
A �nite volume method for Maxwell's equations withdiscontinuous physical coe�cientsTsz Shun Chung� and Jun ZouyAbstractIn this paper, we consider Maxwell's equations in a general three-dimensional poly-hedral domain composed of two dialectic materials with di�erent physical parameters. A�nite volume method is derived to solve the problem, and a new approach is proposed tohandle the physical characteristics of the electromagnetic �elds on the interface betweenthe two di�erent materials. The approximate electromagnetic �elds are shown to satisfythe two divergence constraints at the discrete level. Numerical examples demonstratethe e�ciency of the �nite volume method for solving Maxwell's equations with discontin-uous physical coe�cients and the method can achieve the second order accuracy both inspace and time, the same accuracy as the existing �nite volume methods for Maxwell'sequations with smooth physical coe�cients.1 IntroductionOver past few decades, numerical methods for solving Maxwell's equations in homogeneousmedia have been well developed. Those methods include �nite di�erence methods [7] [12],�nite volume methods [6] [9] [13], and �nite element methods [3]. However, for many realapplications, such as aerospace design and target identi�cation, one needs to solve Maxwell'sequations in inhomogeneous media [4] [7] [11]. The aforementioned numerical methods areeither not directly applicable or ine�cient (with lower order convergence) for these problemsdue to di�erent physical characteristics re
ected by the electric permittivities and magneticpermeabilities of di�erent media, and the extra interface conditions the electric and magnetic�elds need to satisfy on the interface.Several attempts have been made to handle the interface Maxwell's problems [1] [11] [13].For example, Yee and Chen [13] studied an FDTD/FVTD hybrid method for the interfaceproblem, assuming both the tangential components of the electric and magnetic �elds arecontinuous across the interface and the electric �eld is tangentially piecewise constant on theinterface. Chen, Du and Zou [1] proposed an edge �nite element method for solving theMaxwell's system with very general inhomogeneous interface conditions from some importantphysical laws and developed a general framework for its convergence analysis. In this paper,�Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong.yDepartment of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. The work of thisauthor was partially supported by Hong Kong RGC Grants CUHK4004/98P and CUHK4292/00P.1



we present a new and simple approach to handle the general interface conditions by a �nitevolume method. This method converges with a second order accuracy as it is for non-interfaceproblems, and also satis�es two constraint equations at the discrete level.2 Maxwell's EquationsWe next introduce the Maxwell's equations in a physical domain 
 occupied by two di�erentdialectic materials. We shall consider 
 to be a general polyhedral domain. Let E and H bethe electric and magnetic �elds respectively, then the full Maxwell's equations are given by�Et � curl H = J in 
� (0; T ); (2.1)�Ht + curl E = 0 in 
� (0; T ); (2.2)div(�E) = � in 
� (0; T ); (2.3)div(�H) = 0 in 
� (0; T ): (2.4)Here J(x; t) is the known applied current density and �(x; t) is the charge density. Let 
1 bea polyhedral region lying strictly inside 
. We denote its boundary by � = @
1 and the unitoutward normal on � by m, and let 
2 = 
n�
1. Assume that 
1 and 
2 are occupied by twodi�erent dialectic materials, so the parameters � and � are discontinuous across the interface�. For the ease of notation, we consider the case that � and � are piecewise constant functionsin 
, i.e., � = �i and � = �i in 
i for i = 1; 2. Here �i and �i are positive constants1. Wesuppose the perfect conductor boundary condition:E� n = 0 on @
� (0; T ) (2.5)where n is the unit outward normal on @
. Throughout the paper, the jump of any functionA across the interface � is de�ned as [A] := A2j� �A1j� ; where A1 = Aj
1 and A2 = Aj
2. Itis known physically that the electric and magnetic �elds E and H satisfy the following jumpconditions on the interface �: [E�m] = 0 ; [�E �m] = ��; (2.6)[H�m] = J� ; [�H �m] = 0; (2.7)where ��(x; t) is the surface charge density while J�(x; t) is the surface current density. Inaddition, we have the following constitutive relationsD = �E; B = �H; (2.8)where D and B are the electric and magnetic 
ux densities respectively.1Our subsequent numerical method can be easily generalized to the case that the parameters � and � areboth piecewise smooth functions
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3 Discrete vector �eldsWe now discuss the triangulation of the domain 
. Most notations used below are borrowedfrom Nicolaides, Wang and Wu [8] [9] [10], where a �nite volume method was proposed forsolving Maxwell's equations with continuous coe�cients, i.e., non-inferface problems. We willuse the Voronoi-Delaunay triangulation, which has some useful properties that allow us toderive a second order numerical scheme in the subsequent sections.We �rst triangulate 
 by using the standard tetrahedral elements, which are called theprimal elements. This triangulation is chosen so that the faces of the primal elements alignwith the interface �. A primal element with as least one face lying on � is called an interfaceprimal element. Similarly, a primal face ( edge ) lying on � is called an interface primal face( edge ). We assume that all dihedral angles of each tetrahedron are acute.The dual elements are formed by connecting the circumcenters of adjacent primal elements.It is easy to see that all dual elements are convex polyhedra with convex polygonal faces. Notethat there are some dual elements ( faces and edges ), which are separated by the interface� into two parts. These are called the interface dual elements ( faces and edges ). By thegeometrical knowledge, we know the following relations between the primal and dual meshes.First, each primal edge is perpendicular to and in one-to-one correspondence with a dual face.Secondly, each dual edge is perpendicular to and in one-to-one correspondence with a primalface. These relations are the key to the derivation of our numerical schemes.Let N and L be the numbers of primal and dual elements respectively, and F be the numberof primal faces ( dual edges ) and M be the number of primal edges ( dual faces ). Assumethat these quantities are numbered sequentially in some order. The individual elements, faces,edges and nodes of the primal mesh are denoted by �i, �j, �k and �l respectively. Thosequantities related to the dual mesh are denoted by the primed forms such as � 0i , �0j, �0k and� 0l . A direction is assigned to each primal and dual edge by the rule that positive directionis from low to high node number. Direction is also assigned to each primal ( dual ) face suchthat it is the same as the corresponding dual ( primal ) edge. We denote by F1 the number ofinterior primal faces ( dual edges ) and M1 the number of interior primal edges ( dual faces ).For each dual edge �0j of length h0j, we de�ne a scaled length:�h0j = 8>><>>: 1�1h0j if �0j 2 
11�2h0j if �0j 2 
2( 1�1aj + 1�2 (1� aj))h0j otherwise;where 0 < aj < 1 is the ratio of the length of the portion of �0j that belongs to 
1 over thelength of �0j. For any u and v in RF1 , we introduce a mesh and parameter depending innerproduct de�ned by (u; v)W := X�j2
ujvjsj�h0j = (Su;D0v) = (D0u; Sv); (3.1)where S := diag(sj) and D0 := diag(�h0j) are F1 � F1 diagonal matrices, (�; �) denotes thestandard Euclidean inner product. Similarly, for each dual face �0j with area s0j, we de�ne a3



scaled area: �s0j = 8>><>>:�1s0j if �0j 2 
1�2s0j if �0j 2 
2(�1bj + �2(1� bj))s0j otherwise;where 0 < bj < 1 is the ratio of the area of the portion of �0j that belongs to 
1 over the areaof �0j. Also, we de�ne a mesh and parameter depending inner product in RM1 by(u; v)W 0 := X�0j2
 ujvj�s0jhj = (S 0u;Dv) = (Du; S 0v); (3.2)where S 0 := diag(�s0j) and D := diag(hj) are M1 �M1 diagonal matrices.For any �j 2 @�i, we say �j is oriented positively along @�i if the direction of �j agreeswith the direction of �i by the right hand rule with the thumb pointing to the direction of thedual edge �0i. Otherwise, we say �j is oriented negatively along @�i. For each interior primalface �i, we de�ne its discrete circulation by(Cu)�i := X�j2@�i uj~hj; (3.3)where ~hj = hj if �j is oriented positively along @�i; and ~hj = �hj otherwise. Similarly, wede�ne a discrete circulation for each interior dual face �0i by(C 0u)�0i := X�0j2@�0i uj~h0j; (3.4)where ~h0j = �h0j if �0j is oriented postively along @�0i; and ~h0j = ��h0j otherwise.We remark that (3.3) and (3.4) are the discrete analog of the following integralsZ�i curlE � ni d� and Z�0i curlH � ni d�by the Stokes' theorem. Here and below, ni and ti denote the unit normal and tangentialdirection of the corresponding face and edge respectively.Let �i be a primal element and �j 2 @�i be a primal face. We say �j is oriented positivelyalong @�i if the dual edge �0j on �j is directed toward the outside of �i. Otherwise we say �jis oriented negatively along @�i. For each primal element �i, we de�ne a discrete 
ux by(Du)i := X�j2@�i uj~sj; 8u 2 RF1 (3.5)where no components of u related to the boundary faces are involved, and ~sj = sj if �j isoriented positively along @�i; and ~sj = �sj otherwise. Note that the mapping D is the discreteversion of the divergence operator by noting thatZ�i div u dx = Z@�i u � n ds:4



Similarly, for each dual element � 0i , we de�ne a discrete 
ux by(D0u)i := X�0j2@� 0i uj~s0j; 8u 2 RM1 (3.6)where ~s0j = �s0j if �0j is oriented positively along @� 0i ; and ~s0j = ��s0j otherwise.Next, we present a discrete analog of the identity div(curl u) = 0. To do so, we �rstintroduce two matrices B and B0. B is a F1 �N matrix given byBji := 8<: 1 if �j is oriented postively along @�i�1 if �j is oriented negatively along @�i0 if �j does not meet @�i;while B0 is a M1 � L matrix given byB0ji := 8<: 1 if �0j is oriented postively along @� 0i�1 if �0j is oriented negatively along @� 0i0 if �0j does not meet @� 0i :Lemma 1 We have D = BTS ; BTC = 0 ; (3.7)D0 = (B0)TS 0 ; (B0)TC 0 = 0: (3.8)Proof. For any u 2 RF1 , we have(Du)i = X�j2@�i uj ~sj = F1Xj=1 djujsjwhere dj = 8<: 1 if �j is oriented positively along @�i�1 if �j is oriented negatively along @�i0 if �j does not meet @�i:Clearly, the vector formed by dj's is the i-th column of the matrix B and hence D = BTS.The relation D0 = (B0)TS 0 can be proved similarly.For (3.8), we observe that the i-th row of BT is the direction of �j with respect to �i. Letw 2 RM with wj@
 = 0. Then in the i-th component of BTCw, each wj which is involved inthat component appears exactly twice with two opposite signs, hence (BTCw)i = 0. Similarargument can be applied to show (B0)TC 0 = 0. �4 Finite volume methodIn this section we present a �nite volume method for solving the Maxwell's equations (2.1)-(2.4). In this �nite volume scheme, we will approximate the edge average of E on each primaledge and the face average of B on each primal face. Note that we choose the magnetic 
ux5



density B for the approximation, not the magnetic �eld H which is used in the most existingmethods. This is one of the crucial observations for our method to achieve the same accuracyas the most e�cient �nite volume methods for the Maxwell's equations with smooth physicalcoe�cients.We now introduce some average quantities. For the magnetic 
ux density B, we de�ne itsprimal face average Bf 2 RF1 by (Bf)i := 1si Z�i B � ni d�for each primal face �i, and its dual edge average B0e 2 RF1 by(B0e)i := 1h0i Z�0i B � ti dlfor each non-interface dual edge �0i and(B0e)i := �i 1h1i Z�1i B � ti dl + (1� �i) 1h2i Z�2i B � ti dlfor each interface dual edge �0i. Here �1i = �0i \ 
1 and �2i = �0i \ 
2 are the portions of �0i in
1 and 
2 respectively, and �i := ��11 h1i (�h0i)�1 with hri being the length of �ri for r = 1; 2.For the electric �eld E, we de�ne its primal edge average Ee 2 RM1 by(Ee)i := 1hi Z�i E � ni dlfor each primal edge �i, and its dual face average E 0f 2 RM1 by(E 0f)i := 1s0i Z�0i E � ni d�for each non-interface dual face �0i and(E 0f )i := �i 1s1i Z�1i E � ni d� + (1� �i) 1s2i Z�2i E � ni d�for each interface dual face �0i. Here �1i = �0i \ 
1 and �2i = �0i \ 
2 are the portions of �0i in
1 and 
2 with their areas being s1i and s2i respectively, and �i := �1s1i (�s0i)�1.Now, we are ready to derive our �nite volume method. First, integrating both sides of(2.2) on a primal face �j and apply the Stokes' theorem, we obtainddt Z�j B � nj d� + X�i2@�j Z�i E � ti dl = 0;where the directions t0is are de�ned by the right hand rule on the face �j. By the de�nitionof face and edge averages, this can be written asddt((Bf)jsj) + (CEe)�j = 0: (4.1)6



Secondly, integrating both sides of (2.1) on a non-interface dual face �0j 2 
r (r = 1; 2),we obtain ddt Z�0j �rE � nj d� � X�0i2@�0j Z�0i 1�iB � ti dl = Z�0j J � nj d�;By the de�nitions of ~h0j and �s0j, this can be written asddt((E 0f)j�s0j)� (C 0B0e)�0j = Z�0j J � nj d�: (4.2)Finally, we consider an interface dual face �0j, divided by the interface � into two parts �1jand �2j , see Figure 1. Integrating both sides of (2.1) on �0j, we have

1 3m1


2- m2 �2j � 
2�1j � 
1
Figure 1: A dual face �0j, divided by the interface into two parts �1j , �2j2Xr=1 ddt Z�rj �rE � nj d� � 2Xr=1 Z�rj curl H � nj d� = Z�0j J � nj d�:Applying Stokes' theorem and the relation B = �H, we haveddt Z�1j �1E � nj d� + ddt Z�2j �2E � nj d�� X�0i2@�1j Z�0i 1�1B � t1i dl � X�0i2@�2j Z�0i 1�2B � t2i dl = Z�0j J � nj d� : (4.3)We remark that there are some edges of �rj (r = 1; 2), that belong to � but are not the edgesof our primal and dual meshes, see 
1 and 
2 in Figure 1. It is easy to see thatX�0i2@�1j Z�0i 1�1B � t1i dl = X�0i2@�1jn� Z�0i 1�1B1 � t1i dl + Z
1 1�1B1 � t1i dl + Z
2 1�1B1 � t1i dl ;X�0i2@�2j Z�0i 1�2B � t2i dl = X�0i2@�2jn� Z�0i 1�2B2 � t2i dl + Z
1 1�2B2 � t2i dl + Z
2 1�2B2 � t2i dl7



where Bi = Bj
i for i = 1; 2. Let ~t1 and ~t2 be the directions of 
1 and 
2 respectively, thensumming up the above two equations we obatin the right-hand side of the resulting equation:2Xr=1 X�0i2
r Z�0i 1�rB � ti dl + X�0i\�6=�(Z�0i\
1 1�1B1 � ti dl + Z�0i\
2 1�2B2 � ti dl)+ Z
1(H2 �H1) � ~t1 dl + Z
2(H2 �H1) � ~t2 dl;By geometry and interface conditions, we have(H2 �H1) � ~t1 = ((H2 �H1)�m1) � nj = J� � nj ; (4.4)(H2 �H1) � ~t2 = ((H2 �H1)�m2) � nj = J� � nj; (4.5)Collecting these results, (4.3) becomes,ddt Z�1j �1E � nj d� + ddt Z�2j �2E � nj d� � 2Xr=1 X�0i2
r Z�0i 1�rB � ti dl� X�0i\�6=�(Z�1i 1�1B1 � ti dl + Z�2i 1�2B2 � ti dl)= Z�0j J � nj d� + 2Xr=1 Z
r J� � nj dl ;where �ri = �0i \
r, r = 1; 2. By the de�nition of the interface face and edge averages, we canwrite this as ddt((E 0f)j�s0j)� (C 0B0e)�0j = Z�0j J � nj d�: + 2Xr=1 Z
r J� � nj dl : (4.6)The other interface dual faces can be handled in a similar manner.Now let E 2 RM1 and B 2 RF1 be the approximations of the primal edge and face averagesof the true solution E and B to (2.1)-(2.4) respectively. Then (4.1) suggestssj dBjdt + (CE)j = 0: (4.7)Noting the fact that each dual face ( edge ) average and the corresponding primal edge ( face )average are approximately the same as h is su�ciently small. It is important to observe thatthis fact is also true for the interface dual faces and edges due to the interface conditions thatE is tangentially continuous while B is normally continuous across the interface �. With thisfact and the equations (4.2) and (4.6), we naturally come to the following approximations:�s0j dEjdt � (C 0B)j = Z�0j J � nj d� (4.8)for non-interface dual faces �0j and�s0j dEjdt � (C 0B)j = Z�0j J � nj d� + 2Xr=1 Z
r J� � nj dl (4.9)8



for interface dual faces �0j. This leads to the following semi-discrete scheme:Find E 2 RM1 and B 2 RF1 such thatS 0dEdt � C 0B = ~J; (4.10)SdBdt + CE = 0 (4.11)where ~J 2 RM1 are de�ned by the right-hand sides of (4.8) or (4.9). Note that S and S 0 areboth diagonal matrices and hence are easy to invert.To further discretize the system (4.10)-(4.11) in time, we apply the usual leapfrog scheme [12].Divide [0; T ] into NT equal subintervals and let �t be the length of each subinterval. Denotetn := n�t, for 0 � n � NT . Then we approximate the true solution E(t) at tn by En while thetrue solution B(t) at tn+ 12 by Bn+ 12 . The initial condition B 12 is computed by using Taylor'sexpansion and the Maxwell's equations (2.1)-(2.2).Using the central di�erence scheme to discretize the equation (4.10) at time t = tn+ 12 andthe equation (4.11) at t = tn+1, we obtainS 0En+1 � En�t � C 0Bn+ 12 = 1�t Z tn+1tn ~J(t) dt;SBn+ 32 � Bn+ 12�t + CEn+1 = 0:This gives our fully discrete scheme: Given (En; Bn+ 12 ), the next approximation (En+1; Bn+ 32 )is calculated directly from the following equationsS 0(En+1 � En)��tC 0Bn+ 12 = Z tn+1tn ~J(t) dt; (4.12)S(Bn+ 32 � Bn+ 12 ) + �tCEn+1 = 0: (4.13)5 Stability and discrete divergence constraintsIn this section we show that our �nite volume method (4.12)-(4.13) is stable, and its solutionE and B satisfy the two divergence constraint equations (2.3)-(2.4) at the discrete level, ifthese two constraints are satis�ed initially, namelydiv(�E(x; 0)) = �(x; 0); div(�H(x; 0)) = 0: (5.1)Theorem 1 Let Bn+ 12 , for 0 � n � NT � 1, be the solution to the fully discrete scheme(4.12)-(4.13), then Bn+ 12 is divergence-free at the discrete level, namely, the following holdsfor 0 � n � NT � 1: DBn+ 12 = 0: (5.2)Proof. By Lemma 1 and (4.13), we haveD(Bn+ 32 � Bn+ 12 ) = BTS(Bn+ 32 �Bn+ 12 ) = ��tBTCEn+1 = 0: (5.3)9



Taking the divergence in both sides of (2.2), we obtain@@tdiv(�H) = 0;that implies div(�H) = 0 at time t = 12�t by (5.1). Integrating this equation over a primalelement �i and using the Stokes' theorem lead to (at t = 12�t)X�j2@�i Z�j B � nj d� = 0:By the de�nition of Bf , this can be written as(DB 12f )i = 0for any i. Now (5.2) follows from (5.3) and the fact that B 12 = B 12f . �Theorem 2 Let En, 0 � n � NT�1, be the solution to the fully discrete scheme (4.12)-(4.13),then the divergence constraint (2.3) holds for En in the following discrete sense:D0En = ~�n + e; 0 � n � NT � 1 (5.4)e is a vector in RL and converges to 0 as h tends to 0, and ~� is a vector in RL with itscomponents given by ~�nj := Z� 0j �(x; tn) dx+ Z� 0j\� ��(x; tn) d� : (5.5)Proof. By Lemma 1 and (4.12), we have for 0 � n � NT � 2 thatD0(En+1 � En) = (B0)TS 0(En+1 � En) = �t(B0)TC 0Bn+ 12 + (B0)T ~Jn+ 12= (B0)T ~Jn+ 12 = Z tn+1tn (B0)T ~J dt:Summing up all these equations over n, we obtainD0En = D0E0 + Z tn0 (B0)T ~J dt; 0 � n � NT � 1: (5.6)Integrating the initial condition div(�E(x; 0)) = �(x; 0) over an interior dual element � 0i , wehave X�0r2@� 0i Z�0r �E(x; 0) � nr d� = Z� 0i �(x; 0) dx; (5.7)which, by the de�nition of the face average, can be written as(D0(E 0)0f)i = Z� 0i �(x; 0) dx: (5.8)10



Noting E0 = E0e for all primal edges corresponding to the dual faces of � 0i , (5.8) is equivalentto (D0E0)i = Z� 0i �(x; 0) dx+ eiwhere ei := (D0(E0e � (E 0)0f))i.Now for an interface dual element � 0j, that is � 0j \ � 6= �, we can writeZ� 0i div(�E(x; 0)) dx = 2Xk=1 Z� 0j\
k div(�E(x; 0)) dx = Z� 0j �(x; 0) dx:By the divergence theorem and the jump condition [�E �m] = �� on �, we obtain(D0E0)j = Z� 0j �(x; 0) dx+ Z� 0j\� ��(x; 0) d� + ej;where ej := ((B0)T [�1s1k(E0e � E0f1k ) + �2s2k(E0e � E0f2k )])j; (5.9)and E0f1k and E0f2k are the averages of E(x; 0) on the two parts f 1k and f 2k of an interface dualface �0k 2 @� 0j in 
1 and 
2 respectively.By the continuity equation @�@t = divJ, for any interface dual element � 0j, we have@@t Z� 0j � dx = Z� 0j divJ dx = 2Xk=1 Z� 0j\
k divJ dx :Applying the divergence theorem,@@t Z� 0j � dx = X�0r2@� 0j Z�0r J � nr d� � Z� 0j\�[J �m] d�:From equation (2.1), we seeZ� 0j\�[J �m] d� = � Z� 0j\�[curl H �m] d� + @@t Z� 0j\�[�E �m] d�= � Z� 0j\�[curl H �m] d� + @@t Z� 0j\� �� d�:From Figure 2 and the equations (4.4)-(4.5),Z� 0j\�[curl H �m] d� = X
0r2@(� 0j\�) Z
0r [H � tr] dl = X
0r2@(� 0j\�) Z
0r J� � nr d�:Combining the above results, we have@@t Z� 0j � dx = ((B0)T ~J)j � @@t Z� 0j\� �� d�:11



Integrating both sides over [0; tn] givesZ� 0j �(x; tn) dx� Z� 0j �(x; 0) dx = Z tn0 ((B0)T ~J)j dt+ Z� 0j\� ��(x; 0) d� � Z� 0j\� ��(x; tn) d�:Hence, we have proved (5.4).We now show the convergence of e. Recall that, for any strictly interior dual element � 0i ,ei = (D0(E0e � (E 0)0f))i;where (E0e � (E 0)0f)r = 1hr Z�r E(x; 0) � tr dl � 1s0r Z�0r E(x; 0) � nr d�:Taking a point Q 2 �r \ �0r, we have(E0e � (E 0)0f)r = 1hr Z�r(E(x; 0)�E(Q; 0)) � tr dl � 1s0r Z�0r(E(x; 0)� E(Q; 0)) � nr d�= 1hr Z�r(Ej(x; 0)� Ej(Q; 0)) dl � 1s0r Z�0r(Ej(x; 0)� Ej(Q; 0)) d�:for some j, 1 � j � 3. By the mean value theorem,j(E0e � E0f )rj = j 1hr Z�r E0j(�1; 0)(x�Q) dl � 1s0r Z�0r E0j(�2; 0)(x�Q) d�j � Ch;where h is the maximum edge length of all elements andC := 2Xk=1 kE(x; 0)kC1(
k)3 :Similar arguments can be applied to show the convergence of the components in (5.9). �We remark that the last term in (5.5) vanishes for any strictly interior dual element � 0i .But for any interface dual element � 0j, we can integrate both sides of (2.3) over � 0j and thenapply the divergence theorem to obtainX�0r2@� 0j Z�0r �E � nr d� = Z� 0j � dx + Z� 0j\� �� d�:Thus (5.4) is a fully discrete approximation of this integral version of the divergence constraint(2.3).Remark. The �nite volume method and the theory of this paper can be easily extendedto the case, where the domain 
 and its subdomain 
1 are both rectangular, and the primaland dual meshes consist of only rectangular elements, and to the case that 
 is a multiple-connected polyhedral domain. 12



6 Numerical ImplementationsIn this section, we apply the �nite volume method (4.12)-(4.13) to solve the Maxwell's system(2.1)-(2.4) in the discontinuous media. It can be seen from the numerical examples below thatthe convergence of the scheme is of second order for the considered Maxwell's equations withdiscontinuous physical coe�cients.Let 
� [0; T ] = [0; 1]3� [0; 1] and 
1 = [13 ; 23 ]3. We divide [0; T ] into NT equal subintervalsand triangulate the domain 
 into non-uniform cuboids in the following way. First, the numberof subintervals in each axis direction is the same, denoted by N . Next, in each axis direction,two consecutive subintervals are paired up and have a prescribed ratio. In the followingexample, the corresponding ratios for x-, y- and z-axis are 1 : 2, 2 : 3 and 4 : 3 respectively.We also assume the media are equipped with the following discontinuous physical parameters:� = (0:1 in 
12 in 
2 ; � = (0:05 in 
11 in 
2To check the accuracy of the �nite volume method (4.12)-(4.13), we construct the Maxwell'ssystem (2.1)-(2.4) with its exact solutions given byE = 24�e�t cos(2�x) sin(2�y) sin(2�z)�e�t sin(2�x) cos(2�y) sin(2�z)�e�t sin(2�x) sin(2�y) cos(2�z)35B = 24�0:05 cos(2�x) sin(2�y) sin(2�z) + x�0:05 sin(2�x) cos(2�y) sin(2�z)� y�0:05 sin(2�x) sin(2�y) cos(2�z) + 135We note that both E and B are continuous in 
, but H = 1�B and D = �E are discontinuousacross the interface. We can verify that the exact solution (E;B) satis�es the interface condi-tions [E�m] = 0 and [B�m] = 0. Solving the fully discrete �nite volume system (4.12)-(4.13),we obtain the following result:NT N error ratio180 6 2.1273 |360 12 0.7521 2.83720 24 0.2100 3.581440 48 0.0543 3.862880 96 0.0140 3.88Table 1: Convergence rate for the �rst exampleThe errors shown in the table are the discrete L2-norm errors between the true solution (E;B)and the �nite volume solution (E;B), namelymax0�n�NT�1nkEn � EnkW 0 + kBn+1=2 �Bn+1=2kWo:13



where k � kW 0 and k � kW are the norms induced by the scalar products in (3.1) and (3.2)respectively. From the table above, we see that the convergence rate is approximately O(h2),that indicates the second order accuracy of the proposed �nite volume method (4.12)-(4.13).Our second example is concerned with the Maxwell's system (2.1)-(2.4) with the followingtrue solutionsE1 = 24�e�t cos(6�x) sin(6�y) sin(6�z) + cos(2�x) sin(2�y) sin(2�z)�e�t sin(6�x) cos(6�y) sin(6�z) + sin(2�x) cos(2�y) sin(2�z)�e�t sin(6�x) sin(6�y) cos(6�z) + sin(2�x) sin(2�y) cos(2�z)35E2 = 24�(e�t + 1) cos(6�x) sin(6�y) sin(6�z) + cos(2�x) sin(2�y) sin(2�z)�(e�t + 1) sin(6�x) cos(6�y) sin(6�z) + sin(2�x) cos(2�y) sin(2�z)�(e�t + 1) sin(6�x) sin(6�y) cos(6�z) + sin(2�x) sin(2�y) cos(2�z)35where Ei = Ej
i, for i = 1; 2, and B is the same as above. In this example, H �eld andthe normal component of E is discontinuous across the interface �. Solving the system withthe �nite volume method (4.12)-(4.13) using uniform triangulation, i.e., all the three ratioscorresponding to the three axis directions are 1 : 1, we obtain the following result:NT N error ratio360 12 1.6090 |720 24 0.4851 3.321440 48 0.1312 3.702880 96 0.0341 3.855760 192 0.0087 3.92Table 2: Convergence rate for the second exampleWe see that the convergence rate is O(h2), which again demonstrates the second order accuracyof the numerical method (4.12)-(4.13).We now present a numerical experiment for an electromagnetic scattering problem by our�nite volume method using a uniform mesh. Assume that a plane wave source is given on theboundary x = 0. We choose the source as given byEy = sin(4�(x� c2t)); Hz = �2c2 sin(4�(x� c2t))where c2 = (�2�2)� 12 is the speed of light in the medium occupied by 
2. Note that boththe electric and magnetic �elds propagate in the x-direction. The numerical solution of theelectric �eld Ey is shown in the following �gure:
14
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Figure 3: Numerical solution of Eywhere in �gure 3 the dotted line, dash dot line, dash line and solid line represent respectivelythe snap shots of the electric �eld patterns at times t = 0:25; 0:5; 0:75; 1. In addition, thevertical axis denotes the amplitude of the �eld strength while the horizontal axis denotes theposition in x-direction. We remark that the amplitudes of the waves have been doubled sothat it looks clearer. The plot in �gure 3 corresponds to the pattern of the electric �eld whichdoes not pass through the inhomogeneous part of 
, that is 
1. It shows that the electric �eldpropagates smoothly in the x-direction.In the following �gure, we give the numerical solution of the magnetic 
ux density Bz:

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

Figure 4: Numerical solution of Bzwhere we have shown the snap shots of patterns of the magnetic 
ux density which passesthrough the inhomogeneous part of 
, that is 
1. From the �gure, we see that the wavepropagates in the x-direction, but there are discontinuities when the wave passes through theinterface between 
1 and 
2. We remark that the amplitudes of the waves have been doubledand all the notations in �gure 4 are de�ned similarly as �gure 3.
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