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Abstract

In this paper, we consider Maxwell’s equations in a general three-dimensional poly-
hedral domain composed of two dialectic materials with different physical parameters. A
finite volume method is derived to solve the problem, and a new approach is proposed to
handle the physical characteristics of the electromagnetic fields on the interface between
the two different materials. The approximate electromagnetic fields are shown to satisfy
the two divergence constraints at the discrete level. Numerical examples demonstrate
the efficiency of the finite volume method for solving Maxwell’s equations with discontin-
uous physical coefficients and the method can achieve the second order accuracy both in
space and time, the same accuracy as the existing finite volume methods for Maxwell’s
equations with smooth physical coefficients.

1 Introduction

Over past few decades, numerical methods for solving Maxwell’s equations in homogeneous
media have been well developed. Those methods include finite difference methods [7] [12],
finite volume methods [6] [9] [13], and finite element methods [3]. However, for many real
applications, such as aerospace design and target identification, one needs to solve Maxwell’s
equations in inhomogeneous media [4] [7] [11]. The aforementioned numerical methods are
either not directly applicable or inefficient (with lower order convergence) for these problems
due to different physical characteristics reflected by the electric permittivities and magnetic
permeabilities of different media, and the extra interface conditions the electric and magnetic
fields need to satisfy on the interface.

Several attempts have been made to handle the interface Maxwell’s problems [1] [11] [13].
For example, Yee and Chen [13] studied an FDTD/FVTD hybrid method for the interface
problem, assuming both the tangential components of the electric and magnetic fields are
continuous across the interface and the electric field is tangentially piecewise constant on the
interface. Chen, Du and Zou [1] proposed an edge finite element method for solving the
Maxwell’s system with very general inhomogeneous interface conditions from some important
physical laws and developed a general framework for its convergence analysis. In this paper,
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we present a new and simple approach to handle the general interface conditions by a finite
volume method. This method converges with a second order accuracy as it is for non-interface
problems, and also satisfies two constraint equations at the discrete level.

2 Maxwell’s Equations

We next introduce the Maxwell’s equations in a physical domain € occupied by two different
dialectic materials. We shall consider €2 to be a general polyhedral domain. Let E and H be
the electric and magnetic fields respectively, then the full Maxwell’s equations are given by

¢€E; —curlH = J in Qx (0

pHy+curlE = 0 in Qx(0,7)
div(eE) = p in Qx(0,7),
div(gH) = 0 in Qx (0,7)

Here J(z,t) is the known applied current density and p(z,t) is the charge density. Let Q; be
a polyhedral region lying strictly inside (2. We denote its boundary by I' = 0{2; and the unit
outward normal on I' by m, and let €2, = Q\Ql. Assume that ©; and €2, are occupied by two
different dialectic materials, so the parameters € and p are discontinuous across the interface
I'. For the ease of notation, we consider the case that € and p are piecewise constant functions
in Q, i.e., e = ¢ and u = p; in Q; for i = 1,2. Here ¢; and p; are positive constants'. We
suppose the perfect conductor boundary condition:

Exn=0 on 00Qx(0,7) (2.5)

where n is the unit outward normal on 0€). Throughout the paper, the jump of any function
A across the interface T is defined as [A] := As|r — Ay, where A; = Alg, and Ay = Alq,. Tt
is known physically that the electric and magnetic fields E and H satisfy the following jump
conditions on the interface T
[Exm]=0 , [€E-m]=pr, (2.6)
Hxm]|=Jr , [pH-m]=0,

where pr(x,t) is the surface charge density while Jy(z,¢) is the surface current density. In
addition, we have the following constitutive relations

D=¢E, B=_/H, (2.8)

where D and B are the electric and magnetic flux densities respectively.

'Our subsequent numerical method can be easily generalized to the case that the parameters e and u are
both piecewise smooth functions



3 Discrete vector fields

We now discuss the triangulation of the domain 2. Most notations used below are borrowed
from Nicolaides, Wang and Wu [8] [9] [10], where a finite volume method was proposed for
solving Maxwell’s equations with continuous coefficients, i.e., non-inferface problems. We will
use the Voronoi-Delaunay triangulation, which has some useful properties that allow us to
derive a second order numerical scheme in the subsequent sections.

We first triangulate €2 by using the standard tetrahedral elements, which are called the
primal elements. This triangulation is chosen so that the faces of the primal elements align
with the interface I'. A primal element with as least one face lying on T is called an interface
primal element. Similarly, a primal face (edge) lying on I' is called an interface primal face
(edge ). We assume that all dihedral angles of each tetrahedron are acute.

The dual elements are formed by connecting the circumcenters of adjacent primal elements.
It is easy to see that all dual elements are convex polyhedra with convex polygonal faces. Note
that there are some dual elements (faces and edges), which are separated by the interface
[" into two parts. These are called the interface dual elements (faces and edges). By the
geometrical knowledge, we know the following relations between the primal and dual meshes.
First, each primal edge is perpendicular to and in one-to-one correspondence with a dual face.
Secondly, each dual edge is perpendicular to and in one-to-one correspondence with a primal
face. These relations are the key to the derivation of our numerical schemes.

Let N and L be the numbers of primal and dual elements respectively, and F' be the number
of primal faces (dual edges) and M be the number of primal edges (dual faces). Assume
that these quantities are numbered sequentially in some order. The individual elements, faces,
edges and nodes of the primal mesh are denoted by 7;, x;, or and v; respectively. Those

quantities related to the dual mesh are denoted by the primed forms such as 77,

Ky, 0}, and
v,. A direction is assigned to each primal and dual edge by the rule that positive direction
is from low to high node number. Direction is also assigned to each primal (dual) face such
that it is the same as the corresponding dual ( primal ) edge. We denote by F; the number of
interior primal faces (dual edges) and M; the number of interior primal edges (dual faces).

For each dual edge o} of length A}, we define a scaled length:

Ly it o) e
My =4 L if o} e
(iaj + u%(l — a;))h; otherwise,

where 0 < a; < 1 is the ratio of the length of the portion of o} that belongs to ; over the
length of o). For any u and v in R, we introduce a mesh and parameter depending inner
product defined by

(u, v)w = Z ujv;s;hy = (Su, D'v) = (D'u, Sv), (3.1)

Kj €N

where S := diag(s;) and D’ := diag(h)) are F x F; diagonal matrices, (-,-) denotes the

standard Euclidean inner product. Similarly, for each dual face «’,

i with area s, we define a



scaled area:

€
€ ()
(e1bj + €2(1 = by))s) otherwise,

where 0 < b; < 1 is the ratio of the area of the portion of «’; that belongs to €, over the area
of /-@9. Also, we define a mesh and parameter depending inner product in RM! by

(u,v)pr = Z u;v;5;h; = (S'u, Dv) = (Du, S'v), (3.2)

KGQ

where S’ := diag(s}) and D := diag(h;) are M; x M, diagonal matrices.

For any o; € Ok;, we say o; is oriented positively along Ok; if the direction of o; agrees
with the direction of k; by the right hand rule with the thumb pointing to the direction of the
dual edge o]. Otherwise, we say o, is oriented negatively along Ok;. For each interior primal
face k;, we define its discrete circulation by

(Cu)y, = Z ujizj, (3.3)

0;EOK;

where B]- = h; if o; is oriented positively along Ok;; and B]- = —h; otherwise. Similarly, we
define a discrete circulation for each interior dual face ! by

(C'u)y, == Z Ujil;, (3.4)

! i
ajeﬁni

where iz; = l_z; if o7, is oriented postively along Ok;; and iz; = —l_z; otherwise.
We remark that (3.3) and (3.4) are the discrete analog of the following integrals

/ curl E-n, do and / curl H - n; do
Ki K
by the Stokes’ theorem. Here and below, n; and t; denote the unit normal and tangential
direction of the corresponding face and edge respectively.

Let 7; be a primal element and x; € O7; be a primal face. We say «; is oriented positively
along Or; if the dual edge o, on k; is directed toward the outside of 7;. Otherwise we say &

j
is oriented negatively along 07;. For each primal element 7;, we define a discrete flux by

= > ws, VueR" (3.5)
K;EOT;

where no components of u related to the boundary faces are involved, and 5; = s; if &; is
oriented positively along 07;; and 5; = —s; otherwise. Note that the mapping D is the discrete
version of the divergence operator by noting that

/divudx:/ u-nds.
T; oT;



Similarly, for each dual element 7/, we define a discrete flux by

(D'u)i== > u;s;, VueRM (3.6)
K, €0T]
where &, = &, if x} is oriented positively along 07/; and §; = —5} otherwise.

Next, we present a discrete analog of the identity div(curlu) = 0. To do so, we first
introduce two matrices B and B'. B is a F| x N matrix given by

1 if k; is oriented postively along 07
Bj;:= 4 —1 if k; is oriented negatively along O7;
0 if k; does not meet O,

while B" is a M, x L matrix given by

1 if &} is oriented postively along 07
B} = —1 if &} is oriented negatively along 07}
0 if x; does not meet J7;.

Lemma 1 We have

D = B'S, BTC =0; (3.7)
DI — (B’)TSI, (BI)TCI — 0

Proof. For any u € RF',| we have

Py
(Du)i = Y w;s; =Y dju;s;
7=1

KjEOT;
where

1 if k; is oriented positively along J7;
dj = ¢ —1 if k; is oriented negatively along O7;
0 if k; does not meet O7;.

Clearly, the vector formed by d;’s is the i-th column of the matrix B and hence D = BTS.
The relation D' = (B")TS’ can be proved similarly.

For (3.8), we observe that the i-th row of BT is the direction of k; with respect to 7;. Let
w € RM with w|sg = 0. Then in the i-th component of BT Cw, each w; which is involved in
that component appears exactly twice with two opposite signs, hence (BTCw); = 0. Similar
argument can be applied to show (B')TC' = 0. O

4 Finite volume method

In this section we present a finite volume method for solving the Maxwell’s equations (2.1)-
(2.4). In this finite volume scheme, we will approximate the edge average of E on each primal
edge and the face average of B on each primal face. Note that we choose the magnetic flux
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density B for the approximation, not the magnetic field H which is used in the most existing
methods. This is one of the crucial observations for our method to achieve the same accuracy
as the most efficient finite volume methods for the Maxwell’s equations with smooth physical
coefficients.

We now introduce some average quantities. For the magnetic flux density B, we define its
primal face average B; € R by

1
(By)i == 5—/ B n; do

Ki

for each primal face x;, and its dual edge average B! € R by
, 1
(Be)i = hl B t dl
for each non-interface dual edge o] and
(B.) '—al/Btdl—l—(l a)l/Btdl
e)i +— zhll 1 i thQ " i

for each interface dual edge o}. Here o} = o} N Qy and o? = o/ N Qs are the portions of o} in
Q, and Q, respectively, and a; := i, 'h} ()" with h! being the length of o7 for r = 1,2.
For the electric field E, we define its primal edge average E, € RM by

(Ee)i::hii/giE-nidl

for each primal edge o;, and its dual face average E} € RMt by

1
(E})ZZS—;/KIEDZdO'

for each non-interface dual face ; and
(E%) .__ﬂl/Enda+(1 ﬂ)l/Enda
e Zszl Kl ' l 512 K2 '

for each interface dual face x}. Here ] = £} N Qy and k? = Kk} N Qy are the portions of x} in
Q) and Q, with their areas being s} and s? respectively, and 3; := €] (5})~".
Now, we are ready to derive our finite volume method. First, integrating both sides of

(2.2) on a primal face x; and apply the Stokes’ theorem, we obtain

d
- Bn]da+Z/Etdl

0; €0k

where the directions t}s are defined by the right hand rule on the face x;. By the definition
of face and edge averages, this can be written as

C((Bsi) + (OB, =0 (4.1)



Secondly, integrating both sides of (2.1) on a non-interface dual face £, € Q. (r = 1,2),
we obtain

d 1
at K;.GrE'nde— Z /g'.EB.tidl:/K;.J.nde,

! !
aieﬁnj

By the definitions of iL’J and 5%, this can be written as

d _
GED) =~ (©B)y = [ Tonydo (4.2
i
Finally, we consider an interface dual face «}, divided by the interface T' into two parts /-cjl-
and Ii?, see Figure 1. Integrating both sides of (2.1) on K}, we have

Figure 1: A dual face &}, divided by the interface into two parts j, &

2 2
d

E %/ erE-njda—E /curlH-njda:/J-njda.

r=1 K5 r=1 7K} K

Applying Stokes’ theorem and the relation B = pH, we have

d d
7 KlélE-njda+%/ﬁzegE-njda
J J

- Z/—B-tidl— > —B-tidl:/.]-njda.

! 1 2
0266/4]1 7 K 0;6614]2 7 K

We remark that there are some edges of £ (r =1,2), that belong to T but are not the edges
of our primal and dual meshes, see 7, and 7, in Figure 1. It is easy to see that

1 1 1 1
S [tewa = Y [ Leigas [ eodas [ S,
o H1 ; g g

0'263:{]1 0'26(9/4]1\1" a; /’Ll 1 /"Ll 5 /lzl

1 9 1 9 1 ) 1 )
o | =B-t?dl = Y | —By-tidi+ [ —By-tjdi+ [ —B,-t]dl
oteon? i H2 comr 7! 1% v M2 vy M2



where B; = Blq, for i = 1,2. Let t; and ty be the directions of ~v1 and 7, respectively, then
summing up the above two equations we obatin the right-hand side of the resulting equation:

ZZ/—BthZ(/ iBl-tiler/g LB, t )

=1 oteq, ol Tg ¥ TN H1 1Ny M2

+/(H2—H1)-E1dl+/(HQ—Hl)-Ele,

71 Y2
By geometry and interface conditions, we have
(H2 — Hl) . El = ((HQ — Hl) X ml) ‘n; = JF ‘ny, (44)
(HQ—Hl)'EQ = ((Hg—Hl) ><m2)-nj:.]p-nj,

Collecting these results, (4.3) becomes,

d d
i, elE n]da+d/egE n]da—zz —Btdl

k r=1 olcQ,

1 1
— > (| —Bi-tidl+ [ —B,-t;dl)
ol o} H1 o2 Ha

2
:/,J-njda—i-Z/ Jr-n;dl,
K r=1""7r

where o] = 0/ NQ,, r =1,2. By the definition of the interface face and edge averages, we can
write this as

d 2
%((E})Jgg) - (C,Bé)ng = // J- n; do. + Z/ JF -y dl. (46)
kj r=1"7r

The other interface dual faces can be handled in a similar manner.
Now let E € RM and B € Rt be the approximations of the primal edge and face averages
of the true solution E and B to (2.1)-(2.4) respectively. Then (4.1) suggests

dB;
5,
Tdt
Noting the fact that each dual face (edge) average and the corresponding primal edge ( face)

+(CE); = (4.7)

average are approximately the same as h is sufficiently small. It is important to observe that
this fact is also true for the interface dual faces and edges due to the interface conditions that
E is tangentially continuous while B is normally continuous across the interface I'. With this
fact and the equations (4.2) and (4.6), we naturally come to the following approximations:
,dE;
T / Jn, do (4.8)
i

for non-interface dual faces /-c; and

_ dF; -
S;d—tj—(C"B)j:/KQJ-nde—l—;/rJr'njdl (4.9)



for interface dual faces }. This leads to the following semi-discrete scheme:
Find £ € RM and B € R such that

dFE ~
S'— —-C'B=1J 4.10
= , (410

dB
SE—FC’E—O (4.11)
where J € RM' are defined by the right-hand sides of (4.8) or (4.9). Note that S and S’ are
both diagonal matrices and hence are easy to invert.

To further discretize the system (4.10)-(4.11) in time, we apply the usual leapfrog scheme [12].
Divide [0, 7] into Ny equal subintervals and let At be the length of each subinterval. Denote
tn := nAt, for 0 < n < Np. Then we approximate the true solution E(¢) at ¢, by E™ while the
true solution B(¢) at tny1 by B"t3. The initial condition B> is computed by using Taylor’s
expansion and the Maxwell’s equations (2.1)-(2.2).

Using the central difference scheme to discretize the equation (4.10) at time ¢ = tnyt and
the equation (4.11) at ¢ = t,,1, we obtain

Ertl — pn 1 1 tnt1
S——— — _(C'B"" = — J(t) dt,
At At J,,
Bn+% _ Bn+%
————— +CE"" = 0.
AT

This gives our fully discrete scheme: Given (E™, B”*é), the next approximation (E"!, B"*g)
is calculated directly from the following equations

L lng1
S'(E"! — E") — AtC'B™E = / J(t) dt, (4.12)
tn

S(B™2 — B""1) 4 AtCE™! = 0. (4.13)

5 Stability and discrete divergence constraints

In this section we show that our finite volume method (4.12)-(4.13) is stable, and its solution
E and B satisfy the two divergence constraint equations (2.3)-(2.4) at the discrete level, if
these two constraints are satisfied initially, namely

div(eE(z,0)) = p(x,0), div(upH(z,0)) = 0. (5.1)

Theorem 1 Let B"*é, for 0 < n < Np — 1, be the solution to the fully discrete scheme
(4.12)-(4.13), then B"*3 s divergence-free at the discrete level, namely, the following holds
for 0 <n < Np—1:

DB"™3 =0, (5:2)
Proof. By Lemma 1 and (4.13), we have

D(B™ — B"*2) = BTS(B"": — B"*2) = ~AtBTCOE™! = 0. (5.3)



Taking the divergence in both sides of (2.2), we obtain

%div(uH) =0,

that implies div(uH) = 0 at time ¢ = LAt by (5.1). Integrating this equation over a primal
element 7; and using the Stokes’ theorem lead to (at ¢ = $A¢)

> / B-n;do = 0.
KjEOT; Kj

By the definition of By, this can be written as

for any i. Now (5.2) follows from (5.3) and the fact that Bz = B?. [J

i
Theorem 2 Let E", 0 < n < Np—1, be the solution to the fully discrete scheme (4.12)-(4.13),
then the divergence constraint (2.3) holds for E™ in the following discrete sense:

D'E™ =" +e, 0<n<Npr-—1 (5.4)

e is a vector in R and converges to 0 as h tends to 0, and p is a vector in RE with its
components given by

0; ::/ p(z,t,) dx -l-/ pr(z,ty,) do . (5.5)
7 TNl

Proof. By Lemma 1 and (4.12), we have for 0 < n < Ny — 2 that

D/(En+1 - En) — (BI)TS/(En+1 o En) — At(BI)TCanJr% + (B/)TjnJr%

I tpt1
= (BT :/ (B")"J dt.
tn

Summing up all these equations over n, we obtain

tn
D'E" =D'E° +/ (BY'Jdt, 0<n<Np—1. (5.6)
0

Integrating the initial condition div(eE(z,0)) = p(z,0) over an interior dual element 7/, we
have

Z,/n; ¢E(z,0) -n, do = /T{ p(z,0) dz, (5.7)

K. €0T;

which, by the definition of the face average, can be written as

(D/(E')%); = / p(z,0) da. (5.9)

!
T
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Noting E° = E? for all primal edges corresponding to the dual faces of 7/, (5.8) is equivalent
to

(D'E"); = / p(z,0) dz + e;

where ¢; := (D'(E{ — (E")})):.
Now for an interface dual element 7/, that is 7/ N[ # ¢, we can write

2

/div(eE(a:,U)) de = Z/Tﬁmk div(eE(z,0)) dx:/ p(z,0) da.

! !
Ti k=1 ’Tj

By the divergence theorem and the jump condition [¢E - m] = pr on T', we obtain
(D'E"); = / p(z,0) dz +/ pr(z,0) do + e;,
T]{ 7Nl
where
¢; = (B lerst (B — BY) + st (B — B, (5.9)

and EU and EO are the averages of E(z,0) on the two parts f} and f2 of an interface dual
face Iik ‘e ot in Ql and ), respectively.

By the cont1nu1ty equation % = divJ, for any interface dual element 7}, we have
5 2
82S/pdx—/div.]dx:Z/ divJ dz .

T]{ k=1 TJ’ﬂQk

Applying the divergence theorem,

a pd:r— Z/J nrda—/ [J - m] do.

Kh 687 Jnr

From equation (2.1), we see

/ [J-m]daz—/ [curlH-m]da—i—g/ [€E - m] do
7N gl g

:—/ [curl H - mda—i——/ pr do.
gl

4.5),
/ [curlH-m]do = ) /Ht Jdi= > /JF n, do.
gl

~yhed( 7; inr) ~hed( 7; inr)

From Figure 2 and the equations (4.4)-(4.

Combining the above results, we have

;/pw4wfﬂ ;/ e do.
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Integrating both sides over [0, ¢,] gives
tn y
/ p(z,t,) de — / p(z,0) dz = / ((BNY"J); dt +/ pr(z,0) do — / pr(z, t,) do.
i 7 0 7N gl

Hence, we have proved (5.4).
We now show the convergence of e. Recall that, for any strictly interior dual element 77,

ei = (D'(EY — (E")});,
where
1
(E((a) o (E’)(})‘)T = h_r/ E(.I,O) -ty dl — 5_, /H’ E(.I,O) - n, do.

Taking a point @) € o, N k,., we have

(B — (B')Y), = i/(E() (QU))tdl——/ (2,0) — B(Q.0)) - m, do

__/ (Qom——/ E;(Q.0)) do

for some 7, 1 < 7 < 3. By the mean value theorem,
1 1
(B =B =I5 [ Bjen 0o - Q) di -~ [ By, 0@ - Q) do] < O,

where h is the maximum edge length of all elements and

2
C =) Bz, 0)]lc1 (-
k=1

Similar arguments can be applied to show the convergence of the components in (5.9). O

We remark that the last term in (5.5) vanishes for any strictly interior dual element 7.
But for any interface dual element 7;, we can integrate both sides of (2.3) over 7; and then
apply the divergence theorem to obtain

Z / cE - nrda—/pd:c+/ pr do.
nr

K EBT

Thus (5.4) is a fully discrete approximation of this integral version of the divergence constraint
(2.3).

Remark. The finite volume method and the theory of this paper can be easily extended
to the case, where the domain ) and its subdomain €2; are both rectangular, and the primal
and dual meshes consist of only rectangular elements, and to the case that €2 is a multiple-
connected polyhedral domain.
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6 Numerical Implementations

In this section, we apply the finite volume method (4.12)-(4.13) to solve the Maxwell’s system
(2.1)-(2.4) in the discontinuous media. It can be seen from the numerical examples below that
the convergence of the scheme is of second order for the considered Maxwell’s equations with
discontinuous physical coefficients.

Let Q% [0,7] =[0,1]* x [0, 1] and Q; = [, 2]*. We divide [0, T] into Ny equal subintervals
and triangulate the domain €2 into non-uniform cuboids in the following way. First, the number
of subintervals in each axis direction is the same, denoted by N. Next, in each axis direction,
two consecutive subintervals are paired up and have a prescribed ratio. In the following
example, the corresponding ratios for x-, y- and z-axis are 1 : 2, 2 : 3 and 4 : 3 respectively.

We also assume the media are equipped with the following discontinuous physical parameters:

0.1 in Ql 0.05 in Ql
€ = , =
2 in QQ a 1 in QQ

To check the accuracy of the finite volume method (4.12)-(4.13), we construct the Maxwell’s
system (2.1)-(2.4) with its exact solutions given by

—e™ cos(2mx) sin(27y) sin(272)
E = | —€™sin(27x) cos(2my) sin(272)
—e™ sin(27x) sin(27y) cos(27z)

—0.05 cos(27z) sin(27y) sin(272) + x
B = [ —0.05sin(27x) cos(27y) sin(27z) — y
—0.05sin(27z) sin(27y) cos(27rz) + 1

We note that both E and B are continuous in 2, but H = iB and D = ¢E are discontinuous
across the interface. We can verify that the exact solution (E, B) satisfies the interface condi-
tions [Exm] = 0 and [B-m| = 0. Solving the fully discrete finite volume system (4.12)-(4.13),
we obtain the following result:

H Nrp ‘ N ‘ error ‘ ratio H
180 6 2.1273 —
360 12 0.7521 2.83
720 24 0.2100 3.58
1440 48 0.0543 3.86
2880 96 0.0140 3.88

Table 1: Convergence rate for the first example

The errors shown in the table are the discrete L>-norm errors between the true solution (E, B)
and the finite volume solution (F, B), namely

ax {HE" _ EnHW’ + ||Bn+1/2 . Bn+1/2||W}-

0<n<Np—1
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where || - ||w and || - ||w are the norms induced by the scalar products in (3.1) and (3.2)
respectively. From the table above, we see that the convergence rate is approximately O(h?),
that indicates the second order accuracy of the proposed finite volume method (4.12)-(4.13).

Our second example is concerned with the Maxwell’s system (2.1)-(2.4) with the following
true solutions

—e™ cos(6mz) sin(6my) sin(672) + cos(2mz) sin(27y) sin(272)
E;, = | —e™sin(6mx) cos(6my) sin(67z) + sin(27x) cos(2my) sin(272)
—e™ sin(67x) sin(67y) cos(6mz) + sin(27x) sin(27wy) cos(27z2)

—(e™ + 1) cos(67z) sin(6my) sin(67z) + cos(27x) sin(27y) sin(272)
Ey = | —(e™ + 1) sin(67z) cos(6my) sin(67z) + sin(27z) cos(2my) sin(272)
—(e™ 4 1) sin(67x) sin(67y) cos(67z) + sin(27x) sin(27wy) cos(272)

where E; = E|q,, for i = 1,2, and B is the same as above. In this example, H field and
the normal component of E is discontinuous across the interface I'. Solving the system with
the finite volume method (4.12)-(4.13) using uniform triangulation, i.e., all the three ratios
corresponding to the three axis directions are 1: 1, we obtain the following result:

H Nrp ‘ N ‘ error ratio H
360 12 1.6090 —
720 24 0.4851 3.32
1440 48 0.1312 3.70
2880 96 0.0341 3.85
5760 192 0.0087 3.92

Table 2: Convergence rate for the second example

We see that the convergence rate is O(h?), which again demonstrates the second order accuracy
of the numerical method (4.12)-(4.13).

We now present a numerical experiment for an electromagnetic scattering problem by our
finite volume method using a uniform mesh. Assume that a plane wave source is given on the
boundary z = 0. We choose the source as given by

E, =sin(4n(z — cot)), H, = escysin(dn(z — cat))

where ¢, = (egm)’% is the speed of light in the medium occupied by €25. Note that both
the electric and magnetic fields propagate in the z-direction. The numerical solution of the
electric field E, is shown in the following figure:
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0 1‘0 2‘0 3‘0 4‘0 5‘0 éO 7‘0 8‘0 9‘0 100
Figure 3: Numerical solution of E,

where in figure 3 the dotted line, dash dot line, dash line and solid line represent respectively
the snap shots of the electric field patterns at times ¢ = 0.25,0.5,0.75,1. In addition, the
vertical axis denotes the amplitude of the field strength while the horizontal axis denotes the
position in z-direction. We remark that the amplitudes of the waves have been doubled so
that it looks clearer. The plot in figure 3 corresponds to the pattern of the electric field which
does not pass through the inhomogeneous part of {2, that is €2;. It shows that the electric field
propagates smoothly in the z-direction.
In the following figure, we give the numerical solution of the magnetic flux density B,:

0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100
Figure 4: Numerical solution of B,

where we have shown the snap shots of patterns of the magnetic flux density which passes
through the inhomogeneous part of €2, that is ;. From the figure, we see that the wave
propagates in the z-direction, but there are discontinuities when the wave passes through the
interface between €2, and {25. We remark that the amplitudes of the waves have been doubled
and all the notations in figure 4 are defined similarly as figure 3.

15



References

1]

Z. Chen, Q. Du and J. Zou. Finite element methods with matching and non-matching
meshes for Mazwell equations with discontinuous coefficients. STAM J. Numer. Anal, 37
(2000), pp. 1542-1570.

Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and
parabolic interface problems. Numerische Mathematik, 79 (1998), pp. 175-202.

P. Ciarlet and J. Zou. Fully discrete finite element approaches for time-dependent
Mazwell’s equations. Numerische Mathematik, 82 (1999), pp. 193-219.

J. Jin. The finite element method in electromagnetics. John Wiley and Sons, Inc.

Z. Li and J. Zou. Theoretical and numerical analysis on a thermo-elastic system with
discontinuities. J. Comput. Appl. Math., 92 (1998), pp. 37-58.

N. K. Madsen. Divergence preserving discrete surface integral methods for Mazwell’s curl
equations using non-orthogonal unstructured grids. J. Comput. Phys., 119 (1995), pp.
34-45.

P. Monk and E. Siili. A convergence analysis of Yee’s scheme on nonuniform grids. SIAM
J. Numer. Anal., 31 (1994), pp. 393-412.

R. A. Nicolaides. Direct discretization of planer div-curl problems. STAM J. Numer. Anal.,
29 (1992), pp. 32-56.

R. A. Nicolaides and D. Q. Wang. Convergence analysis of a covolume scheme for
Mazwell’s equations in three dimensions. Math. Comp., 67 (1998), pp. 947-963.

R. A. Nicolaides and X. Wu. Covolume solutions of three-dimensional div-curl equations.
STAM J. Numer. Anal., 34 (1997), pp. 2195-2203.

A. Taflove. Computational electrodynamics. Artech House, Inc., 1995.

K. S. Yee. Numerical solution of initial boundary value problems involving Mazwell’s
equations in isotropic media. IEEE Trans. Antennas Propagat., 14 (1966), pp. 302-307.

K. S. Yee and J. S. Chen The finite-difference time-domain and the finite-volume time-
domain methods in solving Maxwell’s equations. IEEE Trans. Antennas Propagat., 45
(1997), pp. 354-363.

16



