties of open connected set). For convenience, we choose γ (t) to be
as ‘straight’ as possible in the sense that there are as few snakelike portions as possible. For
example, we may let γ (t) be given by consecutively connected line segments in G̃ but with
C1-smooth junctions to connect two neighbouring line segments and let it be a straight line
outside a sufficiently large ball containing D.

Next, define the distance between two sets A and B in R
N as usual:

d(A,B) = inf
x∈A,y∈B

|x − y|.
Let

dl = d(γ, Cl), l = 1, 2, . . . , n, (9)

and

r0 = 1
2 min

1�l�n
dl . (10)
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Noting that γ is a closed set in R
N and {Cl}nl=1, which form ∂G, are compact sets, it can be

readily seen that dl > 0, l = 1, 2, . . . , n, are attainable. Hence, r0 > 0 and for any point
x ∈ γ (t), we have B̄r0(x) ⊂ G.

Let x̃+
2 = γ (t̃2) ∈ Sr0(x1)∩γ , and x̃−

2 ∈ Sr0(x1) be the symmetric point of x̃+
2 with respect

to �1. We remark that by lemma 3, γ must intersect Sr0(x1), but the intersection need not
necessarily be a unique point. For definiteness, we take t̃2 = max

{
t > 0; γ (t) ∈ Sr0(x1)

}
.

Now, let G+
1 be the connected component of G\�̃1 containing x̃+

2 and G−
1 be the connected

component of G\�̃1 containing x̃−
2 . It is remarked that it may happen that G+

1 = G−
1 . We

denote by R1 the reflection with respect to �1, then let E+
1 be the connected component of

G+
1 ∩R1(G

−
1 ) containing x̃+

2 and E−
1 be the connected component of G−

1 ∩R1
(
G+

1

)
containing

x̃−
2 . Observe that E+

1 = R1(E
−
1 ), and if we set E1 = E+

1 ∪ �̃1 ∪ E−
1 , then E1 contains the

closed ball B̄r0(x1). Moreover, E1 is a connected open set with the boundary composed of
subsets of the cells {Cl}nl=1 and {R1(Cl)}nl=1. One can easily verify that U(x)−R1U(x), where
R1U(x) = U(R1(x)), is a solution to the Helmholtz equation in E1 with zero Dirichlet and
Neumann data on �̃1 ∩ B̄r0(x1), therefore U(x) = R1U(x) in E1 by Holmgren’s theorem
(cf theorem 6.12 in [3]), i.e., U is even symmetric in E1 with respect to the hyperplane �1.
This indicates ∂U

∂ν1

∣∣
E1∩�1

= 0, where ν1 is the unit normal to �1. Next, we show that E1

is bounded. Clearly, we first see ∂E1, ∂G±
1 and R1

(
∂G±

1

)
are bounded by our construction.

If E1 is unbounded, then E1 would contain R
N\Br(x1) for some sufficiently large r > 0.

Then using ∂U
∂ν1

∣∣
E1∩�1

= 0 and analytic continuation, �1\Br(x1) are parts of some Neumann
hyperplanes. This contradicts lemma 2, and so E1 is bounded. Now by the unboundedness
of γ , there must exist a t2 > t̃2, such that x2 = γ (t2) ∈ ∂E1. Noting ∂E1 is composed of
subsets of the cells {Cl}nl=1 and {R1(Cl)}nl=1,U takes zero Neumann data on ∂E1 by using
the fact that R1U(x) = U(x) in E1. Thus by analytic continuation, x2 ∈ ∂E1 implies the
existence of a Neumann hyperplane passing through x2, which we denote by �̃2, and we have
x2 = γ (t2) ∈ ZU . Furthermore, we may assume that γ (t2) is the ‘last’ point on γ to intersect
�̃2, that is,

t2 = max{t > 0; γ (t) ∈ �̃2} < ∞.

The following two facts shall be crucial: �̃2 is different from �̃1, since �̃1 intersects γ only
at x1; the length of γ (t) from t1 to t2 is larger than r0, i.e.,

|γ (t1 � t � t2)| � |γ (t1 � t � t̃2)| � r0.

Next, let x̃+
3 = γ (t̃3) ∈ Sr0(x2) ∩ γ , and x̃−

3 ∈ Sr0(x2) be the symmetric point of x̃+
3 with

respect to �2, then let G+
2 be the connected component of G\�̃2 containing x̃+

3 and G−
2 be

the connected component of G\�̃2 containing x̃−
3 . Denote by R2 the reflection with respect

to �2, and let E+
2 be the connected component of G+

2 ∩ R2(G
−
2 ) containing x̃+

3 and E−
2 be the

connected component of G−
2 ∩ R2

(
G+

2

)
containing x̃−

3 . Set E2 = E+
2 ∪ �̃2 ∪ E−

2 , then we see
that E2 contains the closed ball B̄r0(x2) and its boundary is composed of subsets of the cells
{Cl}nl=1 and {R2(Cl)}nl=1. By a similar argument as used earlier for deriving x2 = γ (t2) and
�̃2, there exists a point x3 = γ (t3) (t3 > t2) and a Neumann hyperplane �̃3 passing through
x3. Again, we may assume that x3 is the ‘last’ point to pass through �3. We see that �̃3 is
different from �̃1 and �̃2, since x1 = γ (t1) and x2 = γ (t2) are, respectively, the last point to
pass through �̃1 and �̃2, and the length of γ (t) from t2 to t3 is larger than r0, i.e.,

|γ (t2 � t � t3)| � r0.

Continuing with the above procedure, we can construct a strictly increasing sequence
{tn}∞n=1 such that for any n, xn = γ (tn) ∈ ZU and �̃n is a Neumann hyperplane passing
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through xn. Moreover, those Neumann hyperplanes are different from each other, and the
length of γ (t) from tn to tn+1 is not less than r0, i.e.,

|γ (tn � t � tn+1)| � r0. (11)

Since ZU is bounded and limt→∞ |γ (t)| = +∞, so we must have limn→∞ tn = t0 for some
finite t0. Otherwise, we would have limn→∞ tn = +∞ due to the fact that tn is strictly
increasing and this further implies limn→∞ |γ (tn)| = +∞, contradicting that γ (tn) = xn ∈ ZU
for each n and the boundedness of ZU . Finally, because γ (t) is a C1-smooth curve, we must
have that

lim
n→∞|γ (tn � t � tn+1)| = lim

n→∞

∫ tn+1

tn

|γ ′(t)| dt = 0, (12)

which contradicts the inequality (11), thus completes the proof of theorem 1. �

3. Uniqueness for the sound-soft case

In this section, we extend the arguments in the previous section to the sound-soft case, but with
some adaptations, which, we think, might provide some alternative thinking for the further
study of the uniqueness issues for IAOSP. Such a uniqueness result was given in [1], but there
seems to exist some gap in its proof, as we have pointed out in the introduction. Below we
shall provide a different and relatively simpler proof.

In correspondence with the Neumann set and Neumann hyperplane for the sound-hard
case, we introduce the Dirichlet set and Dirichlet hyperplane for the current sound-soft case.
Let u(x) be the total field to (1)–(3) associated with a single incident wave ui(x) = exp{jkx ·d}
with fixed k and d.

Definition 2. Du is called a Dirichlet set of u in G, if

Du = {x ∈ G; u|�∩Br (x)∩G = 0 for some r > 0 and hyperplane � passing through x}.

Similar to lemma 1, we have

Lemma 4. For any x ∈ Du, let �̃ be the corresponding open connected component of �\D
containing x, then the following holds:

u|�̃ = 0. (13)

We will refer to �̃ in the above lemma as the Dirichlet hyperplane in the following.
Obviously, the same as the Neumann hyperplane, a Dirichlet hyperplane must be an open
connected subset of a hyperplane and its boundary lies on ∂G.

The following lemma is a counterpart of lemma 2 for the sound-hard case.

Lemma 5. The Dirichlet set Du and all Dirichlet hyperplanes are bounded. And Du is closed
in the sense that for any sequence {xn}∞n=1 ⊂ Du, which converges to a point x0 ∈ G, then we
have x0 ∈ Du, i.e., there exists a Dirichlet hyperplane �0 passing through x0.

Proof. For the boundedness of Du, we refer to lemma 3.1 in [1]. And the closeness of Du can
be proved in a similar way to the proof of lemma 2. �

Now, the uniqueness result is stated in the following theorem.
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Theorem 2. The polyhedral scatterer D described in (6) is uniquely determined by a single
far-field pattern u∞ corresponding to an incident wave exp{jkx · d} with k > 0 and d ∈ S

N−1

fixed.

Proof. By contradiction, similar to the proof of theorem 1, we can assume that there exists
a Dirichlet hyperplane �̃1 in G = R

N\D. Then the rest of the proof can be carried out in
the same way as for the sound-hard case in theorem 1. But to provide a possible alternative
thinking for the uniqueness for the inverse acoustic scattering problem, we shall present a
different analysis below to prove theorem 2. As done in theorem 1, with the help of the
reflection principle for the Dirichlet problem and the auxiliary function u(x) + Ru(x), we
can find a countable set of distinct Dirichlet hyperplanes {�̃n}∞n=1 and a sequence of points
xn = γ (tn) with {tn}∞n=1 being a strictly increasing sequence and xn lying on �̃n. Like in the
proof of theorem 1, we can choose a uniform radius r0 for the balls Br0(xn)(n = 1, 2, . . .).
But for our purpose, we specifically choose a sequence of balls Brn

(xn) lying entirely in G
with distinct radii rn. Also, we can find a finite t0 such that tn → t0 as n → ∞ and a
Dirichlet hyperplane �̃0 passing through x0 = γ (t0). Further, there exists a sufficiently small
hypercube Tr(x0) such that �̃n ∩ Tr(x0) → �̃0 ∩ Tr(x0) as n → ∞, in the sense that for any
P0 ∈ �̃0 ∩ Tr(x0), there exists in the unit normal ν0-direction to �̃0 a sequence {Pn}∞n=1, with
Pn ∈ �n for each n ∈ N, given by

Pn = P0 + tnν0, tn = (xn − P0) · νn

ν0 · νn

, n = 1, 2, . . . , (14)

and Pn converges to P0. Now, if there are infinitely many Pn s which are different from each
other, then using Pn → P0 as n → ∞, we may assume that Pn ∈ �̃n ∩ Tr(x0) for all n ∈ N.
This implies

∂u

∂ν0
(P0) = lim

n→∞
u(Pn) − u(P0)

tn
= 0.

Due to our construction, all Dirichlet hyperplanes �̃n are different from each other. Next,
we claim that ∂u

∂ν0
= 0 a.e. on �̃0 ∩ Tr(x0). If this is not true, we would have a sufficiently small

ball Br̃(Q1) ⊂ Tr(x0), where Q1 ∈ �̃0, such that for every P0 ∈ Br̃(Q1) ∩ �̃0, only finitely
many out of the sequence {Pn}∞n=1 given in (14) are different from each other. Thus, there exists
an N0 ∈ N such that tn = 0 for n > N0, namely, P0 ∈ �n for n > N0. Now, we choose N points
Ql ∈ Br̃(Q1) ∩ �̃0(l = 1, 2, . . . , N) such that the vectors Q1Ql(2 � l � N) are linearly
independent. Let Nl ∈ N be the integer such that Ql ∈ �n for n > Nl, l = 1, 2, . . . , N ,
and M = max{N1, . . . , Nl}, then for n > M , we have Q1Ql ⊂ �n, for all l � 2. Since
Q1Ql, l = 2, . . . , N , are linearly independent and all lie on both �n and �0, then �n must
coincide with �0 when n > M . This contradicts our construction that {�̃n}∞n=1 are countable
different Dirichlet hyperplanes. So, we have demonstrated that ∂u

∂ν0
= 0 a.e. on �̃0 ∩ Tr(x0),

which implies ∂u
∂ν0

= 0 in �̃0 ∩ Tr(x0) by the analyticity of u. Noting that we also have u = 0

on �̃0 ∩Tr(x0), then by Holmgren’s theorem we must have u = 0 over G. But this contradicts
lemma 5, so completes the proof of theorem 2. �
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