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Abstract. In this paper we investigate the stability and convergence rates of the widely used

output least-squares method with Tikhonov regularization for the identification of the conductivity

distribution in a heat conduction system. Due to the rather restrictive source conditions and

regularity assumptions on the nonlinear parameter-to-solution operator concerned, the existing

Tikhonov regularization theory for nonlinear inverse problems is difficult to apply for the

convergence rate analysis here. By introducing some new techniques, we are able to relax these

regularity requirements and derive a much simpler and easily interpretable source condition but

still achieve the same convergence rates as the standard Tikhonov regularization theory does.

1. Introduction

It is well known that the heat conduction of a conductive body � can be modelled by the

parabolic system

∂u

∂t
− ∇ · (q(x)∇u) = f (x, t) in �× (0, T ) (1.1)

with the initial temperature

u(x, 0) = u0(x) in � (1.2)

and, for example, vanishing boundary temperature

u(x, t) = 0 on ∂�× (0, T ). (1.3)

Here f is a heat source density, and� is assumed to be an open bounded and connected domain

in Rd (d � 1) with a piecewise smooth boundary ∂�.

The identification of the heat conductivity distribution q(x) in the system (1.1)–(1.3) can

find a wide range of applications in engineering and industry. For example, one can use some

measured temperature data of a newly discovered material to identify the heat conductivity

of the material. In addition, the parabolic system (1.1)–(1.3) can serve as the mathematical

model for many other processes, such as diffusion processes and population dynamics [5, 6],

where the need to identify the diffusivity q also arises.

Such parameter identification problems are usually ill posed in the sense that small

perturbations in the measurement data of u(x, t) can have tremendous effects on the parameter

q(x) (cf e.g. [1, 3]). Therefore, for the numerical identification process, some type of
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regularization has to be introduced. One most frequently used approach is the so-called output

least-squares method with Tikhonov regularization.

Many numerical experiments have demonstrated that, when combined with some

appropriate Tikhonov regularization, the output least-squares method performs very well for

the identification of various types of heat conductivity distribution: continuous, discontinuous

or highly oscillating [2, 8, 9]. It also works satisfactorily with the identification of some

nonlinear heat conductivity parameters, namely with q depending on the temperature u [14].

A natural interesting question is whether one can justify this good numerical behaviour

and the nice stability achieved by the Tikhonov regularization method mathematically. This

justification is important to provide some useful guidance and give practioners certain

confidence for their numerical identification process. For ill-posed problems, convergence of

any numerical algorithm can be arbitrarily slow. Hence, results that give sufficient conditions

for convergence rates are not only of theoretical interest but also of practical importance, since

they tell the practitioners for which problems fast convergence of numerical algorithms can be

expected.

Starting from [16], [4], [11] and [12], there exists a large amount of literature on the

convergence theory including stability and convergence rate estimates for the Tikhonov

regularization method for nonlinear ill posed problems. Below we briefly summarize the

existing general theory and our new contribution in this paper.

Consider the nonlinear ill posed equation

F(q) = u (1.4)

where F : K ⊂ Q → U is a nonlinear mapping between the Hilbert spaces Q and U , and

K is some admissible set of the parameters. The output least-squares method with Tikhonov

regularization is then formulated as follows:

min
q∈K

‖F(q)− uδ‖2
U + β‖q − q∗‖2

Q. (1.5)

Here q∗ is some a priori estimate of the true parameter q, and uδ is the observed data of u with

a measurement error of level δ, that is,

‖u− uδ‖U � δ.

For stability (with fixed β > 0) and convergence (with β → 0) to a solution q† of (1.4), which

is closest to the a priori estimate q∗, the ‘weak closedness’ of F is needed:

qn ⇀ q and F(qn) ⇀ u imply F(q) = u. (1.6)

Moreover, if F is Fréchet differentiable and its Fréchet derivative F ′ is Lipschitz continuous

with Lipschitz constant L, and there exists a w ∈ U such that the so-called ‘source condition’

q† − q∗ = F ′(q†)∗w (1.7)

holds and such a w is small enough, i.e.

L‖w‖U < 1, (1.8)

then the regularized minimizers qδβ of (1.5) converge to q† with the rate δ1/2 when β is chosen

proportional to the noise level δ:

‖qδβ − q†‖Q = O(
√
δ). (1.9)

The source condition (1.7) is usually some type of a priori smoothness condition. In the

seminorm-regularization case, i.e.

min
q∈K

‖F(q)− uδ‖2
U + β‖D(q − q∗)‖2

Z (1.10)



Parameter identification in heat conduction 1909

with D : domD → Z being a linear operator and Z a Hilbert space, the source condition (1.7)

takes the form (cf [11])

D∗D(q† − q∗) = F ′(q†)∗w, (1.11)

while the smallness condition (1.8) becomes

L‖w‖U < κ2 (1.12)

with κ being the lower bound given by

‖F ′(q†)q‖2
U + ‖Dq‖2

Z � κ2(‖q‖2
Q + ‖Dq‖2

Z), ∀ q ∈ domD.

This general theory has been applied to some specific inverse problems including parameter

identifications (see [4, 11] and [3, section 10.5] for elliptic problems and integral equations

and [15] for a parabolic equation identifying the capacity parameter). All these applications

are for one-dimensional problems. However, the restrictive conditions required by the general

convergence theory do not hold for our currently considered d-dimensional (d � 1) heat

conduction problem because of the general weak settings adopted here. Even if one supposes

the general theory applies, the source conditions (1.7) and (1.11) will be too complicated to

lead to some reasonable geometric interpretation. The main difficulty is that there is no clear

understanding of the derivative F ′(q) of the parameter-to-solution map and its adjoint F ′(q)∗,

since they often have no physical meanings, unlikeF(q) itself. Most importantly, the smallness

conditions (1.8) and (1.12) for the source function appear to be extremely restrictive.

The main contribution of this paper is to introduce some new techniques to avoid the

use of those restrictive requirements in the general convergence theory, e.g. the Fréchet

differentiability of F(q) and the uniform Lipschitz continuity of the Fréchet derivative F ′(q).

With the new techniques, most surprisingly, we are able to formulate a much simpler source

condition and to get rid of the smallness condition for the source function. Moreover, our source

condition will use the parameter-to-solution map F(q) itself, instead of its derivative F ′(q)

and the adjoint F ′(q)∗, and so can be interpreted much more easily. The key to this is that we

use a modified kind of adjoint which is intimately related to the weak form of (1.1). For the first

time one can even explicitly find a source function w for the one-dimensional case (section 7).

All this still ensures that we preserve the usual convergence rate O(
√
δ) under much weaker

and more realistic conditions. We will remark that this new theory can be applied to many

other inverse problems including elliptic and parabolic problems with nonlinear source terms

or nonlinear heat conductivity parameters, and to the case with measurements on a subdomain

of �.

2. Output least-squares formulation with Tikhonov regularization

In this section we formulate the output least-squares method with Tikhonov regularization for

the identification of the heat conductivity in the system (1.1)–(1.3) in our new setting. First by

integration by parts we can immediately derive the variational formulation for (1.1)–(1.3).

Find u ∈ L2(0, T ;H 1
0 (�)) ∩ H 1(0, T ;H−1(�)) such that u(x, 0) = u0(x) for x ∈ �

and
∫

�

ut ϕ dx +

∫

�

q(x)∇u · ∇ϕ dx =
∫

�

f (x, t) ϕ dx, ∀ϕ ∈ H 1
0 (�) (2.1)

for a.e. t ∈ (0, T ). For our subsequent analysis, we may often use the notation u(q) to denote

the solution of (2.1) in the case where we want to emphasize the dependence of u on the

parameter q.
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Assume that we are given some terminal status observation data z(x, t) of the solution

u(x, t), either in gradient form or in pointwise form. Then the inverse problem to be studied

in this paper is to identify the heat conductivity q(x) using the observation data z(x, t) (cf

e.g. [10]).

We now formulate the output least-squares method with Tikhonov regularization for the

identification process. Let σ > 0 be a very small time period, and Qσ = � × [T − σ, T ].

We will consider the following constrained set of parameters, in which we will search for the

desired unknown parameter:

K = {q ∈ H 1(�);α1 � q(x) � α2 for a.e. x ∈ �}, (2.2)

where α1 and α2 are two positive constants. We consider the following two cases of terminal

observations.

Case (a). The terminal status observation data of u(x, t) is available in a gradient form:

∇z(x, t) = ∇u(x, t), (x, t) ∈ Qσ . This means the distributed measurements of temperature

gradients (it can be replaced by the heat flux −q∇u) are available. Then we use the following

regularized output least-squares formulation for the parameter identification process:

min
q∈K

J1(q) :=
∫ T

T−σ

∫

�

q(x) |∇(u(q)− z)|2 dx dt + β

∫

�

|∇(q − q∗)|2 dx (2.3)

with u(q) solving the problem (2.1). Here the energy norm is used as measurement norm.

Case (b). The terminal status observation data of u(x, t) is available in a pointwise form:

z(x, t) = u(x, t), (x, t) ∈ Qσ . Then we use the L2-norm as the measurement norm and

formulate the regularized parameter identification problem as

min
q∈K

J0(q) :=
∫ T

T−σ

∫

�

q(x) |u(q)− z|2 dx dt + β

∫

�

|∇(q − q∗)|2 dx (2.4)

with u(q) solving the problem (2.1).

In both cases (a) and (b) above, q∗ ∈ H 1(�) is an a priori estimate of the true parameter q

(to be identified). Note that q∗ need not be in the constraint set K . As will be discussed below,

q∗ plays the role of a selection criterion, i.e. if q is not unique, the choice of q∗ influences

which of the possible parameters is approximated.

Note that, in both cases, we use the unknown parameter q as a weight in the measurement

norm, this requiring more accuracy in the residual u(q) − z (resp. ∇(u(q) − z)), where the

parameter is large. This approach has given good numerical results (cf [8,9]). As one can see

from the proofs in sections 5 and 6, the results about convergence rates remain unchanged if

this weight q is omitted or replaced by q2, although the regularized solutions (the minimizers

of (2.3) or (2.4)) are different. The factor q2 would be appropriate in (2.3) if the available data

were the heat flux −q∇u.

In both cases, we use an H 1-seminorm for regularization. Remarks about the use of other

regularization norms will be made in section 8.

Later on, we will always use q† ∈ K to denote a solution such that ∇u(q†)(x, t) =
∇z(x, t), (x, t) ∈ Qσ in case (a), or u(q†)(x, t) = z(x, t), (x, t) ∈ Qσ in case (b). We

remark that q† may not exist; even if it exists it may not be unique. We will always assume,

however, that such a ‘true parameter’ q† exists, i.e. that the exact data ∇z or z are attainable.

By some abuse of notation (since we do not use a norm for regularization), we call such a q†

which minimizes ‖∇(q† −q∗)‖ among all admissible parameters a ‘q∗-MNS (minimum-norm

solution)’ (cf [4]). Under the attainability assumption, a q∗-MNS always exists, which is a

consequence of lemma 4.1 below.
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In practical applications, the available observation data z(x, t), (x, t) ∈ Qσ of the solution

u(x, t) always contain some measurement error. So the actual available data are of the form

zδ(x, t) := z(x, t) + noise.

We will denote by qδβ ∈ K a minimizer of the regularized problem (2.3) (or (2.4) respectively)

with z replaced by zδ .

While in [8] the regularized solutions were studied for fixed values of the regularization

parameter β > 0, we are here interested in the convergence behaviour of the regularized

solutions as β, δ → 0, where δ is assumed to be the noise level of the data of the form
∫ T

T−σ
‖∇u(q†)− ∇zδ‖2 dt � δ2 (2.5)

in case (a) and
∫ T

T−σ
‖u(q†)− zδ‖2 dt � δ2 (2.6)

in case (b). Here and below, " · " stands for the L2-norm, and the scalar product in L2(�) or

in L2(�)d will be denoted by (·, ·).
We remark that without information on the noise level, no convergent regularization

methods can be constructed (cf [3]).

3. Preliminaries

Unless otherwise specified, we will assume throughout the paper that

f ∈ L2(0, T ;H−1(�)) and u0 ∈ L2(�), (3.1)

whereQT = �×(0, T ), and� is a general Lipschitz domain inRd . With the assumptions, we

know from the standard parabolic theory that, for each q ∈ K , there exists a unique solution

u(q) to the variational problem (2.1) and that it has the following regularities:

u(q) ∈ L2(0, T ;H 1
0 (�)) ∩ L∞(0, T ;L2(�)).

We first quote a result from [8] about the existence of solutions to the minimization

problems (2.3) and (2.4).

Theorem 3.1. There exists at least one minimizer to the optimization problem (2.3) and (2.4),

respectively.

Now we present some auxiliary results related to the solution of the parabolic system (2.1),

which will play an essential role in the subsequent convergence analysis.

As opposed to the general convergence theory of Tikhonov regularization outlined in

section 1, we will not need the Fréchet differentiability of the ‘forward operator’ q → u(q)

and the Lipschitz continuity of the Fréchet derivative, which are not satisfied in the current case

due to our weak-smoothness assumptions on the given data and the physical domain. Instead

we need only the Gateaux directional differential u′(q)p. The estimate of the remainder term

u(p + q)− u(q)− u′(q)p, which is estimated through the definition of the Fréchet derivative

and its Lipschitz continuity in the general theory, will be carried out in a completely different

manner here (cf sections 5 and 6).

For any q ∈ K andp ∈ H 1(�), u′(q) p ∈ L2(0, T ;H 1
0 (�))∩H 1(0, T ;H−1(�)) satisfies

a homogeneous initial condition and solves
∫

�

(u′(q) p)t ϕ dx +

∫

�

q ∇(u′(q) p) · ∇ϕ dx = −
∫

�

p∇u(q) · ∇ϕ dx, ∀ϕ ∈ H 1
0 (�)

(3.2)
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for a.e. t ∈ (0, T ). For the remainder term r(q) := u(p + q) − u(q) − u′(q)p, we have the

following variational characterization.

Lemma 3.1. For any q ∈ K and p ∈ H 1(�) such that q + p ∈ K , the remainder

r(q) = u(q + p) − u(q) − u′(q) p belongs to L2(0, T ;H 1
0 (�)) ∩ H 1(0, T ;H−1(�)) and

solves
∫

�

r(q)t ϕ dx +

∫

�

q ∇r(q) · ∇ϕ dx=
∫

�

p∇(u(q)− u(q + p)) · ∇ϕ dx, ∀ϕ ∈ H 1
0 (�)

(3.3)

for a.e. t ∈ (0, T ).

Proof. By (2.1), u(q + p) satisfies
∫

�

u(q + p)t ϕ dx +

∫

�

(q + p)∇u(q + p) · ∇ϕ dx =
∫

�

f ϕ dx;

subtracting this from (2.1), we obtain
∫

�

(u(q + p)− u(q))t ϕ dx+

∫

�

q ∇(u(q + p)− u(q)) · ∇ϕ dx = −
∫

�

p∇u(q + p) · ∇ϕ dx.

Now (3.3) follows by subtracting (3.2) from the above equation. �

We now introduce a linear operatorF(q) : L2(0, T ;L2(�)d) → L2(�)which will appear

in our source condition: for any q ∈ K , F(q) is defined by

F(q)' := −
∫ T

T−σ
∇u(q) ·' dt ∀' ∈ L2(0, T ;L2(�)d) (3.4)

where u(q) is the solution of (2.1). Using the equation (3.2), we immediately see that for any

p ∈ H 1(�) and any

φ ∈ H 1(T − σ, T ;L2(�)) ∩ L2(T − σ, T ;H 1
0 (�)),

the following holds:

(F (q)∇φ, p) = −
∫ T

T−σ

∫

�

p∇u(q) · ∇φ dx dt

=
∫ T

T−σ

∫

�

{(u′(q) p)t φ + q ∇(u′(q) p) · ∇φ} dx dt. (3.5)

As we will explain in section 8, (3.5) is used to define a problem-adapted adjoint for our source

condition.

In our analysis below, we will make use of an adjoint operator ∇∗ of ∇ defined by

(∇∗w, ϕ)L2(�) = (w,∇ϕ)L2(�)d ∀w ∈ L2(�)d , ϕ ∈ H 1(�). (3.6)

Note that we consider ∇ as a unbounded densely defined operator from L2(�) into L2(�)d

and thus ∇∗ is also a unbounded operator from L2(�)d into L2(�). As in (1.11), we will

also use ∇∗∇ψ , which would normally be defined only for ψ ∈ H 2(�) fulfilling appropriate

boundary conditions; e.g., for � = (0, 1), the domain of ∇∗∇ would be

{ϕ ∈ H 2(0, 1);ϕ′(0) = ϕ′(1) = 0}.
However, we will only need a weak form of ∇∗∇. Our source condition assumes the existence

of an H 1-function φ (cf sections 5 and 6) such that

F(q†)∇φ = ∇∗∇(q† − q∗) (3.7)
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holds; normally, this would require that q† − q∗ ∈ H 2(�). However, our proofs need only the

following weak form:

(F (q†)∇φ,ψ) = (∇(q† − q∗),∇ψ) ∀ψ ∈ H 1(�). (3.8)

This condition makes sense also for q† − q∗ ∈ H 1(�). Such considerations are important

since we aim at conditions for convergence that need as little a priori smoothness as possible.

Note that the test function ψ in (3.8) can be a constant, and this implies

(F (q†)∇φ, 1) = 0. (3.9)

By analysis of which functionψ (3.8) is actually needed in our proofs, we will discuss a variant

of (3.8) that does not imply (3.9) in section 7.

4. Stability and convergence without rates

In this section we study the stability and the convergence of the Tikhonov regularization

methods (2.3) and (2.4) without rates. In sections 5 and 6, we will derive the convergence

rates.

We now first show that solving the regularized problems (2.3) and (2.4), respectively, is

indeed a regularization in the sense of continuous dependence of the solutions qδβ on the data

∇zδ and zδ , respectively. Since neither the regularized solutions nor the q∗-MNS are in general

unique, convergence here is always to be understood in a multi-valued sense.

The following lemma from [8] replaces the weak closedness used in the general

convergence theory.

Lemma 4.1. For any sequence {qn} inK which converges to some q ∈ K inL2(�) as n → ∞,

we have (for a subsequence) u(qn) ⇀ u(q) in L2(0, T ; H 1
0 (�)) and

lim
n→∞

∫ T

T−σ

∫

�

qn |∇(u(qn)− z)|2 dx dt =
∫ T

T−σ

∫

�

q |∇(u(q)− z)|2 dx dt.

Now, for the energy-norm formulation (2.3) of the regularized problem, we obtain the

following.

Theorem 4.1. For any β > 0, let {∇zn} be a sequence such that ∇zn → ∇zδ in

L2(T − σ, T ;L2(�)), and {qn} be minimizers of the problem (2.3) with ∇zδ replaced by

∇zn. Then there exists a subsequence of {qn} that converges in H 1(�), and the limit of every

such convergent subsequence is a minimizer of (2.3).

Proof. By definition of {qn}, we have
∫ T

T−σ

∫

�

qn |∇u(qn)− ∇zn|2 dx dt + β

∫

�

|∇qn − ∇q∗|2 dx

�

∫ T

T−σ

∫

�

q |∇u(q)− ∇zn|2 dx dt + β

∫

�

|∇q − ∇q∗|2 dx, ∀q ∈ K,

from which we know that {"∇qn"} and {
∫ T

T−σ "∇u(qn)"2 dt} are bounded. Since qn ∈ K ,

the L2-norms of qn are also bounded, so {qn} is bounded in H 1(�). Hence there exists a

subsequence (again denoted by {qn}) such that qn → q̄ in L2(�) and

qn ⇀ q̄ in H 1(�) and u(qn) ⇀ ū in L2(T − σ, T ;H 1
0 (�)).



1914 H W Engl and J Zou

Using lemma 4.1, we obtain ū = u(q̄) and

lim
n→∞

∫ T

T−σ

∫

�

qn |∇u(qn)− ∇zn|2 dx dt =
∫ T

T−σ

∫

�

q̄ |∇u(q̄)− ∇zδ| dx dt. (4.1)

Using this with ∇zn → ∇zδ , we derive

J1(q̄) =
∫ T

T−σ

∫

�

q̄ |∇u(q̄)− ∇zδ|2 dx dt + β

∫

�

|∇q̄ − ∇q∗|2 dx

� lim inf

{ ∫ T

T−σ

∫

�

qn |∇u(qn)− ∇zn|2 dx dt + β

∫

�

|∇qn − ∇q∗|2 dx

}

� lim sup

{ ∫ T

T−σ

∫

�

qn |∇u(qn)− ∇zn|2 dx dt + β

∫

�

|∇qn − ∇q∗|2 dx

}

� J1(q) ∀q ∈ K, (4.2)

therefore q̄ is a minimizer of (2.3).

We now prove that qn converges to q̄ strongly in H 1(�) by contradiction. Assume this is

not true; then, since qn ⇀ q̄ in H 1(�) and qn → q̄ in L2(�), ∇qn �→ ∇q̄. Since ∇qn ⇀ ∇q̄
in L2(�), by the weak lower semicontinuity of the norm, we have

"∇q̄ − ∇q∗" � lim inf
n→∞

"∇qn − ∇q∗" .

Hence,

µ := lim sup
n→∞

"∇qn − ∇q∗"2 > "∇q̄ − ∇q∗"2,

which implies that there exists a subsequence {qm} such that

lim
m→∞

"∇qm − ∇q∗"2 = µ; (4.3)

but from (4.2), we know by taking q = q̄ that

lim
m→∞

{ ∫ T

T−σ

∫

�

qm |∇u(qm)− ∇zm|2 dx dt + β

∫

�

|∇qm − ∇q∗|2 dx

}

=
∫ T

T−σ

∫

�

q̄ |∇u(q̄)− ∇zδ|2 dx dt + β

∫

�

|∇q̄ − ∇q∗|2 dx.

Combining this with (4.3), we obtain

lim
m→∞

∫ T

T−σ

∫

�

qm |∇u(qm)− ∇zm|2 dx dt

=
∫ T

T−σ

∫

�

q̄ |∇u(q̄)− ∇zδ|2 dx dt + β

( ∫

�

|∇q̄ − ∇q∗|2 dx − µ

)

<

∫ T

T−σ

∫

�

q̄ |∇u(q̄)− ∇zδ|2 dx dt,

which is a contradiction to (4.1). Thus, qn → q̄ in H 1(�). �

For the L2-norm formulation (2.4), we have the following stability result whose proof is

analogous to that of theorem 4.1.

Theorem 4.2. For any β > 0, let {zn} be a sequence in L2(T − σ, T ;H 1
0 (�)) such that

zn → zδ in L2(�), and {qn} be minimizers of (2.4) with zδ replaced by zn. Then there

exists a subsequence of {qn} that converges in H 1(�), and the limit of every such convergent

subsequence is a minimizer of (2.4).
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After these stability results, we end the section with the following general convergence

results of the Tikhonov regularization method for our problem.

Theorem 4.3. For any positive sequence {δk}, letβk := β(δk) be such thatβk → 0, δ2
k/βk → 0

as k → ∞, and zδk ∈ L2(T − σ, T ; H 1
0 (�)) satisfy (2.5) ((2.6)). Then the sequence {qδkβk }

formed by solutions of (2.3) ((2.4)), with z and β replaced by zδk and βk , has a subsequence

which converges in H 1(�). All limits of such convergent subsequences are minimizers of (2.3)

((2.4)) for β = 0 and they minimize "∇q − ∇q∗" among all such minimizers, i.e. they are

q∗-MNS of the problem for case (a) or (b) respectively.

Proof. We prove this only for the L2-norm formulation, i.e. case (b). The proof of case (a) is

similar.

As q
δk
βk

is a minimizer, we have J0(q
δk
βk
) � J0(q)∀ q ∈ K . By taking q = q† and using (2.6)

we obtain, with α1, α2 as in (2.2),

α1

∫ T

T−σ

∫

�

|u(qδkβk )− zδk |2 dx dt + βk ‖∇qδkβk − ∇q∗‖2
� α2 δ

2
k + βk ‖∇q† − ∇q∗‖2,

thus
∫ T

T−σ

∫

�

|u(qδkβk )− zδk |2 dx dt → 0 as k → ∞,

which with (2.6) implies

u(q
δk
βk
) → z in L2(T − σ, T ;L2(�)) (4.4)

and

lim sup
k→∞

‖∇qδkβk − ∇q∗‖ � ‖∇q† − ∇q∗‖. (4.5)

Therefore {qδkβk } is bounded in H 1(�) and there exists a subsequence, again denoted by {qδkβk },
such that

q
δk
βk
⇀ q̄ in H 1(�), q

δk
βk

→ q̄ in L2(�) as k → ∞.

By lemma 4.1,

u(q
δk
βk
) ⇀ u(q̄) in L2(0, T ; H 1

0 (�)),

which with (4.4) shows that u(q̄) = z for a.e. t ∈ [T −σ, T ], so that q̄ is a minimizer of (2.4)

with β = 0. By the weak lower semicontinuity of the norm and the fact that ∇qδkβk ⇀ ∇q̄ in

L2(�),

"∇q̄ − ∇q∗" � lim inf
k→∞

‖∇qδkβk − ∇q∗‖,

which implies with (4.5) that q̄ is a q∗-MNS.

We next show that q
δk
βk

converges to q̄ strongly in H 1(�). Similar to (4.5), by using

J0(q
δk
βk
) � J0(q̄) we obtain that

lim sup
n→∞

‖∇qδkβk − ∇q∗‖ � ‖∇q̄ − ∇q∗‖.

This along with the identity

‖∇qδkβk − ∇q̄‖2 = ‖∇qδkβk − ∇q∗‖2 + ‖∇q∗ − ∇q̄‖2 + 2 (∇qδkβk − ∇q∗,∇q∗ − ∇q̄)

yields lim supk→∞ ‖∇qδkβk −∇q̄‖2 � 0.Hence, ‖∇qδkβk −∇q̄‖ → 0 as k → ∞, which completes

the proof. �
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5. Convergence rates for energy-norm formulation

For the convergence rate in the energy-norm formulation (2.3), the following theorem

summarizes our main result.

Theorem 5.1. Assume that there exists a function

φ ∈ H 1
0 (T − σ, T ;L2(�)) ∩ L2(T − σ, T ;H 1

0 (�))

such that the following source condition holds (in the weak sense, see (3.8)):

F(q†)∇φ = ∇∗∇(q† − q∗) (5.1)

with F(q†) defined by (3.4). Then, with β ∼ δ, we have

"∇qδβ − ∇q†" = O(
√
δ) (5.2)

and
∫ T

T−σ
"∇u(qδβ)− ∇u(q†)"2 dt = O(δ2). (5.3)

Proof. As qδβ is a minimizer of (2.3), we have J1(q
δ
β) � J1(q

†), which with (2.5) implies (with

α1, α2 as in (2.2))

α1

∫ T

T−σ
"∇u(qδβ)− ∇zδ"2 dt + β "∇(qδβ − q∗)"2

� α2 δ
2 + β "∇(q† − q∗)"2,

from which we obtain

α1

∫ T

T−σ
"∇u(qδβ)− ∇zδ"2 dt + β "∇(q† − qδβ)"

2

� α2 δ
2 + β "∇(q† − q∗)"2 + β{"∇(q† − qδβ)"

2 − "∇(qδβ − q∗)"2}
= α2 δ

2 + 2β (∇(q† − q∗),∇(q† − qδβ)). (5.4)

Using (5.1) and the relation (3.5), we deduce for the last term in (5.4) that

(∇(q† − q∗), ∇(q† − qδβ)) = (F (q†)∇φ, q† − qδβ)

=
∫ T

T−σ

∫

�

{(u′(q†)(q† − qδβ))t φ + q† ∇(u′(q†)(q† − qδβ)) · ∇φ} dx dt.

Now let

rδβ := u(qδβ)− u(q†)− u′(q†)(qδβ − q†); (5.5)

by lemma 3.1, rδβ ∈ H 1
0 (�). Using this notation, we obtain

β (∇(q† − q∗), ∇(q† − qδβ)) = −β
∫ T

T−σ

∫

�

(u(qδβ)− u(q†))t φ dx dt

+β

∫ T

T−σ

∫

�

{(rδβ)t φ + q† ∇rδβ · ∇φ} dx dt

−β
∫ T

T−σ

∫

�

q† ∇(u(qδβ)− u(q†)) · ∇φ dx dt =: (I)1 + (I)2 + (I)3. (5.6)

We next estimate (I)1, (I)2 and (I)3. First for (I)1, using integration by parts with respect

to t and the boundary condition, we derive

(I)1 = β

∫ T

T−σ

∫

�

(u(qδβ)− u(q†))φt dx dt;
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applying the Cauchy–Schwarz, the Poincaré and triangle inequalities, we obtain that

|(I)1| � C β

∫ T

T−σ
"∇(u(qδβ)− u(q†))" "φt" dt

� C β

∫ T

T−σ
"∇u(qδβ)− ∇zδ" "φt" dt + Cβ

∫ T

T−σ
"∇zδ − ∇u(q†)" "φt" dt.

Using (2.5) and Young’s inequality in the form

a · b � ε a2 +
b2

4 ε
(5.7)

for any ε > 0 yields

|(I)1| � Cε

∫ T

T−σ
"∇u(qδβ)− ∇zδ"2 dt +

Cβ2

2ε

∫ T

T−σ
"φt"

2 dt + C ε δ2.

To estimate (I)2, we use (3.3) to obtain

(I)2 = β

∫ T

T−σ

∫

�

(qδβ − q†)(∇u(q†)− ∇u(qδβ)) · ∇φ dx dt.

Then using the Cauchy–Schwarz and Young’s inequalities, we obtain

|(I)2| � β

∫ T

T−σ
"∇u(q†)− ∇zδ" "(qδβ − q†)∇φ" dt

+β

∫ T

T−σ
"∇zδ − ∇u(qδβ)" "(qδβ − q†)∇φ" dt

� ε δ2 +
2β2α2

2

ε

∫ T

T−σ
"∇φ"2 dt + ε

∫ T

T−σ
"∇zδ − ∇u(qδβ)"

2 dt,

where we have used the boundedness of qδβ and q† in K .

Finally we estimate (I)3: we have

|(I)3| � α2β

∫ T

T−σ
"∇u(qδβ)− ∇zδ" "∇φ" dt + α2β

∫ T

T−σ
"∇zδ − ∇u(q†)" "∇φ" dt

� εα2
2δ

2 +
β2

2ε

∫ T

T−σ
‖∇φ‖2 dt + εα2

2

∫ T

T−σ
"∇u(qδβ)− ∇zδ"2 dt.

Substituting the above estimates for (I)1, (I)2 and (I)3 into (5.4) and (5.6) we obtain

α1

∫ T

T−σ
"∇u(qδβ)− ∇zδ"2 dt + β "∇(q† − qδβ)"

2

� 2ε(C + 1 + α2
2)

∫ T

T−σ
"∇u(qδβ)− ∇zδ"2 dt

+
Cβ2

ε

∫ T

T−σ
"φt"

2 dt + 2ε(C + 1 + α2
2)δ

2 + β2

∫ T

T−σ
"∇φ"2 dt ·

[

4α2
2

ε
+

1

ε

]

.

Now (5.2), (5.3) follows immediately by taking ε such that 4ε(C + 1 +α2
2) = α1 and β ∼ δ. �

Remark 5.1. The source condition (5.1) will be discussed in section 7. Here we only remark

that no smallness condition on the source function φ is needed to ensure the same convergence

rate as in the existing general theory. This is one of the big advantages of the new theory over

the existing one. This advantage also carries over to the L2-norm formulation in section 6.
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6. Convergence rates for L
2-norm formulation

We now carry over the convergence results of section 5 to the L2-norm formulation (2.4). The

next theorem summarizes our main results.

Theorem 6.1. Assume that there exists a function

φ ∈ H 1
0 (T − σ, T ;L2(�)) ∩ L2(T − σ, T ;H 1

0 (�)) (6.1)

such that (5.1) holds. Furthermore, assume that

φ ∈ L2(T − σ, T ;W 1,∞(�)) and 2φ ∈ L2(T − σ, T ; L2(�)). (6.2)

Then, with β ∼ δ, we have the estimates (5.2) and
∫ T

T−σ
"u(qδβ)− u(q†)"2 dt = O(δ2). (6.3)

Proof. Using the same techniques as used in deriving (5.4)–(5.6), we obtain

α1

∫ T

T−σ
"u(qδβ)− zδ"2 dt + β "∇(q† − qδβ)"

2
� α2 δ

2 + 2β (∇(q† − q∗), ∇(q† − qδβ)) (6.4)

and

β (∇(q† − q∗), ∇(q† − qδβ)) = −β
∫ T

T−σ

∫

�

(u(qδβ)− u(q†))t φ dx dt

+β

∫ T

T−σ

∫

�

{(rδβ)t φ + q† ∇rδβ · ∇φ } dx dt

−β
∫ T

T−σ

∫

�

q† ∇(u(qδβ)− u(q†)) · ∇φ dx dt =: (II)1 + (II)2 + (II)3. (6.5)

Note that (6.5) is still the same as (5.6), but we now have to estimate the terms differently,

since we have to aim at
∫ T

T−σ "u(qδβ)− zδ"2 dt instead of
∫ T

T−σ "∇(u(qδβ)− zδ)"2 dt .

First the term (II)1 can be bounded readily by means of integration by parts with respect

to t and Young’s inequality (5.7):

|(II)1| � ε

∫ T

T−σ
"u(qδβ)− zδ"2 dt +

β2

2ε

∫ T

T−σ
"φt"

2 dt + εδ2,

while (II)3 can be estimated similarly using integration by parts with respect to x and the

Cauchy–Schwarz and Young inequalities:

|(II)3| = β

∣

∣

∣

∣

∫ T

T−σ

∫

�

(u(qδβ)− u(q†))∇ · (q†∇φ) dx dt

∣

∣

∣

∣

� ε

∫ T

T−σ
"u(qδβ)− zδ"2 dt + ε δ2 +

β2

2ε

∫ T

T−σ
"∇ · (q†∇φ)"2 dt.

What remains is to bound (II)2. As for the treatment of (I)2 in the proof of theorem 5.1 we

obtain with integration by parts with respect to x that

(II)2 = −β
∫ T

T−σ

∫

�

(qδβ − q†)(∇u(qδβ)− ∇u(q†)) · ∇φ dx dt

= −β
∫ T

T−σ

∫

�

(u(qδβ)− u(q†))∇ · ((qδβ − q†)∇φ) dx dt.
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Using Young’s inequality again, we obtain

|(II)2| � ε δ2 +
β2

2ε

∫ T

T−σ
"∇ · ((qδβ − q†)∇φ)"2 dt + ε

∫ T

T−σ
"u(qδβ)− zδ"2 dt.

The second term in this bound can be further estimated:

β2

2ε

∫ T

T−σ

∫

�

|∇ · ((qδβ − q†)∇φ)|2 dx dt

=
β2

2ε

∫ T

T−σ

∫

�

|∇(qδβ − q†) · ∇φ + (qδβ − q†)2φ|2 dx dt

� β "∇(qδβ − q†)"2

{

β

ε

∫ T

T−σ
‖∇φ‖2

L∞(�) dt

}

+
β2

ε

∫ T

T−σ
‖2φ‖2

L2(�)
dt.

Now the desired results of theorem 6.1 follow immediately by substituting (II)1, (II)2 and

(II)3 into (6.5), taking ε such that 6ε = α1, and then taking β small enough so that
β

ε

∫ T

T−σ "∇φ"2
L∞(�) dt < 1. �

7. Discussion of the source condition

First, we note that due to theorem 4.3, the parameter q†, to which the regularized solutions in

theorems 5.1 and 6.1 converge, must be a q∗-minimum norm solution q†. There might be more

than one q∗-MNS, but only one (up to a constant, cf (5.2)) can fulfil the source conditions of

theorems 5.1 and 6.1, respectively.

The crucial assumption in our results on the convergence rates (theorems 5.1 and 6.1) is

the existence of a source function

φ ∈ H 1
0 (T − σ, T ;L2(�)) ∩ L2(T − σ, T ;H 1

0 (�)) (7.1)

(with the additional assumption (6.2) for theorem 6.1) such that
∫ T

T−σ
∇u(q†) · ∇φ dt = ∇∗∇(q∗ − q†) (7.2)

holds in the weak form (3.8), i.e.
∫ T

T−σ
(p∇φ, ∇u(q†)) dt = (∇(q∗ − q†), ∇p), ∀p ∈ H 1(�). (7.3)

This requires only the regularity that q∗ and q† are both in H 1(�), so the source condition

does not impose or require any more regularity on q∗ and q†. This is quite remarkable.

As mentioned in section 3, (7.3) (or (3.8)) has an extra implication for constant functions

(see (3.9)). The following alternative is possible. As the proofs of theorems 5.1 and 6.1

show, (7.3) is actually needed only for ψ = q† − qδβ . Hence, if we assume we know q† e.g.

on an open subset Ŵ of ∂�, then we can incorporate this knowledge into the admissible set

K (see (2.2)), which would imply that q† − qδβ = 0 on Ŵ. Therefore, (7.3) would have to

be required only for p in the space {p ∈ H 1(�);p = 0 on Ŵ}. If we do this, the Poincaré

inequality then implies with theorems 5.1 and 6.1 the full H 1-norm error estimate

‖qδβ − q†‖H 1(�) = O(
√
δ).

Comparing with the usual source condition (1.11), another advantage of the new source

condition (7.2) lies in its simple and clear interpretation. The derivative u′(q†) and its

adjoint u′(q†)∗ used in (1.11) are usually very difficult to comprehend. Instead, the new
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condition (7.2) uses the parameter-to-solutionu(q†) itself, which has a direct physical meaning.

The condition (7.2) indicates that one has to know the true parameter q† in a region where

u(q†) is constant (∇u = 0) near the terminal status, which is compatible with the fact that in

such regions the true q† is not identifiable. Except in the region where ∇u vanishes, one does

not necessarily require very accurate information on the true parameter, including locations

near isolated critical points of the solution u(q†).

So far, source conditions could at best be interpreted in the sense that they gave

some information on smoothness and boundary behaviour of the exact solutions needed for

convergence rates (cf [3]). Therefore, we consider it also remarkable that we can now even

construct functions φ such that our new source condition is fulfilled at least for the one-

dimensional case under a quite natural condition to be explained in remark 7.1.

Lemma 7.1. Let � = (0, 1) and u be a given function defined on � × (T − σ, T ). Assume

that ψ1, ψ2 ∈ H 1(T − σ, T ) and φ1 ∈ H 1(�) are three arbitrary functions. Define

w(x) := u1(x){(1 − 2x)φ1(x) + (x − x2) φ′
1(x)},

ui(x) :=
∫ T

T−σ
(T − t)(T − σ − t) ux(x, t) ψi(t) dt, i = 1, 2.

Moreover, we assume that

q − w

u2

∈ L2(0, 1) and

∫ 1

0

q(x)− w(x)

u2(x)
dx = 0 (7.4)

for some given function q(x). Then the equation
∫ T

T−σ
ux(x, t) φx(x, t) dt = q(x) ∀x ∈ (0, 1) (7.5)

has the following solutions:

φ(x, t) := (T − t)(T − σ − t)

{

(x − x2) φ1(x)ψ1(t) + ψ2(t)

∫ x

0

q(ξ)− w(ξ)

u2(ξ)
dξ

}

, (7.6)

and (7.1) holds.

Proof. By definition,

φ(x, T ) = φ(x, T − σ) = 0 ∀x ∈ �

and

φ(0, t) = φ(1, t) = 0 ∀t ∈ (T − σ, T ),

so φ fulfils the boundary conditions required by (7.1) for both t and x. To show that φ

satisfies (7.5), we make the simple calculation

φx(x, t) = (T − t)(T − σ − t)

{

(1 − 2x)φ1(x) ψ1(t) + (x − x2)φ′
1(x)ψ1(t)

+ψ2(t)
q(x)− w(x)

u2(x)

}

,

from which and the definitions of w and u2 we derive
∫ T

T−σ
ux(x, t) φx(x, t) dt = {(1 − 2x)φ1(x) + (x − x2)φ′

1(x)}u1(x) + {q(x)− w(x)} = q(x).

Finally, we can easily verify that

φx, φt ∈ L2(T − σ, T ; L2(�)),

which completes the proof of lemma 7.1. �
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Remark 7.1. Lemma 7.1 provides a general way of constructing solutions φ for the

equation (7.2) in the case d = 1. For any ψ1, ψ2 ∈ H 1(T − σ, T ) with ψ1 �= ψ2 satisfying

(with ui defined by lemma 7.1)
∫ 1

0

(1 − 2x)u1(x)

u2(x)
�= 0, (7.7)

we can find a constant γ0 such that

γ0

∫ 1

0

(1 − 2x) u1(x)

u2(x)
dx =

∫ 1

0

q(x)

u2(x)
dx;

then choose φ1(x) ≡ γ0. This results in
∫ 1

0

q(x)− w(x)

u2(x)
dx = 0,

and φ as defined in (7.6) is the required solution of (7.2) provided that q−w
u2

∈ L2(0, 1), which

is the only remaining condition. This condition seems natural: it contains an expression

involving ux in the denominator; if ux vanishes in a subregion of � near the final time t = T ,

it would be impossible to determine q there.

8. Variants and extensions

The results achieved in this paper are still in the infinite-dimensional setting, unrealistically

assuming that we have distributed measurements of u or ∇u. Of course, in reality only discrete

measurements are available, which requires us to extend the theory by adding discretization in

solving the forward problem and in approximating the unknown parameter. For fixed β > 0,

this has been considered in [8]; for β → 0 we could proceed by combining our arguments

with those in [12, 13].

Both (2.3) and (2.4) involve gradients in the regularization term. Instead, we could also

consider L2-regularization, i.e.

min
q∈K

J (q) :=
∫ T

T−σ

∫

�

q(x)|(∇)(u(q)− zδ)|2 dx dt + β

∫

�

|q − q∗|2 dx. (8.1)

Results corresponding to theorems 5.1 and 6.1 can be proven in a completely analogous way,

where ∇∗∇(q† − q∗) in (5.1) is replaced by (q† − q∗), and "∇qδβ − ∇q†" in (5.2) is replaced

by "qδβ − q†". For the analogue of theorem 6.1, we would need to incorporate an a priori

bound on |∇q| to take care of the term β "∇(qδβ − q†)"2 on the right-hand side of the estimate

for (II)2 in the proof.

The existence of minimizers of (8.1) cannot be guaranteed by theorem 3.1. This difficulty

could either be resolved by using some weak-closedness argument or circumvented by

incorporating a tolerance η into the minimization, i.e. replacing minimizers of (8.1) by elements

qδβ,η ∈ K such that

J (qδβ,η) � inf
q∈K

J (q) + η;

as long as η = O(δ2), all proofs carry over. This can of course also be done for (2.3) and (2.4).

The main purpose of this paper was, instead of applying the general theory of Tikhonov

regularization to our problem, to develop a problem-adapted new approach which allows us to

prove results about convergence rates under much weaker conditions. Although we developed

this theory for a specific problem, there is a general structure behind our new approach which



1922 H W Engl and J Zou

we will outline now; we proceed only in a formal way without precise assumptions and omit, for

simplicity of notation, the integration over [T − σ, T ] in our observations (cf e.g. (2.3)–(2.6)).

Our direct (forward) problem corresponding to (2.1) has the abstract form

〈ut , ψ〉 + B(N(q, u), ψ) = 〈f,ψ〉 ∀ψ ∈ H, (8.2)

where H is a Hilbert space with inner product 〈, 〉, B(·, ·) is a bilinear form on H and N is

possibly nonlinear.

The linearization u′(q) of u with respect to q has the weak form

〈(u′(q)p)t , ψ〉 + B(Nu(q, u(q))u
′(q)p,ψ) = −B(pNq(q, u(q)), ψ) (8.3)

as can be seen by implicit differentiation of (8.2). The classical source condition corresponding

to (1.7) would be to require the existence of a φ with

q† − q∗ = u′(q†)∗φ (8.4)

or in weak form

〈q† − q∗, ψ〉 = 〈φ, u′(q†)ψ〉 (8.5)

for allψ . This is used in a crucial step of the convergence-rates proof (cf [4] or [3, theorem 10.4])

as follows:

〈q† − q∗, q† − qδβ〉 = 〈u′(q†)∗φ, q† − qδβ〉 = 〈φ, u′(q†)(q† − qδβ)〉.

In the analogous step in the proofs of theorems 5.1 and 6.1, we used (5.1) instead, which

corresponds to

〈q† − q∗, ψ〉 = −B(ψNq(q
†, u(q†)), φ) = 〈(u′(q†)ψ)t , φ〉 + B(Nu(q

†, u(q†))u′(q†)ψ, φ)

with ψ = q† − qδβ , where the first equality is the abstract version of the source condition

requiring the existence of a φ such that

〈q† − q∗, ψ〉 = −B(ψNq(q
†, u(q†)), φ) (8.6)

holds for all ψ , or in the case of seminorm-regularization (1.10),

〈D(q† − q∗),Dψ〉 = −B(ψNq(q
†, u(q†)), φ). (8.7)

The coupling of the source condition with the weak form (8.3) of the linearized equation is

crucial. For our concrete problem, where the bilinear form B is

B(v,ψ) := (v,∇ψ) (8.8)

and the nonlinear operator N is

N(q, u) := q∇u, (8.9)

this can be seen in (3.5): the last expression there, considered as a linear operator acting on p,

can be viewed as an adjoint of u′(q), not with respect to the standard inner product but with

respect to the bilinear form (3.2).

To proceed with the convergence-rate proof on this abstract level would now require

specific assumptions about the interplay of the bilinear form B with the nonlinearity N and

the operator D. For the case of B as in (8.8) and N(q, u) := q(u)∇u, i.e. the identification

of conductivity parameters q depending nonlinearly on u, see [14]. Also the theory can be

naturally adapted to the elliptic problems and the case with measurements on a subdomain of�.

We close by conjecturing that such a problem-adapted adjoint might also be of use for

constructing efficient iterative regularization methods for certain nonlinear ill posed problems,

since adjoints appear in virtually all such methods [7].
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