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1. Introduction

In this paper, we consider the Cauchy problem of the Vlasov-Poisson-Boltzmann
system (VPB in short):

∂tf + v · ∇xf + Ef · ∇vf = J(f, f),

Ef = ∇xφf , 4xφf = ρf =
∫

fdv,
(1.1)

with initial data

f(0, x, v) = f0(x, v), (1.2)
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where f(t, x, v) is the distribution function for particles at time t ≥ 0 with location
x ∈ RN

x and velocity v ∈ RN
v . The positive integer N ≥ 3 denotes the dimension

of the phase space. The self-consistent electric potential φf (t, x) generating the
force field Ef (t, x) is coupled with the distribution function f(t, x, v) through the
Poisson equation 4xφf = ρf . The Boltzmann collision operator J(f, f) describing
the binary elastic collision takes the form

J(f, f) = Q(f, f)− fR(f), (1.3)

with

Q(f, f)(t, x, v) =
∫
RN×SN−1

B(θ, |v − v∗|)f(t, x, v′)f(t, x, v′∗) dv∗dω, (1.4)

and

fR(f)(t, x, v) = f(t, x, v)
∫
RN×SN−1

B(θ, |v − v∗|)f(t, x, v∗) dv∗dω. (1.5)

Here cos θ = (v− v∗) ·ω/|v− v∗|, ω ∈ SN−1. (v, v∗) and (v′, v′∗) are the pre-collision
and the post-collision velocity pairs respectively, satisfying

v′ = v − [(v − v∗) · w]w, v′∗ = v∗ + [(v − v∗) · w]w,

by the conservation of momentum and energy. B(θ, |v − v∗|) is the collision kernel
characterizing the collision of the charged dilute particles from different physical
settings with various interaction potentials.

In the mean field approximation15, when particles interact only through elec-
tromagnetic forces, the density f solves the classical Vlasov-Maxwell-Boltzmann
system. For this system, Ef is proportional to the Lorentz force E + v × B cre-
ated by the mean electromagnetic field, where E and B are respectively the electric
and magnetic fields which satisfy the Maxwell system10,14. If magnetic forces are
neglected, then one has the VPB system.

In this paper, we shall study the stability of solutions to the VPB system, which
is an important subject for some systems in physics24. The reason is that not only
it shows whether the state is achievable under a small perturbation, but also it
provides a possible application in the numerical computation27. Furthermore, L1

norm is natural for the VPB system since the system has the five conservation laws
representing the macroscopic conservation of mass, momentum and energy. There-
fore, the L1 stability has been an unsolved interesting problem to this celebrated
physical model.

Throughout this paper, we assume that the collision kernel B is nonnegative
and continuous in its arguments and satisfies the following physically reasonable
assumption:

B(θ, |v − v∗|)
| cos θ|

≤ C|v − v∗|δ, −(N − 2) < δ ≤ 1. (1.6)

Notice that for the hard-sphere model,

B(θ, |v − v∗|) = C|v − v∗| cos θ,
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which satisfies (1.6) with δ = 1. Notice also that both the hard and soft potentials
with angular cut-off satisfy the condition (1.6). And for simpler presentation later,
we call the cases with −(N − 2) < δ ≤ 0 and 0 < δ ≤ 1 as soft and hard potentials
respectively.

As usual, we will consider the value f# of the distribution f along the bi-
characteristics. For any fixed (x, v) ∈ RN

x × RN
v , the forward bi-characteristics

[Xt(x, v), V t(x, v)] generated by some external force field E(t, x) is defined by
dXt(x, v)

dt
= V t(x, v),

dV t(x, v)
dt

= E(t, Xt(x, v)),

(Xt, V t)t=0 = (x, v).
(1.7)

Then we denote f# by

f#(t, x, v) = f(t, Xt(x, v), V t(x, v)).

Furthermore let’s introduce some norms for the solutions in consideration3. For any
f = f(t, x, v) and f0 = f0(x, v), define

|||f |||Eα,β = sup
t,x,v

|f#(t, x, v)|
hα(|x|)mβ(|v|)

, ‖f0‖α,β = sup
x,v

|f0(x, v)|
hα(|x|)mβ(|v|)

, (1.8)

where the weight functions hα and mβ have algebraic decay rates and are in the
form of

hα(|x|) = (1 + |x|2)−α, α > 0 and mβ(|v|) = (1 + |v|2)−β , β > 0. (1.9)

For simplicity, throughout this paper, for any function f(t, x, v), we use nota-
tions:

‖f(t)‖1 = ‖f(t, ·, ·)‖L1(RN
x ×RN

v ), ‖f(t)‖∞ = sup
x,v

|f(t, x, v)|,

and

‖∇xf(t)‖p =
3∑

i=1

‖∂xif(t)‖p, ‖∇vf(t)‖p =
3∑

i=1

‖∂vif(t)‖p,

where 1 ≤ p ≤ ∞. Notice that by the measure preservation of the mapping (x, v) →
(Xt(x, v), V t(x, v)) for any t ≥ 0, we have

‖f#(t, ·, ·)‖Lp(RN
x ×RN

v ) = ‖f(t, ·, ·)‖Lp(RN
x ×RN

v ). (1.10)

Before stating the stability result in this paper, we first give the following global
existence theorem on classical solutions in infinite vacuum to the VPB system with
small initial data.
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Theorem 1.1. Suppose that N ≥ 3, α > (N + 1)/2, β > N + 1 and the collision
kernel B satisfies (1.6) with −(N − 2) < δ ≤ 1. Then there exist constants δ0 and
C0 such that the following holds. For any δ1 ∈ (0, δ0], if 0 ≤ f0 ∈ W 1,∞(RN

x ×RN
v )

satisfies

‖f0‖α,β + ‖∇xf0‖α,β + ‖∇vf0‖α,β ≤ δ1, (1.11)

then the Cauchy problem (1.1)-(1.2) has a unique global solution [f,Ef ] such that
0 ≤ f ∈ W 1,∞(R+

loc ×RN
x ×RN

v ) and Ef ∈ Cb(R+
t ×RN

x ) ∩ C1
b (R+

t ;RN
x ) satisfy

|||f |||Ef

α,β + |||∇xf |||Ef

α,β + |||(1 + t)−1∇vf |||Ef

α,β ≤ C0δ1 (1.12)

and ∫ ∞

0

(‖Ef (t)‖∞ + (1 + t)‖∇xEf (t)‖∞) dt ≤ C0δ1. (1.13)

Remark 1.1. The inequality (1.13) can be easily improved. In fact by Lemma 4.1
in Section 4 and the Poisson equation 4xφf = ρf , we obtain the explicit decay
rates of Ef (t, x) as follows:

‖Ef (t)‖∞ ≤ O(1)δ1

(1 + t)N−1
and ‖∇xEf (t)‖∞ ≤ O(1)δ1

(1 + t)N(1−λ)
, (1.14)

where λ ∈ (0, 1/(N + 1)) is a constant and O(1), from now on, denotes the general
positive constant independent of δ1 which may vary for different equations. For the
proof of (1.14) when N = 3, see Refs. 2 and 12. It is exactly the same for N > 3
and thus omitted.

The proof Theorem 1.1 for the realistic physical case, i.e. N = 3 can be found in
Ref. 12. For N > 3, we can use the same method to deal with its proof and hence
still omit it for brevity. Instead, we devote ourselves to the proof of the uniform L1

stability of solutions in sense of Theorem 1.1. In fact we have

Theorem 1.2. Assume that all conditions in Theorem 1.1 hold and furthermore
N ≥ 4. Let f and g be the classical solutions to the VPB system corresponding to
initial data f0 and g0 satisfying (1.11). If δ1 ∈ (0, 1) is sufficiently small, then it
holds that

‖f(t)− g(t)‖1 ≤ O(1)‖f0 − g0‖1, ∀ t ≥ 0. (1.15)

Now we review some previous works on the related topics and then give the
main ideas of this paper. Some general knowledge on the VPB system and other
related kinetic models can be found in the literature7,8,14,26. For the VPB system,
the large time asymptotic behavior of weak solutions with some extra regularity
was studied by Desvillettes-Dolbeault10, see also the related topics6,13. The global
existence of DiPerna-Lions renormalized solutions with arbitrary amplitude to the
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initial boundary value problem was given by Mischler22. For classical solutions in
infinite vacuum, the first global existence was obtained by Guo17 for some soft
potentials and Duan-Yang-Zhu12 for almost general potentials including the hard-
sphere model. The global existence of solutions near a global Maxwellian was also
studied by Guo16 and Yang-Yu-Zhao28 respectively for the space periodic data and
the Cauchy problem. Finally we mention some works related to the problems con-
sidered in this paper. Arkeryd1 proved the Lyapunov-type weighted L1 stability
for the space homogeneous Boltzmann equation. Furthermore, Ha completed a se-
ries of important works about the uniform L1 stability for the Boltzmann equation
without external forces18,20, the Vlasov-Poisson system9 and the Enskog-Boltzmann
equation19, where some new Lyapunov functionals were constructed. For the Boltz-
mann equation with external forces, Duan-Yang-Zhu11 recently used the similar
method to prove the uniform L1 stability of small solutions around vacuum.

There are two vital observations for the uniform L1 stability estimate: One is the
decay in time of f# in the space L1(RN

v ), the other is the decay in time of J#(f, g)
in the space L1(RN

x × RN
v ). To obtain our result, we directly use the Gronwall’s

inequality to deal with the case of the soft potentials. For the case of the hard
potentials, some new nonlinear functionals, which reduce to the same functionals
in Ref. 20 when the external force vanishes, are constructed to control the factor
|v − v∗|δ in the collision kernel B(θ, |v − v∗|). These functionals can capture the
effect of the force term on the time evolution of solutions. Precisely, if 0 < δ ≤ 1,
we can obtain the following estimates:

• dL(f, g)(t)
dt

≤ O(1)Λh(f, g)(t) +
O(1)δ1

(1 + t)N−2
L(f, g)(t), ∀ t ≥ 0,

• dDh(f, g)(t)
dt

≤ −(1−O(1)δ1)Λh(f, g)(t) +
O(1)δ2

1

(1 + t)2
L(f, g)(t), ∀ t ≥ 0.

Hence by the smallness of δ1 > 0, we can choose a proper constant K > 0 to
construct the Glimm-type functional 5,21:

HK(f, g)(t) = L(f, g)(t) + KDh(f, g)(t),

which will be equivalent with the L1 distance L(f, g)(t) of two solutions. Thus the
uniform L1 stability for the case of the hard potentials will follow from the above
estimates. See Section 3 for notations and more details.

The rest of this paper is arranged as follows. In Section 2, some preliminary
lemmas are given for later use. In Section 3, the L1 stability estimate is obtained
by considering the following two cases: the soft potential and the hard potential.
Some known lemmas used in this paper are listed in Section 4.

2. Preliminary

For any fixed (t, x, v) ∈ R+
t × RN

x × RN
v , we also define the backward bi-

characteristics [X(s; t, x, v), V (s; t, x, v)] generated by some external force field
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E(t, x) by solutions to the ODE system
dX(s; t, x, v)

ds
= V (s; t, x, v),

dV (s; t, x, v)
ds

= E(s,X(s; t, x, v)),

(X(s; t, x, v), V (s; t, x, v))s=t = (x, v).
(2.1)

Then it is easy to see that

|f(t, x, v)| ≤ |||f |||Eα,βhα(|X(0; t, x, v)|)mβ(|V (0; t, x, v)|). (2.2)

Also notice that (2.1) can be rewritten as the following integral form:
X(s; t, x, v) = x− v(t− s)−

∫ t

s

∫ t

η

E(θ, X(θ; t, x, v))dθdη,

V (s; t, x, v) = v −
∫ t

s

E(θ, X(θ; t, x, v))dθ.

(2.3)

First for the backward bi-characteristic, we have

Lemma 2.1. Suppose that the external force E(t, x) satisfies (1.14). If N ≥ 4, then
we have that for any (t, x, v) ∈ R+

t ×RN
x ×RN

v ,

|X(0; t, x, v)− (x− vt)|+ |V (0; t, x, v)− v| ≤ O(1)δ1 (2.4)

and

|V t(x, v)− v| ≤ O(1)δ1. (2.5)

Proof. From (1.14) and (2.3), we have

|V (0; t, x, v)− v| =
∣∣∣∣∫ t

0

E(θ, X(θ; t, x, v))dθ

∣∣∣∣
≤
∫ ∞

0

‖E(θ)‖∞dθ

≤ O(1)δ1

∫ ∞

0

1
(1 + θ)N−1

dθ

≤ O(1)δ1,

and

|X(0; t, x, v)− (x− vt)| =
∣∣∣∣∫ t

0

∫ t

η

E(θ, X(θ; t, x, v))dθdη

∣∣∣∣
≤
∫ t

0

∫ ∞

η

‖E(θ)‖∞dθdη

≤ O(1)δ1

∫ t

0

∫ ∞

η

1
(1 + θ)N−1

dθdη

≤ O(1)δ1,
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since N ≥ 4. Finally (2.5) is proved similarly. This completes the proof of Lemma
2.1.

Next consider the two integrals I1 and I2 defined respectively by

I1(t, y) =
∫
RN

x ×RN
v

hα(|X(0; t, x, v)|)mβ(|V (0; t, x, v)|)
|x− y|N−1

dxdv (2.6)

and

I2(t, x, v) =
∫
RN

v∗

|v − v∗|δhα(|X(0; t, x, v∗)|)mβ(|V (0; t, x, v∗)|)dv∗. (2.7)

The following lemma shows that both I1 and I2 decay with explicit rates in time.

Lemma 2.2. Suppose that the external force E(t, x) satisfies (1.14). If N ≥ 4 and
−(N − 2) < δ ≤ 0, then we have that for any t ≥ 0,

sup
y

I1(t, y) ≤ O(1)
(1 + t)N−1

(2.8)

and

sup
x,v

I2(t, x, v) ≤ O(1)
(1 + t)N+δ

. (2.9)

Proof. First consider the proof of (2.8). By using Lemmas 2.1 and 4.2, we deduce
from (2.6) that for any t ≥ 0,

I1(t, y) ≤
(
1 +O(1)δ1 + (O(1)δ1)2

)α+β
∫
RN

x ×RN
v

hα(|x− vt|)mβ(|v|)
|x− y|N−1

dxdv

≤
(
1 +O(1)δ0 + (O(1)δ0)2

)α+β
∫
RN

x ×RN
v

hα(|x− vt|)mβ(|v|)
|x− y|N−1

dxdv

≤ O(1)
∫
RN

x ×RN
v

hα(|x− vt|)mβ(|v|)
|x− y|N−1

dxdv. (2.10)

Furthermore for any constant R > 0, we compute∫
RN

x ×RN
v

hα(|x− vt|)mβ(|v|)
|x− y|N−1

dxdv

=

(∫
{|x−y|≤R}×RN

v

+
∫
{|x−y|>R}×RN

v

)
hα(|x− vt|)mβ(|v|)

|x− y|N−1
dxdv

=
∫
{|x−y|≤R}

1
|x− y|N−1

(∫
RN

v

hα(|x− vt|)mβ(|v|)dv

)
dx

+
1

RN−1

∫
RN

x ×RN
v

hα(|x− vt|)mβ(|v|)dxdv

≤
∫
{|x−y|≤R}

1
|x− y|N−1

(∫
RN

v

hα(|x− vt|)mβ(|v|)dv

)
dx +

O(1)
RN−1

. (2.11)
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Now we claim that ∫
RN

v

hα(|x− vt|)mβ(|v|)dv ≤ O(1)
(1 + t)N

. (2.12)

In fact, when 0 ≤ t ≤ 1, it holds that∫
RN

v

hα(|x− vt|)mβ(|v|)dv ≤
∫
RN

v

mβ(|v|) ≤ O(1). (2.13)

When t ≥ 1, we can take the change of variable x− vt = u to get∫
RN

v

hα(|x− vt|)mβ(|v|)dv ≤
∫
RN

v

hα(|x− vt|)dv

=
1
tN

∫
RN

u

hα(|u|)du

≤ O(1)
tN

, (2.14)

which together with (2.13) yields (2.12). Thus putting (2.12) into (2.11), we have∫
RN

x ×RN
v

hα(|x− vt|)mβ(|v|)
|x− y|N−1

dxdv

≤ O(1)
(1 + t)N

∫
{|x−y|≤R}

1
|x− y|N−1

dx +
O(1)
RN−1

≤ O(1)R
(1 + t)N

+
O(1)
RN−1

. (2.15)

In particular we take R = 1 + t to obtain∫
RN

x ×RN
v

hα(|x− vt|)mβ(|v|)
|x− y|N−1

dxdv ≤ O(1)
(1 + t)N−1

. (2.16)

Hence combining (2.10) and (2.16) yields (2.8).
For (2.9), similar to the proof of (2.10), we have from (2.7) that

I2(t, x, v) ≤ O(1)
∫
RN

v∗

|v − v∗|δhα(|x− v∗t|)mβ(|v∗|)dv∗. (2.17)

When 0 ≤ t ≤ 1, it follows from Lemma 4.4 that

I2(t, x, v) ≤ O(1)
∫
RN

v∗

|v − v∗|δmβ(|v∗|)dv∗ ≤ O(1) (2.18)

since −(N − 2) < δ ≤ 0. Furthermore when t ≥ 1, from (2.17), we let v∗t − x = u

to obtain

I2(t, x, v) ≤ O(1)
∫
RN

v∗

|v − v∗|δhα(|x− v∗t|)dv∗

=
O(1)
tN+δ

∫
RN

u

|vt− x− u|δhα(|u|)du

≤ O(1)
tN+δ

, (2.19)



Stability for VPB Around Vacuum 9

where −(N − 2) < δ ≤ 0 and Lemma 4.4 are used again. Thus both (2.18) and
(2.19) lead to

I2(t, x, v) ≤ O(1)
(1 + t)N+δ

. (2.20)

Hence (2.9) holds. The proof of Lemma 2.2 is complete.

Finally we give a lemma which plays an important role in the proof of the
uniform stability estimate (1.15) for the case of the hard potentials.

Lemma 2.3. Let N ≥ 3, α > (N + 1)/2 and β > N + 1. Suppose that the collision
kernel B satisfies (1.6) with −(N − 2) < δ ≤ 1 and the external force E satisfies
(1.14). Then there exists a positive constant η with 0 < η < β −N/2 such that for
any (t, x, v) ∈ R+

t ×RN
x ×RN

v , it holds that∣∣Q#(f, g)(t, x, v)
∣∣+∣∣f#R#(g)(t, x, v)

∣∣ ≤ O(1)|||f |||Eα,β |||g|||Eα,β

(1 + t)2
hα−1/2(|x|)mβ−η(|v|).

(2.21)

For Lemma 2.3, its proof when N = 3 can be found in Ref. 12. The exactly
same method is used to deal with the case of N ≥ 4 and thus we omit it. The only
point we have to mention is that the decay rate (1 + t)−2 in (2.21) is optimal and
independent of the dimension N of the phase space.

3. L1 stability

In this section, we give the proof of Theorem 1.2, which follows from a series of
lemmas. Precisely, we directly use the Gronwall’s inequality to deal with the case
of the soft potentials. For the case of the hard potentials, some new nonlinear
functionals are constructed to balance the singularity effect by the collision kernel
B(θ, |v − v∗|).

To this end, let f and g be two classical solutions to VPB system corresponding
to initial data f0 and g0 satisfying (1.11) in Theorem 1.1. For use later, let’s define
the nonnegative bilinear operator S by

S(f, g)(t, x, v) = [Q(f, g) + fR(g)](t, x, v), (3.1)

and the nonlinear functionals L and Λ by

L(f, g)(t) =
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv, (3.2)

Λ(f, g)(t) =
∫
RN

x ×RN
v ×RN

v∗

|v − v∗|δ|f − g|(t, x, v)(f + g)(t, x, v∗)dxdvdv∗.(3.3)

Notice from (1.10) that for any t ≥ 0,

L(f, g)(t) = ‖(f − g)(t)‖1,
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i.e. L(f, g) is just L1 distance of two solutions f and g.
First we have the following basic estimate on the evolution of L(f, g)(t) for the

case of the general potentials.

Lemma 3.1. Suppose that the conditions of Theorem 1.2 hold. If −(N−2) < δ ≤ 1,
then we have that

dL(f, g)(t)
dt

≤ O(1)Λ(f, g)(t) +
O(1)δ1

(1 + t)N−2
L(f, g)(t). (3.4)

Proof. Since both f and g are solutions to the VPB system, it holds that

∂tf+ v · ∇xf + Ef · ∇vf = J(f, f),
∂tg+ v · ∇xg + Eg · ∇vg = J(g, g).

Taking difference of the above two equations and multiplying it by sign(f −g) gives

∂t|f − g| +v · ∇x|f − g|+ Ef · ∇v|f − g|

≤ S(|f − g|, f) + S(g, |f − g|) + |Eg − Ef | · |∇vg|.

Along the forward bi-characteristics generated by the force field Ef (t, x), the above
inequality can be rewritten as

∂t|f − g|# ≤ S#(|f − g|, f) + S#(g, |f − g|) + |Eg − Ef |# · |∇vg|#. (3.5)

Integrating it over RN
x ×RN

v and noting (1.10), we have

dL(f, g)(t)
dt

≤ O(1)Λ(f, g)(t) +
∫
RN

x ×RN
v

|Eg − Ef | · |∇vg|dxdv. (3.6)

Therefore the rest proof is to show that

∫
RN

x ×RN
v

|Eg − Ef | · |∇vg|dxdv ≤ O(1)δ1

(1 + t)N−2
L(f, g)(t). (3.7)
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In fact, by the Poisson equation 4φ = ρ, we have∫
RN

x ×RN
v

|Eg − Ef | · |∇vg|dxdv

≤ O(1)
∫
RN

x ×RN
v ×RN

y

|(ρf − ρg)(t, y)|
|x− y|N−1

|∇vg(t, x, v)|dxdvdy

≤ O(1)
∫
RN

x ×RN
v ×RN

y ×RN
v∗

|(f − g)(t, y, v∗)|
|x− y|N−1

|∇vg(t, x, v)|dxdvdydv∗

≤ O(1)
∫
RN

y ×RN
v∗

|(f − g)(t, y, v∗)|dydv∗

∫
RN

x ×RN
v

|∇vg(t, x, v)|
|x− y|N−1

dxdv

≤ O(1)δ1(1 + t)
∫
RN

y ×RN
v∗

|(f − g)(t, y, v∗)|dydv∗∫
RN

x ×RN
v

hα(|X(0; t, x, v)|)mβ(|V (0; t, x, v)|)
|x− y|N−1

dxdv

≤ O(1)δ1(1 + t) sup
y

I1(t, y)
∫
RN

y ×RN
v∗

|(f − g)(t, y, v∗)|dydv∗, (3.8)

which together with (2.8) yields (3.7). Thus the proof of Lemma 3.1 is complete.

Next we devote ourselves to use the L1 distance L(f, g) of two solutions to control
the term Λ(f, g) on the right hand of (3.4). For the case of the soft potentials, i.e.
−(N − 2) < δ ≤ 0, it can be achieved by the following lemma, which directly leads
to the uniform L1 stability estimate with the help of the Gronwall’s inequality.

Lemma 3.2. Suppose that the conditions of Theorem 1.2 hold. If −(N−2) < δ ≤ 0,
then we have

Λ(f, g)(t) ≤ O(1)
(1 + t)N+δ

L(f, g)(t). (3.9)

Proof. It follows from the representation form (3.3) of Λ(f, g)(t) that

Λ(f, g)(t) =
∫
RN

x ×RN
v

|f − g|(t, x, v)dxdv

∫
RN

v∗

|v − v∗|δ(f + g)(t, x, v∗)dv∗

≤ O(1)δ1

∫
RN

x ×RN
v

|f − g|(t, x, v)dxdv∫
RN

v∗

|v − v∗|δhα(|X(0; t, x, v∗)|)mβ(|V (0; t, x, v∗)|)dv∗

≤ O(1)δ1 sup
x,v

I2(t, x, v)
∫
RN

x ×RN
v

|f − g|(t, x, v)dxdv. (3.10)

Thus it follows from (2.9) and (3.10) that (3.9) holds. This ends the proof of Lemma
3.2.
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Remark 3.1. If −(N − 2) < δ ≤ 0, then both Lemmas 3.1 and 3.2 show that

dL(f, g)(t)
dt

≤
{

O(1)δ1

(1 + t)N+δ
+

O(1)δ1

(1 + t)N−2

}
L(f, g)(t).

Since −(N − 2) < δ ≤ 0 and N ≥ 4, the above inequality with the help of the
Gronwall’s inequality immediately leads to

L(f, g)(t) ≤ O(1)L(f, g)(0).

This gives the uniform L1 stability estimate (1.15) in Theorem 1.2 for the case of
the soft potentials.

Finally we consider the L1 stability of solutions to the VPB system for the case
of the hard potentials, i.e. 0 < δ ≤ 1. It should be noticed that the estimate similar
to (3.9) in Lemma 3.2 fails for this case because of the possible increase at infinity of
the term |v−v∗|δ in the collision kernel B(θ, |v−v∗|). To overcome this difficulty, we
will construct some new nonlinear functionals motivated by some known works18,20

on the L1 stability of solutions to the Boltzmann equation without the external
force. For this purpose, let’s define

v∞(x, v) =
∫ ∞

0

E
(
t, Xt(x, v)

)
dt. (3.11)

Then we have

Lemma 3.3. Suppose that ∫ ∞

0

‖E(t)‖∞dt < ∞. (3.12)

Then for any (x, v) ∈ RN
x ×RN

v , v∞(x, v) is well-defined with the uniform bound

sup
x,v

|v∞(x, v)| ≤
∫ ∞

0

‖E(t)‖∞dt. (3.13)

Furthermore if there exists some positive constant κ > 0 such that∫ ∞

0

(1 + t)κ‖E(t)‖∞dt < ∞, (3.14)

then one has

sup
x,v

∣∣∣∣1t
∫ t

0

V s(x, v)ds− v − v∞(x, v)
∣∣∣∣→ 0 as t →∞. (3.15)
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Proof. We only prove (3.15). In fact,∣∣∣∣1t
∫ t

0

V s(x, v)ds− v − v∞(x, v)
∣∣∣∣ = ∣∣∣∣1t

∫ t

0

∫ s

0

E(θ, Xθ(x, v))dθds− v∞(x, v)
∣∣∣∣

=
∣∣∣∣1t
∫ t

0

∫ ∞

s

E(θ, Xθ(x, v))dθds

∣∣∣∣
≤ 1

t

∫ t

0

∫ ∞

s

‖E(θ)‖∞dθds.

when t ≥ 1, by the integration part, we have

1
t

∫ t

0

∫ ∞

s

‖E(θ)‖∞dθds

=
∫ ∞

t

‖E(θ)‖∞dθ +
1
t

∫ t

0

s‖E(s)‖∞ds

≤
∫ ∞

t

‖E(θ)‖∞dθ +
1
t

∫ 1

0

‖E(s)‖∞ds +
1
t

∫ t

1

s‖E(s)‖∞ds

≤
∫ ∞

t

‖E(θ)‖∞dθ +
1
t

∫ 1

0

‖E(s)‖∞ds +
1

tmin{κ,1}

∫ t

1

sκ‖E(s)‖∞ds.

Thus from the assumption (3.14), we have

lim
t→∞

1
t

∫ t

0

∫ ∞

s

‖E(θ)‖∞dθds = 0.

Hence (3.15) holds. The proof of Lemma 3.3 is complete.

In order to control the integral Λ(f, g)(t) for the case when 0 < δ ≤ 1, as in Ref.
11, let’s define nonlinear functionals Λh and Dh as follows:

Λh(f, g)(t) =
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv∫
RN

v∗

|v∞(x, v) + v − v∗|δ(f + g)(t,Xt(x, v), v∗)dv∗ (3.16)

and

Dh(f, g)(t) =
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv

∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1

×(f + g)(t, Xt(x, v) + τn(v∞(x, v) + v − v∗), v∗)dv∗dτ,

(3.17)
where n(z) = z/|z| denotes the unit vector along z-direction for any nonzero vector
z ∈ RN .

Remark 3.2. If the external force E(t, x) satisfies (1.14) and N ≥ 3, then (3.12)
and (3.14) hold. Thus for any self-consistent electric force Ef (t, x) generated by the



14 R.J. Duan, M. Zhang and C.J. Zhu

solution f(t, x, v) to the VPB system in sense of Theorem 1.1, v∞(x, v) is always
well-defined with the uniform bound:

sup
x,v

|v∞(x, v)| ≤ O(1). (3.18)

In addition, if the external force field E(t, x) vanishes, i.e. E ≡ 0, then we have

v∞(x, v) ≡ 0,

and

Xt(x, v) = x + vt, V t(x, v) = v.

Thus the nonlinear functionals Λh(f, g) and Dh(f, g) reduce to

Λh(f, g)(t) =
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv∫
RN

v∗

|v − v∗|δ(f + g)#(t, x + t(v − v∗), v∗)dv∗

and

Dh(f, g)(t) =
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv

∫
RN

v∗×R+
τ

|v − v∗|δ−1

×(f + g)#(t, x + t(v − v∗) + τn(v − v∗), v∗)dv∗dτ,

which are exactly the same as ones in Ref. 20.

Furthermore, we define the integral I3(t, x, v) by

I3(t, x, v) =
∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1

×hα(|X(0; t, Xt(x, v) + τn(v∞(x, v) + v − v∗), v∗)|)

×mβ(|V (0; t,Xt(x, v) + τn(v∞(x, v) + v − v∗), v∗)|)dv∗dτ. (3.19)

We first claim that Dh(f, g) can be bounded by L(f, g), which comes from the
following lemma.

Lemma 3.4. Suppose that the external force E(t, x) satisfies (1.14). If N ≥ 4 and
0 < δ ≤ 1, then we have that

sup
t,x,v

I3(t, x, v) ≤ O(1). (3.20)
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Proof. Fix any (t, x, v) ∈ R+
t ×RN

x ×RN
v . It follows from Lemma 2.1 and Lemmas

4.2-4.4 that

I3(t, x, v) ≤ O(1)
∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1mβ(|v∗|)

hα

(∣∣Xt(x, v)− v∗t + τn(v∞(x, v) + v − v∗)
∣∣) dv∗dτ

≤ O(1)
∫
RN

v∗

|v∞(x, v) + v − v∗|δ−1mβ(|v∗|)dv∗∫
R+

τ

hα

(∣∣Xt(x, v)− v∗t + τn(v∞(x, v) + v − v∗)
∣∣) dτ

≤ O(1)
∫
RN

v∗

|v∞(x, v) + v − v∗|δ−1mβ(|v∗|)dv∗

≤ O(1).

Thus the proof of Lemma 3.4 is complete.

From Lemma 3.4 above, it is easy to see that for any t ≥ 0,

Dh(f, g)(t) ≤ O(1)δ1 sup
t,x,v

I3(t, x, v)
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv

≤ O(1)δ1L(f, g)(t). (3.21)

Hence we shall construct the Glimm-type nonlinear functional5,21

HK(f, g)(t) = L(f, g)(t) + KDh(f, g)(t), (3.22)

where K > 0 is a positive constant. In view of (3.21), we see that for any K > 0,
HK(f, g) is equivalent with the L1 distance L(f, g) of two solutions, i.e.

L(f, g)(t) ≤ HK(f, g)(t) ≤ O(1)L(f, g)(t), ∀ t ≥ 0. (3.23)

Thus in order to obtain the uniform L1 stability estimate, it suffices to choose the
proper constant K > 0 such that

HK(f, g)(t) ≤ HK(f, g)(0), ∀ t ≥ 0. (3.24)

This can be achieved by the following vital lemma.

Lemma 3.5. Suppose that the conditions of Theorem 1.2 hold. If 0 < δ ≤ 1, then
we have that

dDh(f, g)(t)
dt

≤ −(1−O(1)δ1)Λh(f, g)(t) +
O(1)δ2

1

(1 + t)2
L(f, g)(t). (3.25)
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Proof. First, notice that

∂t [f(t, Xt(x, v) + τn(v∞(x, v) + v − v∗), v∗)]

= (∂tf)(t, Xt(x, v) + τn, v∗) + V t(x, v) · ∇xf(t,Xt(x, v) + τn, v∗)

= J(f, f)(t, Xt(x, v) + τn, v∗)− v∗ · ∇xf(t,Xt(x, v) + τn, v∗)

−Ef (t, Xt(x, v) + τn) · ∇vf(t,Xt(x, v) + τn, v∗)

+V t(x, v) · ∇xf(t, Xt(x, v) + τn, v∗)

= J(f, f)(t, Xt(x, v) + τn, v∗)

−Ef (t, Xt(x, v) + τn) · ∇vf(t,Xt(x, v) + τn, v∗)

+(V t(x, v)− v − v∞(x, v)) · ∇xf(t, Xt(x, v) + τn, v∗)

+∂τ (|v∞(x, v) + v − v∗|f(t, Xt(x, v) + τn, v∗)), (3.26)

where for simplicity we have used n to denote the unit vector n(v∞(x, v) + v− v∗).
By the dominated convergence theorem, the following integral∫

RN
x ×RN

v ×RN
v∗

|v∞(x, v) + v − v∗|δhα(|x|)mβ(|v|)

×hα(|Xt(x, v) + τn− v∗t|)mβ(|v∗|)dxdvdv∗ (3.27)

tends to zero as τ goes to infinity. Hence (3.26) together with (3.5) yields

∂t

[
|f − g|#(t, x, v)(f + g)(t, Xt(x, v) + τn, v∗)

]
= ∂t|f − g|#(t, x, v)(f + g)(t, Xt(x, v) + τn, v∗)

+|f − g|#(t, x, v)∂t

[
(f + g)(t, Xt(x, v) + τn, v∗)

]
≤ (S#(|f − g|, f) + S#(g, |f − g|))(t, x, v)(f + g)(t, Xt(x, v) + τn, v∗)

+|Eg − Ef |#(t, x, v)|∇vg|#(t, x, v)(f + g)(t, Xt(x, v) + τn, v∗)

+|f − g|#(t, x, v)(S(f, f) + S(g, g))(t,Xt(x, v) + τn, v∗)

+|f − g|#(t, x, v)(‖Ef (t)‖∞|∇vf |+ ‖Eg(t)‖∞|∇vg|)(t, Xt(x, v) + τn, v∗)

+|f − g|#(t, x, v)|V t(x, v)− v − v∞(x, v)|(|∇xf |+ |∇xg|)(t,Xt(x, v) + τn, v∗)

+∂τ

[
|v∞(x, v) + v − v∗||f − g|#(t, x, v)(f + g)(t,Xt(x, v) + τn, v∗)

]
.

(3.28)
Multiplying the inequality (3.28) by |v∞(x, v) + v − v∗|δ−1 and integrating it over
the domain D = RN

x ×RN
v ×RN

v∗ ×R+
τ leads to

dDh(f, g)(t)
dt

≤ −Λh(f, g)(t) +
5∑

i=1

Ji(t), (3.29)
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where Ji(t), i = 1, 2, 3, 4 are defined as follows:

J1(t) =
∫

D

|v∞(x, v) + v − v∗|δ−1(S#(|f − g|, f) + S#(g, |f − g|))(t, x, v)

(f + g)(t, Xt(x, v) + τn, v∗)dxdvdv∗dτ,

J2(t) =
∫

D

|v∞(x, v) + v − v∗|δ−1|Eg − Ef |#(t, x, v)|∇vg|#(t, x, v)

(f + g)(t, Xt(x, v) + τn, v∗)dxdvdv∗dτ,

J3(t) =
∫

D

|v∞(x, v) + v − v∗|δ−1|f − g|#(t, x, v)

(S(f, f) + S(g, g))(t, Xt(x, v) + τn, v∗)dxdvdv∗dτ,

J4(t) =
∫

D

|v∞(x, v) + v − v∗|δ−1‖E(t)‖∞|f − g|#(t, x, v)

(|∇vf |+ |∇vg|)(t, Xt(x, v) + τn, v∗)dxdvdv∗dτ,

J5(t) =
∫

D

|v∞(x, v) + v − v∗|δ−1|V t(x, v)− v − v∞(x, v)| · |f − g|#(t, x, v)

(|∇xf |+ |∇xg|)(t, Xt(x, v) + τn, v∗)dxdvdv∗dτ.

For J1(t), it follows from Lemmas 2.1, 3.4 and 4.2 that

J1(t) =
∫
RN

x ×RN
v

(S#(|f − g|, f) + S#(g, |f − g|))(t, x, v)dxdv∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1(f + g)(t,Xt(x, v) + τn, v∗)dv∗dτ

≤ O(1)δ1

∫
RN

x ×RN
v

(S#(|f − g|, f) + S#(g, |f − g|))(t, x, v)dxdv∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1hα(|X(0; t, Xt(x, v) + τn, v∗)|)

mβ(|V (0; t, Xt(x, v) + τn, v∗)|)dv∗dτ

≤ O(1)δ1 sup
t,x,v

I3(t, x, v)
∫
RN

x ×RN
v

(S#(|f − g|, f) + S#(g, |f − g|))(t, x, v)dxdv

≤ O(1)δ1Λ(f, g)(t).
(3.30)
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Furthermore we have from Lemmas 2.1, 3.2, 3.3 and 4.2 that

Λ(f, g)(t)

=
∫
RN

x ×RN
v

|f − g|(t, x, v)dxdv

∫
RN

v∗

|v − v∗|δ(f + g)(t, x, v∗)dv∗

=
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv∫
RN

v∗

|V t(x, v)− v∗|δ(f + g)(t, Xt(x, v), v∗)dv∗

≤ O(1)
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv

∫
RN

v∗

(f + g)(t, Xt(x, v), v∗)(
|v∞(x, v)|δ + |V t(x, v)− v|δ + |v∞(x, v) + v − v∗|δ

)
dv∗

≤ O(1)Λh(f, g)(t) +O(1)
∫
RN

x ×RN
v ×RN

v∗

|f − g|(t, x, v)(f + g)(t, x, v∗)dxdvdv∗

≤ O(1)Λh(f, g)(t) +
O(1)δ1

(1 + t)N
L(f, g)(t).

(3.31)
Putting (3.31) into (3.30), we have

J1(t) ≤ O(1)δ1Λh(f, g)(t) +
O(1)δ2

1

(1 + t)N
L(f, g)(t). (3.32)

For J2(t), we have from Lemma 3.4 and (3.7) that

J2(t) =
∫
RN

x ×RN
v

|Eg − Ef |#(t, x, v)|∇vg|#(t, x, v)dxdv∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1(f + g)(t, Xt(x, v) + τn, v∗)dv∗dτ

≤ O(1)δ1 sup
t,x,v

I3(t, x, v)
∫
RN

x ×RN
v

|Eg − Ef |#(t, x, v)|∇vg|#(t, x, v)dxdv

= O(1)δ1

∫
RN

x ×RN
v

|Eg − Ef |(t, x, v)|∇vg|(t, x, v)dxdv

≤ O(1)δ2
1

(1 + t)N−2
L(f, g)(t).

(3.33)
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From Lemmas 2.3 and 3.4, J3(t) is estimated as follows:

J3(t) =
∫
RN

x ×RN
v

|f − g|(t, x, v)dxdv

∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1

(S(f, f) + S(g, g))(t,Xt(x, v) + τn, v∗)dv∗dτ

≤ O(1)δ2
1

(1 + t)2

∫
RN

x ×RN
v

|f − g|(t, x, v)dxdv

∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1

hα−1/2

(∣∣X(0; t,Xt(x, v) + τn, v∗)
∣∣)

mβ−η

(∣∣V (0; t, Xt(x, v) + τn, v∗)
∣∣) dv∗dτ

≤ O(1)δ2
1

(1 + t)2
L(f, g)(t),

(3.34)
where the last inequality comes from the same proof of Lemma 3.4 and we have
used 0 < δ ≤ 1, α > (N + 1)/2 and 0 < η < β −N/2. Similarly, for J4(t), we have
from Lemma 3.4 and (1.14) that

J4(t) = max{‖Ef (t)‖∞, ‖Eg(t)‖∞}
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1(|∇vf |+ |∇vg|)(t, Xt(x, v) + τn, v∗)dv∗dτ

≤ O(1)δ1(1 + t) max{‖Ef (t)‖∞, ‖Eg(t)‖∞}
∫
RN

x ×RN
v

|f − g|#(t, x, v)dxdv∫
RN

v∗×R+
τ

|v∞(x, v) + v − v∗|δ−1

hα

(∣∣X(0; t, Xt(x, v) + τn, v∗)
∣∣)mβ

(∣∣V (0; t, Xt(x, v) + τn, v∗)
∣∣) dv∗dτ

≤ O(1)δ1(1 + t) max{‖Ef (t)‖∞, ‖Eg(t)‖∞}L(f, g)(t)

≤ O(1)δ2
1

(1 + t)N−2
L(f, g)(t).

(3.35)
Finally, to estimate J5(t), by noticing from (1.14) that

|V t(x, v)− v − v∞(x, v)| =
∣∣∣∣∫ t

0

E(θ, Xθ(x, v))dθ −
∫ ∞

0

E(θ, Xθ(x, v))dθ

∣∣∣∣
=
∣∣∣∣∫ ∞

t

E(θ, Xθ(x, v))dθ

∣∣∣∣
≤
∫ ∞

t

‖E(θ)‖∞dθ

≤ O(1)δ1

(1 + t)N−2
, (3.36)
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similarly we have

J5(t) ≤
O(1)δ2

1

(1 + t)N−2
L(f, g)(t). (3.37)

Since N ≥ 4, combining (3.29) and (3.32)-(3.37) gives (3.25). Thus the proof of
Lemma 3.5 is complete.

Corollary 3.1. Suppose that the conditions of Theorem 1.2 hold. For the case of
the hard potentials, i.e. 0 < δ ≤ 1, if δ1 > 0 is sufficiently small, then we have the
L1 stability estimate (1.15).

Proof. First if 0 < δ ≤ 1, then it follows from Lemma 3.1 and the inequality (3.31)
that

dL(f, g)(t)
dt

≤ O(1)Λ(f, g)(t) +
O(1)δ1

(1 + t)N−2
L(f, g)(t)

≤
{
O(1)Λh(f, g)(t) +

O(1)δ1

(1 + t)N
L(f, g)(t)

}
+

O(1)δ1

(1 + t)N−2
L(f, g)(t)

≤ O(1)Λh(f, g)(t) +
O(1)δ1

(1 + t)N−2
L(f, g)(t).

(3.38)
Recall (3.22). Multiplying (3.25) by the constant K > 0 and adding it to (3.38), we
have that

dHK(f, g)(t)
dt

≤ (O(1)−K(1−O(1)δ1)) Λh(f, g)(t)

+
{

O(1)δ1

(1 + t)N−2
+
O(1)Kδ2

1

(1 + t)2

}
L(f, g)(t)

≤ (O(1)−K(1−O(1)δ1)) Λh(f, g)(t)

+
{

O(1)δ1

(1 + t)N−2
+
O(1)Kδ2

1

(1 + t)2

}
HK(f, g)(t). (3.39)

Now let δ1 ∈ (0, 1) sufficiently small such that 1 − O(1)δ1 > 1/2 and furthermore
K > 1 sufficiently large independent of δ1 such that O(1)−K/2 < −1. Then since
N ≥ 4, we have from (3.39) that

dHK(f, g)(t)
dt

+ Λh(f, g)(t) ≤ O(1)δ1

(1 + t)2
HK(f, g)(t), (3.40)

which together with the Gronwall’s inequality yields

HK(f, g)(t) +
∫ t

0

Λh(f, g)(s)ds ≤ O(1)HK(f, g)(0). (3.41)

Immediately we have from (3.23) that

L(f, g)(t) ≤ HK(f, g)(t) ≤ O(1)HK(f, g)(0) ≤ O(1)L(f, g)(0), (3.42)
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i.e.

‖f(t)− g(t)‖1 ≤ O(1)‖f0 − g0‖1. (3.43)

This ends the proof of Corollary 3.1.

Finally combining Remark 3.1 and Corollary 3.1 leads to the proof of Theorem
1.2. Thus we are done.

Remark 3.3. If we consider the more realistic physical case, i.e. the VPB system
in the phase space RN

x × RN
v with the dimension N = 3, then the uniform L1

stability estimate (1.15) can not be obtained by using the same method in the
proof of Theorem 1.2. In fact for N = 3, we can only obtain the local-in-time L1

stability estimate under the same assumptions of Theorem 1.2 as follows:

‖(f − g)(t)‖1 ≤ (1 + t)O(1)δ1‖f0 − g0‖1.

Even though we have solved the uniform L1 stability only for N ≥ 4, the analysis
could be useful for the case N = 3 and it will shed some light on the stability analysis
for more complicated system such as the Vlasov-Maxwell-Boltzmann system. We
will pursue the proof of the uniform L1 stability for these physically important
models in the future.

4. Some Known Lemmas

The following lemmas are known and hence their proofs are omitted. Interested
readers may refer to References2,3,4,11,19,21,22 for details of proofs.

Lemma 4.1. Let ρ(x) ∈ L1(RN ) ∩ W 1,∞(RN ) and φ = 1/|x|N−2 ∗ ρ. Then we
have

‖φ‖∞ ≤ O(1)‖ρ‖2/N
1 ‖ρ‖(N−2)/N

∞ ,

‖∇φx‖∞ ≤ O(1)‖ρ‖1/N
1 ‖ρ‖(N−1)/N

∞ ,

‖∇2
xφ‖∞ ≤ O(1)‖∇xρ‖Nλ

∞ ‖ρ‖λ
1 ‖ρ‖1−(N+1)λ

∞ ,

where λ ∈ (0, 1/(1 + N)) is any constant.

Lemma 4.2. For any α > 0 and (x, y) ∈ RN ×RN , we have that

(1 + |y|+ |y|2)−α ≤ hα(|x|)
hα(|x + y|)

≤ (1 + |y|+ |y|2)α.

Lemma 4.3. For any α > 1/2 and u ∈ RN with u 6= 0, we have that

sup
x

∫ ∞

0

hα(|x + su|) ds ≤ O(1)
|u|

.
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Lemma 4.4. For any 0 ≤ γ < N and β > N/2, we have that

sup
v

∫
RN

1
|v − u|γ

mβ(|u|)du ≤ O(1).
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