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AN EXIT CONTRACT OPTIMIZATION PROBLEM

Xihao He , Xiaolu Tan* and Jun Zou

Abstract. We study an exit contract design problem, where one provides a universal exit contract
to multiple heterogeneous agents, with which each agent chooses an optimal (exit) stopping time.
The problem consists in optimizing the universal exit contract w.r.t. some criterion depending on the
contract as well as the agents’ exit times. Under a technical monotonicity condition, and by using
Bank-El Karoui’s representation of stochastic processes, we are able to transform the initial contract
optimization problem into an optimal control problem. The latter is also equivalent to an optimal
multiple stopping problem and the existence of the optimal contract is proved. We next show that the
problem in the continuous-time setting can be approximated by a sequence of discrete-time ones, which
would induce a natural numerical approximation method. We finally discuss the optimization problem
over the class of all Markovian and/or continuous exit contracts.
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1. Introduction

The contract theory is an important research subject in economics and applied mathematics. A basic problem
in the theory is about the design of a contract between the principal(s) and the agent(s), where the principal
provides to the agent a contract (reward function) depending on the action and/or the corresponding output
of the agent, while the agent takes an optimal action according to the given contract/reward. The problem (of
the principal) is then to design a best contract by taking into account the (optimal) action of the agent as well
as the corresponding output and reward value paid to the agent. In this paper, we introduce an exit contract
optimization problem with n ≥ 1 heterogeneous agents in a stochastic context. Let (Ω,F ,F,P) be a filtered
probability space, an exit contract is mathematically an adapted reward process Y = (Yt)t≥0, with which each
agent i = 1, · · · , n solves an optimal stopping problem

sup
τ∈T

E
[ ∫ τ

0

fi(t)dt+ Yτ

]
,

in order to choose an optimal exit time τ̂i, where T represents the collection of all stopping times. In above, the
agents share the universal contract Y , but each agent has individual utility/reward process fi for i = 1, · · · , n.
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Our problem consists in choosing an optimal contract Y by considering the optimization probelm:

sup
Y

G(Y, τ̂1, · · · , τ̂n),

where G is a reward function depending on the contract Y as well as the corresponding optimal stopping times
(τ̂i)i=1,··· ,n of the agents.

The above problem can be considered as a variation of the so-called principal-agent problem, where a principal
provides a contract w.r.t. which the agent solves a stochastic optimal control problem, and then the principal
optimizes the contract w.r.t. a reward functional depending on the contract as well as the agents’ optimal
control. In the continuous-time setting, the principal-agent problem has been studied by characterizing the
optimal behavior of the agents with the first order necessary condition, see e.g. Cvitanić and Zhang [9] and the
references therein. More recently, a dynamic programming approach has been introduced by Sannikov [28], and
then developped by Cvitanić, Possamäı and Touzi [8] with the 2nd order BSDE (backward stochastic differential
equation) technique of Soner, Touzi and Zhang [29] (see also Possamäı, Tan and Zhou [26]).

The optimal stopping mechanism can also be included in this problem, see, e.g., Cvitanić, Wan and Zhang
[10], Sannikov [28], Capponi and Frei [6], Hajjej, Hillairet and Mnif [16], and Lin, Ren, Touzi and Yang [22], in
the setting with one agent. While the initial principal-agent problem focused on the case with one principal and
one agent, Elie and Possamäı [14], Elie, Mastrolia and Possamäı [13], Ren, Tan, Touzi and Yang [27] studied
the case with one principal and many agents, and Mastrolia and Ren [23], Hu, Ren and Yang [18] investigated
the case with many principals and one agent. Kang [19] considered the problem with several principals and
several agents. We like also to mention another interesting work by Hernández Santibáñez, Possamäı and Zhou
[17], where the principal offers a family of contracts and the agent can choose one. For the applications of the
principal-agent problem in such as energy or financial market, we refer to, among many others, the work by
Aı̈d, Possamäı and Touzi [1], Elie, Hubert, Mastrolia and Possamäı [12], Euch, Mastrolia Rosenbaum and Touzi
[15], Baldacci, Possamäı and Rosenbaum [2].

By adopting this language, we will also call our exit contract optimization problem the principal’s problem.
For our exit contract problem, a main difference is that each agent needs to solve an optimal stopping problem
in contrast to an optimal control problem in the principal-agent problem. More importantly, the principal can
observe the agents’ optimal choice (exit time) in our problem, while the principal can not observe the agents’
optimal control in the standard principal-agent problem. In other words, there is no moral hazard in our exit
contract design problem.

Further, in our exit contract design problem, although the principal has full information on the reward
process fi of each agent i = 1, · · · , n, she/he needs to propose a universal contract Y to all agents, rather than
an individual contract to each agent. This should be considered as a constraint on the principal’s problem,
which occurs in various applications. Let us mention some of them below.

� The exit contract process Y can represent the price process of the good/service (e.g. the electricity) sold
publicly. In this case, the price could depend on the time, but it needs to be the same to all customers.

� In some countries, when a company plans to lay off a number of employees in a progressive way, the
manager can not directly fire the chosen employees because of the labour union or law constraint. One
needs to provide a time-dependent compensation plan which is identical for everyone, and then let the
employees take voluntary leave.

� In some retirement systems, people are allowed to choose their retirement ages in a range. In particular,
everyone has an individual pension basis, and the real retirement pension depends on the basis as well as
a parameter. The retirement plan, i.e. how this parameter depends on the age, needs to be universal to
all people or all groups of people.

Let us also mention the recent work by Nutz and Zhang [24], which studies an optimal design problem of the
exit scheme for a (large) population of agents playing a mean-field game of stopping under the exit scheme. In
their context, each agent runs an identical and independent Brownian motion, and the agents are in a symmetric
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situation with interaction. For our exit contract problem, the main difference is that all agents share the same
randomness in the probability space (Ω,F ,P) and there is no interaction between the agents.

In the context with only one agent, the exit contract problem could become trivial as the principal can easily
manipulate the exit time of the agent, so that it turns to be a so-called first best problem for the optimal stopping
part, see e.g. Cvitanić, Wan and Zhang [10]. However, in the current context with a universal exit contract for
multiple heterogeneous agents, the agents may have different (optimal) exit times as their utility/reward process
(fi)i=1,··· ,n are different. It becomes no more trivial to manipulate directly all exit times of multiple agents as in
the one agent case. To the best of our knowledge, this formulation (in both discrete-time and continuous-time
settings) has not been studied in the literature. To provide a first approach, we follow the spirit of Sannikov [28]
to focus on the value processes of the agents, which allows decoupling the principal’s and the agents’ problems.
In particular, we will apply the remarkable representation theorem of the stochastic processes due to Bank
and El Karoui [4] (see also the recent development by Bank and Besslick [3]). By this representation theorem,
any optional process Y = (Yt)t∈[0,T ] satisfying some integrability and regularity in expectation conditions can
be represented as an integral of functional of another optional process L = (Lt)t∈[0,T ]. More importantly, the
hitting times of the process L at different level provide the (minimal) solutions of a family of optimal stopping
problems relying on Y . From this point of view, one can use L to represent the contract Y and at the same time
the optimal exit times of the agents. It follows that, at least formally, one can decouple the initial problems and
reformulate the exit contract design problem as an optimization problem over a class of processes L. Moreover,
the exit design problem can be then reformulated to a multiple optimal stopping problem, where the optimal
solution corresponds to the optimal stopping times of the agents with the corresponding optimal exit contract.
From this point of view, our approach confirms that, under our technical conditions, our exit contract problem
with multiple agents can be transformed as a first best problem (with a well chosen reward function) as in the
one agent case (see more discussions in Sect. 2.3).

In the continuous-time setting, some technical upper-semicontinuous condition is required on the admissible
contracts Y to ensure the existence of the optimal exit time of the agents. In the discrete-time setting, such
technical condition is not required in the classical optimal stopping theory. We hence provide an analogue of
the main results on the exit contract design problem, by developing the same techniques in the discrete-time
framework. We can also show the convergence of the discrete-time problems to the continuous-time problem as
time step tends to 0. In particular, this could induce natural numerical approximation methods for the initial
continuous-time exit contract problem. Finally, by Bank-El Karoui’s representation theorem in the discrete-time
setting, we can identify the properties of the process L when Y is Markovian and/or continuous w.r.t. some
underlying process X, which allows us to study the contract design problem when one is restricted to choose
from the class of all Markovian and/or continuous contracts.

The rest of the paper is organized as follows. In Section 2, we formulate our exit contract design problem in
a continuous-time framework, and provide an approach to decouple the principal’s and agents’ problems based
on Bank-El Karoui’s representation theorem. It is shown that the principal’s problem (i.e. exit contract design
problem) is equivalent to an optimal control problem or a multiple optimal stopping problem, and the existence
of the optimal contract is obtained. Some examples and interpretations are provided in the end. In Section 3, we
develop the analogue techniques for the discrete-time problem, and show its convergence to the continuous-time
one as time step goes to 0. Finally, in Section 4, we stay in the discrete-time setting and study the problem
with Markovian and/or continuous contracts.

2. Exit contract optimization problem in continuous-time
setting

Let (Ω,F ,P) be a complete probability space, equipped with a filtration F = (Ft)t∈[0,T ], for some finite T > 0,
satisfying the usual conditions, i.e. the map t 7−→ Ft is right-continuous, and F0 contains all null sets in F . Let
T denote the collection of all F–stopping time taking values in [0, T ]. Given τ ∈ T , we also denote

Tτ :=
{
θ ∈ T : θ ≥ τ

}
.
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2.1. Mathematical formulation of the exit contract problem

We will formulate an exit contract design problem with n agents. An exit contract is a F-optional process
Y = (Yt)t∈[0,T ], and each agent chooses to quit the contract at time t ∈ [0, T ] to receive a reward value Yt.
In the typical case where F is the (augmented) filtration generated by some càdlàg process X = (Xt)t∈[0,T ], a
contract Y is a functional of the underlying process X. The contract design problem consists in choosing an
optimal contract Y w.r.t. a criterion depending on Y as well as the agents’ exit times.

2.1.1. Agents’ problem

Let us consider n agents indexed by i = 1, · · · , n. Given a fixed contract Y = (Yt)t∈[0,T ], which is a F-optional
process of class (D) (i.e. the family (Yτ )τ∈T is uniformly integrable), the agent i aims at solving the following
optimal stopping problem

V Ai := sup
τ∈T

E
[ ∫

[0,τ ]

fi(t)µ
A(dt) + Yτ

]
, (2.1)

where fi : [0, T ]×Ω −→ R is a given (progressively measurable) reward function, µA is a deterministic atomless
finite Borel measure on [0, T ]. Namely, the agent i chooses an exit time τi, before which she/he would receive a
reward value with rate fi(t) (w.r.t. µA), and at which she/he would receive the compensation Yτi . We assume
that all agents stay in a risk-neutral context under P, so that their optimization problems turn out to be (2.1).

The optimal stopping problem (2.1) can be solved by the classical Snell envelop approach (see the recalling
in Thm. A.1). Namely, let us denote

Git :=

∫
[0,t]

fi(s)µ
A(ds) + Yt,

and by Si the Snell envelop of Gi, so that, for all τ ∈ T ,

Siτ =

∫
[0,τ ]

fi(s)µ
A(ds) + ZA,iτ , a.s., with ZA,iτ := ess sup

σ∈Tτ
E
[ ∫

(τ,σ]

fi(s)µ
A(ds) + Yσ

∣∣∣Fτ]. (2.2)

Then V Ai = E[Si0] = E[ZA,i0 ].

Definition 2.1 (USCE). An optional process Y of class (D) is said to be upper-semicontinuous in expectation
(USCE) if, for any τ ∈ T and any sequence (τn)n≥1 ⊂ T satisfying either

(τn)n≥1 is non-decreasing, τn < τ on {τ > 0}, for each n ≥ 1, lim
n→∞

τn = τ,

or

τn ≥ τ, a.s., for each n ≥ 1, lim
n→∞

τn = τ,

one has

E[Yτ ] ≥ lim sup
n→∞

E[Yτn ].

By the classical optimal stopping theory (see e.g. Thm. A.1), when the optional process Y is of class (D) and
USCE in the sense of Definition 2.1, the smallest optimal stopping time is given by

τ̂i := inf
{
t ≥ 0 : Sit = Git

}
= essinf

{
τ ∈ T : ZA,iτ = Yτ , a.s.

}
. (2.3)
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We will assume the above technical condition on the admissible contract Y , so that each agent has a unique
smallest optimal stopping time.

2.1.2. The exit contract optimization problem

Let ξ be a fixed FT –measurable random variable such that E[|ξ|] <∞, and define

Y :=
{
Y is F–optional, USCE, in class (D), and satisfies YT ≥ ξ

}
.

Then for each Y ∈ Y, the optimal stopping problem (2.1) of the agent i has a unique smallest optimal stopping
time τ̂i given by (2.8). To make the behaviour of the agents tractable, we fix Y as the set of all admissible
contracts, and also assume that the agents will choose to exit the contract at the smallest optimal stopping
time among all optimal ones.

Next, before the exit time τ̂i of agent i, the principal will receive a (continuous) reward value with rate
gi(t) (w.r.t a deterministic atomless finite Borel measure µP on [0, T ]) due to the work of agent i, where
gi : [0, T ] × Ω −→ R is a progressively measurable process. Further, at the exit time τ̂i, the principal pays
the agent i the compensation Yτ̂i . We also assume that the principal is risk-neutral, so that the exit contract
optimization problem turns out to be

V P := sup
Y ∈Y

E
[ n∑
i=1

(∫
[0,τ̂i]

gi(t)µ
P (dt)− Yτ̂i

)]
. (2.4)

Remark 2.2. (i) The constraint YT ≥ ξ can be considered as the participation constraint in our exit contract
problem. In particular, it ensures that the reward value V Ai of agent i satisfies

V Ai ≥ Ci := E
[ ∫ T

0

fi(t)µ
A(dt) + ξ

]
.

Notice that the optimal stopping times (τ̂i)i=1,··· ,n stay unchanged if the principal replaces the contract
(Yt)t∈[0,T ] by (Yt − C)t∈[0,T ] for an arbitrarily big constant C > 0, which would make the reward value V P

of the principal in (2.4) to be∞. The constraint YT ≥ ξ will prevent the principal to choose the contract in this
way.
(ii) Furthermore, the optimal exit times (τ̂i)i=1,··· ,n of the agents will not change if the principal replaces Y
by Y −M for some martingale M . Therefore, the principal will always choose a contract Y such that YT = ξ.
Otherwise, he/she can replace Y by Y −M with Mt := E[YT − ξ|Ft] for t ∈ [0, T ] to have a better reward value.
For this reason, one can assume, additionally and w.l.o.g., that YT = ξ for all admissible contracts in Y.

Remark 2.3. One can also consider different atomless measures {µPi }ni=1 for different agents in principal’s
problem. Nevertheless, by considering a measure µP dominating all measures µPi and then modifying the rate
functions gi, one can still reduce principal’s problem to that in (2.4).

In the following of the paper, we make the following technical assumptions on (fi, gi)i=1,··· ,n.

Assumption 2.4. It holds that

f1(t, ω) < · · · < fn(t, ω), for all (t, ω) ∈ [0, T ]× Ω, (2.5)

and

E
[ ∫ T

0

∣∣fi(t)∣∣µA(dt) +

∫ T

0

∣∣gi(t)∣∣µP (dt)
]
<∞, i = 1, · · · , n.
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Remark 2.5. The monotonicity condition (2.5) is a technical condition due to our approach, which would be
restrictive in practice. In particular, it implies that the optimal stopping times {τ̂i}ni=1 are ordered, see also
Remark 2.9 below.

2.2. Solving the exit contract problem

We will make use of Bank-El Karoui’s representation theorem (recalled in Thm. A.4) to solve the principal’s
problem (2.4). As preparation, let us first interpolate the functionals (fi)i=1,··· ,n as a functional defined on
[0, T ]× Ω× R. By abus of notation, we denote it by f : [0, T ]× Ω× R −→ R: for all (t, ω) ∈ [0, T ]× Ω

f(t, ω, `) :=


f1(t, ω) + (`− 1), ` ∈ (−∞, 1],

(i+ 1− `)fi(t, ω) + (`− i)fi+1(t, ω), ` ∈ [i, i+ 1], i = 1, · · · , n− 1,

fn(t, ω) + (`− n), ` ∈ [n,+∞).

(2.6)

Then under Assumption 2.4, it is clear that, for each fixed ` ∈ R,

E
[ ∫

[0,T ]

∣∣f(t, `)∣∣µA(dt)

]
<∞.

Further, for each (t, ω) ∈ [0, T ]× Ω, the map ` 7−→ f(t, ω, `) is continuous and strictly increasing from −∞ to
+∞, and finally, f(t, ω, i) = fi(t, ω) for each i = 1, · · · , n.

Applying Bank-El Karoui’s representation theorem (Thm. A.4), it follows that, for every contract Y ∈ Y,
there exists an optional process LY such that

Yτ = E
[
ξ +

∫
(τ,T ]

f
(
t, sup
s∈[τ,t)

LYs

)
µA(dt)

∣∣∣Fτ], for all τ ∈ T . (2.7)

Moreover, the (smallest) optimal stopping time of each agent i = 1, · · · , n can be obtained from the process LY

by

τ̂i = inf
{
t ≥ 0 : LYt ≥ i

}
= inf

{
t ≥ 0 : Yt = ZA,it

}
. (2.8)

Notice that in (2.7), there may exist multiple solutions LY for a given Y , but their running maximum L̂Yt :=
sup0≤s≤t L

Y
s will be the same, so that the stopping times τ̂i are uniquely defined. Then, at least formally

at this stage, one can expect to reformulate the exit contract optimization problem (2.4) as an optimization
problem over a class of optional processes L. Let us denote by L the collection of all F-optional processes
L : [0, T ]× Ω −→ [0, n], and the subsets

L+ :=
{
L ∈ L : L is non-dereasing

}
, L+

0 :=
{
L ∈ L+ : Lt ∈ {0, 1, · · · , n}, t ∈ [0, T ], a.s.

}
. (2.9)

Before we provide the solution of the principal’s problem based on the representation in (2.7), we show that
given any L ∈ L+, one can construct an admissible contract Y L ∈ Y.

Lemma 2.6. Let Assumption 2.4 hold true. Then for every L ∈ L+, there exists an optional process Y L such
that

Y Lτ = E
[
ξ +

∫
(τ,T ]

f
(
t, sup
s∈[τ,t)

Ls

)
µA(dt)

∣∣∣Fτ], a.s., for all τ ∈ T . (2.10)

Moreover, Y L ∈ Y, and it has almost surely right-continuous paths.
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Proof. (i) Notice that a process L ∈ L+ is nondecreasing, so that

E
[
ξ +

∫
(τ,T ]

f
(
t, sup
s∈[τ,t)

Ls

)
µA(dt)

∣∣∣Fτ] = E
[
ξ +

∫
(τ,T ]

f
(
t, Lt−

)
µA(dt)

∣∣∣Fτ]. (2.11)

Therefore, there exists a càdlàg adapted (and hence optional) process Y L satisfying (2.10).
(ii) We next prove that Y L ∈ Y. From (2.10), we first obtain that Y LT = ξ. Moreover, Y L is of Class (D) since

|Y Lτ | =
∣∣∣E[ξ +

∫
(τ,T ]

f
(
t, sup
s∈[τ,t)

Ls

)
µA(dt)

∣∣∣Fτ]∣∣∣
≤ E

[
|ξ|+

∫
[0,T ]

(
|f1(t)|+ 1 + |fn(t)|

)
µA(dt)

∣∣∣Fτ].
It is enough to check that Y L is USCE in order to conclude that Y L ∈ Y. It is in fact continuous in expectation.
Indeed, let {τk}∞k=1 ⊂ T be such that τk −→ τ as k →∞ for some τ ∈ T , then we have by (2.10) and (2.11)

E
[
Y Lτk − Y

L
τ

]
= E

[ ∫
(τk,T ]

f
(
t, sup
s∈[τk,t)

Ls

)
µA(dt)−

∫
(τ,T ]

f
(
t, sup
s∈[τ,t)

Ls

)
µA(dt)

]
= E

[ ∫
(τk,τ ]

f
(
t, Lt−

)
µA(dt)

]
−→ 0,

where the last limit follows from the fact that∣∣∣f(t, Lt−)∣∣∣ ≤ |f1(t)|+ |fn(t)|+ 1

and the integrability condition on (fi)i=1,··· ,n in Assumption 2.4.

Theorem 2.7. Let Assumption 2.4 hold true. Then the contract design problem (2.4) is equivalent to

V P = sup
L∈L+

E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P (dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)
)
− ξ
)]

(2.12)

= sup
L∈L+

0

E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P (dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)
)
− ξ
)]

.

Further, their optimal solutions are also related in the following sense:
(i) Let L̂∗ ∈ L+ be an optimal solution to the optimization problem at the r.h.s. of (2.12), then the contract

Y L̂
∗
, defined below, is an optimal solution to the contract design problem (2.4):

Y L̂
∗

t := E
[
ξ +

∫
(t,T ]

f
(
s, L̂∗s−

)
µA(ds)

∣∣∣Ft], t ∈ [0, T ]. (2.13)

Moreover, the smallest optimal stopping times (τ̂∗i )i=1,··· ,n of the agents w.r.t. the contract Y L̂
∗

is given by

τ̂∗i := inf
{
t ≥ 0 : L̂∗t ≥ i

}
.
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(ii) Conversely, let Y ∗ be an optimal contract to problem (2.4), and LY
∗

be a corresponding optional process in
the representation (2.7), let

L̂Y
∗

t :=
(

0 ∨ sup
s∈[0,t)

LY
∗

s

)
∧ n.

Then L̂Y
∗ ∈ L+ and it is an optimal solution to the optimization problem at the r.h.s. of (2.12). Moreover, the

contract Ŷ defined by L̂Y
∗

through (2.13) is also an optimal contract to (2.4), and it induces the same smallest
optimal stopping time τ̂i (defined in (2.8)) for each agent i = 1, · · · , n as those induced by contract Y ∗.

Remark 2.8. There are different ways to interpolate (fi)i=1,··· ,n to obtain a functional f : [0, T ]×Ω×R −→ R
as in (2.6). Nevertheless, when we consider the processes in L+

0 , which take values only in {0, 1, · · · , n}, it does
not change the problem at the r.h.s. of (2.12).

Proof. of Theorem 2.7. (i) Let us first prove that

V P ≤ sup
L∈L+

E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P (dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)
)
− ξ
)]

. (2.14)

Given any Y ∈ Y, we denote by LY an optional process which provides the representation (2.7), and then define

L̂Yt := 0 ∨ sup
s∈[0,t)

LYs ∧ n, t ∈ [0, T ].

One observes that, for each i = 1, · · · , n,

{τ̂i < t} ⊂
{
i ≤ L̂Yt

}
⊂ {τ̂i ≤ t}, and sup

s∈[τ̂i,t)
LYs = sup

s∈[0,t)
LYs on {τ̂i < t}.

It follows that

JPi (Y ) := E
[ ∫

[0,τ̂i]

gi(t)µ
P (dt)− Yτ̂i

]
= E

[ ∫
[0,τ̂i]

gi(t)µ
P (dt)−

∫
(τ̂i,T ]

f
(
t, sup
s∈[τ̂i,t)

LYs

)
µA(dt)− ξ

]
= E

[ ∫
[0,τ̂i]

gi(t)µ
P (dt)−

∫
(τ̂i,T ]

f
(
t, sup
s∈[0,t)

LYs

)
µA(dt)− ξ

]
≤ E

[ ∫
[0,T ]

(
gi(t)1{t≤τ̂i}µ

P (dt)− f
(
t, L̂Yt

)
1{t>τ̂i}µ

A(dt)
)
− ξ
]

= E
[ ∫

[0,T ]

(
gi(t)1{L̂Yt <i}

µP (dt)− f
(
t, L̂Yt

)
1{L̂Yt ≥i}

µA(dt)
)
− ξ
]
. (2.15)

Notice that L̂Y ∈ L+ has almost surely left continuous paths, taking the sum over i = 1, · · · , n, it follows that
(2.14) holds.
(ii) We next prove the reverse inequality:

V P ≥ sup
L∈L+

E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P (dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)
)
− ξ
)]

. (2.16)



AN EXIT CONTRACT OPTIMIZATION PROBLEM 9

For each L ∈ L+, let Y L be the optional process given by Lemma 2.6, so that Y L ∈ Y and

Y Lτ = E
[
ξ +

∫
(τ,T ]

f
(
t, sup
s∈[τ,t)

Ls

)
µA(dt)

∣∣∣Fτ], a.s., for all τ ∈ T ,

where sups∈[τ,t) Ls = Lt−, since L ∈ L+ admits nondereasing paths. Let

τ̂i := inf{t ≥ 0 : Lt ≥ i},

then by Bank-El Karoui’s representation theorem (Thm. A.4), τ̂i is the smallest optimal stopping time of the
ith agent under the contract Y L. In particular, one has

E
[ ∫

[0,T ]

f
(
t, Lt−

)
1{t>τ̂i}µ

A(dt)

]
= E

[ ∫
[0,T ]

f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)

]
. (2.17)

It follows that

V P ≥
n∑
i=1

JPi (Y L) = E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P (dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)
)
− ξ
)]

,

and therefore the inequality in (2.16) holds.
(iii) Notice that for any L ∈ L+, we define L0

t := [Lt], where [x] denotes the biggest integer less or equal to x.
It is easy to verify that L0 ∈ L+, L0 ≤ L and {Lt− ≥ i} = {L0

t− ≥ i} for any t ∈ [0, T ], i = 1, · · · , n. Hence we
have

E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P (dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)
)
− ξ
)]

≤ E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{L0

t−<i}µ
P (dt)− f

(
t, L0

t−
)
1{L0

t−≥i}µ
A(dt)

)
− ξ
)]

.

So we complete the proof of the second equality in (2.12).

(iv) Given an optimal solution L̂∗ ∈ L+ to the optimization problem at the r.h.s. of (2.12), together with the
equality (2.17), one has

V P = E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{L̂∗t−<i}

µP (dt)− f
(
t, L̂∗t−

)
1{L̂∗t−≥i}

µA(dt)
)
− ξ
)]

= E
[ n∑
i=1

(∫
[0,τ̂∗i ]

gi(t)µ
P (dt)− Y L̂

∗

τ̂∗i

)]
,

where τ̂∗i is the smallest optimal stopping time of agent i with contract Y L̂
∗
. Hence Y L̂

∗
is an optimal solution

to the exit contract design problem.
Similarly, given an optimal solution Y ∗, by using (2.15) and the representation (2.7), one can conclude that

the corresponding L̂Y
∗

is an optimal solution to the optimization problem at the r.h.s. of (2.12), L̂Y
∗ ∈ L+,

and the contract Ŷ defined by L̂Y
∗

through (2.13) is also an optimal contract to (2.4), Moreover, since {LY ∗t ≥
i} = {L̂Y ∗t ≥ i}, it follows that Y ∗ and Ŷ induce the same smallest optimal stopping time τ̂i for each agent
i = 1, · · · , n.
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Remark 2.9. As observed in the above proof, given L ∈ L+ and the corresponding contract Y L defined in
Lemma 2.6, the optimal stopping time of agent i is given by τ̂i := inf{t ≥ 0 : Lt ≥ i}. In particular, they are
ordered in the sense that

τ̂1 ≤ · · · ≤ τ̂n.

In fact, given an arbitrary contract Y ∈ Y, one can check that the smallest optimal stopping time τ̂i of the
agent i in problem (2.1) satisfies

τ̂1 ≤ τ̂2 ≤ · · · ≤ τ̂n, a.s. (2.18)

Indeed, under Assumption 2.4 and by the definition of ZA,i in (2.2), it follows that, for all t ∈ [0, T ],

ZA,1t ≤ ZA,2t ≤ · · · ≤ ZA,nt , a.s.

Notice that ZA,it ≥ Yt for all i = 1, · · · , n− 1, then

ZA,i+1
t = Yt, a.s. =⇒ ZA,it = Yt, a.s.,

and it follows then from (2.8) that τ̂i ≤ τ̂i+1, a.s. and hence (2.18) holds.

As noticed in Remark 2.9, the event {Lt− ≥ i} at the r.h.s. of (2.12) defines a sequence of ordered stopping
times. One can then reformulate the the exit contract design problem as a multiple stopping problem. More
importantly, this reformulation allows us to obtain the existence of the optimal contract.

Proposition 2.10. Let Assumption 2.4 hold true.
(i) The exit contract design problem (2.4) is equivalent to the following optimal multiple stopping problem, with
τn+1 ≡ T ,

V P = sup
{τi}ni=1⊂T
τ1≤···≤τn

E
[ n∑
i=1

(∫
[0,τi]

gi(t)µ
P (dt)−

n∑
j=i

∫
(τj ,τj+1]

fj(t)µ
A(dt)− ξ

)]
. (2.19)

(ii) There exist stopping times τ̂1 ≤ · · · ≤ τ̂n which solve the optimization problem at the r.h.s of (2.19). More-

over, the process L̂∗t :=
∑n
i=1 1{τ̂i<t} is an optimal solution to the optimization problem at the r.h.s. of (2.12).

Consequently, the corresponding contract Y L̂
∗

defined as in (2.13) is an optimal contract to problem (2.4).

Proof. (i) Given any sequence {τi}ni=1 of stopping times satisfying τ1 ≤ · · · ≤ τn, one can define an optional
process L ∈ L+

0 by Lt :=
∑n
i=1 1{τi<t}. On the other hand, given L ∈ L+

0 , one can define a sequence of ordered
stopping times by τi := inf{t ≥ 0 : Lt− ≥ i}, i = 1, · · · , n. One can then obtain (2.19) from (2.12), together
with the equality ∫

[0,T ]

gi(t)1{Lt−<i}µ
P (dt)− f

(
t, Lt−

)
1{Lt−≥i}µ

A(dt)

=

∫
[0,τi]

gi(t)µ
P (dt)−

n∑
j=i

∫
(τj ,τj+1]

fj(t)µ
A(dt).
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(ii) By arranging the terms at the r.h.s. of (2.19), it follows that

E
[ n∑
i=1

(∫
[0,τi]

gi(t)µ
P (dt)−

n∑
j=i

∫
(τj ,τj+1]

fj(t)µ
A(dt)− ξ

)]

= E
[ n∑
i=1

(∫
[0,τi]

(
gi(t)µ

P (dt) +
(
ifi − (i− 1)fi−1

)
(t)µA(dt)

)
−
∫
[0,T ]

fn(t)µA(dt)− ξ
)]
.

The stopping time at the r.h.s. of (2.19) is then equivalent to the optimal multiple stopping problem:

sup
{τi}ni=1⊂T
τ1≤···≤τn

E
[ n∑
i=1

∫
[0,τi]

(
gi(t)µ

P (dt) +
(
ifi − (i− 1)fi−1

)
(t)µA(dt)

)]
. (2.20)

At the same time, it is easy to check that the continuity (in expectation) of the mapping

t 7−→ E
[ ∫

[0,τi]

(
gi(t)µ

P (dt) +
(
ifi − (i− 1)fi−1

)
(t)µA(dt)

)]
.

Then it is enough to apply Theorem A.2 to prove the existence of the optimal stopping times {τ̂i}ni=1 ⊂ T .

Remark 2.11. The multiple stopping problem has been studied in the classical literature such as in Carmona
and Touzi [7], Kobylanski, Quenez and Rouy-Mironescu [21]. A main difference of the multiple stopping problem
in (2.19) is that the stopping times are required to be ordered.

2.3. Further discussions and examples

Our exit contract design problem shares some main features with the classical principal-agent problem (as
studied in [28]) since both problems optimize over a class of contracts. However, there would be some structural
differences between the two problems:

� For a classical principal-agent problem, a basic structure is the following: the agent makes an action a,
which induces an output Xa, and the contract ξ is a function of the output variable Xa. In this setting,
there exist two situations: the principal observes both agent’s action a and the output Xa, or the principal
observes only Xa. According to the two different situations, the principal’s problem would be the so-called
first best problem, or the second best problem.

� For our exit contract design problem, the agent makes an action τ , and the contract ξ is a function of (τ,X)
with some underlying observable process X. There would be only one situation: the principal observes the
agent’s action τ so that both can agree with the payoff ξ(τ,X) paid by the principal.

For a standard principal agent problem, where the principal can provide an individual contract to the agent,
it is well-known that the principal’s problem can be reduced to the so-called first best problem, i.e. the principal
controls directly the action of the agent in order to optimize an appropriate reward function. This is also the
case for the exit contract design problem in the setting with one agent, see e.g. [10]. However, it becomes much
less obvious in our setting where the principal needs to provide a universal contract to multiple heterogeneous
agents. Our result in Proposition 2.10 shows that, under the monotone condition in Assumption 2.4, one can
give an order to different agents and then find an appropriate reward function (as that at the r.h.s. of (2.19)) so
that the initial problem reduces to a first best type optimization problem over the sequences of ordered stopping
times. We have found such a reward function thanks to the approach in Theorem 2.7 based on the Bank-El
Karoui’s representation theorem.
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Nevertheless, this seems not to be the feature of our problem without the monotone condition in Assumption
2.4. Indeed, without the monotone condition, there may be different ways to index the agents, and there is no
reason that the optimal stopping times of the agents are ordered. Moreover, we show in the following example
that, without the monotone condition, the problem is not equivalent to the first best problem if one uses the
r.h.s. of (2.19) as the reward function.

Example 2.12. Let us consider a deterministic setting with 2 agents, where T = 3, ξ = 0, and µA(dt) =
µP (dt) = δ0(dt) + δ1(dt) + δ2(dt), so that the problem can be considered as a discrete-time one on the grid
{0, 1, 2, 3}. Let

f1(0) = f2(0) = 0, f1(1) = 1, f2(1) = 2, f1(2) = 2, f2(2) = 1, f1(3) = f2(3) = 0,

and

g1(0) = g2(0) = 0, g1(1) = 1, g2(1) = −4, g1(2) = −5

2
, g2(2) =

1

2
, g1(3) = g2(3) = 0.

In this deterministic setting, the stopping times become deterministic times taking values in {0, 1, 2, 3}, and as
the natural extension of the r.h.s. of (2.19), one can guess that the corresponding first best problem would be

V1 = sup
τ1≤τ2

J1(τ1, τ2), with J1(τ1, τ2) :=
( τ1∑
k=0

g1(k) +

τ2∑
k=0

g2(k)−
τ2∑

k=τ1+1

f1(k)− 2

3∑
k=τ2+1

f2(k)
)
,

or

V2 = sup
τ2≤τ1

J2(τ2, τ1), with J2(τ2, τ1) :=
( τ1∑
k=0

g1(k) +

τ2∑
k=0

g2(k)−
τ1∑

k=τ2+1

f2(k)− 2

3∑
k=τ1+1

f1(k)
)
.

By a direct computation, we have

V1 ≥ J1(1, 2) = −9

2
, and V2 ≥ J2(0, 2) = −9

2
.

In fact, by considering all (finitely) possible values of (τ1, τ2), one can check that V1 = V2 = − 9
2 .

Next, let us consider the exit contract optimization problem V P in (2.4). In our deterministic setting, it is
enough to consider all possible values of (Y0, Y1, Y2) ∈ R3 as Y3 = ξ = 0 (see Rem. 2.2). Let us define

D1
0 := {(y0, y1, y2) ∈ R3 : y0 ≥ max{1 + y1, 3 + y2, 3}},

D1
1 := {(y0, y1, y2) ∈ R3 : y1 ≥ max{2 + y2, 2}, y1 > y0 − 1},

D1
2 := {(y0, y1, y2) ∈ R3 : y2 ≥ 0, 3 + y2 > max{y0, 1 + y1}},

D2
0 := {(y0, y1, y2) ∈ R3 : y0 ≥ max{2 + y1, 3 + y2, 3}},

D2
1 := {(y0, y1, y2) ∈ R3 : y1 ≥ max{1 + y2, 1}, y1 > y0 − 2},

D2
2 := {(y0, y1, y2) ∈ R3 : y2 ≥ 0, 3 + y2 > max{y0, 2 + y1}}.
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One can easily check that, whenever (Y0, Y1, Y2) ∈ D1
0 (resp. D1

1, D1
2), one has τ̂1 = 0 (resp. 1, 2), and whenever

(Y0, Y1, Y2) ∈ D2
0 (resp. D2

1, D2
2), one has τ̂2 = 0 (resp. 1, 2). For i, j = 0, 1, 2, we define

V P (i, j) := sup
Y ∈D1

i∩D2
j

( i∑
k=1

g1(k) +

j∑
k=1

g2(k)− Yi − Yj
)
,

so that

V P = max
0≤i,j≤2

V P (i, j).

By a direct computation, one has

V P (0, 0) = −6, V P (0, 1) = −8, V P (1, 1) = −7, V P (2, 1) = −13

2
, V P (2, 2) = −5,

and the value of V P (i, j) not listed above is −∞. Therefore, V P = V P (2, 2) = −5, and one optimal contract

would be (Ŷ0, Ŷ1, Ŷ2, Ŷ3) = (0, 0, 0, 0).
In the above example, we observe that V P < V1 = V2, and V1 or V2 can not be the corresponding first best

problem. At the same time, it seems not clear to us how to formulate an appropriate first best problem for V P

in this setting.

We next provide an example with explicit solutions to the principal’s and agents’ problems (under the
monotone condition), which could also illustrate the structure of our exit contract design problem.

Example 2.13. Let n = 2, T = 1, ξ = 0, µA(dt) = µP (dt) be the Lebesgue measure, f1(t) ≡ 1, f2(t) ≡ 2, and
g1, g2 : [0, T ] −→ R are both deterministic functions. Let us define h2 : [0, 1] −→ R, and for each τ2 ∈ [0, 1],
define h1(τ2, ·) : [0, τ2] −→ R by

h2(t) :=

∫ 1

t

f2(s)ds = 2− 2t, for all t ∈ [0, 1],

and

h1(τ2, t) := h2(τ2) +

∫ τ2

t

f1(s)ds = h2(τ2) + τ2 − t, for all t ∈ [0, τ2].

Then the r.h.s. of (2.19) becomes

max
0≤τ1≤τ2≤1

∫ τ1

0

g1(s)ds+

∫ τ2

0

g2(s)ds− h1(τ2, τ1)− h2(τ2). (2.21)

In this deterministic setting, given the functions fi and gi, one can easily compute an optimizer (τ̂1, τ̂2) for
(2.21). Moreover, by Proposition 2.10, an optimal exit contract for the principal becomes

Ŷt = h1(τ̂2, t)1{t=τ̂1} + h2(t)1{t=τ̂2},

and an optimizer L̂ for (2.19) can be given by

L̂t := 0× 1{0≤t<τ̂1} + 1× 1{τ̂1≤t<τ̂2} + 2× 1{τ̂2≤t≤T}, for all t ∈ [0, T ].
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Let us provide some interpretations of the functions h1, h2 as well as problem (2.21). First, under the
monotone condition that f1 < f2, it is known that the smallest optimal stopping time of Agent 1 will be smaller
than that of Agent 2 (see Rem. 2.9). Then, for each t ∈ [0, 1], h2(t) represents the cumulative reward value
that Agent 2 expects to receive from time t if he/she chooses not to stop before T . Thus to encourage Agent 2
to stop at time t < T , the principal should provide at least a compensation value Yt = h2(t). Next, depending
on the exit time τ̂2 of Agent 2 and the contract value Yτ̂2 = h2(τ̂2), the value h1(τ̂2, t) denotes the cumulative
reward value that Agent 1 expects to receive from time t if he/she chooses not to stop before τ̂2. Therefore, to
make Agent 1 stop at time t < τ̂2, the principal should provide at least a compensation value Yt = h1(τ̂2, t). It
follows that the principal’s optimal exit contract problem turns to be equivalent to (2.21).

Finally, given an optimal solution τ̂1 ≤ τ̂2 of (2.21), one can further find an increasing function L : [0, 1] −→
{0, 1, 2} such that the hitting time of L to the level 1 (resp. 2) is the time τ̂1 (resp. τ̂2), which is in fact a solution
to the optimization problem at the r.h.s. of (2.19).

Remark 2.14. In view of the above interpretation of h1 and h2, one can in fact provide a direct proof of
Proposition 2.10 based on a Snell envelop type argument (in a general stochastic setting). We choose to first
prove Theorem 2.7 by the arguments based on Bank-El Karoui’s representation theorem, and then to deduce
Proposition 2.10, for the following reasons. First, from a numerical point of view, the formulation in (2.12) is a
quite standard optimal control problem, which can be solved numerically by the control techniques. We will also
develop this point of view and provide a convergence result in Section 3.2. More importantly, the formulation
in (2.12) and the corresponding approach are more flexible when one restricts the initial exit contract problem
to a subclass of contract, such as the Markovian contract, and/or continuous contracts w.r.t. some underlying
processes. We will develop this further in Section 4, see in particular Remark 4.5 for more discussions.

Finally, let us conclude the subsection by another example which highlights the role of the contract Y in
incentivizing agents.

Example 2.15. Let us consider a stochastic setting with n = 2 agents, terminal time T < ∞, ξ = 0, and
µA(dt) = µP (dt) = dt. Let B be a standard Brownian motion, the running rewards f1 and f2 of the two agents
are given by

f1(t) := 1− 2B̂t − t, f2(t) := 2− B̂t − t, with B̂t := sup
0≤s≤t

|Bs|, for all t ∈ [0, T ].

Notice that f1 and f2 clearly satisfy the monotone condition (2.5).
In the case without incentive contract, each agent i = 1, 2 solves the following optimal stopping problem:

sup
τ∈T

E
[ ∫ τ

0

fi(t)dt

]
.

Notice that both t 7−→ f1(t) and t 7−→ f2(t) are strictly decreasing, then the unique optimal stopping time τ̃i
for agent i = 1, 2 will be the first time that fi(t) becomes negative, that is,

τ̃1 = inf{t ≥ 0 : 2|Bt|+ t ≥ 1} ∧ T, τ̃2 = inf{t ≥ 0 : |Bt|+ t ≥ 2} ∧ T.

Next, we analyze the behavior of the agents when the principal provides a contract, which is also optimized
w.r.t. the principal’s utility functions g1 and g2. By Proposition 2.10, it follows that:

V P = sup
τ1,τ2∈T
τ1≤τ2

E
[(∫ τ1

0

g1(t)dt−
∫ τ2

τ1

f1(t)dt−
∫ T

τ2

f2(t)dt

)
+

(∫ τ2

0

g2(t)dt−
∫ T

τ2

f2(t)dt

)]
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= sup
τ1,τ2∈T
τ1≤τ2

E
[ ∫ τ1

0

(
g1(t) + 1− 2B̂t − t

)
dt+

∫ τ2

0

(
g2(t) + 3− t

)
dt

]
+ 2E

[ ∫ T

0

B̂tdt

]
− 4T.

≤ sup
τ1∈T

E
[ ∫ τ1

0

(
g1(t) + 1− 2B̂t − t

)
dt

]
+ sup
τ2∈T

E
[ ∫ τ2

0

(
g2(t) + 3− t

)
dt

]
+ 2E

[ ∫ T

0

B̂tdt

]
− 4T. (2.22)

Let τ̂1, τ̂2 ∈ T be two stopping times solve respectively the optimal stopping problems

sup
τ1∈T

E
[ ∫ τ1

0

(
g1(t) + 1− 2B̂t − t

)
dt

]
, sup

τ2∈T
E
[ ∫ τ2

0

(
g2(t) + 3− t

)
dt

]
. (2.23)

Assume in addition that τ̂1 ≤ τ̂2, a.s. Then the inequality in (2.22) becomes an equality, and (τ̂1, τ̂2) is an
optimal solution to V P . Further, by (2.13), it leads to the optimal contract Y ∗ given by

Y ∗t = E
[ ∫ T

t

(
f1(s)1[0,τ̂2)(s) + f2(s)1[τ̂2,T ](s)

)
ds− (τ̂1 − t)+

∣∣∣Ft]
= E

[ ∫ T

t

(
(1− 2B̂s − t)1[0,τ̂2)(s) + (2− B̂s − t)1[τ̂2,T ](s)

)
ds− (τ̂1 − t)+

∣∣∣Ft]. (2.24)

Moreover, τ̂i is the optimal stopping time of the agents i = 1, 2 with the contract Y ∗.
In the following, let us consider different examples of the principal’s utility function g1 and g2, which leads

to different optimal contract Y ∗ as well as different optimal stopping times τ̂1 and τ̂2 of the agents.

1. Let g1(t) := 2B̂t + t, g2(t) := 1 + t for all t ∈ [0, T ]. Then by (2.23) and (2.24), the optimal contract is

Y ∗t := −E
[ ∫ T

t

(2B̂s + s)ds
∣∣∣Ft], t ∈ [0, T ],

and the two optimal stopping problems in (2.23) reduce to

sup
τ1∈T

E[τ1], sup
τ2∈T

E[4τ2],

so that the optimal stopping times τ̂1 and τ̂2 for the agents are given by

τ̂1 = τ̂2 = T.

One observes that, comparing to the optimal stopping times τ̃1 and τ̃2 in the setting without contract,
the contract incentivizes the agents to work for a longer period (until the terminal time in fact).

2. Let g1(t) := −2 + 2B̂t+ t, g2(t) := −4 + t for t ∈ [0, T ]. By similar computation, one obtains the principal’s
optimal contract:

Y ∗t := E
[ ∫ T

t

(2− B̂s − s)ds
∣∣∣Ft], t ∈ [0, T ],
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and the optimal stopping problems in (2.23) reduce to

sup
τ1∈T

E[−τ1], sup
τ2∈T

E[−τ2],

so that the optimal stopping times τ̂i of the agent i = 1, 2 are given by

τ̂1 = τ̂2 = 0.

In this setting, the contract incentivise the agent to work for a shorter period (stop immediately at the
beginning in fact).

3. Let g1 := 1− 4B̂ − 2t, g2 := 3− 2B̂ − t. The two optimal stopping problems in (2.23) reduce to

sup
τ1∈T

E
[ ∫ τ1

0

(2− 6B̂t − 3t)dt
]
, sup

τ2∈T
E
[ ∫ τ2

0

(6− 2B̂t − 2t)dt
]
.

and similarly, the optimal stopping times of the agents are given by

τ̂1 = inf
{
t ≥ 0 : 2|Bt|+ t ≥ 2

3

}
∧ T, τ̂2 = inf

{
t ≥ 0 : |Bt|+ t ≥ 3

}
∧ T.

Namely, comparing to τ̃1 and τ̃2 in the case without contract, the incentive contract makes the agent i = 1
to work for a shorter period, and the agent i = 2 to work for a longer period.

3. A discrete-time version and its convergence

We now study a discrete-time version of the exit contract design problem, and provide some analogue results
to those in the continuous-time setting. In particular, the USCE technical condition is no more required in the
discrete-time setting to define the admissible contracts. We next prove its convergence to the continuous-time
problem as the time step goes to 0.

3.1. A discrete-time version of the exit contract problem

Let us consider a partition π = (tj)0≤j≤m of the interval [0, T ], i.e. 0 = t0 < t1 < · · · < tm = T , and study
the exit contract design problem formulated on the discrete-time grid π. We will in fact embed the discrete-
time problem into the continuous-time setting, and reformulate it as a continuous-time problem by considering
piecewise constant processes.

We stay in the same probability space setting as in the continuous-time case, i.e. (Ω,F ,P) being a complete
probability space, equipped with the filtration F = (Ft)t∈[0,T ] satisfying the usual conditions. We next define
the filtration Fπ = (Fπt )t∈[0,T ] by

Fπt := Ftj , for all t ∈ [tj , tj+1), j = 0, · · · ,m− 1, and FπT = FT , (3.1)

and T π denote the collection of all Fπ-stopping times taking values in π. Next, let

Yπ :=
{
Y is Fπ–adapted s.t. Yt = Ytj , t ∈ [tj , tj+1), E[|Ytj |] <∞, j = 0, · · · ,m, and YT ≥ ξ

}
, (3.2)

and

µA,π(dt) =

m∑
j=0

cAj δtj (dt), for some constants cAj > 0, j = 0, · · · ,m.
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Given a discrete-time contract Y ∈ Yπ, the agents’ optimal stopping problems are given by

V A,πi := sup
τ∈T π

E
[ ∫

[0,τ ]

fi(t)µ
A,π(dt) + Yτ

]
, i = 1, · · · , n, (3.3)

whose Snell envelop is also a piecewise constant process, so that the minimum optimal stopping time for the
ith agent is given by

τ̂i := essinf
{
τ ∈ T π : ZA,π,iτ = Yτ , a.s.

}
and takes only values in π (i.e. τ̂i ∈ T π), where, as in (2.2),

ZA,π,iτ := ess sup
σ∈T πτ

E
[ ∫

(τ,σ]

fi(s)µ
A,π(ds) + Yσ

∣∣∣Fτ].
Similarly, let

µP,π(dt) =

m∑
j=0

cPj δtj (dt), for some constants cPj > 0, j = 0, · · · ,m.

The contract design problem is given by

V P,π := sup
Y ∈Yπ

E
[ n∑
i=1

(∫
[0,τ̂i]

gi(t)µ
P,π(dt)− Yτ̂i

)]
. (3.4)

Recall that L, L+ and L+
0 are defined above and in (2.9), we further define Lπ as the set of all Fπ-optional

processes L : [0, T ]× Ω −→ [0, n] which is constant on each interval [tj , tj+1), and

Lπ,+ := Lπ ∩ L+, Lπ,+0 := Lπ ∩ L+
0 . (3.5)

In this context, one still has the extension of the Bank-El Karoui’s representation theorem (see Thm. A.4)
without the USCE condition on Y . It follows that, for any Y ∈ Yπ, there exists an Fπ-optional process L which
is piecewise constant on each interval [tj , tj+1) such that

Yτ = E
[ ∫

(τ,T ]

f
(
t, sup
s∈[τ,t)

Ls

)
µA,π(dt) + ξ

∣∣∣Fπτ ], a.s., for all τ ∈ T , (3.6)

where sups∈[τ,t) Ls will be replaced by Lt− if L ∈ Lπ,+, and the hitting time τi := inf
{
t ≥ 0 : Lt ≥ i

}
is the

minimum solution to the ith agent’s optimal stopping problem (3.3).
On the other hand, for any L ∈ Lπ,+, the process

Y Ls := E
[
ξ +

∫
[0,T ]

f
(
t, Lt−

)
µA,π(dt)

∣∣∣Fs]− ∫
[0,s]

f
(
t, Lt−

)
µA,π(dt), a.s., (3.7)

satisfies clearly that Y Ls = Y Ltj for all s ∈ [tj , tj+1), j = 0, · · · ,m− 1, so that Y L ∈ Yπ.
One can follow almost the same arguments in Theorem 2.7 and Proposition 2.10, but use the discrete-time

version of the optimal stopping theory and Bank-El Karoui’s representation theorem (see Thms. A.1 and A.4),
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to obtain the analogue solution to the discrete-time exit contract problem. Let us just state the results and omit
the proof.

Theorem 3.1. Assume that E[|fi(tj)|] + E[|gi(tj)|] <∞ for all i = 1, · · · , n and j = 0, · · · ,m, and

f1(tj , ω) < · · · < fn(tj , ω), for all (tj , ω) ∈ π × Ω.

Then one has the following equivalence for the contract design problem:

V P,π = sup
L∈Lπ,+

E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P,π(dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
− ξ
)]

= sup
L∈Lπ,+0

E

[
n∑
i=1

(∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P,π(dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
− ξ
)]

= sup
{τi}ni=1⊂T

π

τ1≤···≤τn

E
[ n∑
i=1

(∫
[0,τi]

gi(t)µ
P,π(dt)−

n∑
j=i

∫
(τj ,τj+1]

fj(t)µ
A,π(dt)− ξ

)]
. (3.8)

Moreover, there exists an optimal contract for problem (3.4).

Remark 3.2. As in Theorem 2.7 and Proposition 2.10, one can also construct an optimal solution to (3.4)
from a solution to (3.8), and vice-versa. We nevertheless skip this for simplicity.

3.2. Convergence of the discrete-time value function to the continuous-time one

As illustrated in Section 5 of Bank and Föllmer [5], the discrete-time version of the representation theorem
could provide a numerical algorithm for the continuous-time problem. Here we consider the exit contract design
problem, and provide a convergence result of the discrete-time problems to the continuous-time problem.

Let us consider a sequence (πm)m≥1 of partitions of [0, T ], with πm = (tmj )0≤j≤m, and such that |πm| :=

maxj=0,··· ,m−1(tmj+1 − tmj ) −→ 0 as m −→∞. We also fix µA,πm and µP,πm by

µA,πm(dt) :=

m∑
j=1

cA,mδtmj (dt), and µP,πm(dt) :=

m∑
j=1

cP,mδtmj (dt),

with

cA,mj := µA((tmj−1, t
m
j ]) and cP,m := µP ((tmj−1, t

m
j ]).

Recall also that the corresponding value function V P,πm is defined by (3.4) with partition πm.

Assumption 3.3. (i) For each i = 1, · · · , n, one has

E
[

sup
t∈[0,T ]

|gi(t)|
]

+ E
[

sup
t∈[0,T ]

|fi(t)|
]
< +∞.

(ii) For each i = 1, · · · , n,

lim
m→∞

m∑
j=1

∫
(tmj−1,t

m
j ]

∣∣fi(t)− fi(tmj )
∣∣µA(dt) = 0, a.s. (3.9)



AN EXIT CONTRACT OPTIMIZATION PROBLEM 19

lim
m→∞

m∑
j=1

∫
(tmj−1,t

m
j ]

∣∣gi(t)− gi(tmj )
∣∣µP (dt) = 0, a.s. (3.10)

Theorem 3.4. Let Assumptions 2.4 and 3.3 hold true. Then

lim
m→∞

V P,πm = V P . (3.11)

Proof. (i) For any fixed L ∈ L+
0 , and m ≥ 1, let us define

Lmt :=

m−1∑
j=0

Ltmj 1[tmj ,t
m
j+1)

(t) + LT1{T}(t), t ∈ [0, T ],

so that Lm ∈ Lπm,+0 . Notice that Lm, L are nondereasing and take only values in {0, 1, · · · , n}, then

Lmtmj − = Ltmj −

holds except for at most n numbers of time tmj . Therefore, for each i = 1, · · · , n,

∫
[0,T ]

∣∣∣f(t, Lmt−)1{Lmt−≥i} − f(t, Lt−)1{Lt−≥i}∣∣∣µA,πm(dt)

=

m∑
j=0

∣∣∣f(tmj , Lmtmj −)1{Lmtmj −≥i} − f(tmj , Ltmj −)1{Ltmj −≥i}
∣∣∣µA((tmj−1, t

m
j ])

≤ 2n
(

sup
t∈[0,T ]

|f1(t)|+ sup
t∈[0,T ]

|fn(t)|+ 1
) (

max
j
µA((tmj−1, t

m
j ])
)
.

It follows that

lim
m→∞

E
[ ∫

[0,T ]

∣∣∣f(t, Lmt−)1{Lmt−≥i} − f(t, Lt−)1{Lt−≥i}∣∣∣µA,πm(dt)
]

≤ lim
m→∞

2nE
[

sup
t∈[0,T ]

|f1(t)|+ sup
t∈[0,T ]

|fn(t)|+ 1
](

max
j
µA((tmj−1, t

m
j ])
)

= 0. (3.12)

Further, for L ∈ L+
0 , Lt− remains constant on (tmj−1, t

m
j ] except for at most n numbers of time tmj . It follows

that, for each i = 1, · · · , n,

∣∣∣E[ ∫
[0,T ]

f
(
t, Lt−

)
1{Lt−≥i}

(
µA,πm(dt)− µA(dt)

)]∣∣∣
=
∣∣∣E[ m∑

j=1

∫
(tmj−1,t

m
j ]

(
f
(
t, Lt−

)
− f

(
tmi , Ltmj −

))
1{Lt−≥i}µ

A(dt)
]∣∣∣

≤ 2n(M + 1)
(

max
j
µA((tmj−1, t

m
j ])
)

+

n∑
i=0

E
[ m∑
j=1

∫
(tmj−1,t

m
j ]

∣∣∣fi(t)− fi(tmj )∣∣∣µA(dt)
]
,
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with

M := E
[

sup
t∈[0,T ]

|f1(t)|+ sup
t∈[0,T ]

|fn(t)|
]
.

By (3.9) and dominated convergence theorem, we have for i = 0, 1, · · · , n

lim
m→∞

E
[ m∑
j=1

∫
(tmj−1,t

m
j ]

∣∣∣fi(t)− fi(tmj )
∣∣∣µA(dt)

]
= 0,

and it follows that

lim
m→∞

E
[ ∫

[0,T ]

f
(
t, Lt−

)
1{Lt−≥i}

(
µA,πm(dt)− µA(dt)

)]
= 0. (3.13)

Then by (3.12) and (3.13), one obtains that

lim
m→∞

E
[ ∫

[0,T ]

f
(
t, Lmt−

)
1{Lmt−≥i}µ

A,πm(dt)
]

= E
[ ∫

[0,T ]

f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)
]
.

Similarly, one can obtain that

lim
m→∞

E

[∫
[0,T ]

gi
(
t
)
1{Lmt−≥i}µ

P,πm(dt)

]
= E

[∫
[0,T ]

gi
(
t
)
1{Lt−≥i}µ

P (dt)

]
.

This implies that

lim
m→∞

E

[
n∑
i=1

∫
[0,T ]

(
gi(t)1{Lmt−<i}µ

P,πm(dt)− f
(
t, Lmt−

)
1{Lmt−≥i}µ

A,πm(dt)

)
− ξ

]

= E

[
n∑
i=1

∫
[0,T ]

(
gi(t)1{Lt−<i}µ

P (dt)− f
(
t, Lt−

)
1{Lt−≥i}µ

A(dt)

)
− ξ

]
.

Further, by the arbitrariness of L, this leads to the inequality

lim inf
m→∞

V P,πm ≥ V P .

(ii) To prove the reverse inequality, we notice that L ∈ L+
0 for any L ∈ Lπm,+0 . Then, for each i = 1, · · · , n, one

has the estimation ∣∣∣E[ ∫
[0,T ]

f
(
t, Lt−

)
1{Lt−≥i}

(
µA,πm(dt)− µA(dt)

)]∣∣∣ ≤ εm,

where εm is independent of L, and satisfies

εm = 2n(M + 1)
(

max
j
µA((tmj−1, t

m
j ])
)

+

n∑
i=0

E
[ m∑
j=1

∫
(tmj−1,t

m
j ]

∣∣∣fi(t)− fi(tmj )∣∣∣µA(dt)
]
−→ 0,
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as m −→∞. Similarly, one has, for any L ∈ Lπm,+0

ε′m :=
∣∣∣E[ ∫

[0,T ]

gi
(
t
)
1{Lt−<i}

(
µA,πm(dt)− µP (dt)

)]∣∣∣ −→ 0, as m −→∞.

Then it follows that

V P,πm ≤ V P + εm + ε′m,

which concludes the proof.

4. The problem with Markovian and/or continuous contract

In this section, we will investigate a version of the exit contract design problem, where the admissible contracts
are required to be Markovian and/or continuous w.r.t. some underlying process X. We will restrict ourself
in the following discrete-time setting with a partition π = (tj)0≤j≤m of [0, T ], i.e. 0 = t0 < · · · < tm = T ,
µA(dt) :=

∑m
j=1 c

A
j δtj (dt) and µP (dt) :=

∑m
j=1 c

P
j δtj (dt), with constants cAj , cPj > 0 for all j = 1, · · · ,m.

Let Ω = Rd×(m+1) be the canonical space with canonical process X = (Xtj )1≤j≤m, i.e. Xtj (ω) := ωj for
all ω = (ω0, · · · , ωm) ∈ Ω. We further extend it to be a continuous-time process by setting Xt = Xtj , for all
t ∈ [tj , tj+1), j = 0, · · · ,m − 1. By abus of notation, we still denote it by X = (Xt)t∈[0,T ]. Let F := FT , with
Ft := σ(Xs : s ∈ [0, t]) for every t ∈ [0, T ], so that the filtration F = (Ft)t∈[0,T ] is right-continuous and Fπ = F
by (3.1). We next assume that P is a probability measure on (Ω,F), under which (Xtj )j=0,··· ,m is a Markovian
process, i.e.

LP((Xtj+1
, · · · , Xtm)

∣∣X0, · · · , Xtj

)
= LP((Xtj+1

, · · · , Xtm)
∣∣Xtj

)
a.s. for each j = 0, · · · ,m− 1.

Then there exists also a family of probability measures {Pjx : j = 0, · · · ,m, x ∈ Rd} such that (Pjx)x∈Rd consists
of a family of conditional probability distribution of (Xtj , · · · , Xtm) known Xtj .

Since F is generated by X, an admissible contract Y ∈ Yπ (see its definition in (3.2)) is a functional of
process X. We will further define a class of Markovian contracts in the sense that Ytj = yj(Xtj ) for some
function yj , and a class of continuous Markovian contracts by assuming y to be continuous. Let us denote
by B(Rd) the collection of all Borel measurable functions defined on Rd, and by Cb(Rd) the collection of all
bounded continuous functions defined on Rd. Let

Yπm :=
{
Y ∈ Yπ : Ytj = yj(Xtj ), for some yj ∈ B(Rd), j = 0, 1, · · · ,m

}
,

Yπm,c :=
{
Y ∈ Yπ : Ytj = yj(Xtj ), for some yj ∈ Cb(Rd), j = 0, 1, · · · ,m

}
.

We then obtain two variations of the contract design problem:

V P,πm := sup
Y ∈Yπm

E
[ n∑
i=1

(∫
[0,τ̂i]

gi(t)µ
P,π(dt)− Yτ̂i

)]
, (4.1)

V P,πm,c := sup
Y ∈Yπm,c

E
[ n∑
i=1

(∫
[0,τ̂i]

gi(t)µ
P,π(dt)− Yτ̂i

)]
, (4.2)

where τ̂i is the minimum optimal stopping time of the agent i (with the corresponding given contract Y ) in
(3.3).
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We can naturally expect to solve the above contract design problem as in Theorem 3.1, but consider a subset
of Lπ. Let us define

Lπm :=
{
L ∈ Lπ : Ltj = lj(Xtj ) for some lj ∈ B(Rd), j = 0, 1, · · · ,m

}
,

Lπm,c :=
{
L ∈ Lπ : Ltj = lj(Xtj ) for some lj ∈ Cb(Rd), j = 0, 1, · · · ,m

}
,

and with Lπ, Lπ,+ and Lπ,+0 defined above and in (3.5), we let

Lπ,+m := Lπm ∩ L+, Lπ,+m,0 := Lπm ∩ L+
0 , Lπ,+m,c := Lπm,c ∩ L+.

We next formulate some additional technical conditions on the coefficient functions ξ, f and probability
kernels (Pjx)x∈Rd .

Assumption 4.1. For each i = 1, · · · , n and t ∈ [0, T ], the random variables fi(t, ·) and gi(t, ·) satisfies
E
[
|fi(t)|+ |gi(t)|

]
<∞, and fi(t, ·) depends only on Xt. The random variable ξ depends only on XT . Moreover,

one has

f1(t, ω) < · · · < fn(t, ω), for all (t, ω) ∈ [0, T ]× Ω.

Recall that, in (2.6), the functionals (f1, · · · , fn) would be interpolated into a functional f : [0, T ]×Ω×R −→
R. Notice also that gi(t, ·) is only Ft–measurable, it could depends on the whole past path of Xt∧·. To emphasize
this point, we will write(

fi(t,Xt), f(t,Xt, `), g(t,Xt∧·), ξ(XT )
)

in place of
(
fi(t, ω), f(t, ω, `), g(t, ω), ξ(ω)

)
.

Assumption 4.2. For each i = 1, · · · , n and j = 0, · · · ,m − 1, the function fi(tj , ·) ∈ Cb(Rd), and the map
x 7−→ Pjx is continuous under the weak convergence topology.

Example 4.3. Let X be a diffusion process defined by the stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt,

with a Brownian motion W in the filtered probability space (Ω,F ,F,P) and the Lipschitz coefficient functions
b and σ. Let Xt = Xtj for all t ∈ [tj , tj+1) and j = 0, · · · ,m− 1. Then it satisfies Assumption 4.2.

Theorem 4.4. Let Assumption 4.1 hold true. Then

V P,πm = sup
L∈Lπ,+m,0

E
[ n∑
i=1

(∫
[0,T ]

(
gi(t,Xt∧·)1{Lt−<i}µ

P,π(dt)−f
(
t,Xt, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
−ξ(XT )

)]
. (4.3)

Let Assumptions 4.1 and 4.2 hold true. Then

V P,πm,c = sup
L∈Lπ,+m,c

E
[ n∑
i=1

(∫
[0,T ]

(
gi(t,Xt∧·)1{Lt−<i}µ

P,π(dt)−f
(
t,Xt, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
−ξ(XT )

)]
. (4.4)

Remark 4.5. Similarly to Theorem 2.7 and Proposition 2.10, it is equivalent to take the supremum over Lπ,+m
in place of Lπ,+m,0 at the r.h.s. of (4.3) (reps. (4.4)). Moreover, one can construct the corresponding optimal
solutions from the initial contract design problem in (4.1) (resp. (4.2)), and vice versa.

Nevertheless, we do not have now the equivalent optimal stopping formulation for (4.3) and (4.4) as in
Proposition 2.10. Intuitively, given a solution τ̂1 ≤ · · · τ̂n to the optimal stopping problem as at the r.h.s. of
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2.10, the corresponding L̂∗t :=
∑n
i=1 1{τ̂i<t} is a priori measurable w.r.t. Ft = σ(Xs, s ≤ t), but not measurable

w.r.t. σ(Xt). Therefore, at time t ∈ [0, T ], the contract value Y L̂
∗

t defined in (2.13) has no reason to be a
measurable function of Xt.

As preparation of the above theorem, let us provide some technical lemmas.

Lemma 4.6. Let Assumption 4.1 hold true. Then for each Y ∈ Yπm and j = 0, · · · ,m, the random variable Z`tj
defined below is σ(Xtj )-measurable (up to the complementation of the σ-field):

Z`tj := ess sup
τ∈Ttj

E
[ ∫

(tj ,τ ]

f(s,Xs, `)µ
A,π(ds) + Yτ

∣∣∣Ftj]. (4.5)

Proof. Recall that µA,π is sum of Dirac measures on π, then by the dynamic programming principle, one has
Z`tm = Ytm a.s., and

Z`tj = max
{
E
[
Z`tj+1

+ cAj+1f(tj+1, Xtj+1
, `)
∣∣Ftj ], Ytj} a.s., j = 0, · · · ,m− 1.

It is then enough to apply the induction argument. First, Z`tm = Ytm is σ(Xtm)-measurable as tm = T . Next,
assume that that Z`tj+1

is σ(Xtj+1
) measurable, then by the Markov property of X, one has

E
[
Z`tj+1

+ cAj+1f(tj+1, Xtj+1
, `)
∣∣Ftj ] is σ(Xtj )-measurable.

Thus Z`tj is also σ(Xtj )-measurable.

Next, given Y ∈ Yπm, let us define

LYtj := sup
{
` : Z`tj = Ytj

}
; (4.6)

and given L ∈ Lπ,+m , we define

Y Ls := E
[
ξ(XT ) +

∫
(s,T ]

f
(
t,Xt, Lt−

)
µA,π(dt)

∣∣∣Fs], a.s. (4.7)

Lemma 4.7. Let Assumption 4.1 hold true. Then given Y ∈ Yπm, one has LY ∈ Lπm. Moreover, given L ∈ Lπ,+m ,
one has Y L ∈ Yπm.

Proof. (i) Given Y ∈ Yπm, it is easy to observe (see also the proof of Thm. A.4) that ` 7−→ Z`tj is continuous a.s.
It follows that

{` > LYtj} = {Z`tj > Ytj} =
⋃

rm,rk∈Q
rk<rm

{Z`tj > rm} ∩ {rk > Ytj}.

This is enough to prove that LYtj is σ(Xtj )-measurable as Ytj and Z`tj (for all ` ∈ R) are all σ(Xtj )-measurable.

Therefore, LY ∈ Lπ.
(ii) Given L ∈ Lπ,+m , it is easy to check that Y L is piecewise constant on each interval [tj , tj+1). Moreover, for
tj = s < t ≤ tj+1, one has supv∈[0,t) Lv = Ltj . Then it is enough to apply the Markovian property of X to prove

that Y Ltj is σ(Xtj )-measurable.
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Lemma 4.8. Let Assumptions 4.1 and 4.2 hold true. Let h : Rd × R → R be such that x 7−→ h(x, `) is
bounded continuous for all ` ∈ R and ` 7−→ h(x, `) is Lipschitz continuous uniformly in x ∈ Rd. For a fixed

j ∈ {0, · · · ,m− 1}, let us define ĥ : Rd × R→ R by

ĥ(x, `) := E
[
h(Xtj+1

, `)
∣∣Xtj = x

]
.

Then ĥ(x, `) is also bounded continuous in x, and Lipschitz in ` uniformly in x.

Assume in addition that ` 7−→ h(x, `) is strictly increasing and lim`→±∞ h(x, `) = ±∞, then ` 7−→ ĥ(x, `) is

also strictly increasing and lim`→±∞ ĥ(x, `) = ±∞.

Proof. (i) Let us fixe ` ∈ R, x ∈ Rd together with a sequence {xk}k≥1 ⊂ Rd s.t. limk→∞ xk = x. By the continuity
of x 7−→ Pjx, it follows that

lim
k→∞

∣∣ĥ(x, `)− ĥ(xk, `)
∣∣ = lim

k→∞

∣∣∣EPjx
[
h(Xtj+1

, `)
]
− EPjxk

[
h(Xtj+1

, `)
]∣∣∣ = 0.

Therefore, the function x 7−→ ĥ(x, `) is bounded continuous. Moreover, it is clear that ` 7−→ ĥ(x, `) =

EPjx
[
h(Xtj+1

, `)
]

is also Lipschitz with the same Lipschitz constant of x 7−→ h(x, `).
(ii) Let x ∈ Rd and `2 > `1, one has

ĥ(x, `2)− ĥ(x, `1) = EPjx [h(Xtj+1 , `2)− h(Xtj+1 , `1)] > 0,

so that ` 7−→ ĥ(x, `) is strictly increasing. Finally, by the monotone convergence theorem, one obtains

lim`→±∞ ĥ(x, `) = ±∞.

Lemma 4.9. Let Assumptions 4.1 and 4.2 hold true.
(i) For any Y ∈ Yπm,c, there exist mappings lj(·) ∈ Cb(Rd) such that for j = 0, 1, · · · ,m,

LYtj = lj(Xtj ),

where LYtj is defined by (4.6), so that LY ∈ Lπm,c.
(ii) For any L ∈ Lπ,+m,c, there exist mappings yj(·) ∈ Cb(Rd) such that for j = 0, 1, · · · ,m,

Y Ltj = yj(Xtj ),

where Y L is defined by (4.7), so that Y L ∈ Yπm,c.

Proof. (i) Let Y ∈ Yπm,c. By definition, there exist bounded continuous mappings yj(·) : Rd −→ R, such that

Y (tj) = yj(Xtj ) for all j = 0, · · · ,m. Recall that Z`tj is defined in (4.5) and satisfies

Z`tj = max
{
E
[
Z`tj+1

+ cAj+1f(tj+1, Xtj+1
, `)
∣∣Ftj ], Ytj} a.s., j = 0, · · · ,m− 1.

Then by Lemma 4.8, together with a backward induction argument, there exist bounded continuous functions
z`j : Rd −→ R such that

Z`tj = z`j(Xtj ), for all j = 0, · · · ,m.
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To conclude the proof of (i), it is enough to prove that

x 7−→ lYj (x) := sup
{
` : z`j(x) = yj(·)

}
∈ Cb(Rd).

Let us define ẑ`j+1 and f̂(tj+1, ·) by

ẑ`j+1(x) := E
[
z`j+1(Xtj+1)

∣∣Xtj = x
]
, and f̂(tj+1, x, `) := E

[
f(tj+1, Xtj+1 , `)

∣∣Xtj = x
]
.

By Lemma 4.8 again, the maps (x, `) 7−→ ẑ`j+1(x) and (x, `) 7−→ f̂(tj+1, x, `)) are continuous, and strictly
increasing in `. Moreover, it is easy to check that

lim
l→±∞

f̂(tj+1, x, `) = lim
l→±∞

ẑ`j+1(x) = ±∞.

Therefore, lYj (x) is the unique ` ∈ R such that

ẑ`j+1(x) + f̂(tj+1, x, `) = yj(x). (4.8)

Recall that ` 7−→ ẑ`j+1(x) and ` 7−→ f̂(tj+1, x, `)) are Lipschitz, uniformly in x, and x 7−→ lYj (x) is bounded

continuous. Let (xk)k≥1 ⊂ Rd be such that limk→∞ xk = x ∈ Rd, then the sequence of real numbers {lYj (xk)}∞k=1

is uniformly bounded and

yj(x) = ẑ
lim supk→∞ lYj (xk)

j+1 (x) + f̂
(
tj+1, x, lim sup

k→∞
lYj (xk)

)
.

Therefore

lim sup
k→∞

lYj (xk) = lYj (x).

Similarly, we can prove

lim inf
k→∞

lYj (xk) = lYj (x), and hence lim
k→∞

lYj (xk) = lYj (x).

(ii) Let L ∈ Lπ,+m,c, and j = 0, 1, · · · ,m, notice that x 7−→ f(tk, x, `) is bounded continuous for each k > j, and

x 7−→ l(tk, x) is bounded continuous for each k ≥ j. It is enough to apply Lemma 4.8 to show that Y L is a
bounded continuous function of Xtj .

Proof. of Theorem 4.4. The idea and procedure are the same as Theorem 2.7. Only subtle details differ, so we
only point out the differences in the proof and omit the others.
(i) Let us first claim that

V P,πm ≤ sup
L∈Lπ,+m

E
[ n∑
i=1

(∫
[0,T ]

(
gi(t,Xt∧·)1{Lt−<i}µ

P,π(dt)− f
(
t,Xt, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
− ξ
)]
. (4.9)

Given any Y ∈ Yπm, we define by LY by (4.6), so that

Yτ = E
[ ∫

(τ,T ]

f
(
t,Xt, sup

s∈[τ,t)
Ls

)
µA,π(dt) + ξ

∣∣∣FXτ ], a.s., for all τ ∈ T .
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Let

L̂Yt := 0 ∨ sup
s∈[0,t)

LYs ∧ n, t ∈ [0, T ].

By similar procedure in Theorem 2.7, it follows that for each i = 1, · · · , n

JPi (Y ) ≤ E
[ ∫

[0,T ]

(
gi(t,Xt∧·)1{L̂Yt <i}

µP,π(dt)− f
(
t,Xt, L̂

Y
t

)
1{L̂Yt ≥i}

µA,π(dt)
)
− ξ
]
.

Notice that Lemma 4.7 implies that LY ∈ Lπm, then it is easy to verify that L̂Y ∈ Lπ,+m . Finally, taking the sum
over i = 1, · · · , n, we prove the inequality (4.9).
(ii) We next prove the reverse inequality:

V P,πm ≥ sup
L∈Lπ,+m

E
[ n∑
i=1

(∫
[0,T ]

(
gi(t,Xt∧·)1{Lt−<i}µ

P,π(dt)− f
(
t,Xt, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
− ξ
)]
. (4.10)

For each L ∈ Lπ,+m , let Y L be defined by (4.7). Then Lemma 4.7 gives that Y L ∈ Yπm. So we can derive as in
Theorem 2.7 similarly the inequality

V Pm ≥
n∑
i=1

JPi (Y L)

= E
[ n∑
i=1

(∫
[0,T ]

(
gi(t,Xt∧·)1{Lt−<i}µ

P,π(dt)− f
(
t,Xt, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
− ξ
)]
,

and therefore the reverse inequality (4.10) holds.
(iii) For any L ∈ Lπ,+m , let us define L0

t := [Lt]. Then L0 ∈ Lπ,+m,0, L0 ≤ L and {Lt− ≥ i} = {L0
t− ≥ i} for any

t ∈ [0, T ], i = 1, · · · , n. Hence we have

E
[ n∑
i=1

(∫
[0,T ]

(
gi(t,Xt)1{Lt−<i}µ

P,π(dt)− f
(
t,Xt, Lt−

)
1{Lt−≥i}µ

A,π(dt)
)
− ξ
)]

≤ E
[ n∑
i=1

(∫
[0,T ]

(
gi(t,Xt)1{L0

t−<i}µ
P,π(dt)− f

(
t,Xt, L

0
t−
)
1{L0

t−≥i}µ
A,π(dt)

)
− ξ
)]
.

So we complete the proof of (i) in the statement.
(iv) The second part can be proved in the same way as the first part using Lemma 4.9 instead of Lemma 4.7.

5. Conclusion

We have introduced an exit contract design problem in this work, where the principal provides a universal
exit contract to multiple heterogeneous agents. Under a technical monotone condition, we have developed a
systematic technique to transform the exit contract design problem into an optimal control problem, which can
be formulated equivalently as a multiple optimal stopping problem, and it can be considered as a first best
problem. This general method can be easily adapted to the discrete-time setting, and for some variations of
the problem where the contract is required to be a Markovian and/or continuous functional of the underlying
process.
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An interesting future topic would be the mean-field extension of the exit contract design problem, where
the agents interact between each other and the number of agents turns to infinite. To achieve this, one should
rely on a mean-field extension of the Bank-El Karoui’s representation theorem. Another interesting topic would
be the application of our general approach to study more concrete economic problems, such as the optimal
subsidy/tax policy problem for the government, where one looks for a universal subsidy/tax policy for different
electricity companies in order to encourage them to replace the traditional fossil-fuel electricity generators by
green energy ones.

Appendix A.

A.1 The Snell envelop approach to the optimal stopping problem

We recall here some basic facts in the classical optimal stopping theory. We also refer to El Karoui [11],
Appendix D in Karatzas and Shreve [20], Theorem 1.2 in Peskir and Shiryaev [25] for a detailed presentation
of the theory.

Let (Ω,F ,P) be a completed probability space equipped with the filtration F = {Ft}t∈[0,T ] satisfying the
usual conditions. Let G = (Gt)t∈[0,T ] be an optional process in class (D), we first consider the following optimal
stopping problem

sup
τ∈T

E
[
Gτ
]
. (A.1)

Let π = (tj)j=0,··· ,m be a partition of [0, T ], i.e. 0 = t0 < · · · < tm = T .

Theorem A.1. (i) There exists a (unique) strong supermartingale S = (St)t∈[0,T ] (which is làdlàg) such that

Sτ = ess sup
σ∈Tτ

E
[
Gσ
∣∣Fτ ], a.s.

Moreover, a stopping time τ̂ is an optimal solution to (A.1) if and only if

(Sτ̂∧t)t∈[0,T ] is a martingale, and Sτ̂ = Gτ̂ , a.s.

(ii) Assume in addition that, either G is USCE, or G satisfies Gt = Gtj for t ∈ [tj , tj+1), j = 0, · · · ,m − 1.
Then there exist optimal stopping times to (A.1), and the smallest one is given by

τ̂ := inf
{
t ≥ 0 : St = Gt

}
= essinf

{
τ : Sτ = Gτ

}
.

Moreover, when G satisfies Gt = Gtj for t ∈ [tj , tj+1), j = 0, · · · ,m− 1, one has τ̂ ∈ {t0, · · · , tm}, a.s.

Given a sequence {Gi}ni=1 of optional process on [0, T ] in class (D), we next consider the following multiple
optimal stopping problem:

Z0 := sup
{
E
[ n∑
i=1

Giτi

]
: {τi}ni=1 ⊂ T , τ1 ≤ · · · ≤ τn

}
. (A.2)

Theorem A.2. Assume that the map t 7−→ E
[
Git
]

is continuous for each i = 1, · · · , n. Then there exists an
optimal solution {τ̂i}ni=1 to the multiple stopping problem (A.2).

Proof. We will only consider the case n = 2, while the arguments for the general case are almost the same.
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Let J be the optional process (see Thm. A.1 for its existence) such that

Jτ1 = ess sup
τ2∈Tτ1

E[G2
τ2 |Fτ1 ] +G1

τ1 , a.s.

By Theorem A.1, the above problem has an optimal solution τ̂2 = τ̂2(τ1) ∈ Tτ1 for each τ1 ∈ T .
Further, by the dynamic programming principle, it is easy to check that Z0 = supτ1∈T E[Jτ1 ]. At the same

time, as t 7−→ E[Giτi ] i = 1, 2 are continuous, it follows by e.g. Proposition 1.6 and 1.5 in [21] that the mapping
t 7−→ E[Jt] is also continuous. Therefore, there exists an optimal stopping time τ̂1 ∈ T for the problem

E[Jτ̂1 ] = sup
τ1∈T

E[Jτ1 ], (A.3)

so that (τ̂1, τ̂2(τ̂1)) is an optimal solution to (A.2).

A.2 Bank-El Karoui’s representation of stochastic processes

We recall here the Bank-El Karoui’s representation theorem for stochastic processes, with some slight modi-
fications, together with some trivial extensions. Let us stay in the context with a completed probability space
(Ω,F ,P), equipped with the filtration F = {Ft}t∈[0,T ] satisfying the usual conditions. Let µ be a finite measure
on [0, T ] and h : [0, T ]× Ω× R −→ R.

Assumption A.3. For all (t, ω) ∈ [0, T ]×Ω, the map ` 7−→ h(t, ω, `) is continuous and strictly increasing from
−∞ to +∞. Moreover, for each ` ∈ R, the process (t, ω) 7−→ h(t, ω, `) is progressively measurable, and satisfies

E
[ ∫

[0,T ]

∣∣h(t, `)
∣∣µ(dt)

]
<∞.

Theorem A.4 (Bank-El Karoui’s representation, [3–5]). Let Assumption A.3 hold true, Y be an optional
process of class (D) with YT = ξ for some random variable ξ, and one of the following conditions holds true:

� either µ is atomless, and Y is USCE;
� or, for some 0 = t0 < · · · < tm = T and (cj)j=1,··· ,m with cj > 0, one has µ(dt) =

∑m
j=0 cjδtj (dt), and

Yt = Ytj , Ft = Ftj for all t ∈ [tj , tj+1), j = 0, · · · ,m− 1.

Then,
(i) there exists an optional process L : [0, T ]× Ω −→ R, such that

E
[ ∫

(τ,T ]

∣∣∣h(t, sup
v∈[τ,t)

L(v)
)∣∣∣µ(dt)

]
<∞, for all τ ∈ T ,

and

Yτ = E
[ ∫

(τ,T ]

h
(
t, sup
s∈[τ,t)

Ls

)
µ(dt) + ξ

∣∣∣Fτ], a.s., for all τ ∈ T . (A.4)

(ii) for any optional process L gives the representation (A.4), and any ` ∈ R, the stopping time

τ` := inf
{
t ≥ 0 : Lt ≥ `

}
(A.5)
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is the smallest solution of the optimal stopping problem:

sup
τ∈T

E
[
Yτ +

∫
[0,τ ]

h(t, `)µ(dt)

]
. (A.6)

Remark A.5. (i) The above statement differs slightly with the original theorem in [4]. First, we let YT = ξ
in place of YT = 0 in [4]. More importantly, we change the interval of integration from [·, ·) to (·, ·], the term
supv∈[·,·] Lv to supv∈[·,·) Lv. The main motivation is to unify the presentation when we embed the discrete-time
process in the continuous-time setting as a right-continuous and left-limit piecewise constant process. The proof
stays almost the same as that in [4], and for completeness, we provide a sketch of proof.
(ii) In [4], it is proved that there exists an optional process L providing the representation (A.4), and the
associated stopping time τ` is the smallest solution to the optimal stopping problem (A.6). Such a process L
may not be unique. By (trivially) extending Theorem 2 of Bank and Föllmer [5], we provide the additional fact
that for any optional process L giving (A.4), the associated stopping time τ` is the smallest solution to (A.6).
In particular, the stopping time τ` does not depend on the choice of L.
(iii) Although the process L giving the representation (A.4) is not unique, it has a unique maximum solution
in the following sense (see Thm. 2.16 of [3]). For all τ ∈ T and σ ∈ Tτ , let us denote by lτ,σ the unique
Fτ -measurable random variable satisfying

E
[
Yτ − Yσ

∣∣Fτ ] = E
[ ∫

(τ,σ]

h(t, `τ,σ)µ(dt)
∣∣∣Fτ], on {P[µ([σ, τ)|Fτ ] > 0},

and `τ,σ =∞ on {P[µ([σ, τ)|Fτ ] = 0}, and then define

L̃(τ) := ess inf
σ∈Tτ

`τ,σ.

Then (L̃(τ))τ∈T can be aggregated into an optional process L̃, and it is the maximum solution to (A.4) in the

sense that for any optional process L satisfying the representation (A.4), one has Lτ ≤ L̃τ for all τ ∈ T .

Proof. of Theorem A.4. We will prove the theorem separately for the continuous setting (i.e. µ is atomless and
Y is USCE) and the discrete-time setting (i.e. µ is sum of Dirac measures).
(i.a) In the continuous-time setting where µ is atomless and Y is USCE, one can assume YT = 0 by considering
the process (Yt−E[YT |Ft])t∈[0,T ] in place of Y . Then by [3], there exists an optional process L : [0, T ]×Ω −→ R,
such that, for all τ ∈ T ,

E
[ ∫

[τ,T )

∣∣∣h(t, sup
v∈[τ,t]

L(v)
)∣∣∣µ(dt)

]
<∞, and Yτ = E

[ ∫
[τ,T )

h
(
t, sup
s∈[τ,t]

Ls

)
µ(dt)

∣∣∣Fτ].
As µ is atomless, one can change the interval of integration from [τ, T ) to (τ, T ]. Moreover, for the term

sups∈[τ,t] Ls, the fact that t 7→ sups∈[τ,t] Ls is increasing implies that sups∈[τ,t] Ls = sups∈[τ,t) Ls, µ(dt)-a.s. We
hence obtain (A.4).
(i.b) In the discrete-time setting, the representation (A.4) can be proved easily by a backward induction argu-
ment. However, to unify the proof of Item (ii) in both continuous-time and discrete-time setting, we provide the
proof of (A.4) as in the continuous-time setting. When µ is sum of Dirac measures, we denote π := (tj)0≤j≤m
of [0, T ] and write µπ(dt) :=

∑m
j=1 cjδtj (dt) instead of µ to remind the difference of the context. Let Y be an

optional process such that YT = ξ. We define the optional process Z` such that

Z`τ := ess sup
σ∈Tτ

E
[
Yσ +

∫
(τ,σ]

h(t, `)µπ(dt)

∣∣∣∣Fτ], ∀ τ ∈ T , (A.7)
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and further a family of stopping times τ ` as well as a process L:

τ `t := min{s ≥ t : Z`s = Ys}, Lt := sup{l ∈ R : Z`t = Yt}.

We will then prove that L is the required optional process by a backward induction argument.
For a fixed j ∈ {0, 1, · · · ,m− 1}, we assume that L satisfies

Ytk = E
[
ξ +

∫
(tk,T ]

h(t, sup
v∈[tk,t)

Lv)µ
π(dt)

∣∣∣∣ Ftk], for k = j + 1, · · · ,m.

We will prove that Ytj can also be represented by L as above.
Let us observe that {τ `tj < ti} =

{
` ≤ supv∈[tj ,ti) Lv

}
, which gives the following properties:

{τ `tj = tj} = {τ `tj < tj+1} = {` ≤ Ltj}, τ
Ltj+

tj = τ
Ltj
tj = tj ,

{τ `tj = tk} = {tk ≤ τ `tj < tk+1} = { sup
v∈[tj ,tk)

Lv < ` ≤ sup
v∈[tj ,tk+1)

Lv}.

and that on Hj,k := {supv∈[tj ,tk) Lv ≤ Ltj < supv∈[tj ,tk+1)
Lv},

Ltj = sup
v∈[tj ,t)

Lv for t < tk+1, sup
v∈[tk,t)

Lv = sup
v∈[tj ,t)

Lv for t ≥ tk+1.

Now we claim that ` 7−→ Z`i is continuous a.s. for each i. In fact, for any `1, `2 with `1 ≤ `2,

Z`2tj ≥ Z`1tj ≥ E
[
Y
τ
`2
tj

+

∫
(tj ,τ

`2
tj

]

h(t, `1)µπ(dt)
∣∣∣Ftj]

≥ Z`2tj − E
[ ∫

(tj ,T ]

∣∣∣h(t, `1)− h(t, `2)
∣∣∣µπ(dt)

∣∣∣∣Ftj].
Then by the dominated convergence theorem, we have

lim
`→`1

Z`tj = Z`1tj , a.s.

On the other hand, it follows by the definition of τ `t and and the representation for Ytk , k = j + 1, · · · ,m,
together with the tower property that

Z`tj = E
[
Ytj1{τ`tj=tj}

+

(
Yτ`tj

+

∫
(tj ,τ`tj

]

h(t, `)µπ(dt)

)
1{τ`tj>tj}

∣∣∣Ftj]
= E

[
Ytj1{τ`tj=tj}

+

(
ξ +

∫
(τ`tj

,T ]

h(t, sup
v∈[τ`tj ,t)

Lv)µ
π(dt) +

∫
(tj ,τ`tj

]

h(t, `)µπ(dt)

)
1{τ`tj>tj}

∣∣∣Ftj]

= E
[
Ytj1{Ltj≥`} +

m∑
k=j+1

(
ξ +

∫
(tk,T ]

h(t, sup
v∈[tk,t)

Lv)µ
π(dt)

+

∫
(tj ,tk]

h(t, `)µπ(dt)

)
1{τ`tj=tk}

∣∣∣Ftj].
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Since Z
Ltj
tj = Z

Ltj+

tj holds true by the continuity of ` 7−→ Z`tj , we have that

Ytj = lim
`→Ltj+

E
[ m∑
k=j+1

(
ξ +

∫
(tk,T ]

h(t, sup
v∈[tk,t)

Lv)µ
π(dt) +

∫
(tj ,tk]

h(t, `)µπ(dt)

)
1{τ`tj=tk}

∣∣∣Ftj]

= E
[ m∑
k=j+1

(
ξ +

∫
(tk,T ]

h(t, sup
v∈[tk,t)

Lv)µ
π(dt) +

∫
(tj ,tk]

h(t, Ltj )µ
π(dt)

)
1Hj,k

∣∣∣Ftj]

= E
[ m∑
k=j+1

(
ξ +

∫
(tk,T ]

h(t, sup
v∈[tj ,t)

Lv)µ
π(dt) +

∫
(tj ,tk]

h(t, sup
v∈[tj ,t)

Lv)µ
π(dt)

)
1Hj,k

∣∣∣Ftj]

= E
[ m∑
k=j+1

(
ξ +

∫
(tj ,T ]

h(t, sup
v∈[tj ,t)

Lv)µ
π(dt)

)
1Hj,k

∣∣∣Ftj]

= E
[
ξ +

∫
(tj ,T ]

h(t, sup
v∈[tj ,t)

Lv)µ
π(dt)

∣∣∣Ftj].
(ii) The optimal stopping theory implies that it is sufficient to prove Z`τ` = Yτ` a.s. and for any 0 ≤ t < τ`,

ZA,`t > Yt a.s., where Z` is defined as (A.7). We observe that, for each ` ∈ R, one has

{τ` < t} ⊂
{

sup
v∈[0,t)

Lv ≥ `
}

=
{

sup
v∈[τi,t)

Lv ≥ `
}
.

While Z`τ` ≥ Yτ` a.s. is trivial, to prove the reverse inequality, we have that

Z`τ` = ess sup
σ∈Tτ`

E
[
Yσ +

∫
(τ`,σ]

h(s, `)µ(ds)
∣∣∣Fτ`]

= ess sup
σ∈Tτ`

E
[
ξ +

∫
(σ,T ]

h
(
s, sup
v∈[σ,s)

Lv

)
µ(ds) +

∫
(τ`,σ]

h(s, `)µ(ds)
∣∣∣Fτ`]

≤ ess sup
σ∈Tτ`

E
[
ξ +

∫
(σ,T ]

h
(
s, sup
v∈[τ`,s)

Lv

)
µ(ds) +

∫
(τ`,σ]

h
(
s, sup
v∈[τ`,s)

Lv

)
µ(ds)

∣∣∣Fτ`]
= Yτ` a.s.

Then for any 0 ≤ t < τ`, we observe that{
sup
v∈[t,s)

Lv < `
}
⊃ {τ` > s},

which implies that on {t < τ`},

Z`t = ess sup
σ∈Tt

E
[
Yσ +

∫
(t,σ]

h(s, `)µ(ds)
∣∣∣Ft]

≥ E
[
ξ +

∫
(τ`,T ]

h
(
s, sup
v∈[σ,s)

Lv

)
µ(ds) +

∫
(t,τ`]

h(s, `)µ(ds)
∣∣∣Fτ`]

> E
[
ξ +

∫
(t,T ]

h
(
s, sup
v∈[t,s)

Lv

)
µ(ds)

∣∣∣Ft]
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= Yt, a.s.

We hence conclude the proof.

Acknowledgements. Xiaolu Tan was supported by CUHK startup grant, and by Hong Kong RGC General Research Fund
(Projects 14302921 and 14302622). Jun Zou was substantially supported by Hong Kong RGC General Research Fund
(Projects 14306921 and 14306719).

References
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