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Abstract

This paper is about the propagation of the singularities in the solutions to the
Cauchy problem of the spatially inhomogeneous Boltzmann equation with angular
cutoff assumption. It is motivated by the work of Boudin-Desvillettes on the propa-
gation of singularities in solutions near vacuum. It shows that for the solution near a
global Maxwellian, singularities in the initial data propagate like the free transporta-
tion. Precisely, the solution is the sum of two parts in which one keeps the singularities
of the initial data and the other one is regular with locally bounded derivatives of frac-
tional order in some Sobolev space. In addition, the dependence of the regularity on
the cross-section is also given.

1 Introduction

Consider the Cauchy problem of the Boltzmann equation

∂tf + ξ · ∇xf = Q(f, f), (1.1)

with initial data
f(0, x, ξ) = f0(x, ξ). (1.2)

Here f = f(t, x, ξ) is a non-negative function standing for the number density of gas
particles with position x = (x1, x2, x3) ∈ R3 and velocity ξ = (ξ1, ξ2, ξ3) ∈ R3 at time
t > 0. Q is the bilinear collision operator defined by

Q(f, g) = Q+(f, g)− fLg,

Q+(f, g) =
∫∫

R3×S2

f(t, x, ξ′)g(t, x, ξ′∗)B
(
ξ − ξ∗,

ξ − ξ∗
|ξ − ξ∗|

· ω
)
dξ∗dω,

Lg =
∫∫

R3×S2

g(t, x, ξ∗)B
(
ξ − ξ∗,

ξ − ξ∗
|ξ − ξ∗|

· ω
)
dξ∗dω,

1
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where the relation between the post-collision velocity pair (ξ′, ξ′∗) of two particles with the
pre-collision velocity pair (ξ, ξ∗) is given by

ξ′ = ξ − (ξ − ξ∗) · ωω, ξ′∗ = ξ∗ + (ξ − ξ∗) · ωω, ω ∈ S2.

Here, B(·, ·) depending only on |ξ − ξ∗| and (ξ − ξ∗) · ω/|ξ − ξ∗| is called the cross section
characterizing the collision of gas particles for various interaction potentials. As usual, set

A(z) =
∫
S2

B

(
z,

z

|z|
· ω
)
dω, z ∈ R3.

Then Lg can be written as

Lg = A ∗ξ g =
∫
R3

A(ξ − ξ∗)g(t, x, ξ∗)dξ∗.

In what follows, we assume that

A1. B(·, ·) is a non-negative measurable function in the form of

B (z, cos θ) = |z|γb(cos θ), cos θ =
z

|z|
· ω.

Here 0 ≤ γ ≤ 1, and b(·) satisfies the Grad’s angular cutoff assumption [15], with∫
S2

b(cos θ)dω = b0, 0 ≤ b(cos θ) ≤ b1,

where b0, b1 are positive constants.

Recently, Ukai-Yang [26] proved that under the assumption A1, the Cauchy prob-
lem (1.1)-(1.2) for the Boltzmann equation is well-posed globally in time near a global
Maxwellian in function spaces without any regularity condition on the derivatives. To be
precise, without loss of generality, let the global Maxwellian M(·) be

M(ξ) =
1

(2π)3/2
exp

(
−|ξ|

2

2

)
.

The function space Xβ is defined by

Xβ = L2(R3
x × R3

ξ) ∩ L∞(R3
x;L

∞
β (R3

ξ)),

with norm
‖g‖Xβ

= ‖g‖L2(R3
x×R3

ξ) + ‖〈ξ〉βg‖L∞(R3
x×R3

ξ),

where 〈ξ〉 = (1 + |ξ|2)1/2 and g = g(x, ξ). Then the following existence result was proved
in [26].

Proposition 1.1. Let β > 3/2 and the condition A1 hold. There are positive constants
δ0 and C0 such that if the initial data satisfies

f0(x, ξ) = M(ξ) +
√

M(ξ)u0(x, ξ) ≥ 0, x ∈ R3, ξ ∈ R3,

u0 ∈ Xβ , ‖u0‖Xβ
≤ δ0,

then the Cauchy problem (1.1)-(1.2) has a unique solution

f(t, x, ξ) = M(ξ) +
√

M(ξ)u(t, x, ξ) ≥ 0, t ≥ 0, x ∈ R3, ξ ∈ R3,

u ∈ L∞(R+;Xβ), sup
t≥0

‖u(t)‖Xβ
≤ C0‖u0‖Xβ

.



Propagation of Singularities for the Boltzmann Equation 3

The purpose of this paper is to study the regularity of the solution f , or equivalently,
the perturbation u obtained in the above proposition. As in the case of small pertur-
bation near vacuum studied by Boudin-Desvillettes [8], we prove that the solution f in
Proposition 1.1 can also be written into a sum of two parts in which one corresponds
to the free transportation of the initial data with a coefficient decaying exponentially in
time and having fractional derivatives in some Sobolev space, while the other one is just
regular with locally bounded fractional derivatives. This shows that for the solutions near
a global equilibrium, the singularities of the initial data also propagate along the free
transportation. To state this theorem, we need one more assumption given below.

A2. The angular part b(·) in the cross section B(·, ·) satisfies

sup
|y|≤1

∣∣∣∣∂b∂y (y)
∣∣∣∣ ≤ b2,

where b2 > 0 is a constant.

The main result in this paper can be stated as follows.

Theorem 1.1. Let the conditions A1 and A2 hold. Suppose that there is a solution f to
the Cauchy problem (1.1)-(1.2) such that

f(t, x, ξ) = M(ξ) +
√

M(ξ)u(t, x, ξ) ≥ 0, t ≥ 0, x ∈ R3, ξ ∈ R3, (1.3)
u ∈ L∞(R+;L2(R3

x × R3
ξ) ∩ L∞(R3

x × R3
ξ)). (1.4)

Then f can be written as

f(t, x, ξ) = f0(x− ξt, ξ)Γ1(t, x, ξ) + Γ2(t, x, ξ), (1.5)

for all t ≥ 0, x ∈ R3, ξ ∈ R3, where there exits α0 = α0(γ) > 0 defined by

α0(γ) =

{ 1
25 , if γ = 0,

γ
5(3+2γ) , if 0 < γ ≤ 1,

(1.6)

such that
Γ1,Γ2 ∈ Hα

loc(R+ × R3
x × R3

ξ) (1.7)

for all α ∈ (0, α0). Equivalently, for the perturbation u, we have

u(t, x, ξ) = u0(x− ξt, ξ)Γ̃1(t, x, ξ) + Γ̃2(t, x, ξ), (1.8)
Γ̃1, Γ̃2 ∈ Hα

loc(R+ × R3
x × R3

ξ), 0 < α < α0. (1.9)

Remark 1.1. By Proposition 1.1, there exist solutions satisfying (1.3)-(1.4) required in
Theorem 1.1. However, for the study of propagation of singularities, so far we don’t need
the decay of the scaled perturbation u in the velocity variable even though it is needed in the
existence theorem, that is, the index β in the space Xβ is greater than 3

2 in the existence
theorem while β is zero in Theorem 1.1. It would be interesting to find out whether the
Cauchy problem (1.1)-(1.2) is well-posed in Xβ when β ≤ 3

2 .

Remark 1.2. Notice that the index α0(γ) obtained in Theorem 1.1 has a jump when
γ = 0. This index in the Sobolev space shows the effect of the kinetic part |z|γ in the
cross section on the regularity in the solutions. The index given here is by no means to be
optimal even though it gives some interesting relation between two indices.
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Now let us review some related research to the problem considered here. In the last two
decades, there is an enormous literature on the study of regularity properties of solutions
to the Boltzmann equation with or without the Grad’s angular cutoff assumption. In the
non-cutoff case, the solution is more regular than the initial data because the non-cutoff
collision operator behaves like a fraction of Laplacian which has regularizing effect on
the solution, cf. [2] and references therein. In fact, there are a lot of works and there
is a satisfactory theory for the spatially homogeneous Boltzmann equation, cf. [11] and
references therein. For example, the C∞ regularization property of weak solutions for the
Maxwellian molecule and the regularized hard potentials was proved in [3, 4] by using the
Littlewood-Paley decomposition, and the Gevrey regularity for the Maxwellian molecule
was obtained in [10, 22]. However, the progress on the spatially inhomogeneous Boltzmann
equation without cutoff is much less, cf. [5] and references therein.

On the other hand, in the angular cutoff case, regularity properties of solutions are
completely different from those for the non-cutoff potentials. In the cutoff case, the reg-
ularities as well as singularities of the initial data propagate in time according to the
hyperbolicity of the equation. In the content of the spatially inhomogeneous Boltzmann
equation, this kind of propagation for solutions near a vacuum was first studied in [8]. It
was shown that the solution at time t > 0 has the same regularity as the initial data. An
extension of this result to the Vlasov-Poisson-Boltzmann system was recently given in [6].
We would also like to mention that the case of the space homogeneous equation has been
extensively studied in [23].

Based on the existence result stated in Proposition 1.1, the study in this paper is
motivated by the work of [8] for the perturbation of vacuum. What plays the key role
in the whole analysis is still the combination of the velocity regularization properties of
the positive part in the Boltzmann operator [7, 20, 21, 28] and the spatial regularization
properties from the averaging lemma [9, 14]. However, some differences in the proof for
Theorem 1.1 from the one for the result near vacuum can be explained as follows. Under
the current consideration, the perturbation does not decay exponentially in the space
variable which is the case for the perturbation of vacuum studied in [8]. In fact, the
solution studied in [8] satisfies

0 ≤ f(t, x, ξ) ≤ CT exp
(
−1

2
|x− ξt|2 + |ξ|2

)
, (1.10)

for any 0 ≤ t ≤ T , x ∈ R3, ξ ∈ R3 even though it can be generalized to algebraic
decay in the space variable. Now the perturbation of the global Maxwellian still decays
exponentially in ξ, but it is only bounded in L∞(R3)∩L2(R3) in x variable. Hence, instead
of using the direct pointwise bound like (1.10) for the vacuum perturbation, we need to
use the uniform bound on the perturbation in the function space (1.4). In addition, only
the bounded cross section satisfying

B(z, cos θ) ∈ L∞([−1, 1];W 1,∞(R3)),

was considered in [6, 8]. In this paper, both the hard potentials with angular cutoff and
the hard sphere model are considered so that the analysis involves more subtle estimates.
Notice that the analysis in this paper can be applied to the study on the perturbation
of vacuum provided that the pointwise bound (1.10) is replaced by a weaker assumption,
that is,

0 ≤ exp
(
|ξ|2

4

)
f(t, x, ξ) ∈ L∞([0, T ];L2(R3

x × R3
ξ) ∩ L∞(R3

x × R3
ξ)),
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where the exponential weight can be changed to some algebraic weight 〈ξ〉k for some k
large enough.

Finally, we would like to mention some other related works on the well-posedness
theory of the Cauchy problem for the Boltzmann equation, that is, the global renormalized
solution in [12], global solutions in R3 near Maxwellians in [13, 18, 24, 25, 26], global
solutions near a vacuum in [16, 17, 19]. Interested reader can find the review paper [27]
for more detailed references.

The rest of this paper is arranged as follows. In Section 2, we give the line of proof for
Theorem 1.1 and list some basic lemmas. The regularities of the loss term and the gain
term are obtained in Section 3 and Section 4, respectively. The proof of Theorem 1.1 is
given at the end of Section 4.

Notations. Let N ≥ 1, ` ≥ 0 be integers and Ω ⊂ RN be an open set with smooth
boundary. Lpk(Ω), with 1 ≤ p ≤ ∞, k ∈ R denotes the weighted Lebesgue spaces with
norms

‖f‖Lp
k(Ω) =

(∫
Ω
〈ξ〉kp|f(ξ)|p

)1/p

, 1 ≤ p <∞,

and
‖f‖L∞k (Ω) = sup

ξ∈Ω
〈ξ〉k|f(ξ)|.

In addition, W `,p(Ω), Ẇ `,p(Ω), 1 ≤ p ≤ ∞ denote the usual Sobolev spaces and homoge-
neous Sobolev spaces respectively, with the convection H` = W `,2, Ḣ` = Ẇ `,2. Further,
we will use W s,p(Ω), with 0 < s < 1, 1 ≤ p < ∞ to denote the fractional Sobolev spaces
with the norm

‖f‖W s,p(Ω) =

‖f‖pLp(Ω) +
∫∫

Ω×Ω

|f(ξ)− f(η)|p

|ξ − η|N+ps
dξdη

1/p

.

Throughout this paper, C denotes a generic constant which may vary from line to line. If
the dependence of the constant on some parameter, for example a, needs to be specified,
then the notation Ca will be used. Finally, BR denotes a ball with center at origin and
radius R.

2 Mild Form and Basic Lemmas

Write the solution f to the Cauchy problem (1.1)-(1.2) in the mild form

f(t, x, ξ) = f0(x− ξt, ξ) exp
(
−
∫ t

0
Lf(θ, x− ξθ, ξ)dθ

)
+
∫ t

0
Q+(f, f)(s, x− ξs, ξ) exp

(
−
∫ t

s
Lf(θ, x− ξθ, ξ)dθ

)
ds,

and set

Γ1 = exp
(
−
∫ t

0
Lf(θ, x− ξθ, ξ)dθ

)
,

Γ2 =
∫ t

0
Q+(f, f)(s, x− ξs, ξ) exp

(
−
∫ t

s
Lf(θ, x− ξθ, ξ)dθ

)
ds.
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As in [8], in order to prove Theorem 1.1 for the regularity of Γ1, Γ2 with fractional Sobolev
derivatives, it is equivalent to show

Lf,Q+(f, f) ∈ L2
loc(R+;Hα

loc(R3
x × R3

ξ)), ∀α ∈ (0, α0),

for some α0 > 0. In fact, one has

Lf = A ∗ξ M +A ∗ξ (
√

Mu), (2.1)

Q+(f, f) = MA ∗ξ M +Q+(M,
√

Mu) +Q+(
√

Mu,M)

+Q+(
√

Mu,
√

Mu). (2.2)

Notice that A ∗ξ M, MA ∗ξ M depending only on ξ are C1-smooth functions. Thus, it
suffices to consider the regularity of other terms. Firstly, for the convolution term in Lf ,
the velocity regularity follows naturally from that of A(·), whereas the spatial regularity
will be obtained by the averaging lemma proved in [9] stated as follows.

Lemma 2.1 ([9]). Let T > 0 and f ∈ C([0, T ];L2(R3
x × R3

ξ)). Suppose

g(t, x, ξ) := ∂tf(t, x, ξ) + ξ · ∇xf(t, x, ξ) ∈ L2([0, T ]× R3
x × R3

ξ).

Then for any ψ ∈ C∞
c (R3

ξ), the average quantity

ρψ(t, x) :=
∫
R3

f(t, x, ξ)ψ(ξ)dξ

satisfies
ρψ ∈ L2([0, T ];H1/2(R3

x)).

In fact, for any s > 1, we have

‖ρψ‖L2([0,T ];H1/2(R3
x)) ≤ Cs

 ∫∫
R3×R3

|f(0, x, ξ)|2|ψ(ξ)|2〈ξ〉2sdxdξ

+
∫∫∫

[0,T ]×R3×R3

|g(t, x, ξ)|2|ψ(ξ)|2〈ξ〉2sdxdξdt

 ,

where Cs is a constant depending only on s.

Actually, we can apply the above lemma to the following equation for
√

Mu:

∂t(
√

Mu) + ξ · ∇x(
√

Mu)
= Q+(M,

√
Mu) +Q+(

√
Mu,M) +Q+(

√
Mu,

√
Mu)

−MA ∗ξ (
√

Mu)−
√

MuA ∗ξ M−
√

MuA ∗ξ (
√

Mu). (2.3)

On the other hand, the terms in Q+(f, f) are regular in the velocity variable by the
following lemma proved in [7], which in turn will lead to the regularity in the spatial
variable with the help of the velocity mollifier and the aforementioned velocity averaging
lemma.
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Lemma 2.2 ([7]). Under conditions A1 and A2, for any ε > 0, there is a constant Cε
depending only on ε such that for any f, g ∈ L1

1(R3
ξ) ∩ L2

(3+ε)/2(R
3
ξ), one has

Q+(f, g) ∈ Ḣ1(R3
ξ),

and
‖Q+(f, g)‖Ḣ1(R3

ξ) ≤ Cε(b1 + b2)‖f‖L2
(3+ε)/2

(R3
ξ)‖g‖L2

(3+ε)/2
(R3

ξ).

Finally, for later use, we list some basic estimates whose proofs can be found in [1, 25].

Lemma 2.3. Let s > −3, λ > 0. There is a constant Cs,λ depending only on s, λ, such
that for all ξ ∈ R3, it holds∫

R3

|ξ − ξ∗|s exp(−λ|ξ∗|2)dξ∗ ≤ Cs,λ〈ξ〉s.

Lemma 2.4. Let f = f(x) ∈ W 1,∞
loc (R3). Then f ∈ H1/2

loc (R3), and there is a constant C
such that for any R > 0, it holds that

‖f‖H1/2(BR) ≤ CR
3
2 ‖f‖W 1,∞(BR).

Lemma 2.5. Let h ∈ R3. Denote the shift operator τh by τhf(x) = f(x − h). Then for
any f ∈ H1/2(R3), it holds

‖τhf − f‖L2(R3) ≤ ‖f‖Ḣ1/2(R3)|h|
1
2 .

Lemma 2.6. Let ψ(ξ) be the standard mollifier, and ψδ(·) = 1
δ3
ψ( ·δ ), for δ > 0. Then for

any f = f(ξ) ∈ H1(R3), it holds

‖f − ψδ ∗ξ f‖L2(R3) ≤ Cψ‖f‖Ḣ1(R3)δ,

where Cψ is a constant depending only on ψ.

3 Regularity of Lf

Recall the representation (2.1) of Lf . Firstly, we consider its regularity in the velocity
variable.

Lemma 3.1. Under the assumptions of Theorem 1.1, it holds

A ∗ξ (
√

Mu) ∈ L2([0, T ]× R3
x;H

1/2(BRξ
)),

with

‖A ∗ξ (
√

Mu)‖L2([0,T ]×R3
x;H1/2(BRξ

)) ≤ CR
3
2 〈R〉γ

√
T‖u‖L∞([0,T ];L2(R3

x×R3
ξ)).

Proof. By the Hölder inequality and Lemma 2.3, we have

|A ∗ξ (
√

Mu)|2 ≤
∫
R3

A(ξ − ξ∗)2M(ξ∗)dξ∗
∫
R3

|u(t, x, ξ∗)|2dξ∗

≤ Cb20〈ξ〉2γ
∫
R3

|u(t, x, ξ∗)|2dξ∗.
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Similarly, it holds that

|∇ξ(A ∗ξ (
√

Mu))|2 = |∇ξA ∗ξ (
√

Mu)|2

≤ Cb20〈ξ〉2γ−2

∫
R3

|u(t, x, ξ∗)|2dξ∗ ≤ Cb20

∫
R3

|u(t, x, ξ∗)|2dξ∗.

Thus for any t ≥ 0, x ∈ R3, we have

‖A ∗ξ (
√

Mu)‖W 1,∞(BRξ
) ≤ Cb0〈R〉γ‖u(t, x, ·)‖L2(R3

ξ).

This together with the imbedding W 1,∞
loc (R3

ξ) ↪→ H
1/2
loc (R3

ξ) stated in Lemma 2.4 completes
the proof of the lemma.

As in [8], the regularity in the space variable follows from the velocity averaging lemma.

Lemma 3.2. Under the assumptions of Theorem 1.1, it holds

A ∗ξ (
√

Mu) ∈ L2([0, T ]×BRξ
;H1/2(R3

x)),

with

‖A ∗ξ (
√

Mu)‖L2([0,T ]×BRξ
;H1/2(R3

x)) ≤ CR
3
2 〈R〉γNT (u),

where

NT (u) = ‖u0‖L2(R3
x×R3

ξ) +
√
T‖u‖L∞([0,T ];L2(R3

x×R3
ξ))

(
1 + ‖u‖L∞[0,T ]×R3

x×R3
ξ

)
. (3.1)

Proof. Firstly, by applying Lemma 2.1, we can obtain

‖A ∗ξ (
√

Mu)‖2
L2([0,T ]×BRξ

;H1/2(R3
x))

≤
∫
BRξ

‖A ∗ξ (
√

Mu)‖2
L2([0,T ];H1/2(R3

x))
dξ

=
∫
BRξ

∥∥∥∥∥ρA(ξ−·)eλ

(√
Mu

eλ

)∥∥∥∥∥
2

L2([0,T ];H1/2(R3
x))

dξ ≤ Cs

∫
BRξ

[I1(ξ) + I2(ξ)]dξ, (3.2)

where

I1(ξ) =
∫∫
x,ξ∗

∣∣∣∣∣
√

M(ξ∗)u(0, x, ξ∗)
eλ(ξ∗)

∣∣∣∣∣
2

|A(ξ − ξ∗)|2eλ(ξ∗)2〈ξ∗〉2s, (3.3)

I2(ξ) =
∫∫∫
t,x,ξ∗

∣∣∣∣∣(∂t + ξ∗ · ∇x)

√
M(ξ∗)u(t, x, ξ∗)

eλ(ξ∗)

∣∣∣∣∣
2

|A(ξ − ξ∗)|2eλ(ξ∗)2〈ξ∗〉2s. (3.4)

Here and hereafter, eλ denotes

eλ = eλ(ξ) = exp(−λ|ξ|2),
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for λ > 0 to be chosen later. For simplicity, the following multiple integral notions are
used ∫∫

x,ξ∗

(· · · ) =
∫∫

R3×R3

(· · · )dxdξ∗,
∫∫∫
t,x,ξ∗

(· · · ) =
∫∫

[0,T ]×R3×R3

(· · · )dtdxdξ∗.

We estimate I1(ξ), I2(ξ) as follows. For I1(ξ), notice that

A(ξ − ξ∗) ≤ b1|ξ − ξ∗|γ ≤ b1(|ξ|+ |ξ∗|)γ ≤ b1〈ξ〉γ〈ξ∗〉γ .

Define the function Mλ,γ(ξ) by

Mλ,γ(ξ) = 〈ξ〉γ exp(−λ|ξ|2),

and the corresponding constant Mλ,γ,∞ by

Mλ,γ,∞ = sup
ξ∈R3

Mλ,γ(ξ).

Then we have

I1(ξ) ≤ Cb21M
2
λ,s+γ,∞〈ξ〉2γ

∫∫
x,ξ∗

exp
(
−|ξ∗|

2

2
+ 2λ|ξ∗|2

)
|u0(x, ξ∗)|2

≤ Cb21M
2
λ,s+γ,∞〈ξ〉2γ‖u0‖2

L2(R3
x×R3

ξ), (3.5)

when λ ≤ 1/4. Similarly, for I2(ξ), it holds that

I2(ξ) ≤ b21M
2
λ,s+γ,∞〈ξ〉2γ

∫∫∫
t,x,ξ∗

∣∣∣∣∣(∂t + ξ∗ · ∇x)

√
M(ξ∗)u(t, x, ξ∗)

eλ(ξ∗)

∣∣∣∣∣
2

. (3.6)

Recall the equation (2.3) which is satisfied by
√

Mu. We need to estimate the L2([0, T ]×
R3
x×R3

ξ) norm for all the terms on the right hand of (2.3). Firstly, for Q+(M,
√

Mu), we
have

|Q+(M,
√

Mu)|
eλ(ξ)

≤ Q+(
√

M,
√

M|u|)
eλ(ξ)

≤ M(ξ)
1
6

eλ(ξ)
Q+(M

1
3 ,M

1
3 |u|)

=
M(ξ)

1
6

eλ(ξ)

∫∫
ξ∗,ω

B(ξ − ξ∗, cos θ)M(ξ′)
1
3 M(ξ′∗)

1
3 |u(t, x, ξ′∗)|

≤ Ce1/12−λ(ξ)

∫∫
ξ∗,ω

B(ξ − ξ∗, cos θ)2M(ξ)
1
3 M(ξ∗)

1
3


1
2
∫∫
ξ∗,ω

M(ξ′)
1
3 M(ξ′∗)

1
3 |u(t, x, ξ′∗)|2


1
2

≤ Cb1e1/12−λ(ξ)

∫∫
ξ∗,ω

M(ξ′)
1
3 M(ξ′∗)

1
3 |u(t, x, ξ′∗)|2


1
2

,

where we have used∫∫
ξ∗,ω

B(ξ − ξ∗, cos θ)2M(ξ)
1
3 M(ξ∗)

1
3 ≤ Cb21

∫
ξ∗

〈ξ〉2γ〈ξ∗〉2γM(ξ)
1
3 M(ξ∗)

1
3

≤ Cb21M1/6,2γ,∞.
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Similarly, for Q+(
√

Mu,M) and Q+(
√

Mu,
√

Mu), it holds that

|Q+(
√

Mu,M)|
eλ(ξ)

≤ Cb1e1/12−λ(ξ)

∫∫
ξ∗,ω

M(ξ′)
1
3 M(ξ′∗)

1
3 |u(t, x, ξ′)|2


1
2

,

and

|Q+(
√

Mu,
√

Mu)|
eλ(ξ)

≤ Q+(
√

M|u|,
√

M)
eλ(ξ)

‖u‖L∞([0,T ]×R3
x×R3

ξ)

≤ Cb1e1/12−λ(ξ)‖u‖L∞([0,T ]×R3
x×R3

ξ)

∫∫
ξ∗,ω

M(ξ′)
1
3 M(ξ′∗)

1
3 |u(t, x, ξ′)|2


1
2

.

For the loss terms, straightforward calculation shows that

|MA ∗ξ (
√

Mu)|
eλ(ξ)

≤
√

MA ∗ξ (
√

M|u|)
eλ(ξ)

≤ Cb1e1/12−λ(ξ)

∫
ξ∗

|u(t, x, ξ∗)|2


1
2

,

|
√

MuA ∗ξ M|
eλ(ξ)

≤ Cb1e1/12−λ(ξ)|u(t, x, ξ)|,

and

|
√

MuA ∗ξ (
√

Mu)|
eλ(ξ)

≤ Cb1e1/12−λ(ξ)‖u‖L∞([0,T ]×R3
x×R3

ξ)|u(t, x, ξ)|.

Therefore, by combining all the above estimates, we have∫∫∫
t,x,ξ

∣∣∣∣∣(∂t + ξ · ∇x)

√
M(ξ)u(t, x, ξ)

eλ(ξ)

∣∣∣∣∣
2

≤ Cb21

(
1 + ‖u‖2

L∞([0,T ]×R3
x×R3

ξ)

)
×
∫
· · ·
∫

t,x,ξ,ξ∗,ω

e1/6−2λ(ξ)M(ξ′)
1
3 M(ξ′∗)

1
3
(
|u(t, x, ξ′∗)|2 + |u(t, x, ξ′)|2

)
+Cb21

(
1 + ‖u‖2

L∞([0,T ]×R3
x×R3

ξ)

)∫∫∫
t,x,ξ

e1/6−2λ(ξ)|u(t, x, ξ)|2 + Cb21

∫∫∫∫
t,x,ξ,ξ∗

e1/6−2λ(ξ)|u(t, x, ξ∗)|2.

Thus by choosing λ = 1/24 and further making the change of variable (ξ, ξ∗) → (ξ′, ξ′∗),
the above inequality together with (3.6) yield

I2(ξ) ≤ Cb21TM
2
λ,s+γ,∞〈ξ〉2γ‖u‖2

L∞([0,T ];L2(R3
x×R3

ξ))

(
1 + ‖u‖2

L∞([0,T ]×R3
x×R3

ξ)

)
. (3.7)

Putting (3.5) and (3.7) into (3.2) gives the desired estimate. This completes the proof of
the lemma.

Corollary 3.1. Under the assumptions of Theorem 1.1, it holds

A ∗ξ (
√

Mu) ∈ L2([0, T ];H1/2(R3
x ×BRξ

)),

0 ≤ Lf ∈ L2([0, T ];H1/2
loc (R3

x × R3
ξ)) ∩ L∞([0, T ]× R3

x;L
∞
loc(R3

ξ)).
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4 Regularity of Q+(f, f)

Recall the expansion (2.2) for Q+(f, f). For simplicity, denote

SQ1 = Q+(M,
√

Mu), SQ2 = Q+(
√

Mu,M), SQ3 = Q+(
√

Mu,
√

Mu).

The regularity in the velocity variable for each term above follows essentially from smooth-
ness of the operator Q+(·, ·).
Lemma 4.1. Under the conditions of Theorem 1.1, for each i = 1, 2, 3, it holds that

SQi ∈ L2([0, T ]× R3
x;H

1(R3
ξ)) ∩ L∞([0, T ]× R3

x;H
1(R3

ξ)),

and

‖SQi ‖L2([0,T ]×R3
x;H1(R3

ξ)) ≤ C(b1 + b2)
√
T‖u‖L∞([0,T ];L2(R3

x×R3
ξ))

(
1 + ‖u‖L∞([0,T ]×R3

x×R3
ξ)

)
,

‖SQi ‖L∞([0,T ]×R3
x;H1(R3

ξ)) ≤ C(b1 + b2)
√
T‖u‖L∞([0,T ]×R3

x×R3
ξ)

(
1 + ‖u‖L∞([0,T ]×R3

x×R3
ξ)

)
.

Proof. From the proof of Lemma 3.2, it is straightforward to show that

SQi ∈ L2([0, T ]× R3
x × R3

ξ) ∩ L∞([0, T ]× R3
x;L

2(R3
ξ)).

Then, it follows from Lemma 2.2 that

‖SQi ‖Ḣ1(R3
ξ) ≤ Cε(b1 + b2)‖M‖L2

(3+ε)/2
‖
√

Mu‖|L2
(3+ε)/2

, i = 1, 2,

‖SQ3 ‖Ḣ1(R3
ξ) ≤ Cε(b1 + b2)‖

√
Mu‖|2L2

(3+ε)/2
,

where ε > 0 is fixed. Thus, taking L2([0, T ] × R3
x) or L∞([0, T ] × R3

x) norms on both
sides of the above inequalities gives the desired estimates. This completes the proof of the
lemma.

Next, we consider the spatial regularity of SQi . In order to use the velocity averaging
lemma, as in [8], we use the mollifier to construct some velocity averaged quantities. For
this, let φ ∈ C∞

c (R3
ξ) and consider the integral∫

R3

SQ1 (t, x, ξ)φ(ξ)dξ =
∫∫∫
ξ,ξ∗,ω

M(ξ′)
√

M(ξ′∗)u(t, x, ξ
′
∗)φ(ξ)B(ξ − ξ∗, cos θ)

=
∫∫
ξ,ξ∗

M(ξ)
√

M(ξ∗)u(t, x, ξ∗)Zφ(ξ, ξ∗), (4.1)

where
Zφ(ξ, ξ∗) =

∫
ω

B(ξ − ξ∗, cos θ)φ(ξ − (ξ − ξ∗) · ωω)dω.

Similarly, corresponding to SQ2 , SQ3 , set∫
R3

SQ2 (t, x, ξ)φ(ξ)dξ =
∫∫
ξ,ξ∗

√
M(ξ)u(t, x, ξ)M(ξ∗)Zφ(ξ, ξ∗), (4.2)

∫
R3

SQ3 (t, x, ξ)φ(ξ)dξ =
∫∫
ξ,ξ∗

√
M(ξ)u(t, x, ξ)

√
M(ξ∗)u(t, x, ξ∗)Zφ(ξ, ξ∗). (4.3)

The following lemma is about the pointwise estimates on Zφ.
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Lemma 4.2. Under the assumptions A1 and A2, for any ξ, ξ∗, it holds that

|Zφ(ξ, ξ∗)| ≤ Cb1‖φ‖L∞(R3)|ξ − ξ∗|γ . (4.4)

Furthermore, for any η, η∗, it holds that for γ = 0,

|Zφ(ξ, ξ∗)− Zφ(η, η∗)| ≤ C(b1 + b2)‖φ‖W 1,∞(R3)(|ξ − η|+ |ξ∗ − η∗|), (4.5)

and for 0 < γ ≤ 1,

|Zφ(ξ, ξ∗)− Zφ(η, η∗)| ≤ C(b1 + b2)‖φ‖W 1,∞(R3)|ξ − ξ∗|γ(|ξ − η|+ |ξ∗ − η∗|)
+Cb1‖φ‖L∞(R3)(|ξ − η|γ + |ξ∗ − η∗|γ). (4.6)

Proof. By A1 and A2, (4.4) and (4.5) follow from straightforward calculations. For (4.6),
Zφ is rewritten as

Zφ(ξ, ξ∗) = |ξ − ξ∗|γY φ(ξ, ξ∗),

where

Y φ(ξ, ξ∗) :=
∫
ω

b(cos θ)φ(ξ − (ξ − ξ∗) · ωω)dω.

Notice that Y φ(ξ, ξ∗) enjoys the same estimate as in (4.5) and

||ξ − ξ∗|γ − |η − η∗|γ | ≤ ||ξ − ξ∗| − |η − η∗||γ ≤ |ξ − η|γ + |ξ∗ − η∗|γ .

Hence (4.6) holds. This completes the proof of the lemma.

We now show that the velocity averaged functions given by (4.1), (4.2) and (4.3) are
regular in the space variable.

Lemma 4.3. Let the conditions A1, A2 hold. For any |h| ≤ 1 and each i = 1, 2, 3, we
have

∫∫
[0,T ]×R3

dtdx

∣∣∣∣∣∣
∫
R3

SQi (t, x+ h, ξ)φ(ξ)dξ −
∫
R3

SQi (t, x, ξ)φ(ξ)dξ

∣∣∣∣∣∣
2

≤ CKT (u)2‖φ‖2
W 1,∞(R3)Pγ(h), (4.7)

where
KT (u) = NT (u)

(
1 + ‖u‖L∞([0,T ]×R3

x×R3
ξ)

)
(4.8)

with NT (u) defined by (3.1), and Pγ(h) is defined by

Pγ(h) =

 |h|
2
5 , if γ = 0,

|h|
2γ

3+2γ , if 0 < γ ≤ 1.
(4.9)
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Proof. Firstly, consider the case of i = 1. Rewrite the averaged function (4.1) by∫
R3

SQ1 (t, x, ξ)φ(ξ)dξ = J1 + J2, (4.10)

J1 =
∫∫
ξ,ξ∗

M(ξ)
√

M(ξ∗)u(t, x, ξ∗)
∫∫
η,η∗

Z(η, η∗)ψε(ξ − η)ψε(ξ∗ − η∗), (4.11)

J2 =
∫∫
ξ,ξ∗

M(ξ)
√

M(ξ∗)u(t, x, ξ∗)
∫∫
η,η∗

[Z(ξ, ξ∗)− Z(η, η∗)]ψε(ξ − η)ψε(ξ∗ − η∗), (4.12)

where ψ(·) is a standard mollifier, and ψε(·) = 1
ε3
ψ( ·ε), with ε > 0 to be determined later.

Furthermore, J1 can be rewritten as

J1 =
∫∫
η,η∗

Z(η, η∗)ρψε(·−η∗)(
√

Mu)(t, x)
∫
ξ

M(ξ)ψε(ξ − η).

Then one has

∫∫
t,x

|τhJ1 − J1|2 =
∫∫
t,x

∣∣∣∣∣∣∣
∫∫
η,η∗

Z(η, η∗)
[
(τh − Id)ρψε(·−η∗)(

√
Mu)

]
(t, x)

∫
ξ

M(ξ)ψε(ξ − η)

∣∣∣∣∣∣∣
2

.

From Lemma 4.2, we have

|Z(η, η∗)| ≤ C‖ψ‖L∞(R3)|η − η∗|γ

≤ C‖ψ‖L∞(R3)(|η − ξ|γ + |ξ∗ − η∗|γ + |ξ|γ + |ξ∗|γ)
≤ C‖ψ‖L∞(R3)(2ε

γ + |ξ|γ + |ξ∗|γ),

for any |ξ − η| ≤ ε and any |ξ∗ − η∗| ≤ ε. Therefore, we obtain∫∫
t,x

|τhJ1 − J1|2 ≤ Cb21‖φ‖2
L∞(R3)(ε

2γJ11 + J12 + J13), (4.13)

where

J11 =
∫∫
t,x

∣∣∣∣∣∣∣
∫
η∗

∣∣∣[(τh − Id)ρψε(·−η∗)(
√

Mu)
]
(t, x)

∣∣∣ ∫∫
ξ,η

M(ξ)ψε(ξ − η)

∣∣∣∣∣∣∣
2

,

J12 =
∫∫
t,x

∣∣∣∣∣∣∣
∫
η∗

∣∣∣[(τh − Id)ρψε(·−η∗)(
√

Mu)
]
(t, x)

∣∣∣ ∫∫
ξ,η

|ξ|γM(ξ)ψε(ξ − η)

∣∣∣∣∣∣∣
2

,

J13 =
∫∫
t,x

∣∣∣∣∣∣∣
∫
η∗

∣∣∣[(τh − Id)ρψε(·−η∗)(
√

M|ξ|γu)
]
(t, x)

∣∣∣ ∫∫
ξ,η

M(ξ)ψε(ξ − η)

∣∣∣∣∣∣∣
2

.

In the following, we will only estimate J11 because J12 and J13 can be estimated similarly.
In J11, the integral over η, ξ is bounded uniformly in ε, that is,∫∫

η,ξ

M(ξ)ψε(ξ − η) =
∫
ξ

M(ξ) ≤ C.
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Let λ > 0 be a small constant to be determined later. Then it follows from the Hölder
inequality and Lemma 2.5 that

J11 ≤
∫∫
t,x

∣∣∣∣∣∣
∫
η∗

∣∣∣[(τh − Id)ρψε(·−η∗)(
√

Mu)
]
(t, x)

∣∣∣
∣∣∣∣∣∣
2

≤
∫∫
t,x

∫
η∗

exp(−λ|η∗|2)
∫
η∗

exp(λ|η∗|2)
∣∣∣[(τh − Id)ρψε(·−η∗)(

√
Mu)

]
(t, x)

∣∣∣2

≤ |h|
λ3/2

∫
η∗

exp(λ|η∗|2)

∥∥∥∥∥ρψε(·−η∗)eλ

(√
Mu

eλ

)∥∥∥∥∥
2

L2([0,T ];Ḣ1/2(R3))

.

This together with Lemma 2.1 give

J11 ≤
Cs|h|
λ3/2

∫
η∗

exp(λ|η∗|2)

∫∫
x,ξ∗

∣∣∣∣∣
√

M(ξ∗)u0(x, ξ∗)
eλ(ξ∗)

∣∣∣∣∣
2

ψε(ξ∗ − η∗)2eλ(ξ∗)2〈ξ∗〉2s

+
∫∫∫
t,x,ξ∗

∣∣∣∣∣(∂t + ξ∗ · ∇x)

√
M(ξ∗)u(t, x, ξ∗)

eλ(ξ∗)

∣∣∣∣∣
2

ψε(ξ∗ − η∗)2eλ(ξ∗)2〈ξ∗〉2s

 . (4.14)

Notice that

exp(λ|η∗|2) ≤ exp(2λ|ξ∗ − η∗|2 + 2λ|ξ∗|2) ≤ exp(2λε2 + 2λ|ξ∗|2),

holds for any |ξ∗ − η∗| ≤ ε, and∫
η∗

ψε(ξ∗ − η∗)2 =
∫
R3

ψε(ξ)2dξ ≤
Cψ
ε3
,

where Cψ is a constant depending only on ψ. Putting these estimates into (4.14) yields

J11 ≤
CsCψ exp(2λε2)|h|

λ3/2ε3

∫∫
x,ξ∗

∣∣∣∣∣
√

M(ξ∗)u0(x, ξ∗)
e2λ(ξ∗)

∣∣∣∣∣
2

eλ(ξ∗)2〈ξ∗〉2s

+
∫∫∫
t,x,ξ∗

∣∣∣∣∣(∂t + ξ∗ · ∇x)

√
M(ξ∗)u(t, x, ξ∗)

e2λ(ξ∗)

∣∣∣∣∣
2

eλ(ξ∗)2〈ξ∗〉2s

 .

As for the estimates on I1(ξ), I2(ξ) given in (3.3) and (3.4), we can suitably choose some
small constant λ > 0 such that

J11 ≤
CsCψ exp(2λε2)|h|

λ3/2ε3

[
M2
λ,s,∞‖u0‖L2(R3

x×R3
ξ)

+b21M
2
λ,s,∞T‖u‖L∞([0,T ];L2(R3

x×R3
ξ))

(
1 + ‖u‖L∞[0,T ]×R3

x×R3
ξ

)]
≤ CψNT (u)2

exp(2λε2)|h|
ε3

,
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where NT (u) is defined by (3.1). Similarly, it holds that

J12, J13 ≤ CψNT (u)2
exp(2λε2)|h|

ε3
.

Therefore, (4.13) gives∫∫
t,x

|τhJ1 − J1|2 ≤ Cψ‖φ‖2
L∞(R3)NT (u)2

exp(2λε2)(ε2γ + 1)|h|
ε3

. (4.15)

Now we turn to the estimates on the following integral for J2:

∫∫
t,x

|τhJ2 − J2|2 =
∫∫
t,x

∣∣∣∣∣∣∣
∫∫
ξ,ξ∗

M(ξ)
√

M(ξ∗)[u(t, x+ h, ξ∗)− u(t, x, ξ∗)]

×
∫∫
η,η∗

[Z(ξ, ξ∗)− Z(η − η∗)]ψε(ξ − η)ψε(ξ∗ − η∗)

∣∣∣∣∣∣
2

. (4.16)

When γ = 0, by (4.5), we have∫∫
η,η∗

|Z(ξ, ξ∗)− Z(η − η∗)|ψε(ξ − η)ψε(ξ∗ − η∗)

≤ Cb1‖φ‖W 1,∞(R3)

∫∫
η,η∗

|ξ − η|ψε(ξ − η)ψε(ξ∗ − η∗) +
∫∫
η,η∗

|ξ∗ − η∗|ψε(ξ − η)ψε(ξ∗ − η∗)


≤ Cb1‖φ‖W 1,∞(R3)

∫
η

|ξ − η|ψε(ξ − η)
∫
η∗

ψε(ξ∗ − η∗) +
∫
η

ψε(ξ − η)
∫
η∗

|ξ∗ − η∗|ψε(ξ∗ − η∗)


≤ Cψb1‖φ‖W 1,∞(R3)ε.

When 0 < γ ≤ 1, similarly, it follows from (4.6) that∫∫
η,η∗

|Z(ξ, ξ∗)− Z(η − η∗)|ψε(ξ − η)ψε(ξ∗ − η∗)

≤ Cb1‖φ‖W 1,∞(R3)|ξ − ξ∗|γ
∫∫
η,η∗

(|ξ − η|+ |ξ∗ − η∗|)ψε(ξ − η)ψε(ξ∗ − η∗)

+Cb1‖φ‖L∞(R3)

∫∫
η,η∗

(|ξ − η|γ + |ξ∗ − η∗|γ)ψε(ξ − η)ψε(ξ∗ − η∗)

≤ Cψb1‖φ‖W 1,∞(R3)(|ξ − ξ∗|γε+ εγ).

Thus, for 0 ≤ γ ≤ 1, it holds that∫∫
η,η∗

|Z(ξ, ξ∗)− Z(η − η∗)|ψε(ξ − η)ψε(ξ∗ − η∗) ≤ Cψb1‖φ‖W 1,∞(R3)(|ξ − ξ∗|γε+ δγε
γ),
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where δγ = 0 if γ = 0 and δγ = 1 if 0 < γ ≤ 1. Putting the above estimate into (4.16)
gives∫∫

t,x

|τhJ2 − J2|2 ≤ Cψb
2
1‖φ‖2

W 1,∞(R3)ε
2

×
∫∫
t,x

∣∣∣∣∣∣∣
∫∫
ξ,ξ∗

|ξ − ξ∗|γM(ξ)
√

M(ξ∗) (|u(t, x+ h, ξ∗)|+ |u(t, x, ξ∗)|)

∣∣∣∣∣∣∣
2

+Cψb21‖φ‖2
W 1,∞(R3)δγε

2γ

∫∫
t,x

∣∣∣∣∣∣∣
∫∫
ξ,ξ∗

M(ξ)
√

M(ξ∗)(|u(t, x+ h, ξ∗)|+ |u(t, x, ξ∗)|)

∣∣∣∣∣∣∣
2

.

Then Hölder inequality yields∫∫
t,x

|τhJ2 − J2|2 ≤ Cψ‖φ‖2
W 1,∞(R3)NT (u)2(ε2 + δγε

2γ). (4.17)

Now we can complete the proof for (4.7) when i = 1. In fact, combining (4.15) and
(4.17) gives

∫∫
[0,T ]×R3

dtdx

∣∣∣∣∣∣
∫
R3

SQ1 (t, x+ h, ξ)φ(ξ)dξ −
∫
R3

SQ1 (t, x, ξ)φ(ξ)dξ

∣∣∣∣∣∣
2

≤ 2
∫∫
t,x

|τhJ1 − J1|2 + 2
∫∫
t,x

|τhJ2 − J2|2

≤ C‖φ‖2
W 1,∞(R3)NT (u)2

[
exp(2λε2)(ε2γ + 1)|h|

ε3
+ (ε2 + δγε

2γ)
]
,

for any ε > 0. Hence, (4.7) for the case of i = 1 follows by taking ε = |h|1/5 if γ = 0, and
ε = |h|1/(3+2γ) if 0 < γ ≤ 1 for |h| ≤ 1. The same argument leads to (4.7) when i = 2.

Finally, we consider the case when i = 3 in (4.7) whose proof needs some modification
on the above proof for the case when i = 1. In fact, similar to (4.10), (4.11) and (4.12),
the velocity averaged function (4.3) of SQ3 can be rewritten as∫

R3

SQ3 (t, x, ξ)φ(ξ)dξ = J̃1 + J̃2,

where

J̃1 =
∫∫
ξ,ξ∗

√
M(ξ)u(t, x, ξ)

√
M(ξ∗)u(t, x, ξ∗)

∫∫
η,η∗

Z(η, η∗)ψε(ξ − η)ψε(ξ∗ − η∗)

=
∫∫
η,η∗

Z(η, η∗)ρψε(·−η)(
√

Mu)(t, x)ρψε(·−η∗)(
√

Mu)(t, x),

and

J̃2 =
∫∫
ξ,ξ∗

√
M(ξ)u(t, x, ξ)

√
M(ξ∗)u(t, x, ξ∗)

∫∫
η,η∗

[Z(ξ, ξ∗)− Z(η, η∗)]ψε(ξ − η)ψε(ξ∗ − η∗).
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Notice that

τh

[
ρψε(·−η)(

√
Mu)ρψε(·−η∗)(

√
Mu)

]
− ρψε(·−η)(

√
Mu)ρψε(·−η∗)(

√
Mu)

= τh

[
ρψε(·−η)(

√
Mu)

] (
τh

[
ρψε(·−η∗)(

√
Mu)

]
− ρψε(·−η∗)(

√
Mu)

)
+
(
τh

[
ρψε(·−η)(

√
Mu)

]
− ρψε(·−η)(

√
Mu)

)
ρψε(·−η∗)(

√
Mu),

and ∫∫
η,ξ

√
M(ξ)|u(t, x+ h, ξ)|ψε(ξ − η) ≤ ‖u‖L∞([0,T ]×R3

x×R3
ξ)

∫∫
η,ξ

√
M(ξ)ψε(ξ − η).

Thus,
∫∫

|τhJ̃1− J̃1|2dtdx can be estimated in a way similar to the first two cases. On the
other hand, the estimate on

∫∫
|τhJ̃2 − J̃2|2dtdx follows by noticing that∣∣∣τh[√M(ξ)u(t, x, ξ)

√
M(ξ∗)u(t, x, ξ∗)]−

√
M(ξ)u(t, x, ξ)

√
M(ξ∗)u(t, x, ξ∗)

∣∣∣
≤ ‖u‖L∞([0,T ]×R3

x×R3
ξ)

√
M(ξ)

√
M(ξ∗)(|u(t, x+ h, ξ∗)|+ |u(t, x, ξ∗)|).

This completes the proof of the lemma.

Lemma 4.4. Let α0(γ) be defined in (1.6). For each i = 1, 2, 3 and for any 0 < α < α0(γ),
we have

SQi ∈ L2([0, T ]×BRξ
;Hα(BRx)).

Furthermore,

‖SQi ‖L2([0,T ]×BRξ
;Hα(BRx )) ≤

CKT (u)〈R〉3/2√
α0(γ)− α

,

where KT (u) is given by (4.8).

Proof. Let 0 < |h| ≤ 1. Take the mollifier ψδ(·) with δ > 0 to be determined later. Write
SQi as

SQi = (SQi − ψδ ∗ξ SQi ) + ψδ ∗ξ SQi .

Then ∫∫∫
[0,T ]×R3

x×BRξ

dtdxdξ|τhSQi − SQi |
2

≤ 4
∫∫∫

[0,T ]×R3
x×BRξ

dtdxdξ|SQi − ψδ ∗ξ SQi |
2 + 2

∫
BRξ

dξ

∫∫
[0,T ]×R3

x

dtdx|τh(ψδ ∗ξ SQi )− ψδ ∗ξ SQi |
2.

It follows from Lemmas 2.6, 4.1 and 4.3 that∫∫∫
[0,T ]×R3

x×BRξ

dtdxdξ|τhSQi − SQi |
2 ≤ C‖SQi ‖

2
L2([0,T ]×R3

x;Ḣ1(R3
ξ))
δ2

+CψKT (u)2Pγ(h)
∫
BRξ

‖ψδ(ξ − ·)‖W 1,∞(R3)dξ ≤ CψKT (u)2〈R〉3
(
δ2 +

Pγ(h)
δ8

)
,
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where Pγ(h) is defined by (4.9). We choose δ = |h|1/25 if γ = 0, and δ = |h|γ/5(3+2γ) if
0 < γ ≤ 1 to have ∫∫∫

[0,T ]×R3
x×BRξ

dtdxdξ|τhSQi − SQi |
2 ≤ CψKT (u)2〈R〉3|h|2α0(γ).

Then, for any fixed α ∈ (0, α0(γ)), we have∫∫∫∫
[0,T ]×BRx×BRh

×BRξ

|τhSQi − SQi |2

|h|3+2α
≤
∫

|h|≤1

CψKT (u)2〈R〉3

|h|3+2[α−α0(γ)]
+
∫

|h|≤R

‖SQi ‖L2([0,T ]×R3
x×R3

ξ)

≤
CψKT (u)2〈R〉3

α0(γ)− α
+ CNT (u)2〈R〉3 ≤

CψKT (u)2〈R〉3

α0(γ)− α
.

This completes the proof of the lemma.

Corollary 4.1. Let 0 < α < α0(γ) with α0(γ) defined in (1.6). For each i = 1, 2, 3, we
have

SQi , Q
+(f, f) ∈ L2

loc(R+;Hα
loc(R3

x × R3
ξ)),

0 ≤ Q+(f, f) ∈ L∞([0, T ]× R3
x × R3

ξ).

We are now ready to complete the proof for Theorem 1.1.

Proof of Theorem 1.1. By combining all estimates obtained above, we have

(i) the mild form of the solution:

f(t, x, ξ) = f0(x− ξt, ξ)Γ1(t, x, ξ) + Γ2(t, x, ξ),

where

Γ1(t, x, ξ) = exp
(
−
∫ t

0
Lf(θ, x− ξθ, ξ)dθ

)
,

Γ2(t, x, ξ) = Γ1(t, x, ξ)
∫ t

0
Q+(f, f)(s, x− ξs, ξ) exp

(∫ s

0
Lf(θ, x− ξθ, ξ)dθ

)
ds.

(ii) The regularization estimates:

0 ≤ Lf ∈ L2([0, T ];H1/2
loc (R3

x × R3
ξ)) ∩ L∞([0, T ]× R3

x;L
∞
loc(R3

ξ)),

0 ≤ Q+(f, f) ∈ L2([0, T ];Hα
loc(R3

x × R3
ξ)) ∩ L∞([0, T ]× R3

x × R3
ξ),

for any 0 < α < α0(γ) with α0(γ) defined by (1.6).

As in [8], the above estimates are sufficient to give (1.5)-(1.7) by straightforward cal-
culation so that we omit the details. As for the perturbation u, since

u(t, x, ξ) = u0(x− ξt, ξ)Γ1(t, x, ξ) +
[√

MΓ1(t, x, ξ) +
1√
M

Γ2(t, x, ξ)−
√

M
]
,

(1.8)-(1.9) follow from the estimation on f . This completes the proof of Theorem 1.1.
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Remark 4.1. Here we claim that the nonnegative functions Γ1(t, x, ξ) and hence Γ̃1(t, x, ξ)
decay exponentially for large t uniformly in x, ξ, provided that the L∞-norm of u over R+×
R3 × R3 is small enough. This means that the singular part vanishes with an exponential
rate. In fact, notice that∫ t

0
Lf(θ, x− ξθ, ξ)dθ = ν(ξ)t+

∫ t

0
A ∗ξ (

√
Mu)(θ, x− ξθ, ξ)dθ,

where the collision frequency ν(ξ) := A ∗ξ M satisfies the condition, cf. [15, 25] that there
is a positive constant ν0 such that

ν0(1 + |ξ|)γ ≤ ν(ξ) ≤ 1
ν0

(1 + |ξ|)γ .

Furthermore, one can see

|A ∗ξ (
√

Mu)| ≤ C‖u‖L∞(R+×R3
x×R3

ξ)ν(ξ).

Thus one has

0 ≤ Γ1(t, x, ξ) ≤ exp
(
−ν(ξ)(1− C‖u‖L∞(R+×R3

x×R3
ξ))t
)

for any t ≥ 0, x ∈ R3, ξ ∈ R3. Therefore, the aforementioned claim follows.
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