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Abstract

In this paper, we give a condition on the bicharacteristic which guarantees the
global existence of the mild solution to the Boltzmann equation with an external
force for the hard-sphere model and potentials with angular cutoff in infinite vacuum.
This generalizes the previous results to the case when the force can have arbitrary
strength. The constructive condition on the bicharacteristic is used to obtain the
point-wise estimates on the collision operator so that the global existence comes from
the contraction mapping theorem.

Key words: Boltzmann equation; external force; mild solution; global existence.

1. Introduction

The purpose of this paper is to study the global existence of mild solutions to the initial
value problem for the Boltzmann equation with an external force for the hard-sphere model
and some angle cutoff potential. Let f = f(t, x, v) be the density distribution function
of the interacting gas particles at time t ≥ 0 and position x ∈ R3 with velocity v ∈ R3

for rarefied gases. In the presence of external forces depending only on space and time
variables, the evolution of f is described by the Boltzmann equation

ft + v · ∇xf + E(t, x) · ∇vf = Q[f ], (1.1)

with initial data
f(0, x, v) = f0(x, v), (1.2)

where E(t, x) ∈ R3 is an external force and Q is a nonlinear collision operator capturing
the binary collisions between particles whose specific form will be given below.

Let (v, v∗) and (v′, v′∗) be velocities before and after the collision respectively. Under
the assumption of elastic collision, the conservation of the momentum and energy:

v + v∗ = v′ + v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2,
∗Corresponding author. Email: cjzhu@mail.ccnu.edu.cn
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yields
v′ = v − [(v − v∗) · ω]ω, v′∗ = v∗ + [(v − v∗) · ω]ω, (1.3)

where ω ∈ S2
+ = {ω ∈ S2 : (v − v∗) · ω ≥ 0}. Moreover, the collision term Q[f ] takes the

form
Q[f ](v) =

1
ε

∫
R3×S2

+

B(|v − v∗|, θ){f(v′)f(v′∗)− f(v)f(v∗)} dv∗dω, (1.4)

where ε is the Knudsen number proportional to the mean free path. For simplicity of
notation, we sometimes use f(v) to denote f(t, x, v) without any ambiguity. In (1.4), the
function B(|v − v∗|, θ) is the collision cross section with

θ = cos−1

(
(v − v∗) · ω
|v − v∗|

)
∈
[
0,

π

2

]
(1.5)

being the scattering angle between v − v∗ and ω. The definition of B depends on the
physics of collision. In fact, for the inverse power interaction potential, B takes the form
of

B(|v − v∗|, θ) = bγ(θ)|v − v∗|γ , −3 < γ < 1, (1.6)

with γ = 0 corresponding to the Maxwellian molecules, γ > 0 corresponding to the hard
interaction and γ < 0 corresponding to the soft interaction. Moreover, the hard sphere
model satisfies B(|v − v∗|, θ) = σ|v − v∗| cos θ with σ being the radius of the hard sphere.

For later use, as in [10] we denote u = v − v∗, u‖ = (u · ω)ω and u⊥ = u− u‖ so that

v′ = v − u‖, v′∗ = v − u⊥. (1.7)

Then the collision term Q[f ] becomes

Q[f ](v) =
1
ε

∫
R3×S2

+

B(|u|, θ){f(v′)f(v′∗)− f(v)f(v − u)} dudω, (1.8)

where v′ and v′∗ are given by (1.7). Furthermore, let’s denote the collision operator

Q(f, g) = Q+(f, g)−Q−(f, g) (1.9)

with the gain term Q+ and the loss term Q− given by

Q+(f, g)(t, x, v) =
1
ε

∫
R3×S2

+

B(|u|, θ)f(t, x, v′)g(t, x, v′∗) dudω (1.10)

and
Q−(f, g)(t, x, v) =

1
ε

∫
R3×S2

+

B(|u|, θ)f(t, x, v)g(t, x, v − u) dudω. (1.11)

Clearly,
Q[f ] = Q(f, f). (1.12)

For any fixed point (t, x, v) in R+ × R3 × R3, we now consider the bicharacteristic
equations of (1.1) in R3 ×R3:

dX

ds
= V,

dV

ds
= E(s,X),

(X, V )|s=t = (x, v).
(1.13)

Suppose that the above ODE system have smooth solutions globally in time denoted by

[X(s; t, x, v), V (s; t, x, v)] (1.14)
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for any (t, x, v) ∈ R+ × R3 × R3. Then integrating (1.1) along the bicharacteristic, we
obtain the representation of the mild solution to the Boltzmann equation:

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v))

+
∫ t

0
Q(f, f)(s,X(s; t, x, v), V (s; t, x, v)) ds. (1.15)

In fact, the mild solution can be defined as follows.

Definition 1.1 A nonnegative function f(t, x, v) ∈ C
(
[0, T );L1

+(R3 ×R3)
)

is a mild
solution to (1.1) with a nonnegative initial data f0 if and only if f satisfies the integral
equation (1.15) for all t ∈ [0, T ) and a.e. (x, v) ∈ R3 ×R3.

The function spaces on R+×R3×R3 for the solutions constructed later can be defined
in the following. For any p > 0, q > 0, let Sp,q be the completion of the set consisting of
the continuous functions of compact support with respect to the norm

|||f ||| = sup
t,x,v

(
1 + |X(0; t, x, v)|2

)p exp
{
q|V (0; t, x, v)|2

}
|f(t, x, v)|. (1.16)

And for any fixed time t, define the norm

‖f(t)‖ = sup
x,v

(
1 + |X(0; t, x, v)|2

)p exp
{
q|V (0; t, x, v)|2

}
|f(t, x, v)|, (1.17)

in particular,
‖f0‖p,q = sup

x,v
(1 + |x|2)peq|v|2 |f0(x, v)|. (1.18)

Throughout this paper, the assumptions on p, q, the collision kernel and the external
force can be summarized as follows.

(A1) p > 1
2 and q > 0;

(A2) The collision kernel B takes the inverse power interaction (1.6) with −2 < γ ≤ 1
and the following angular cutoff condition:∫ π

2

0
bγ(θ)(1 + tan θ) dθ ≤ b0, (1.19)

where b0 is a positive constant;

(A3) The external force E(t, x) is C0 in (t, x). Furthermore, for any fixed point (t, x, v) ∈
R+×R3×R3, the first order ODE system (1.13) has global smooth solutions (1.14)
satisfying the following constructive condition:{

X(0; s,X(s; t, x, v), V (s; t, x, v)− ξ) = X(0; t, x, v) + α1(s; t, x, v)ξ,

V (0; s,X(s; t, x, v), V (s; t, x, v)− ξ) = V (0; t, x, v)− α2(s; t, x, v)ξ,
(1.20)

for any s ∈ R+ and ξ ∈ R3, where α1(s; t, x, v), α2(s; t, x, v) ∈ C1(s) satisfy the
following inequalities

αi(s; t, x, v) > 0, i = 1, 2,

α(s; t, x, v) ≡ α′1(s; t, x, v)α2(s; t, x, v)− α1(s; t, x, v)α′2(s; t, x, v) > 0,

(α2(s; t, x, v))γ+1α(s; t, x, v) ≥ α0 > 0,

(1.21)

where α0 is a positive constant independent of s and (t, x, v). Here and in the sequel
α′i(s; t, x, v) represent the derivative with respect to s.

Now we can state the main result of this paper as follows.
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Theorem 1.2. Under the assumptions (A1)-(A3), there is a sufficiently small positive
constant δ0 > 0 such that if 0 ≤ f0(x, v) and ‖f0‖p,q ≤ εδ0, then there exists a unique
global in time mild solution f(t, x, v) to the initial value problem (1.1) and (1.2) satisfying
|||f ||| ≤ 2εδ0.

Remark 1.3. For the moment let’s discuss the assumptions (A1)-(A3). First, (A1) means
that initial data decays with algebraic rate in the space variable x, and decays with expo-
nential rate in the velocity variable v. Then (A2) holds for the collision kernels satisfying
the inverse power law with an angular cutoff assumption and the hard sphere model. Fi-
nally, (A3) is a constructive assumption on the external forces which can be satisfied by
forces without decay or smallness assumption on their strength. In the following, we will
give two examples of external forces satisfying (A3). It should be pointed that in general
the assumption (A3) is difficult to verify in realistic situation. But in any case this is the
first step to deal with the Boltzmann equation with the external force which can have
arbitrary strength. The proof of Theorem 1.2 for the case when the external force is more
general than the assumption (A3) is left to the future study.

Example 1.4. Let E(t, x) ≡ E(t). For any fixed (t, x, v), the bicharacteristic equations
(1.13) have solutions

X(s; t, x, v) = x + v(s− t) +
∫ s

t

∫ η

t
E(τ) dτdη,

V (s; t, x, v) = v +
∫ s

t
E(τ) dτ.

Hence, 
X(0; t, x, v) = x− vt−

∫ t

0

∫ η

t
E(τ) dτdη,

V (0; t, x, v) = v −
∫ t

0
E(τ) dτ.

Therefore, (A3) holds with

α1(s; t, x, v) = s and α2(s; t, x, v) = 1,

when 0 < α0 ≤ 1 and −2 < γ ≤ 1.
In fact, notice that for this case when external forces depend only on the time t, the

Boltzmann equation with external forces can be rewritten to the Boltzmann equation
without forces by the following transformation of independent variables, cf. [7]:

t̃ = t,

x̃ = x−
∫ t

0

∫ η

0
E(τ) dτdη,

ṽ = v −
∫ t

0
E(τ) dτ.

(1.22)

Therefore, the existence of mild and classical solutions and L1 stability around vacuum
to the Boltzmann equation without forces, cf. [12, 24, 11], can be applied to this case
without any difficulty.
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Example 1.5. Let E(t, x) = a2x + E0(t), with a > 0 being a constant. For any fixed
(t, x, v), the bicharacteristic equations (1.13) have solutions

X(s; t, x, v) =
ax + v

2a
ea(s−t) +

ax− v

2a
e−a(s−t) − E2(t)

2a
ea(s−t) +

E3(t)
2a

e−a(s−t) + E1(s),

V (s; t, x, v) =
ax + v

2
ea(s−t) − ax− v

2
e−a(s−t) − E2(t)

2
ea(s−t) − E3(t)

2
e−a(s−t) + E′

1(s),

where E1(s) is some special solution to the second order linear ODE:

d2E1(s)
ds2

= a2E1(s) + E0(s),

and (E2(t), E3(t)) are defined by{
E2(t) = E′

1(t) + aE1(t),

E3(t) = E′
1(t)− aE1(t).

Hence, 
X(0; t, x, v) =

ax + v

2a
e−at +

ax− v

2a
eat − E2(t)

2a
e−at +

E3(t)
2a

eat + E1(0),

V (0; t, x, v) =
ax + v

2
e−at − ax− v

2
eat − E2(t)

2
e−at − E3(t)

2
eat + E′

1(0).

Straightforward calculation shows that

α1(s; t, x, v) =
1
2a

(eas − e−as) and α2(s; t, x, v) =
1
2
(eas + e−as).

Thus,

α(s; t, x, v) = α′1(s; t, x, v)α2(s; t, x, v)− α1(s; t, x, v)α′2(s; t, x, v) ≡ 1 > 0

and
α2(s; t, x, v) ≥ 1.

If 0 < α0 ≤ 1 and −1 ≤ γ ≤ 1, then (A3) holds.

Notice that the positive coefficient in front of x in the force term of Example 1.5
implies that the bicharacteristic curves go to infinity in space as time tends to infinity. If
the coefficient is negative, then the bicharacteristic is oscillating in the space of (X, V ) and
there is no known existence results on this interesting case for the nonlinear Boltzmann
equation. However, for the linearized Boltzmann equation, the case when E(t, x) = −x was
studied by Tabata [20] using the semigroup approach. This result was later generalized
in [19] to the case of linearized Boltzmann equation with an unbounded external force
potential that is spherically symmetric and satisfies some differential inequalities.

Now we compare Theorems 1.2 with the previous related work. First, if p > 3/2, the
bound on the initial data f0 implies the total mass satisfies∫

R3×R3

|f0(x, v)| dxdv ≤ Cεδ0,

where C is a generic positive constant. This requires that the mean free path is sufficient
large if total mass is finite because δ0 is sufficiently small. This is exactly the requirement
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on the Boltzmann equation without forces in infinite vacuum considered by Illner and
Shinbrot in [12]. On the other hand, as in [2], if 1/2 < p ≤ 3/2, then the initial total mass
can take infinity, which is a very interesting case not included in the well-known paper
[6] about the large initial theory in L1-norm. For the method of proof, as in [10, 24],
Theorem 1.2 is obtained by using the contraction mapping theorem. Precisely, we obtain
the following estimates{

|||Tf ||| ≤ C‖f0‖p,q + C|||f |||2,

|||Tf −Tg||| ≤ C(|||f |||+ |||g|||)|||f − g|||,
(1.23)

where T is a mapping from Sp,q to Sp,q defined by (3.18) in Section 3. In order to prove
(1.23), we need to control the time integration of the collision term Q(f, g) along the
bicharacteristic: ∫ t

0
Q(f, g)(s,X(s; t, x, v), V (s; t, x, v)) ds.

The estimation on this integral is based on the constructive assumption (A3) and is given
in Lemma 3.1 of Section 3.

There have been extensive studies on the mathematical aspects on the Boltzmann
equation, see monographs [2, 4, 5]. For the Boltzmann equation in the absence of an
external force in infinite vacuum, the global existence of mild solutions to (1.1) was first
given by Illner-Shinbrot [12] following the work on local existence by Kaniel-Shinbrot in
[13]. For perturbation of a global Maxwellian, Ukai [23], Nishida-Imai [15], Shizuta-Asano
[18] and Ukai-Asano [25] and others showed the global existence of solutions to the initial
or initial boundary value problem of the Boltzmann equation in various situations. For
other interesting issues, such as large data existence theory, stability and convergence to
the Maxwellian, see [6, 14, 17, 21] and references therein.

However, there are fewer works done for the Boltzmann equation with an external
force. Glikson [8, 9] obtained the unique local existence of solutions to the initial value
problem for sufficiently small initial data. When the initial data was arbitrary large, the
local existence of solutions to the initial and initial boundary value problem was obtained
by Asano [1]. And a general framework on the global existence solutions in infinite vacuum
is given in [3]. Recently, Guo [10] proved the global existence of classical solutions with
small amplitude to the initial value problem for the Boltzmann equation with an external
force and a “soft” potential when the external force decays in time. Moreover, the global
existence and stability of the stationary solutions to time independent potential force was
obtained by Ukai-Yang-Zhao in [26] through the energy method. Our result is new in the
sense that a constructive condition is given for the global existence of mild solutions in
infinite vacuum when external force can be arbitrary large.

The rest of this paper is organized as follows. In Section 2, we give some preliminary
estimates for later use. In Section 3, we study the integration of the collision term to
obtain the global in time estimate. And then the existence of the mild solution to the
initial value problem (1.1) and (1.2) follows from the contraction mapping theorem. In
Section 4, based on the same idea as the last two sections and more technique inequalities,
we extend Theorem 1.2 without the full proof for the expositive brevity to the case of the
initial data with polynomial decay in velocity variable as well as position variable.

2. Preliminaries

In this section, we give some preliminary lemmas which will be used in the proof of
the global existence of solutions in the next section. First we borrow three lemmas from
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[11, 16] for the completeness of the paper. Interested readers please refer to these two
papers for their proofs.

Lemma 2.1. For any z ∈ R3, η ∈ R and (u‖, u⊥) ∈ R3 ×R3 with u‖ · u⊥ = 0, we have

|z + ηu‖|2 + |z + ηu⊥|2 = |z|2 + |z + η(u‖ + u⊥)|2. (2.1)

Lemma 2.2 For any p > 1
2 and (z, u) ∈ R3 ×R3 with u 6= 0, we have∫ ∞

0
(1 + |z + ηu|2)−p dη ≤ 4p

|u|(2p− 1)
. (2.2)

Moreover, for any q > 0, −2 < γ ≤ 1 and z ∈ R3, we have∫
R3

|u|γ−1 exp{−q|z − u|2} du ≤ I1
γ,q, (2.3)

where
I1
γ,q =

4π

γ + 2
+

π

q3/2
, (2.4)

is a positive constant depending only on γ and q.

Lemma 2.3 For any p > 0, z ∈ R3, s ∈ R+ and (u‖, u⊥) ∈ R3 ×R3 with u‖ · u⊥ = 0,
we have that

(1+ |z + su‖|2)−p(1 + |z + su⊥|2)−p ≤ (1 + |z|2)−p{
(1 + |z + su‖|2)−p + (1 + |z + su⊥|2)−p + (1 + |z + s(u‖ + u⊥)|2)−p

}
.

(2.5)

In order to control the integration of the collision term Q(f, g) along the bicharacteristic∫ t

0

∫
R3×S2

+

(· · · )(s,X(s; t, x, v), V (s; t, x, v)) dudωds,

we consider the following two integrals:

I2,1(z1, z2, t, x, v) =
∫ ∞

0

∫
R3×S2

+

bγ(θ)|u|γ(1 + |z1 + α1(s; t, x, v)u|2)−p

× exp{−q|z2 − α2(s; t, x, v)u|2} dudωds, (2.6)

and

I2,2(z1, z2, t, x, v) =
∫ ∞

0

∫
R3×S2

+

bγ(θ)|u|γ{(1 + |z1 + α1(s; t, x, v)u‖|2)−p

+(1 + |z1 + α1(s; t, x, v)u⊥|2)−p}

× exp{−q|z2 − α2(s; t, x, v)u|2} dudωds, (2.7)

for any (z1, z2) ∈ R3×R3 and (t, x, v) ∈ R+×R3×R3. Here α1(s; t, x, v) and α2(s; t, x, v)
satisfy the assumption (A3). The estimates on (2.6) and (2.7) are given in the following
lemma.
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Lemma 2.4 Under the assumptions (A1)-(A3), it holds that

sup I2,i(z1, z2, t, x, v) ≤ I2
γ,p,q, i = 1, 2, (2.8)

where

I2
γ,p,q =

8πpb0I
1
γ,q

α0(2p− 1)
, (2.9)

is a positive constant depending only on γ, p, q, α0 and b0.

Proof. For i = 1, fix (z1, z2) ∈ R3×R3 and (t, x, v) ∈ R+×R3×R3. Since α2(s; t, x, v) >
0, we let

α2(s; t, x, v)u = ū,

to obtain

I2,1(z1, z2, t, x, v) =
∫ ∞

0

∫
R3×S2

+

bγ(θ)|ū|γ(α2(s; t, x, v))−γ−3

(
1 +

∣∣∣∣z1 +
α1(s; t, x, v)
α2(s; t, x, v)

ū

∣∣∣∣2
)−p

exp{−q|z2 − ū|2} dūdωds. (2.10)

Since

d

ds

(
α1(s; t, x, v)
α2(s; t, x, v)

)
=

α′1(s; t, x, v)α2(s; t, x, v)− α1(s; t, x, v)α′2(s; t, x, v)
(α2(s; t, x, v))2

=
α(s; t, x, v)

(α2(s; t, x, v))2
> 0,

by the assumption (A3), we can let variable

η =
α1(s; t, x, v)
α2(s; t, x, v)

,

to have

I2,1(z1, z2, t, x, v)

≤
∫ ∞

0

∫
R3×S2

+

bγ(θ)|ū|γ 1
(α2(s; t, x, v))γ+1α(s; t, x, v)

×(1 + |z1 + ηū|2)−p exp{−q|z2 − ū|2} dūdωdη

≤ 1
α0

∫ ∞

0

∫
R3×S2

+

bγ(θ)|ū|γ(1 + |z1 + ηū|2)−p exp{−q|z2 − ū|2} dūdωdη. (2.11)

Then it follows from the Lemma 2.2 and the assumption (A2) that

I2,1(z1, z2, t, x, v) ≤ 4p

α0(2p− 1)

∫
R3×S2

+

bγ(θ)|ū|γ−1 exp{−q|z2 − ū|2} dūdω

=
8πp

α0(2p− 1)

∫ π
2

0
bγ(θ) sin θ dθ

∫
R3

|ū|γ−1 exp{−q|z2 − ū|2} dū

≤
8πpb0I

1
γ,q

α0(2p− 1)
. (2.12)

This completes the proof for i = 1.
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For the case of i = 2, similar to (2.11) and (2.12), we have

I2,2(z1, z2, t, x, v)

≤ 4p

α0(2p− 1)

∫
R3×S2

+

bγ(θ)|ū|γ
(

1
|ū‖|

+
1
|ū⊥|

)
exp{−q|z2 − ū|2} dūdω

=
8πp

α0(2p− 1)

∫
R3

∫ π
2

0
bγ(θ)|ū|γ

(
1

|ū| cos θ
+

1
|ū| sin θ

)
exp{−q|z2 − ū|2} sin θ dūdθ

=
8πp

α0(2p− 1)

∫ π
2

0
bγ(θ)(1 + tan θ) dθ

∫
R3

|ū|γ−1 exp{−q|z2 − ū|2} dū

≤
8πpb0I

1
γ,q

α0(2p− 1)
.

(2.13)
Hence, (2.12) and (2.13) yields the proof of Lemma 2.4.

3. Existence of the mild solution

In this section, we give the crucial estimate for the global existence of the solution by
the contraction mapping theorem.

First, similar to (1.9)-(1.11), denote

N(f, g) = N+(f, g)−N−(f, g), (3.1)

by

N+(f, g)(t, x, v) =
∫ t

0
Q+(f, g)(s,X(s; t, x, v), V (s; t, x, v))ds

=
1
ε

∫ t

0

∫
R3×S2

+

bγ(θ)|u|γf(s,X(s; t, x, v), V (s; t, x, v)− u‖)

×g(s,X(s; t, x, v), V (s; t, x, v)− u⊥) dudωds, (3.2)

and

N−(f, g)(t, x, v) =
∫ t

0
Q−(f, g)(s,X(s; t, x, v), V (s; t, x, v))ds

=
1
ε

∫ t

0

∫
R3×S2

+

bγ(θ)|u|γf(s,X(s; t, x, v), V (s; t, x, v))

×g(s,X(s; t, x, v), V (s; t, x, v)− u) dudωds. (3.3)

From (1.9), we have

N(f, g)(t, x, v) =
∫ t

0
Q(f, g)(s,X(s; t, x, v), V (s; t, x, v)) ds. (3.4)

Lemma 3.1. Under the assumptions (A1)-(A3), it holds that

|||N(f, g)||| ≤ 1
ε
Iγ,p,q|||f ||| × |||g|||, (3.5)

where Iγ,p,q is a positive constant.
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Proof. We first estimate the loss term N−(f, g) in (3.1). Let (t, x, v) fixed. From the
definition (1.17) of the norm ‖ · ‖ and the assumption (A3), we have for any s in (0, t),

|f(s, X(s; t, x, v), V (s; t, x, v))|

≤ ‖f(s)‖(1 + |X(0; s,X(s; t, x, v), V (s; t, x, v))|2)−p

× exp{−q|V (0; s,X(s; t, x, v), V (s; t, x, v))|2}

= ‖f(s)‖(1 + |X(0; t, x, v)|2)−p exp{−q|V (0; t, x, v)|2}, (3.6)

and
|g(s, X(s; t, x, v), V (s; t, x, v)− u)|

≤ ‖g(s)‖(1 + |X(0; s,X(s; t, x, v), V (s; t, x, v)− u)|2)−p

× exp{−q|V (0; s,X(s; t, x, v), V (s; t, x, v)− u)|2}

= ‖g(s)‖(1 + |X(0; t, x, v) + α1(s; t, x, v)u|2)−p

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u|2}. (3.7)

Hence, from (3.3), we have

|N−(f, g)(t, x, v)|

≤ 1
ε

∫ t

0

∫
R3×S2

+

bγ(θ)|u|γ‖f(s)‖‖g(s)‖(1 + |X(0; t, x, v)|2)−p

× exp{−q|V (0; t, x, v)|2}(1 + |X(0; t, x, v) + α1(s; t, x, v)u|2)−p

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u|2} dudωds

≤ 1
ε
(1 + |X(0; t, x, v)|2)−p exp{−q|V (0; t, x, v)|2}|||f ||| × |||g|||

×
∫ ∞

0

∫
R3×S2

+

bγ(θ)|u|γ(1 + |X(0; t, x, v) + α1(s; t, x, v)u|2)−p

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u|2} dudωds. (3.8)

By Lemma 2.4, we have

|N−(f, g)(t, x, v)|

≤ 1
ε
I2
γ,p,q(1 + |X(0; t, x, v)|2)−p exp{−q|V (0; t, x, v)|2}|||f ||| × |||g|||. (3.9)

Multiplying (3.9) by (1 + |X(0; t, x, v)|2)p exp{q|V (0; t, x, v)|2} and taking the supremum
with respect to (t, x, v) in R+ ×R3 ×R3, we have by (1.16) that

|||N−(f, g)||| ≤ 1
ε
I2
γ,p,q|||f ||| × |||g|||. (3.10)

Next for the gain term N+(f, g), similar to (3.6) and (3.7), we have for any s in (0, t),

|f(s, X(s; t, x, v), V (s; t, x, v)− u‖)|

≤ ‖f(s)‖(1 + |X(0; s,X(s; t, x, v), V (s; t, x, v)− u‖)|2)−p

× exp{−q|V (0; s,X(s; t, x, v), V (s; t, x, v)− u‖)|2}

= ‖f(s)‖(1 + |X(0; t, x, v) + α1(s; t, x, v)u‖|2)−p

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u‖|2}, (3.11)
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and
|g(s, X(s; t, x, v), V (s; t, x, v)− u⊥)|

≤ ‖g(s)‖(1 + |X(0; s,X(s; t, x, v), V (s; t, x, v)− u⊥)|2)−p

× exp{−q|V (0; s,X(s; t, x, v), V (s; t, x, v)− u⊥)|2}

= ‖g(s)‖(1 + |X(0; t, x, v) + α1(s; t, x, v)u⊥|2)−p

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u⊥|2}. (3.12)

Putting (3.11) and (3.12) into (3.2), we have that

|N+(f, g)(t, x, v)|

≤ 1
ε

∫ t

0

∫
R3×S2

+

bγ(θ)|u|γ‖f(s)‖‖g(s)‖(1 + |X(0; t, x, v) + α1(s; t, x, v)u‖|2)−p

×(1 + |X(0; t, x, v) + α1(s; t, x, v)u⊥|2)−p

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u‖|2

−q|V (0; t, x, v)− α2(s; t, x, v)u⊥|2} dudωds

≤ 1
ε
|||f ||| × |||g|||

∫ ∞

0

∫
R3×S2

+

bγ(θ)|u|γ(1 + |X(0; t, x, v) + α1(s; t, x, v)u‖|2)−p

×(1 + |X(0; t, x, v) + α1(s; t, x, v)u⊥|2)−p

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u‖|2

−q|V (0; t, x, v)− α2(s; t, x, v)u⊥|2} dudωds. (3.13)

By Lemmas 2.1 and 2.3, we have

|N+(f, g)(t, x, v)|

≤ 1
ε
|||f ||| × |||g|||

∫ ∞

0

∫
R3×S2

+

bγ(θ)|u|γ(1 + |X(0; t, x, v)|2)−p

×{(1 + |X(0; t, x, v) + α1(s; t, x, v)u‖|2)−p

+(1 + |X(0; t, x, v) + α1(s; t, x, v)u⊥|2)−p

+(1 + |X(0; t, x, v) + α1(s; t, x, v)u|2)−p}

× exp{−q|V (0; t, x, v)|2 − q|V (0; t, x, v)− α2(s; t, x, v)u|2} dudωds

≤ 1
ε
(1 + |X(0; t, x, v)|2)−p exp{−q|V (0; t, x, v)|2}|||f ||| × |||g|||

×
∫ ∞

0

∫
R3×S2

+

bγ(θ)|u|γ{(1 + |X(0; t, x, v) + α1(s; t, x, v)u‖|2)−p

+(1 + |X(0; t, x, v) + α1(s; t, x, v)u⊥|2)−p

+(1 + |X(0; t, x, v) + α1(s; t, x, v)u|2)−p}

× exp{−q|V (0; t, x, v)− α2(s; t, x, v)u|2} dudωds. (3.14)
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Thus, it follows from Lemma 2.4 that

|N+(f, g)(t, x, v)|

≤ 2
ε
I2
γ,p,q(1 + |X(0; t, x, v)|2)−p exp{−q|V (0; t, x, v)|2}|||f ||| × |||g|||,

That is,

|||N+(f, g)||| ≤ 2
ε
I2
γ,p,q|||f ||| × |||g|||. (3.15)

Combining (3.10) and (3.15), we have

|||N(f, g)||| ≤ |||N+(f, g)|||+ |||N−(f, g)||| ≤ 3
ε
I2
γ,p,q|||f ||| × |||g|||. (3.16)

Take Iγ,p,q = 3I2
γ,p,q and then it follows from (2.4) and (2.9) that

Iγ,p,q =
24πpb0I

1
γ,q

α0(2p− 1)
=

24πpb0

α0(2p− 1)

(
4π

γ + 2
+

π

q3/2

)
. (3.17)

Therefore, (3.16) yields (3.5) and this completes the proof of Lemma 3.1.

Finally, we prove Theorem 1.2. For this purpose, we define the mapping T : Sp,q → Sp,q

by
Tf(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)) + N(f, f)(t, x, v) (3.18)

for any f ∈ Sp,q. For the mapping T, we have the following lemma.

Lemma 3.2. For any f, g ∈ Sp,q, it holds that
|||Tf ||| ≤ ‖f0‖p,q +

1
ε
Iγ,p,q|||f |||2,

|||Tf −Tg||| ≤ 1
ε
Iγ,p,q(|||f |||+ |||g|||)|||f − g|||,

(3.19)

where Iγ,p,q is defined by (3.17).

Proof. Fix f ∈ Sp,q. Multiplying (3.18) by (1 + |X(0; t, x, v)|2)p exp{q|V (0; t, x, v)|2}
and taking the supremum with respect to (t, x, v) over R+ ×R3 ×R3, by Lemma 3.1, we
obtain the first estimate in (3.19). Then, notice that

Tf −Tg = N(f − g, f) + N(g, f − g). (3.20)

The second estimate in (3.19) follows similarly.

Proof of Theorem 1.2. We only need to show that T has a fixed point by the
contraction mapping theorem. In fact, let’s denote the closed subset S0 of Sp,q by

S0 = {f ∈ Sp,q : |||f ||| ≤ 2εδ0}, (3.21)

where δ0 is a sufficiently small positive constant such that

λ0 ≡ 4δ0Iγ,p,q < 1. (3.22)
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Let ‖f0‖p,q ≤ εδ0 and then we have from Lemma 3.2 that

Tf ∈ S0, and |||Tf −Tg||| ≤ λ0|||f − g|||, (3.23)

for any f , g ∈ S0. Thus the mapping T : S0 → S0 is a contraction and hence has a fixed
point f in S0 = {f ∈ Sp,q : |||f ||| ≤ 2εδ0}. This implies that the initial value problem
(1.1) and (1.2) has a unique solution f such that |||f ||| ≤ 2εδ0. It then follows from the
same argument as the one in [24] that if f0(x, v) ≥ 0 then f(t, x, v) ≥ 0. Hence, the proof
of Theorem 1.2 is complete.

4. Conclusions

It is well-known that there exists a global mild solution to the Boltzmann equation
without external forces [22] and with external forces integrable in time in some sense up
to subtraction of a constant [3] both in the framework of the small perturbation of the
vacuum, where the polynomial decay in velocity for the initial data is assumed. Hence it
is a natural attempt to extend Theorem 1.2 to the case of polynomial decay in velocity
for the initial data, which we can complete by using the same idea combined with more
technique inequalities.

Along the same line as before, let’s define the norm

|||f |||′ = sup
t,x,v

(1 + |X(0; t, x, v)|2)p(1 + |V (0; t, x, v)|2)q|f(t, x, v)|

and

‖f0‖′p,q = sup
x,v

(1 + |x|2)p(1 + |v|2)q|f0(x, v)|.

Furthermore the following assumptions are stated:
(A1)′ p > 1

2 and q > 3
2 ;

(A2)′ The collision kernel B takes the inverse power interaction (1.6) with −2 < γ ≤ 1
and the angular cutoff condition ∣∣∣∣bγ(θ)

cos θ

∣∣∣∣ ≤ b′0,

where b′0 is some positive constant.

Then we have the global existence result similar to Theorem 1.2.

Theorem 3.1. Under the assumptions (A1)′, (A2)′ and (A3), there is a sufficiently small
positive constant δ′0 > 0 such that if 0 ≤ f0(x, v) and ‖f0‖′p,q ≤ εδ′0, then there exists a
unique global in time mild solution f(t, x, v) to the initial value problem (1.1) and (1.2)
satisfying |||f |||′ ≤ 2εδ′0.

The proof of Theorem 3.1 is based on the two known inequalities, which correspond to
the inequality (2.3) when we consider the integration with respect to the velocity variable.
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Lemma 3.2([2]). Let q > 3
2 . Under the assumption (A2)′, the following integrals are

bounded:
sup

v

∫
R3×[0,2π]×[0,π/2]

B(|u|, θ)
|u| sin θ cos θ

(1 + |v − u|2)q dudεdθ ≤ I3
γ,q,

and

sup
v

∫
R3×[0,2π]×[0,π/2]

B(|u|, θ)
|u| sin θ cos θ

(1 + |v − u|2)q

(1 + |v − u‖|2)q(1 + |v − u⊥|2)q
dudεdθ ≤ I4

γ,q,

where I3
γ,q and I4

γ,q are some constants depending only on γ and q.

By Lemma 3.2 and the same idea as Lemma 2.4, we can complete the proof of Theorem
3.1 and thus omit it for brevity.
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