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Abstract. We investigate possibilities of choosing reasonable regularization parameters for the
output least squares formulation of linear inverse problems. Based on the Morozov and damped
Morozov discrepancy principles, we propose two iterative methods, a quasi-Newton method and
a two-parameter model function method, for finding some reasonable regularization parameters
in an efficient manner. These discrepancy principles require knowledge of the error level in the
data of the considered inverse problems, which is often inaccessible or very expensive to achieve
in real applications. We therefore propose an iterative algorithm to estimate the observation
errors for linear inverse problems. Numerical experiments for one- and two-dimensional elliptic
boundary value problems and an integral equation are presented to illustrate the efficiency of
the proposed algorithms.

1. Introduction

Inverse problems are encountered in many industrial and engineering applications. As
the problems are often ill-posed, small perturbations in the observation data can have
large effects on the considered solutions. To make a numerical resolution feasible some
type of regularization has to be introduced, which entails the necessity of choosing
an appropriate regularization parameter. In fact, the effectiveness and success of a
regularization method depends strongly on the choice of a good regularization parameter.
In practice the regularization parameters are still most frequently chosen heuristically. This
is unsatisfactory, both from the practical as well as conceptual points of view. The choice
of reasonably good regularization parameters by deterministic numerical methods is one of
the most important issues in solving inverse problems.

There exists a significant amount of research in the literature on the development
of appropriate strategies for selecting regularization parameters. We refer the readers to
[1, 5, 9, 10, 4] and references therein. Much less work has been carried out on the numerical
realization of such strategies, and in fact it appears that very few of the strategies are utilized
for practical applications. One of the causes may be related to the fact that these methods
require knowledge of the noise level of the data which is frequently unavailable in practice.

It is one of the goals of this paper to make a contribution to the subject of practical
parameter choice strategies. We will investigate possibilities of choosing reasonable
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regularization parameters for one of the most frequently used regularization methods, i.e.
the output least squares formulation for linear inverse problems. Our basic tool is the well
known Morozov discrepancy principle [9, 10, 4] and the damped Morozov discrepancy
principle [8]. In [8] the asymptotic behaviour of the damped Morozov principle as the error
level in the observation data tends to zero was studied. In this paper, we will propose two
iterative methods, a quasi-Newton method and a two-parameter model function method, for
finding practically reasonable regularization parameters in an efficient manner. The model
function (four-parameter) approach was earlier used in [7] for solving a nonlinear parameter
identification problem.

Most parameter-choice strategies and discrepancy principles require knowledge of the
observation error of the considered inverse problem, which are often inaccessible or very
expensive to achieve in real applications. A second goal of this paper is to estimate the
observation error from the available data by an iterative method. The estimated observation
error can subsequently be used as a basis for the choice of the regularization parameter.
Many numerical experiments for one- and two-dimensional elliptic boundary value problems
and an integral equation will be presented to illustrate the efficiency of the proposed
algorithms.

Let us now formulate the problem to be discussed in the paper. We consider inverse
problems of the form

Tf = z (1.1)

whereT is a bounded operator mapping the parameter spaceX into the observation space
Y . Herez ∈ Y are the observation data which may be corrupted by error. The noisy data
with noise levelδ are denoted byzδ.

The above problem is often ill-posed due to lack of a continuous inverse ofT so that
small perturbations in the data can result in large changes of the solutionf of (1.1). To
transform the problem into a well-posed problem and make a numerical resolution feasible,
we formulate the inverse problem as the following output least squares problem

min
f ∈X

J (f, β) = 1

2
‖Tf − zδ‖2

Y + β

2
‖f ‖2

X (1.2)

whereβ > 0 is the regularization parameter, and‖ · ‖Y and ‖ · ‖X denote the norms in
the Hilbert spacesY andX respectively. The corresponding inner products are denoted by
(·, ·)Y and(·, ·)X.

We end this section with a well known existence result for (1.2). As usual,T ∗ : Y → X

denotes the adjoint operator ofT . In some situations, we shall express the solution of (1.2)
asf (β) to emphasize its dependence onβ.

Lemma 1.1. For anyβ > 0 there exists a unique solutionf (β) to the minimization problem
(1.2). It is characterized as the solution to the system

T ∗Tf + βf = T ∗zδ

or in variational form

(Tf, T g)Y + β (f, g)X = (zδ, T g)Y for all g ∈ X. (1.3)

2. Differentiability of f(β)

In this section we discuss the differentiability of the functionβ → f (β). We first verify
the following lemma.
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Lemma 2.1. The functionf (β) is infinitely differentiable at everyβ > 0 and its derivative
f (n)(β) ∈ X, for eachn > 1, is the unique solutionw to the following equation:

(T w, T g)Y + β (w, g)X = −n (f (n−1)(β), g)X for all g ∈ X. (2.1)

Proof. For everyt we have by (1.3),

(Tf (β + t), T g)Y + (β + t)(f (β + t), g)X = (zδ, T g)Y for all g ∈ X. (2.2)

Choosingg = f (β + t) the Cauchy–Schwarz inequality implies that

‖f (β + t)‖2
X 6

1

2β
‖zδ‖2

Y (2.3)

for all t with |t | sufficiently small. Subtracting (1.3) from (2.2) yields

(T (f (β + t) − f (β)), T g)Y + β (f (β + t) − f (β), g)X = −t (f (β + t), g)X

for all g ∈ X. (2.4)

Taking g = f (β + t) − f (β) in (2.4), we obtain

‖T (f (β + t) − f (β))‖2
Y + β‖f (β + t) − f (β)‖2

X 6 −t (f (β + t), f (β + t) − f (β))X.

Applying Young’s inequality leads to

β ‖f (β + t) − f (β)‖2
X 6

t2

β
‖f (β + t)‖2

X

which, together with the bound (2.3), proves thatf (β) is Lipschitz continuous atβ.
We next show the differentiability off (β). For this purpose, we divide (2.4) byt ,

subtract (2.1) withn = 1 from the resulting equation and obtain

‖T g(t)‖2
Y + β‖g(t)‖2

X = (f (β) − f (β + t), g(t))X

whereg(t) = t−1(f (β + t) − f (β)) − w. Applying Young’s inequality to the right-hand
side implies

β‖g(t)‖2
X 6

1

β
‖f (β) − f (β + t)‖2

X

which together with the continuity off (β) shows thatg(t) → 0 ast → 0. Thus, the first
derivativef ′(β) exists and is equal to the solutionw of (2.1).

The proof of (2.1) follows by induction onn. �

Let F(β) denote the minimal value function, i.e.

F(β) = J (f (β), β) = 1

2
‖Tf (β) − zδ‖2

Y + β

2
‖f (β)‖2

X (2.5)

for β > 0. We have the following.

Lemma 2.2. The first and second derivatives ofF(β) are given by

F ′(β) = 1
2‖f (β)‖2

X and F ′′(β) = (f (β), f ′(β))X for all β > 0. (2.6)

Proof. The differentiability ofF(β) follows immediately from its definition and lemma 2.1.
To derive the formulae in (2.6), we differentiate both sides of (2.5) with respect toβ and
obtain

F ′(β) = (Tf (β) − zδ, Tf ′(β))Y + β(f (β), f ′(β))X + 1
2‖f (β)‖2

X.

The desired relation forF ′(β) follows immediately from (1.3) withg = f ′(β). The
remaining formula forF ′(β) can be derived directly from the one forF ′(β). �

The functionF(β) has some additional nice properties stated in the following lemma.
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Lemma 2.3. Assume thatzδ /∈ kerT ∗. Then the non-negative functionF(β) is strictly
monotonically increasing and strictly concave.

Proof. From (2.1) withn = 1 andg = f ′(β) we deduce that

(Tf ′(β), Tf ′(β))Y + β(f ′(β), f ′(β))X = −(f (β), f ′(β))X.

Using lemma 2.2, we obtain

F ′′(β) = (f (β), f ′(β))X = −‖Tf ′(β)‖2
Y − β‖f ′(β)‖2

6 0 for all β > 0.

In fact, F ′′(β) < 0 for everyβ > 0. Otherwise ifF ′′(β̄) = 0 for someβ̄, then we have
f ′(β̄) = 0. By lemma 2.1 this impliesf (β̄) = 0 which by lemma 1.1 contradictsT ∗zδ 6= 0.
Thus we haveF ′(β) > 0 andF ′′(β) < 0 for every positiveβ. This implies thatF(β) is
strictly monotonically increasing and strictly concave. �

3. Iterative realization of parameter choice strategies

In this section we investigate numerical realizations of some parameter choice strategies.
We shall repeatedly use the expressions for the first and second derivatives of the minimal
value functionF(β) given in lemma 2.2 and the fact that these derivatives can be computed
in a stable manner ifβ is sufficiently large. For the most part, our analysis will focus on
the Morozov principle.

We first derive an important identity which will be used later. Letf (β) be the unique
minimizer to problem (1.2) forβ > 0. Then we have by lemma 1.1

T ∗Tf (β) + βf (β) = T ∗zδ (3.1)

and upon differentiating with respect toβ,

T ∗Tf ′(β) + f (β) + βf ′(β) = 0. (3.2)

Taking the inner product withf (β) we obtain

(Tf ′(β), Tf (β))Y + (f (β), f (β))X + β(f ′(β), f (β))X = 0

which by lemma 2.2 can be written as

2F ′(β) + β F ′′(β) + 1

2

d

dβ
(Tf (β), Tf (β))Y = 0

or equivalently

d

dβ
{βF ′(β) + F(β) + 1

2(Tf (β), Tf (β))Y } = 0.

Integrating with respect toβ we find

2βF ′(β) + 2F(β) + (Tf (β), Tf (β))Y = 2C0 (3.3)

whereC0 is an integration constant.
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3.1. Morozov’s principle

The well known Morozov principle has received a considerable amount of attention in linear
inverse problems (cf [1, 5, 9, 10]). The principle states that the regularization parameterβ

should be chosen such that the error due to the regularization is equal to the error due to
the observation data. That is,β is chosen according to

‖Tf (β) − zδ‖2
Y = δ2 (3.4)

whereδ is the observation error defined by

δ = ‖z − zδ‖Y .

Throughout this section we assume thatzδ /∈ kerT ∗. We observe that equation (3.4) can be
expressed in terms ofF(β) as

F(β) − βF ′(β) = 1
2δ2. (3.5)

In some applications, the Morozov principle may not be so satisfactory. We therefore
consider a more general class of damped Morozov principles [8, 10] given by

‖Tf (β) − zδ‖2
Y + βγ ‖f (β)‖2

X = δ2

whereγ ∈ [1, ∞], or equivalently,

F(β) + (βγ − β)F ′(β) = 1
2δ2. (3.6)

Note that the exact Morozov principle (3.5) is a special case of the damped case with
γ = ∞.

We now discuss the existence and uniqueness of the solutions to the exact Morozov and
the damped Morozov equation. We shall make the assumption thatF(0) < δ2/2 6 F(1),
where

F(0) = inf
f ∈X

1
2‖Tf − zδ‖2

Y = 1
2‖(I − P)zδ‖2

Y (3.7)

with P being the orthorgonal projection ofzδ onto the closure of the range ofT . The proof
of the following lemma will reveal that the upper bound onδ can be replaced by

1
2δ2

6 F(∞) = 1
2‖zδ‖2

Y

for γ = ∞. This is justified by the fact that forβ → ∞+ we havef (β) → 0 and hence
F(β) → ‖zδ‖2

Y /2. For practical purposes it suffices certainly to restrictβ to (0, 1].

Lemma 3.1. If F(0) < 1
2δ2 6 F(1), then there exists a unique solutionβ∗ ∈ (0, 1] to the

Morozov equation (3.6).

Proof. Let us define

G(β) = F(β) + (βγ − β)F ′(β) − 1
2δ2. (3.8)

Due to lemma 2.2 we have

G′(β) = γβγ−1F ′(β) + (βγ − β)F ′′(β). (3.9)

Lemma 2.3 implies thatF ′′(β) < 0 and henceG′(β) > 0 for everyβ ∈ (0, 1]. (In the
case whereγ = ∞ we haveG′(β) = −β F ′′(β) > 0 for everyβ ∈ (0, ∞).) Therefore the
function G is strictly increasing on(0, 1]. Continuity ofG together with

G(0) = F(0) − 1
2δ2 G(1) = F(1) − 1

2δ2

implies the result. �
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3.2. Newton’s and quasi-Newton’s method

We now propose using Newton’s method or a quasi-Newton’s method to solve the damped
nonlinear Morozov equation (3.6), that is,

G(β) = F(β) + (βγ − β)F ′(β) − 1
2δ2 = 0.

We know from (3.9) that

G′(β) = γβγ−1F ′(β) + (βγ − β)F ′′(β)

= 1
2γβγ−1(f (β), f (β))X + (βγ − β)(f (β), f ′(β))X.

Thus computingG′(β) involves the evaluation off ′(β) that solves the equation

T ∗T w + βw = −f (β). (3.10)

Newton’s method for solving equation (3.6) is formulated as follows.

Newton’s method. Given an initial guessβ0, generate the Newton’s sequenceβ1, β2, . . . ,
according to

βk+1 = βk − 2G(βk)

γβ
γ−1
k ‖f (βk)‖2

X + 2(β
γ

k − βk)(f (βk), f ′(βk))X
(3.11)

where f ′(βk) is obtained from (3.10). As usual, this Newton’s method converges
quadratically. But at each iteration we need to solve for bothf (β) and f ′(β) and this
seems to be a bit too expensive.

To avoid solving equation (3.10) forf ′(β), we propose replacingf ′(βk) in the Newton’s
method by the finite difference quotient

fk(βk, βk−1) ≡ f (βk) − f (βk−1)

βk − βk−1
.

This leads to the following.

Quasi-Newton’s method. Given initial guessesβ0 and β1. Generate the quasi-Newton’s
sequenceβ2, β3, . . . , according to

βk+1 = βk − 2G(βk)

γβ
γ−1
k ‖f (βk)‖2

X + 2(β
γ

k − βk)(f (βk), fk(βk, βk−1))X
. (3.12)

This quasi-Newton’s method has the following convergence property.

Theorem 3.1. Assume thatF(0) < 1
2δ2 6 F(1) and letβ∗ ∈ (0, 1] be the unique solution

of the Morozov equation (3.6). Then there exists a positive constantε such that whenever
the initial guessesβ0 andβ1 belong to the intervalI = [β∗ − ε, β∗ + ε], the whole sequence
{βk}∞k=0 generated by the quasi-Newton’s method is contained inI and converges toβ∗
superlinearly.

Proof. We give the proof forγ = ∞. The caseγ ∈ [1, ∞) can be carried out analogously.
By lemma 2.1 the following constantM is finite:

√
2

3
M = max

β∗/26β63β∗/2
{‖f (β)‖X, ‖f ′(β)‖X, ‖f ′′(β)‖X}.

Together with (3.9) forγ = ∞ this implies

|G′′(β)| 6 M2 for 1
2β∗ 6 β 6 3

2β∗. (3.13)
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By continuity of G′(β) at β∗, there exists a constantε ∈ (0, β∗/2) such that

|G′(β)| > 1
2|G′(β∗)| for β∗ − ε 6 β 6 β∗ + ε.

We can assume that

ε 6
3

4

|G′(β∗)|
M2

.

Next we show that each iterateβk generated by the quasi-Newton’s method is contained
in I and thatβk converges toβ∗ superlinearly provided that the start-up valuesβ0, β1 are
chosen inI .

For β2 we have by the mean-value theorem

β2 − β∗ = (β1 − β∗) + G(β1) − G(β∗)

β1(f (β1), f1(β1, β0))X

= (β1 − β∗)
β1(f (β1), f1(β1, β0))X + G′(η1)

β1(f (β1), f1(β1, β0))X

≡: (β1 − β∗)
B1

A1
(3.14)

whereη1 lies betweenβ1 andβ∗. We now boundA1 andB1. By Taylor expansion we have

f1(β1, β0) = f ′(β1) + 1
2f ′′(ξ1)(β0 − β1)

with ξ1 ∈ (β1, β0). Hence we obtain

A1 = β1(f (β1), f1(β1, β0) − f ′(β1))X − G′(β1)

= β1

2
(β0 − β1)(f (β1), f

′′(ξ1))X − G′(β1). (3.15)

We can boundA1 as follows

|A1| > 1
2|G′(β∗)| − 2

9β∗M
2ε > 1

4|G′(β∗)|.
To estimateB1, we use (3.15) to obtain

B1 = β1

2
(β0 − β1)(f (β1), f

′′(ξ1))X + (G′(η1) − G′(β1)).

ThusB1 can be bounded by using (3.13),

|B1| 6 2β∗M
2ε + M2ε 6 3

2M2ε.

Combining the bounds forA1 andB1, we obtain from (3.14)

|β2 − β∗| 6 |β1 − β∗|
6M2ε

|G′(β∗)|
6

1

2
|β1 − β∗|

which impliesβ2 ∈ [β∗ − ε, β∗ + ε].
By induction one can show thatβk ∈ [β∗ − ε, β∗ + ε] and

|βk − β∗| 6 1
2|βk−1 − β∗| for k = 2, 3, . . . .

Therefore we haveβk → β∗ ask → ∞.
Finally in the same way as (3.14), we have

βk+1 − β∗ = (βk − β∗)
βk(f (βk), fk(βk, βk−1))X + G′(ηk)

βk(f (βk), fk(βk, βk−1))X
.

Taking the limit ask → ∞, we obtain

lim
k→∞

|βk+1 − β∗|
|βk − β∗|

= |β∗(f (β∗), f ′(β∗))X + G′(β∗)|
|β∗(f (β∗), f ′(β∗))X| = 0

and superlinear convergence of the sequence{βk} follows. �
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3.3. Two-parameter model functions

In this section we discuss a model function approach for solving the general Morozov
equation (3.6) approximately. By a model function we mean a parametrized function which
preserves the major properties of the non-negative functionF(β) and which approximates
or interpolatesF(β) in a manner to be specified below. Some results for nonlinear inverse
problems using model function approaches can be found in [7], where a four-parameter
model function approach was investigated. We are now going to derive a two-parameter
model function approach which will be seen to perform well for linear inverse problems.
Moreover, we shall demonstrate in section 4 that a hybrid scheme based on model functions
during the start-up phase and on the quasi-Newton method locally provides a very efficient
method to solve the Morozov equation.

To derive the model function, we make the following approximation in the equation
(3.3):

(Tf (β), Tf (β))Y ≈ T1(f (β), f (β))X

whereT1 is a positive constant to be determined. Then equation (3.3) reduces to

βm′(β) + m(β) + T1m
′(β) = C0. (3.16)

Solving the ordinary differential equation (3.16) we obtain

m(β) = C0 + C1

T1 + β
(3.17)

where C1 is an integration constant. We know thatF(β) is an increasing and concave
function, and obviously the model functionm(β) preserves these properties whenC1 < 0,
and is non-negative ifC0 + C1/T1 > 0.

Note that when the linear operatorT has a dense range inL2(�), then we have

inf
f ∈X

‖Tf − zδ‖2
Y = 0

and therefore

F(0) = 0.

So to further simplifiy the model functionm(β) in (3.17), we requirem(0) = 0. Then we
can write the model function as

m(β) = C

{

1 − T

T + β

}

(3.18)

which has only two parameters involved, and we refer to it as thetwo-parameter model
function.

To update the two parametersC andT in the above model function and so solve the
general Morozov equation (3.6) approximately, we suggest the following algorithm.

Two-parameter algorithm. Setk = 0 and chooseβ0 > 0.
(1) ComputeF ′(βk) andF(βk) using (2.6). ComputeTk andCk from

m(βk) = Ck

{

1 − Tk

Tk + βk

}

= F(βk) (3.19)

m′(βk) = CkTk

(Tk + βk)2
= F ′(βk). (3.20)
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(2) Set

m(β) = Ck

{

1 − Tk

Tk + β

}

.

(3) Solve forβk+1 the approximate Morozov’s equation

m(β) + (βγ − β)m′(β) = 1
2δ2. (3.21)

(4) If |βk+1 − βk| 6 tolerance, STOP; otherwise setk := k + 1, GOTO (1).

In step (1) of the above two-parameter algorithm, one needs to computeTk andCk from
(3.19) and (3.20). Combining (3.19) and (3.20), we can easily find the following direct
formulae for computingTk andCk:

Tk = β2
k F

′(βk)

F (βk) − βkF ′(βk)
Ck = F 2(βk)

F (βk) − βkF ′(βk)
. (3.22)

Note that by (2.5) and lemma 2.2 the two-parameter model function in step (2) can be
determined from one evaluation of (1.2) atβk. The denominators in (3.22) do not vanish
as we always have

F(βk) − βkF
′(βk) = 1

2‖Tf (βk) − zδ‖2
Y > 0

if zδ /∈ kerT ∗.
Numerically we use the Newton’s method to solve the approximate Morozov equation

(3.21) forβ if γ 6= ∞. But for γ = ∞ equation (3.21) is quadratic inβ and can be solved
directly.

Note that equation (3.21) always has a solution forγ ∈ (2, ∞), while the existence is
guaranteed forγ ∈ [1, 2] andγ = ∞ if 0 = m(0) 6 δ2/2 < m(∞) = Ck. If 2m(1) > δ2

then (3.21) has a unique solution in(0, 1].
As a safeguard we had used in our implementation of the algorithm the additional

stopping criterion ‘ifm(βk) + (β
γ

k − βk)m
′(β) 6 1

2δ2, STOP’. In our examples it was never
activated.

3.4. Predictions of observation errors

Most parameter-choice strategies, including in particular the Morozov principle, require
knowledge of the observation error levelδ. In practice,δ is often inaccessible, expensive
to achieve or itself error-prone. In such situations it can be helpful to utilize some heuristic
approach to estimateδ.

In this section, we propose to use the model functionm(β) to obtain an estimate forδ.
If the unperturbed dataz are attainable by somef ∗ ∈ X, then

F(0) 6 1
2‖Tf ∗ − zδ‖2

Y = 1
2δ2

and thus
√

2F(0) gives a lower bound for the errorδ. In numerical implementations, we
will enlarge this lower bound

√
2F(0) and use 2

√
m(0) to predict the observation error.

We propose the following algorithm.

Observation error prediction algorithm. Given a ratioσ ∈ [0.5, 1] andβ0 > 0,
(1) computeF(β0) andF ′(β0). Then updateC1 andT1 in (3.18) using

m(β0) = F(β0) m′(β0) = F ′(β0).
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Find y0, the y-intercept of the tangent to the curvey = m(β) at (β0, m(β0)), andβ1

satisfying

m(β1) = σy0.

(2) ComputeF(β1), F ′(β1), andC0 (use (3.3)). Then updateC1 andT1 in (3.17) using

m(β1) = F(β1) m′(β1) = F ′(β1).

Return 2
√

m(0) as the observation errorδ.

Remark 3.1. The parameterσ can always be taken to be 1. But one may obtain better
results when it varies in the interval [0.5, 1).

In the first step, we need to computey0 and β1. Both y0 and β1 exist uniquely and
are positive as the two-parameter model functionm(β) in (3.18) is a concave and strictly
non-decreasing function andm(0) = 0.

The first step can be run a few times, that is, whenβ1 is found, setβ0 = β1 and re-run
the step. But in all our numerical implementations, at most two iterations of step (1) gave
good results. In any case,β0 is chosen significantly larger than the expected optimalβ so
that the corresponding evaluation of (1.2) is numerically stable. The reduction inβ from
β0 to β1 depends primarily on the concavity ofm(β) and thus on the productC1T1.

The informationF(β0) andF ′(β0) can be saved for use in the two-parameter algorithm
or the quasi-Newton’s algorithm for solving the damped Morozov equation.

4. Numerical results for solving the Morozov equation

We now present some numerical experiments to show the effectiveness of the quasi-
Newton’s method, the two-parameter model function approach (two-parameter algorithm)
and the resulting hybrid method.

In all tables of this section,βopt stands for the optimalβ value which achieves the
minimum for ‖f (β) − f ∗‖L2(�), it is computed as follows. We first compute theL2-
norm error for 200 uniformly distributedβ-values in the interval [10−7, 10−3] to find an
approximate optimalβ, denoted byβ̃, then a much smaller interval including̃β is chosen
to compute an accurateβopt. βM stands for the solution of the general Morozov equation
(3.6). It can be determined by means of a bisection algorithm, for example. In the tables
Iter denotes the required number of iterations of the specified algorithm to achieve the listed
β values.

Example 1. Consider the following two point boundary value problem

− (q(x)ux)x = f (x) in (0, 1) with u(0) = u(1) = 0. (4.1)

We take the coefficient functionq(x) and the observation dataz of u as

q(x) = e1+x2
z = u(f ∗) = e−x sin(πx)

and then the source termf (x) which is to be recovered can be obtained from the above
differential equation,

f ∗ = −qxe−x{π cos(πx) − sin(πx)} + qe−x{2π cos(πx) + (π2 − 1) sin(πx)}.
We assume that the available observed data are the superposition of the error free dataz

and the sinusoidal noise:

zδ(x) = z(x) + δ̂ sin(1.5π(2x − 1)).
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Table 1. Optimal β values and theβ ’s obtained by Morozov principle.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.277× 10−5 0.990× 10−5 0.172× 10−4 0.260× 10−4 0.434× 10−4

βM 0.362× 10−5 0.125× 10−4 0.223× 10−4 0.324× 10−4 0.474× 10−4

Table 2. Convergence of the quasi-Newton’s method withβ0 = 10−3.

δ̂ 0.01 0.03 0.05 0.07 0.1

βi 0.362× 10−5 0.125× 10−4 0.223× 10−4 0.324× 10−4 0.474× 10−4

Iter 7 7 6 5 7

Table 3. Convergence of the two-parameter algorithm withβ0 = 0.1.

δ̂ 0.01 0.03 0.05 0.07 0.1

Iter(2) 0.575× 10−5 0.206× 10−4 0.365× 10−4 0.527× 10−4 0.773× 10−4

βi 0.362× 10−5 0.125× 10−4 0.223× 10−4 0.324× 10−4 0.474× 10−4

Iter 9 11 14 15 16

Table 4. Quasi-Newton’s convergence with initial guesses from the two-parameter algorithm.

δ̂ 0.01 0.03 0.05 0.07 0.1

βi 0.362× 10−5 0.125× 10−4 0.223× 10−4 0.324× 10−4 0.474× 10−4

Iter 2 2 3 3 3

In our implementations, we use piecewise-linear finite element method to solve the
elliptic problem (4.1) and the variational equation (1.3) satisfied by the optimalf (β). For
this purpose, we first partition the domain� = (0, 1) into N equally distributed subintervals
and then defineV h to be the continuous piecewise-linear finite element space associated
with the partition, andh = 1/N . Let V h

0 be a subspace ofV h with functions vanishing at
two endpointsx = 0, 1. Then the finite element approximationfh(β) of f (β) is formulated
as follows. Findfh(β) ∈ V h such that

(uh(fh(β)), uh(g)) + β(fh(β), g) = (zδ, uh(g)) for all g ∈ V h

whereuh ≡ uh(fh(β)) ∈ V h
0 satisfies

(q(x)(uh)x, vx) = (fh(β), v) for all v ∈ V h
0 .

In tables 1–4, we present some of the numerical results with different noise parameters
δ̂ andN = 20.

Table 1 gives the optimalβ values as well as theβ values computed from the exact
Morozov equation (γ = ∞):

F(β) − βF ′(β) = 1
2δ2.

We can see that the Morozov principle gives very accurate approximations to the optimal
β values for the considered example.
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Table 2 shows the numbers of iterations of the quasi-Newton’s method with the initial
guessβ0 = 10−3. It takes about 5–7 iterations for the method to converge to the exact
solution of the Morozov equation. The stopping criterion for the quasi-Newton iteration
and also for the two-parameter iteration is chosen as|βk+1 −βk|/βk+1 6 10−2. If the initial
guessβ0 is too rough, say 0.1, the iteration may diverge. This is consistent with the local
convergence of the quasi-Newton’s method.

Table 3 shows the convergence of the two-parameter algorithm discussed in section 3.3,
with a very rough initial guessβ0 = 0.1. The second row contains theβ values obtained at
the second iterations. We observe that the algorithm gives very good approximations to the
solutions of the Morozov equation after only two iterations. But afterwards the convergence
of the algorithm becomes much slower. The last two rows of table 3 give the numbers of
iterations required for the algorithm to converge to the exact solutions of the Morozov
equation. The correspondingβ-values are shown in the third row.

Many additional numerical experiments have confirmed the convergence phenomena we
have seen above about the quasi-Newton’s algorithm and the two-parameter model function
algorithm. The former converges faster than the latter but only locally, i.e. one has to
start at a very good initial guess. The two-parameter model function algorithm converges
very fast during the first few iterations and then it slows down. How about combining the
advantages of these two algorithms? What will happen if we take the approximateβ values
obtained from the first or second iterations of the two-parameter algorithm as the initial
guesses of the quasi-Newton’s method? The results are very positive. Table 4 gives the
numbers of iterations for the quasi-Newton’s algorithm to converge to the exact solutions
of the Morozov equation, when the second iterates from the two-parameter algorithm have
been taken as initial guesses. One can see that it then needs only two or three iterations.

Example 2. We consider the following two-dimensional elliptic problem

−∇ · (q(x, y)∇u) + c(x, y)u = f (x, y) in � (4.2)
∂u

∂n
= 0 on ∂�. (4.3)

We use the piecewise-linear finite element method to discretize the Neumann boundary
value problem (4.2), (4.3) with triangular elements of uniform mesh sizeh = 1

20. Let V h

be the piecewise-linear finite element space with the standard nodal basis functions{φj }Nj ,
N = 21× 21 being the number of nodal points. The finite element problem approximating
(4.2), (4.3) is: finduh(f ) ∈ V h such that

(q∇uh(f ), vh) + (cuh(f ), vh) = (f, vh) for all vh ∈ V h. (4.4)

The integrals involved on each element for computing the coefficient matrix were done by
the quadrature rule which takes the average of three midpoint values on three sides of the
element. The resulting stiffness matrix is denoted asA.

To approximate the optimalf (β) which minimizes the real functionF(β) defined in
(2.5) for a fixedβ we use

(uh(fh), uh(g)) + β(fh, g) = (zδ, uh(g)) for all g ∈ V h (4.5)

wherefh = fh(β). Let M be theN by N mass matrix, i.e.M = (mij ), mij = (φi, φj ).
Then equations (4.4) and (4.5) can be written algebraically as follows

u(g)⊤Mu(f) + βg⊤Mf = u(g)⊤Mzδ Au(g) = Mg for all g ∈ RN (4.6)

where f and u(f) are vectors consisting of the nodal values offh(β) and uh(fh)

respectively. Similarlyzδ, g and u(g) represent the nodal values ofzδ, g and u(g).
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Table 5. Optimal β values and theβ ’s obtained by Morozov principle.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.121× 10−5 0.381× 10−5 0.685× 10−5 0.983× 10−5 0.139× 10−4

βM 0.103× 10−5 0.328× 10−5 0.556× 10−5 0.782× 10−5 0.110× 10−4

Table 6. Convergence of the quasi-Newton’s method withβ0 = 10−4.

δ̂ 0.01 0.03 0.05 0.07 0.1

βi 0.103× 10−5 0.328× 10−5 0.556× 10−5 0.782× 10−5 0.111× 10−4

Iter 5 6 6 7 6

By substituting the second relation into (4.6) into the first one and making some simple
re-arrangements, we arrive at

(MA−1M + βA)f = Mzδ.

Solving this equation is usually very expensive as it involves the inverse ofA which is
ill-conditioned. Instead we multiply both sides of the equation byAM−1 and obtain another
equivalent form:

(M + βAM−1A)f = Azδ. (4.7)

This equation is easier to solve than the previous one as one can show thatM−1 is well-
conditioned. However, it is still expensive to obtain this inverse. To make the computation
more efficient while keeping the same finite element accuracy, we compute the mass matrix
using the lumped mass approximation, namely its entriesmij are evaluated as follows

mij =
∑

K

∫

K

φiφj dx dy ≈
∑

K

∫

K

5h(φiφj ) dx dy

where5h is the standard finite element interpolant associated withV h and the summation
is done over at most two elementsK ’s on which the productφiφj does not vanish. This
results in a diagonal mass matrixM so that solving equation (4.7) becomes much cheaper.
In real implementations, the algebraic system (4.7) can be solved very efficiently by using
domain-decomposition-based or multilevel-method-based preconditioned iterative methods
(cf [3, 2]). In our computations we solved the algebraic system by the conjugate gradient
method. Tables 5–8 show the numerical experiments related to example 2, where we have
taken the coefficint functionsq(x, y), c(x, y) and the unperturbed observation data as

q(x, y) = ex+y c(x, y) = e1+x2+y2
u(f ∗) = cos(πx) cos(πy).

The noisy data were assumed to be of the form

zδ(x, y) = u(x, y) + δ̂ sin(1.5π(2x − 1)) sin(1.5π(2y − 1)).

The exact source termf (x, y) to be recovered is the right-hand side function of
equation (4.2) using the given coefficientsq(x, y), c(x, y) and the exact observationu(x, y).

Table 5 gives the optimalβ values and theβ values computed from the exact Morozov
equation (γ = ∞):

F(β) − βF ′(β) = 1
2δ2.
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Table 7. Convergence of the two-parameter algorithm withβ0 = 0.1.

δ̂ 0.01 0.03 0.05 0.07 0.1

Iter(2) 0.122× 10−5 0.428× 10−5 0.776× 10−5 0.115× 10−4 0.176× 10−4

βi 0.103× 10−5 0.328× 10−5 0.556× 10−5 0.782× 10−5 0.111× 10−4

Iter 5 6 7 8 8

Table 8. Quasi-Newton’s convergence with initial guesses from the two-parameter algorithm.

δ̂ 0.01 0.03 0.05 0.07 0.1

βi 0.103× 10−5 0.328× 10−5 0.556× 10−5 0.783× 10−5 0.111× 10−4

Iter 3 3 4 3 3

We see that the Morozov principle again gives very accurate approximations to the optimal
β values for the considered example. Table 6 gives the number of iterations of the quasi-
Newton’s method with a very close initial guessβ0 = 10−4 when it converges to the given
β values. For this example the quasi-Newton algorithm still converges withβ0 = 0.1 but
the number of iterations is more than doubled compared withβ0 = 10−4.

Table 7 gives the convergence of the two-parameter algorithm discussed in section 3.3,
with a very rough initial guessβ0 = 0.1. The second row contains theβ values obtained at
the second iteration. We observe that the algorithm gives already very good approximations
to the solutions of the Morozov equation after only two iterations. However, then the
convergence slows down during the subsequent iterations. The last two rows of table 7
give the convergedβ-values and the number of iterations that are required to reach them.

Just as in example 1, the current example again demonstrates the local convergence
of the quasi-Newton algorithm and the global convergence of the two-parameter model
function algorithm. When we combine the advantages of the two algorithms, we can speed
up the whole iterative process. Table 8 gives the numbers of iterations for the quasi-
Newton algorithm to converge to the exact solutions of the Morozov equation, when the
second iterates from the two-parameter algorithm were taken as initial guesses. One needs
only three or four iterations to reach the stopping criterion. In practical implementations,
we do not need such accurate results. Only one or two quasi-Newton’s iterations will give
very satisfactory results.

Example 3 (cf [6]). Traditional agricultural fields are often watered from elevated irrigation
canals by removing a solid gate from a weir notch. Suppose that the depth of water in the
canal ish and the notch is symmetric about a vertical centre line (cf figure 1).

By Torricelli’s law (cf [6]), the volume of flow per unit time through the notch is

2
∫ h

0

√

2g(h − y)f (y) dy

whereg = 9.80 m s−2 is the gravitaional constant andx = f (y) specifies the shape of the
notch. Suppose that one wishes to design a notch so that this quantity is a given function
z(h) of the water depth in the canal (or equivalently suppose one wants to determine the
shapef from observations of the flow ratez(h)). Then one is led to solve the following
integral equation

z(h) = 2
∫ h

0

√

2g(h − y)f (y) dy (4.8)

for f .
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Figure 1. A weir notch.

Table 9. Optimal β ’s andβ ’s obtained by the exact Morozov principle (γ = ∞).

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.430× 10−4 0.134× 10−3 0.230× 10−3 0.333× 10−3 0.502× 10−3

βM 0.656× 10−3 0.317× 10−2 0.697× 10−2 0.114× 10−1 0.184× 10−1

Table 10. Optimal β ’s andβ ’s obtained by the Morozov’s principle withγ = 1.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.430× 10−4 0.134× 10−3 0.230× 10−3 0.333× 10−3 0.502× 10−3

βM 0.154× 10−5 0.138× 10−4 0.382× 10−4 0.748× 10−4 0.154× 10−3

Table 11. Optimal β ’s and theL2-norm errors.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.430× 10−4 0.134× 10−3 0.230× 10−3 0.333× 10−3 0.502× 10−3

L2-norm error 0.501× 10−2 0.148× 10−1 0.245× 10−1 0.342× 10−1 0.486× 10−1

In our numerical implementation, we take the following true parameter function

f (y) = e−y(2π cos(πy) + (π2 − 1) sin(πy))

and the observation functionz(h), h ∈ [0, 1], was computed using formula (4.8). Then we
add noise to the observation data as follows

zδ(h) = z(h) + δ̂ sin(3πh).

To evaluate the integrals involved, we divide the intergal [0, 1] into n = 20 subintervals,
and on each subinterval the trapezoidal rule is used.

For this example, we use the damped Morozov principle:

F(β) + (βγ − β)F ′(β) = 1
2δ2

since the exact Morozov principle (γ = ∞) behaves very disappointingly, compared with
the previous boundary value inverse problems (examples 1 and 2). It overestimates the
optimal β values about 15–40 times when the noise level ranges from 1% to 10%, see
table 9.

When we takeγ ∈ [1, 2], all the results are acceptable, except for smaller noise level
(6 1%), see table 10 forγ = 1. The optimalγ seems to be around 1.4. Table 12 gives



1262 K Kunisch and J Zou

Table 12. β ’s obtained by Morozov’s equation (γ = 1.5) and theL2-norm errors.

δ̂ 0.01 0.03 0.05 0.07 0.1

βM 0.128× 10−3 0.543× 10−3 0.107× 10−2 0.167× 10−2 0.269× 10−2

L2-norm error 0.676× 10−2 0.227× 10−1 0.374× 10−1 0.497× 10−1 0.654× 10−1

Table 13. Optimal β ’s andβ ’s obtained from Morozov’s equation withγ = 1.3.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.430× 10−4 0.134× 10−3 0.230× 10−3 0.333× 10−3 0.502× 10−3

βM 0.336× 10−4 0.181× 10−3 0.395× 10−3 0.652× 10−3 0.114× 10−2

Table 14. Convergence of the quasi-Newton’s method withβ0 = 0.01.

δ̂ 0.01 0.03 0.05 0.07 0.1

βi 0.128× 10−3 0.543× 10−3 0.107× 10−2 0.167× 10−2 0.269× 10−2

Iter 5 4 4 3 3

Table 15. Iteration numbers of the two-parameter algorithm for example 3.

γ \δ̂ 0.01 0.03 0.05 0.07 0.1

1.0 2 2 2 2 2
1.3 2 2 2 2 2
1.5 2 3 3 3 3
2.0 5 5 5 5 5
∞ 7 7 7 6 7

the β values obtained withγ = 1.5. Compared with the optimalβ values in table 9, they
are about 2–5 times larger than the optimalβ ’s. While this is quite satisfactory, one can
achieve much more accurate results withγ = 1.2 or γ = 1.3, see table 13 forγ = 1.3.

Table 11 shows the optimalβ values and the corresponding minimiumL2-norm distance
betweenf (β) and the true parameterf . Table 12 contains theβ values given by the
Morozov principle and their corresponding relativeL2-norm errors. Comparing table 11
with table 12, we can see that theβ ’s obtained by the Morozov principle are about 2–5
times larger than optimal ones but the correspondingL2-norm errors are quite close, just
about 1.3–1.5 times larger than optimalL2-norm errors.

The convergence of the Newton’s method for finding the solutions of the Morozov
equations withγ = 1.5 is shown in table 14. One can see that it takes usually just 3–5
iterations to obtain the Morozov’s solutions with very good accuracy.

Finally, table 15 shows the iteration numbers for the convergence of the two-parameter
algorithm to the solution of the corresponding damped Morozov equation for different
parametersγ (cf tables 9–13), with a very rough initial guessβ0 = 0.1. Note that the
algorithm performs very well for a very large range ofγ .
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Table 16. Exact and predicted observation errors for example 1.

δ̂ 0.01 0.03 0.05 0.07 0.1

δ 7.07× 10−3 2.12× 10−2 3.53× 10−2 4.95× 10−2 7.07× 10−2

2
√

m(0) 9.31× 10−3 2.76× 10−2 4.55× 10−2 6.34× 10−2 9.03× 10−2

Table 17. Exact and predicted observation errors for example 2.

δ̂ 0.01 0.03 0.05 0.07 0.1

δ 0.50× 10−2 1.50× 10−2 2.50× 10−2 3.50× 10−2 5.00× 10−2

2
√

m(0) 1.69× 10−2 2.01× 10−2 2.53× 10−2 3.19× 10−2 4.37× 10−2

Table 18. Exact and predicted observation errors for example 3.

δ̂ 0.01 0.03 0.05 0.07 0.1

δ 0.71× 10−2 2.12× 10−2 3.53× 10−2 4.95× 10−2 7.07× 10−2

2
√

m(0) 1.80× 10−2 1.89× 10−2 1.99× 10−2 2.09× 10−2 2.25× 10−2

Table 19. β-values given by Morozov equation (γ = ∞) with estimatedδ for example 1.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.277× 10−5 0.990× 10−5 0.172× 10−4 0.260× 10−4 0.434×10−4

βM 0.678× 10−5 0.273× 10−4 0.501× 10−4 0.736× 10−4 1.120× 10−4

5. Numerical predictions of observation errors

All the numerical results of the last section assumed the availability of exact observation
errorsδ in the exact or damped Morozov equation. However, in practical applications, the
noise level may not be accessible. We now report some numerical results on the performance
of the observation error prediction algorithm proposed in section 3.4.

The examples considered here are the same three examples as those chosen in section 4.
Tables 16–18 give the exact observation errors and the predicted ones using the observation
error prediction algorithm. The numerical methods and the quadrature rules are the same
as those used in section 4. The parameterσ required in the algorithm is taken to be 1.0
in all three examples, and the initialβ0 is chosen to be 10−3 for example 1, 10−4 for
example 2, and 0.1 for example 3 respectively. For example 2, we have iterated step (1)
of the algorithm twice (see remark 3.1) while only once for examples 1 and 3. From these
three examples, we can see that our observation error prediction algorithm appears to work
well. The predicted observation errors are all of the same magnitudes as the exact ones.

One may adjust the parameterσ and even the factor 2 in the predicted observation error
formula 2

√
m(0) to obtain much better results. However, these choices must be based on

programmers’ experience for a concrete applied problem.
Tables 19–21 give theβ-values obtained by the Morozov principle with the exact

observation errorδ replaced by the estimated error 2
√

m(0). We observe that the estimated
β-values are all of the same order as the optimal ones. We have also run the quasi-Newton
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Table 20. β-values given by Morozov equation (γ = ∞) with estimatedδ for example 2.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.121× 10−5 0.381× 10−5 0.685× 10−5 0.983× 10−5 0.139× 10−4

βM 0.250× 10−5 0.285× 10−5 0.335× 10−5 0.394× 10−5 0.510× 10−5

Table 21. β-values given by Morozov equation (γ = 1.3) with estimatedδ for example 3.

δ̂ 0.01 0.03 0.05 0.07 0.1

βopt 0.430× 10−4 0.134× 10−3 0.230× 10−3 0.333× 10−3 0.502× 10−3

βM 1.409× 10−4 0.151× 10−3 0.164× 10−3 0.176× 10−3 0.196× 10−3

Table 22. Optimal errors and the errors obtained using estimatedβ-values from Morozov
equation.

δ̂ 0.01 0.03 0.05 0.07 0.1

Optimal error 5.012× 10−3 1.476× 10−2 2.452× 10−2 3.422× 10−2 4.864× 10−2

Morozov error 7.145× 10−3 1.479× 10−2 2.476× 10−2 3.509× 10−2 5.073× 10−2

iteration and two-parameter algorithm whenδ is replaced by 2
√

m(0), the convergence
behaviours of the two algorithms are exactly the same as in the case with the exactδ, so
we do not present those numerical results here. From tables 19–21, we find that the results
seem a bit worse for example 3. However, if we compare their correspondingL2-norm
errors, there are no essential differences, see table 22 for theL2-norm errors obtained by
using optimalβ-values and the estimatedβ-values from Morozov equation (γ = 1.3) with
the exact observation errorδ replaced by 2

√
m(0).
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