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Abstract

In this paper, we are concerned with the stability of solutions to the Cauchy
problem of the Boltzmann equation with potential forces on torus. It is shown
that the natural steady state with the symmetry of origin is asymptotically stable
in the Sobolev space with exponential rate in time for any initially smooth, peri-
odic, origin symmetric small perturbation, which preserves the same total mass,
momentum and mechanical energy. For the non-symmetric steady state, it is also
shown that it is stable in L1-norm for any initial data with the finite total mass,
mechanical energy and entropy.
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1 Introduction

The motion of the dilute gas in the presence of the potential force field is described by the
Boltzmann equation:

∂tf + ξ · ∇xf −∇xφ · ∇ξf = Q(f, f), (1.1)
f(0, x, ξ) = f0(x, ξ). (1.2)
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Here, the unknown f = f(t, x, ξ) ≥ 0 stands for the spatially periodic number density of gas
particles which have position x = (x1, x2, x3) ∈ T3 = [−π, π]3 and velocity ξ = (ξ1, ξ2, ξ3) ∈ R3

at time t ≥ 0, and initial data f0(x, ξ) is given. −∇xφ is the given external force generated by
the stationary potential function φ = φ(x). The bilinear collision operator Q with hard-sphere
interaction [2] is defined by

Q(f, g) =
∫

R3×S2
(f ′g′∗ − fg∗)|(ξ − ξ∗) · ω|dωdξ∗,

f = f(t, x, ξ), f ′ = f(t, x, ξ′), g∗ = g(t, x, ξ∗), g′∗ = g(t, x, ξ′∗),
ξ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ′∗ = ξ∗ + [(ξ − ξ∗) · ω]ω, ω ∈ S2.

Let φ(x) be normalized such that ∫
T3

e−φ(x)dx = 1,

and also the global Maxwellian

M =
1

(2π)3/2
exp

(
−|ξ|2/2

)
be normalized to have zero bulk velocity and unit density and temperature. It is easy to check
that (1.1) has a stationary solution fS = fS(x, ξ) given by

fS = e−φ(x)M.

The goal of this paper is to study the stability of solutions to the Cauchy problem (1.1)-
(1.2) with respect to the stationary state fS under some conditions. The first result about the
asymptotical stability of solutions in the framework of L2 space is stated as follows.

Theorem 1.1. Assume that

(A1) φ(−x) = φ(x), f0(−x,−ξ) = f0(x, ξ) ≥ 0;
(A2) ∫∫

T3×R3

[
1, ξ,

1
2
|ξ|2 + φ(x)

]
(f0 − fS)dxdξ = 0;

(A3) φ is bounded, ‖∇xφ‖W N,∞ is small with N ≥ 4.

Then, if ∥∥∥∥f0 − fS√
M

∥∥∥∥
HN

is small enough, the Cauchy problem (1.1)-(1.2) admits a unique global classical solution f(t, x, ξ),
satisfying

f(t,−x,−ξ) = f(t, x, ξ) ≥ 0,∫∫
T3×R3

[
1, ξ,

1
2
|ξ|2 + φ(x)

]
(f(t)− fS)dxdξ = 0;

and ∥∥∥∥f(t)− fS√
M

∥∥∥∥2

HN

+ λ

∫ t

0

∥∥∥∥f(τ)− fS√
M

∥∥∥∥2

HN
ν

dτ ≤ C

∥∥∥∥f0 − fS√
M

∥∥∥∥2

HN

, (1.3)

where HN = HN (T 3 × R3), HN
ν = HN (T3 × R3; ν(ξ)dxdξ), and ν = ν(ξ) is the collision

frequency. Moreover, it holds that∥∥∥∥f(t)− fS√
M

∥∥∥∥
HN

≤ C

∥∥∥∥f0 − fS√
M

∥∥∥∥
HN

e−λt, (1.4)

for any t ≥ 0.
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The second result about the L1-stability of solutions is stated as follows.

Theorem 1.2. Assume that f(t, x, ξ) ≥ 0 is a global solution to the Cauchy problem (1.1)-(1.2),
satisfying the conservation of mass∫∫

T3×R3
f(t)dxdξ =

∫∫
T3×R3

f0dxdξ (1.5)

and the natural bound

sup
t≥0

∫∫
T3×R3

f(t)(φ(x) +
1
2
|ξ|2 + log f(t))dxdξ < ∞. (1.6)

Then, for any η > 0, there exists δ > 0 such that if∫∫
T3×R3

(
1
2
|ξ|2 + φ(x))|f0 − fS |dxdξ +

∫∫
T3×R3

(f0 log f0 − fS log fS) < δ, (1.7)

then
sup
t≥0

∫∫
T3×R3

|f(t)− fS |dxdξ ≤ η. (1.8)

Theorem 1.1 shows that the solution with the same total mass, momentum and mechanical
energy as the steady state fS is asymptotically stable with exponential rate in time under the
smooth initial perturbations if the potential function φ and the initial data f0 is symmetric
with respect to the origin. Let us explain the condition of the origin symmetry a little more.
The total conservation laws often plays the key role in the study of stability of the Boltzmann
equation over the bounded domain because the Poincaré inequality is able to be applied, see
[3, 4] and [17, 18]. When there is a given external force acting on the gas, only the conservation
of the total mass holds in general. For the stationary potential force, the total mechanical
energy is also conservative, but it is still missing for the conservation of the total momentum.
In order to recover it, we postulate the origin symmetry on the potential function. Actually,
for the case of potential forces, the Boltzmann equation remains unchanged under the origin
symmetric transformation, and hence by uniqueness the solution also preserves it if initial data
is symmetric for the origin. On the other hand, any distribution function with the origin
symmetry has the zero total momentum since it holds that∫∫

T3×R3
ξf(t, x, ξ)dxdξ =

∫∫
T3×R3

(−ξ̃)f(t,−x̃,−ξ̃)dx̃dξ̃

= −
∫∫

T3×R3
ξ̃f(t, x̃, ξ̃)dx̃dξ̃.

Thus the symmetric condition (A1) in Theorem 1.1 yields that the total momentum vanishes
for any time t ≥ 0. We also mention that an interesting kinetic model related to the Vlasov-
Fokker-Planck equations was recently considered in [11] to prove the asymptotical stability of
the steady state for small symmetric perturbations.

For the non-symmetric case, it is unknown whether the steady state fS is asymptotically
stable. However, in this case, Theorem 1.2 shows that the steady state fS is stable in L1-norm.
It is straightforward to obtain the stability by using the relative entropy

H(f |fS) =
∫∫

T3×R3
f log

f

fS
dxdξ.

See [1, 31] and references therein for many applications of the entropy method. We remark
that Theorem 1.2 holds for the general potential function and initial data, for which actually
the global existence of weak solutions satisfying (1.6) is assured by DiPerna-Lions renormalized
solution theory [6, 5]. On the other hand, it should be pointed out that in the absence of forces,
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[3] provided the well-known result about the almost exponential time-decay for the relative
entropy H(f(t)|fS) under the additional regularity conditions that all the moments of f are
uniformly bounded in time and f is bounded in all Sobolev spaces uniformly in time. The
corresponding result of [3] could be generalized to the case of the symmetric potential force and
initial data. In fact, for any solution f obtained in Theorem 1.1, it holds that

‖f(t)− fS‖L1
x,ξ

≤ C

∥∥∥∥f(t)− fS√
M

∥∥∥∥
L2

x,ξ

≤ Cf0,φe−λt,

and the additional regularity conditions are satisfied by postulating

φ ∈
⋂

N≥0

HN
x ,

f0 − fS√
M

∈
⋂

N≥0

HN
x,ξ.

The same issue has been considered in [4] for the linear Fokker-Planck equation:

∂tf + ξ · ∇xf −∇xφ · ∇ξf = ∇ξ · (∇ξf + fξ).

Also see [35] for more details.
Here we mention some work related to this paper. In fact, even for the more complicated

model like the Vlasov-Maxwell-Boltzmann system on torus, the global existence of solutions near
homogeneous steady states has been proved in [17], where the time-derivative is needed in the
energy functional due to the hyperbolic property of the Maxwell equations. The similar stability
results on torus were given in [15] and [18] for the Boltzmann equation without forces and the
Vlasov-Poisson-Boltzmann system, respectively, and later almost exponential or exponential
decay was obtained in [29, 30]. In this paper, we shall remove the time-derivative since it makes
initial data has to take on the higher regularity and integrability than solutions. Thus, it is
necessary to make the refined energy estimate. The main idea to achieve this goal, given in
[7] for the global existence of perturbed solutions in L2

ξ(H
N
x ), is to introduce the free energy

functional in the estimates of the macroscopic part of solutions. We point out that this is in
the same spirit of the Kawashima’s compensation function in the Fourier space [20]. The same
method was recently applied in [10] to the study of the Vlasov-Poisson-Boltzmann system in
the whole space for the one-species of gas.

The energy method for the Boltzmann equation in the whole space was independently
developed in [16] and [24, 22]. After that, there were further extensive studies of the Boltzmann
and related kinetic equation such as the stability of global Maxwellians for the Vlasov-Maxwell-
Boltzmann system in R3 by [28], the stability and convergence rate of local Maxwellians for the
Boltzmann equation in the presence of external forces by [34, 36, 33, 9, 8], the Green’s functions
of the Boltzmann equation by [26, 25] and the stability of wave patterns for the Boltzmann
equation by [23, 21].

The rest of this paper is arranged as follows. In Section 2, we study the properties of the
macroscopic part of solutions under the macro-micro decomposition. In Section 3, we prove
Theorem 1.1 by obtaining the uniform a priori estimates. In Section 4, we prove Theorem 1.2.

Notations. We use 〈·, ·〉 to denote the inner product in the Hilbert space L2(T3
x × R3

ξ) or
L2(T3

x) or L2(R3
ξ), and ‖ · ‖ to denote the corresponding L2 norm. Sometimes we also write

‖ · ‖L2
x,ξ

, ‖ · ‖L2
x

and ‖ · ‖L2
ξ

when it is needed to be precise. We also define

〈u, v〉ν ≡ 〈ν(ξ)u, v〉

for suitable functions u = u(x, ξ) and v = v(x, ξ) to be the weighted inner product in L2(T3
x ×

R3
ξ), and use ‖ · ‖ν for the corresponding weighted L2 norm. For the multiple indices α =

(α1, α2, α3) and β = (β1, β2, β3), as usual we denote

∂α
x ∂β

ξ = ∂α1
x1

∂α2
x2

∂α3
x3

∂β1
ξ1

∂β2
ξ2

∂β3
ξ3

.

The length of α is |α| = α1 + α2 + α3. For simplicity, we also use ∂i to denote ∂xi
for each

i = 1, 2, 3. In addition, C denotes a generic positive (generally large) constant and λ denotes a
generic positive (generally small) constant.
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2 Macro-micro decomposition

This section makes some basic preparations for the proof of Theorem 1.1. Thus we suppose
that all conditions (A1)-(A3) in Theorem 1.1 hold through this section. We first derive the
total conservation laws under the symmetric assumption (A1). And then, we reformulate the
Cauchy problem (1.1)-(1.2) in terms of perturbations to the stationary state fS . Notice that
fS also satisfies fS(−x,−ξ) = fS(x, ξ), and hence perturbations preserve it. Furthermore, we
shall make the macro-micro decomposition, and derive the local macroscopic conservation laws
and evolutions of high-order moments of the microscopic component, where the latter implies
that the macroscopic parts are dissipative.

Multiplying the equation (1.1) by the moments 1, ξ, |ξ|2/2 and taking velocity integration,
one can get the local macroscopic balance laws

∂t

∫
R3

fdξ +∇x ·
∫

R3
ξfdξ = 0, (2.1)

∂t

∫
R3

ξfdξ +∇x ·
∫

R3
ξ ⊗ ξfdξ = −∇xφ

∫
R3

fdξ, (2.2)

∂t

∫
R3

1
2
|ξ|2fdξ +∇x ·

∫
R3

1
2
|ξ|2ξfdξ = −∇xφ ·

∫
R3

ξfdξ. (2.3)

After the further space integration, the above equations give the total balance laws:

d

dt

∫∫
T3×R3

f(t)dxdξ = 0, (2.4)

d

dt

∫∫
T3×R3

ξf(t)dxdξ =
∫∫

T3×R3
∇xφf(t)dxdξ, (2.5)

d

dt

∫∫
T3×R3

(
1
2
|ξ|2 + φ(x))f(t)dxdξ = 0, (2.6)

where the following integration by parts were used:∫∫
T3×R3

∇xφ · ξfdxdξ = −
∫

T3
φ∇x ·

∫
R3

ξfdξdx

=
∫

T3
φ∂t

∫
R3

fdξdx =
d

dt

∫∫
T3×R3

φf(t)dxdξ.

Notice that if φ is an even function, then the form of the equation (1.1) remains unchanged
under the change of variables (x, ξ) → (−x,−ξ). Thus, the property

f0(−x,−ξ) = f0(x, ξ)

for initial data f0 is preserved for the solution f(t) at any positive time t > 0, that is

f(t,−x,−ξ) = f(t, x, ξ). (2.7)

Under the above symmetry of f(t, x, ξ), it holds that∫∫
T3×R3

∇xφ(x)f(t, x, ξ)dxdξ =
∫∫

T3×R3
∇xφ(−x)f(t,−x,−ξ)dxdξ

= −
∫∫

T3×R3
∇xφ(x)f(t, x, ξ)dxdξ

= 0.
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Therefore, from (2.4), (2.5) and (2.6), one has the total conservation laws

d

dt

∫∫
T3×R3

f(t)dxdξ = 0,

d

dt

∫∫
T3×R3

ξf(t)dxdξ = 0,

d

dt

∫∫
T3×R3

(
1
2
|ξ|2 + φ(x))f(t)dxdξ = 0.

Thus, by assuming initially∫∫
T3×R3

[
1, ξ,

1
2
|ξ|2 + φ(x)

]
(f0 − fS)dxdξ ≡ 0,

one has ∫∫
T3×R3

[
1, ξ,

1
2
|ξ|2 + φ(x)

]
(f(t)− fS)dxdξ ≡ 0, (2.8)

which implies that any solution with initial data satisfying the total conservation laws and the
symmetric condition has to converge to fS .

Now, we formulate the above argument in the frame of the perturbation. Define the stan-
dard perturbation u(t, x, ξ) to fS as

f = fS +
√

Mu.

Then u satisfies

∂tu + ξ · ∇xu−∇xφ · ∇ξu +
1
2
ξ · ∇xφu = e−φLu + Γ(u, u), (2.9)

with given initial data

u(0, x, ξ) = u0(x, ξ) ≡ f0 − fS√
M

, (2.10)

where the linear term Lu and the nonlinear Γ(u, u) are denoted by

Lu =
1√
M

[
Q(M,

√
Mu) + Q(

√
Mu,M)

]
,

Γ(u, u) =
1√
M

Q(
√

Mu,
√

Mu).

The total conservation laws (2.8) and the symmetric property (2.7) can be rewritten as∫∫
T3×R3

(
1, ξ,

1
2
|ξ|2 + φ(x)

)√
Mu(t)dxdξ = 0, t ≥ 0, (2.11)

and
u(t,−x,−ξ) = u(t, x, ξ).

As usual, for fixed (t, x), u(t, x, ξ) can be uniquely decomposed as

u(t, x, ξ) = u1 + u2,

u1 ≡ Pu ∈ N , u2 ≡ {I−P}u ∈ N⊥,

Pu =

{
a(t, x) +

3∑
i=1

bi(t, x)ξi + c(t, x)|ξ|2
}
√

M,

(2.12)
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where u1 is called the macroscopic part of u(t, x, ξ) with coefficients (a, b, c) = (au, bu, cu) for
brevity, and u2 the microscopic part of u(t, x, ξ), and N is the null-space of L spanned by the
collision invariants:

N = span
{√

M; ξi

√
M, i = 1, 2, 3; |ξ|2

√
M

}
.

For later use, we first list the exact values of some moments of the standard Maxwellian M:

〈1,M〉 = 1,

〈|ξi|2,M〉 = 1, 〈|ξ|2,M〉 = 3,

〈|ξi|2|ξj |2,M〉 = 1, i 6= j,

〈|ξi|4,M〉 = 3, 〈|ξ|2|ξi|2,M〉 = 5, 〈|ξ|4,M〉 = 15,

〈|ξ|4|ξi|2,M〉 = 35, 〈|ξ|6,M〉 = 105.

Then, one can compute the macroscopic quantities:∫
R3

fdξ = e−φ + (a + 3c),∫
R3

ξfdξ = b,∫
R3

1
2
|ξ|2fdξ =

3
2
e−φ +

3
2
(a + 5c).

The total conservation laws in (2.11) imply∫
T3

(a + 3c)dx = 0, (2.13)∫
T3

bdx = 0, (2.14)

3
2

∫
T3

(a + 5c)dx +
∫

T3
φ(x)(a + 3c)dx = 0. (2.15)

Under the conservation (2.13) for mass, (2.15) is equivalent with∫
T3

cdx = −1
3

∫
T3

adx = −1
3

∫
T3

φ(x)(a + 3c)dx. (2.16)

Though the averages of both a and c are not zero, it follows from (2.13), (2.16) and the Poincaré
inequality that they turn out to be bounded by L2-norm of the first-order derivative of a + 3c.

Proposition 2.1. Let u(t) satisfy the total conservation laws (2.11). Then, (2.13), (2.14) and
(2.15) hold true, and moreover, one has∣∣∣∣∫

T3
adx

∣∣∣∣ +
∣∣∣∣∫

T3
cdx

∣∣∣∣ ≤ C‖φ‖L∞‖∇x(a + 3c)‖.

Next, we derive the local macroscopic balance laws for (a, b, c) from (2.1), (2.2) and (2.3).
One can further compute the higher-order moments of f under the decomposition (2.12):∫

R3
ξiξjfdξ =

∫
R3

ξiξj(e−φ(x)M +
√

Mu)dξ

= e−φ(x)

∫
R3

ξiξjMdξ +
∫

R3
ξiξj

√
MPudξ +

∫
R3

ξiξj

√
M{I−P}udξ

= e−φ(x)δij + (a + 5c)δij + 〈ξiξj

√
M, u2〉,
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and ∫
R3

1
2
|ξ|2ξifdξ =

∫
R3

1
2
|ξ|2ξi(e−φ(x)M +

√
Mu)dξ

=
∫

R3

1
2
|ξ|2ξi

√
MPudξ +

∫
R3

1
2
|ξ|2ξi

√
M{I−P}udξ

=
5
2
bi + 〈1

2
|ξ|2ξi

√
M, u2〉.

Putting all identities into (2.1), (2.2) and (2.3), one obtains the local macroscopic balance laws

∂t(a + 3c) +∇x · b = 0, (2.17)

∂tb +∇x(a + 5c) +∇x · 〈ξ ⊗ ξ
√

M, u2〉 = −∇xφ(a + 3c), (2.18)

∂t[
3
2
(a + 5c)] +

5
2
∇x · b +∇x · 〈

1
2
|ξ|2ξ

√
M, u2〉 = −∇xφ · b. (2.19)

For the later use, from (2.17) for the conservation of mass, (2.19) for the balance law of energy
can be rewritten as

∂tc +
1
3
∇x · b +

1
6
∇x · 〈|ξ|2ξ

√
M, u2〉 = −1

3
∇xφ · b.

Notice that (2.17), (2.18) and (2.19) are the linearized Euler-type equations which are not
closed due to the appearance of the microscopic part u2. Thus, we also have to consider the
evolution of higher-order moments of u2:

〈ξ ⊗ ξ
√

M, u2〉, 〈|ξ|2ξ
√

M, u2〉.

The equation (2.9) can be rewritten as

∂tu1 + ξ · ∇xu1 −∇xφ · ∇ξu1 +
1
2
ξ · ∇xφu1 = −∂tu2 + l + n, (2.20)

where the linear term l and the nonlinear term n are denoted by

l = −ξ · ∇xu2 + e−φLu +∇xφ · ∇ξu2 −
1
2
ξ · ∇xφu2, (2.21)

n = Γ(u, u). (2.22)

One can use the representation of u1 = Pu in terms of (a, b, c) to further write (2.20) as

{∂ta−
∑

j

bj∂jφ}
√

M

+
∑

i

{∂tbi + ∂ia + (a− 2c)∂iφ}ξi

√
M

+
∑

i

{∂tc + ∂ibi + bi∂iφ}|ξi|2
√

M

+
∑
i<j

{∂ibj + ∂jbi + bj∂iφ + bi∂jφ}ξiξj

√
M

+
∑

i

{∂ic + c∂iφ}|ξ|2ξi

√
M = −∂tu2 + l + n. (2.23)

Define the high-order moment functions A = (Aij)3×3 and B = (B1, B2, B3) by

Aij(u) = 〈(ξiξj − 1)
√

M, u〉, Bi(u) = 〈(|ξ|2 − 5)ξi

√
M, u〉. (2.24)
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Applying Aij(·) and Bi(·) to both sides of (2.23), one has

∂t[Aii(u2) + 2c] + 2∂ibi + 2bi∂iφ = Aii(l + n), (2.25)
∂tAij(u2) + ∂ibj + ∂jbi + bj∂iφ + bi∂jφ = Aij(l + n), i 6= j, (2.26)

∂tBi(u2) + ∂ic + c∂iφ = Bi(l + n), (2.27)

where (2.26) also holds for i > j since it is symmetric for (i, j) due to the symmetry of Aij .
The main observation which initially came from [18] is the following

Proposition 2.2. For fixed j, it holds that

−∂t

[∑
i

∂iAij(u2) +
1
2
∂jAjj(u2)

]
−∆xbj − ∂j∂jbj

=
∑

i

∂i(bj∂iφ + bi∂jφ)−
∑
i 6=j

∂j(bi∂iφ)

+
1
2

∑
i 6=j

∂jAii(l + n)−
∑

i

∂iAij(l + n). (2.28)

Proof. In fact, it follows from (2.26) that

−∆xbj − ∂j∂jbj

= −
∑
i 6=j

∂i(∂ibj)− 2∂j∂jbj

= −
∑
i 6=j

∂i[−∂jbi − bj∂iφ− bi∂jφ + Aij(−∂tu2 + l + n)]− 2∂j∂jbj

= ∂j [
∑
i 6=j

∂ibi − 2∂jbj ] +
∑
i 6=j

∂i(bj∂iφ + bi∂jφ)−
∑
i 6=j

∂iAij(−∂tu2 + l + n). (2.29)

On the other hand, it follows from (2.25) that

2∂tc +
∑
i 6=j

∂ibi =
1
2

∑
i 6=j

Aii(−∂tu2 + l + n)−
∑
i 6=j

bi∂iφ,

2∂tc + 2∂jbj = Ajj(−∂tu2 + l + n)− 2bj∂jφ,

which by taking difference lead to∑
i 6=j

∂ibi − 2∂jbj =
1
2

∑
i 6=j

Aii(−∂tu2 + l + n)−Ajj(−∂tu2 + l + n)

−
∑
i 6=j

bi∂iφ + 2bj∂jφ. (2.30)

Putting (2.30) into (2.29) gives

−∆xbj − ∂j∂jbj

=
1
2

∑
i 6=j

∂jAii(−∂tu2 + l + n)−
∑
i 6=j

∂iAij(−∂tu2 + l + n)− ∂jAjj(−∂tu2 + l + n)

+
∑
i 6=j

∂i(bj∂iφ + bi∂jφ)−
∑
i 6=j

∂j(bi∂iφ) + 2∂j(bj∂jφ)

= −1
2

∑
i 6=j

∂jAii(∂tu2) +
∑

i

∂iAij(∂tu2) +
1
2

∑
i 6=j

∂jAii(l + n)−
∑

i

∂iAij(l + n)

+
∑

i

∂i(bj∂iφ + bi∂jφ)−
∑
i 6=j

∂j(bi∂iφ).



10 R.-J. Duan

Thus, (2.28) follows by noting that∑
i 6=j

∂jAii(∂tu2) =
∑

i

∂jAii(∂tu2)− ∂jAjj(∂tu2) = −∂jAjj(∂tu2).

Notice that the Euler-type equations (2.17)-(2.19) coupled with (2.25)-(2.27) about the evo-
lution of high-order moment functions are a constant-coefficient first-order hyperbolic balance
laws in the form of

A0∂tU +
∑

k

Ak∂kU = S, (2.31)

with constrains ∑
i

Aii = 0, (2.32)

where

U =


a + 3c

b
c

(Aii)1≤i≤3

(Aij)1≤i<j≤3

(Bi)1≤i≤3

 , S =


0

−(a + 3c)∇xφ
−2∇xφ · b

Aii(l + n)− 2bi∂iφ
Aij(l + n)− (bi∂jφ + bi∂jφ)

Bi(l + n)− c∂iφ


and A0, Ak are the constant 14 × 14 matrices. See [19] for the study of the dissipation of
the general hyperbolic-parabolic system. We remark that the system (2.31)-(2.32) was firstly
derived by Grad in [14], and later applied in [20] and [13] to study the time-decay of the
linearized Boltzmann equation or Vlasov-Poisson-Boltzmann system, respectively, by using the
Kawashima’s compensated function instead of the spectral analysis which was first completed
by Ukai [32] and Nishida-Imai [27].

3 L2 stability of solutions

In this section, we devote ourselves to the proof of Theorem 1.1, which follows from the local
existence together with uniform a priori estimates as well as the standard continuum argument.
Here, we skip the proof of the local existence for simplicity. To obtain the uniform a priori
estimates in the framework of small initial perturbations, we make a priori assumption

sup
0≤t≤T

‖u(t)‖HN ≤ ε (3.1)

with 0 < ε ≤ 1 small enough and N ≥ 4, where u(t) is the solution in HN to the Cauchy
problem (2.9)-(2.10) over [0, T ] for 0 < T ≤ ∞. Furthermore, to the end, we suppose that
‖φ‖L∞ is finite and

‖∇xφ‖W N,∞ ≤ εφ (3.2)

for 0 < εφ ≤ 1 small enough.

3.1 Microscopic dissipation

The dissipation of the microscopic part u2 is based on the so-called Boltzmann’s H-theorem.
Precisely, as in [12], L can be decomposed as

L = −ν + K,
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with
ν(ξ) =

∫
R3×S2

|(ξ − ξ∗) · ω|M(ξ∗) dωdξ∗,

where ν(ξ) is the collision frequency satisfying

ν0(1 + |ξ|) ≤ ν(ξ) ≤ 1
ν0

(1 + |ξ|)

for constant ν0 > 0, and K is a self-adjoint compact operator on L2
ξ . Moreover, L is non-positive

and there is a constant λ > 0 such that

−
∫

R3
uLu dξ ≥ λ

∫
R3

ν(ξ) |{I−P}u|2 dξ. (3.3)

Besides, to handle estimates on the velocity derivative and the nonlinear term, we cite the
following two lemmas.

Lemma 3.1 ([18]). Let |β| > 0. Then ∂β
ξ ν(ξ) is uniformly bounded. And for any small η > 0

there exists Cβ,η such that, for any u,

‖∂β
ξ [Ku]‖2 ≤ η

∑
|β′|=|β|

‖∂β′

ξ u‖2 + Cβ,η‖u‖2.

Lemma 3.2 ([18]).

|〈∂β
ξ Γ(u, v), w〉| ≤ C

∑
β′+β′′=β

{∫
T3
‖ν1/2∂β′

ξ u‖L2
ξ
‖∂β′′

ξ v‖L2
ξ
‖ν1/2w‖L2

ξ
dx

+
∫

R3
‖ν1/2∂β′

ξ v‖L2
ξ
‖∂β′′

ξ u‖L2
ξ
‖ν1/2w‖L2

ξ
dx

}
;

‖〈Γ(u, v), w〉‖L2
x

+ ‖〈Γ(v, u), w〉‖L2
x
≤ C‖ν3w‖L∞x,ξ

‖u‖L∞x (L2
ξ)‖v‖.

The following lemma plays a key role in the nonlinear energy estimate and the time-decay
rate estimate for the torus case, compared with the whole space.

Lemma 3.3. Under conditions in Theorem 1.1, it holds that

‖(a, b, c)‖+ ‖(a, b, c)‖L1 ≤ C‖∇x(a, b, c)‖.

Proof. These inequalities follows from (2.13), (2.14), (2.16), Proposition 2.1 and the Poincaré
inequality.

Now, we devote ourselves to obtaining the microscopic dissipation in the following lemma.
The inequality (3.3), and Lemmas 3.1, 3.2 and 3.3 are always used.

Lemma 3.4. Assume that (3.1) and (3.2) hold for 0 < ε, εφ ≤ 1 small enough. There are
constants λ > 0, C independent of ε, εφ such that for any 0 ≤ t ≤ T , one has

1
2

d

dt
‖u‖2 + λ‖u2‖2ν ≤ C(ε + εφ)‖∇x(a, b, c)‖2, (3.4)

1
2

d

dt

∑
1≤|α|≤N

‖∂α
x u‖2 + λ

∑
1≤|α|≤N

‖∂α
x u2‖2ν

≤ C(ε + εφ)
∑

|α|≤N−1

‖∂α
x∇x(a, b, c)‖2 + C(ε + εφ)‖u2‖2ν

+Cεφ

∑
|α|≤N−1

‖∂α
x∇ξu2‖2, (3.5)
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and

1
2

d

dt

∑
|β|=k

|α|+|β|≤N

‖∂α
x ∂β

ξ u2‖2 + λ
∑
|β|=k

|α|+|β|≤N

‖∂α
x ∂β

ξ u2‖2ν

≤ C(ε + εφ)
∑

|α|+|β|≤N

‖∂α
x ∂β

ξ u2‖2ν + C
∑

|α|≤N−k

‖∂α
x∇x(a, b, c)‖2

+C
∑

|α|≤N−k+1

‖∂α
x u2‖2ν + Cχ{2≤k≤N}

∑
1≤|β|≤k−1
|α|+|β|≤N

‖∂α
x ∂β

ξ u2‖2ν , (3.6)

where 1 ≤ k ≤ N , and χD denotes the characteristic function of a set D.

Proof. Recall the equation (2.9). The direct energy estimate gives

1
2

d

dt
‖u‖2 − 〈e−φLu, u〉 = 〈Γ(u, u), u〉+ 〈−1

2
ξ · ∇xφ, u2〉 = I1 + I2,

where I1, I2 are estimated as

I1 = 〈Γ(u, u), u2〉 ≤ C‖u‖L∞x (L2
ξ)‖u‖2ν

≤ C‖u‖L2
ξ(H2

x)(‖(a, b, c)‖2 + ‖u2‖2ν)

≤ Cε(‖∇x(a, b, c)‖2 + ‖u2‖2ν),

and

I2 = −1
2
〈ξ · ∇xφ, u2〉

≤
∫∫

T3×R3
|ξ| · |∇xφ|(u2

1 + u2
2)dxdξ

≤ C‖∇xφ‖L∞(‖(a, b, c)‖2 + ‖u2‖2ν)
≤ Cεφ(‖∇x(a, b, c)‖2 + ‖u2‖2ν).

Thus (3.4) is proved.
To prove (3.5), let 1 ≤ |α| ≤ N , and then the high-order space derivative estimates yield

1
2

d

dt
‖∂α

x u‖2 − 〈e−φL∂α
x u, ∂α

x u〉

= 〈∂α
x Γ(u, u), ∂α

x u〉+ 〈−1
2
∂α

x [ξ · ∇xφu], ∂α
x u〉

+
∑

α′<α

Cα
α′〈∂α−α′

x ∇xφ · ∇ξ∂
α′

x u, ∂α
x u〉+

∑
α′<α

Cα
α′〈∂α−α′

x e−φL∂α′

x u, ∂α
x u〉

= I3 + I4 + I5 + I6.

Firstly, I3, I4 are estimated as

I3 = 〈∂α
x Γ(u, u), ∂α

x u2〉
=

∑
α′≤α

Cα
α′〈Γ(∂α−α′

x , ∂α
x u), ∂α

x u2〉

≤ C
∑

|α′|≤N/2

(
‖∂α′

x u‖L∞x (L2
ξ)‖∂α−α′

x u‖ν + ‖ν1/2∂α′

x u‖L∞x (L2
ξ)‖∂α−α′

x u‖
)
‖∂α

x u2‖ν

≤ Cε
∑

|α′|≤N

(‖∂α′

x u2‖2ν + ‖∂α′

x (a, b, c)‖2)

≤ Cε
∑

|α′|≤N

‖∂α′

x u2‖2ν + Cε
∑

|α′|≤N−1

‖∂α′

x ∇x(a, b, c)‖2,
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and

I4 = −1
2

∑
α′≤α

Cα
α′〈ξ · ∇x∂α−α′

x φ∂α
x u, ∂α

x u〉

≤
∑
|α′|≥3

‖∇x∂α−α′

x φ‖L∞x ‖∂
α′

x u‖ν‖∂α
x u‖ν

+
∑
|α′|≤2

‖∇x∂α−α′

x φ‖L2
x

∫
R3
|ξ|‖∂α′

x u‖L∞x ‖∂
α
x u‖L2

x
dξ

≤ C‖∇xφ‖W N,∞
x

 ∑
|α′|≤N

‖∂α′

x u2‖2ν +
∑

|α′|≤N−1

‖∂α′

x ∇x(a, b, c)‖2
 .

Similarly, it holds for I5, I6 that

I5 ≤ C‖∇xφ‖W N,∞
x

 ∑
|α′|≤N

‖∂α′

x u2‖2ν +
∑

|α′|≤N−1

‖∂α′

x ∇x(a, b, c)‖2


+C‖∇xφ‖W N,∞
x

∑
|α′|≤N−1

‖∂α′

x ∇ξu2‖2,

and
I6 ≤ ‖∇xφ‖W N,∞

x

∑
|α′|≤N

‖∂α′

x u2‖2ν .

Collecting the above estimates and using the smallness of ε and εφ, (3.5) is proved.
To prove (3.6), applying the microscopic projection {I−P} to the equation (2.9), one has

the microscopic evolution equation:

∂tu2 + ξ · ∇xu2 −∇xφ · ∇ξu2 +
1
2
ξ · ∇xφu2 + ν(ξ)u2

= e−φKu2 + Γ(u, u)

−{I−P}[ξ · ∇xu1 −∇xφ · ∇ξu1 +
1
2
ξ · ∇xφu1]

+P[ξ · ∇xu2 −∇xφ · ∇ξu2 +
1
2
ξ · ∇xφu2].

Let 1 ≤ |k| ≤ N . Taking the derivative ∂α
x ∂β

ξ with |α|+ |β| ≤ N and |β| = k, then the standard
energy estimates as in [17, 9] give (3.6) and the details are omitted for simplicity.

3.2 Macroscopic dissipation

This section is devoted to obtain the macroscopic dissipation on the basis of the hyperbolic
balance laws (2.31)-(2.32), and the derived parabolic-type equation (2.28). Throughout this
subsection, we still suppose that the a priori assumption (3.1) and the smallness condition (3.2)
hold.

First, recall the definitions (2.21)-(2.22). One has

Lemma 3.5. Let |α| ≤ N − 1. Under (3.1) and (3.2), it holds that

‖Aij(∂α
x l)‖+ ‖Bi(∂α

x l)‖ ≤ C
∑

|α′|≤N

‖∂α′

x u2‖,

‖Aij(∂α
x n)‖+ ‖Bi(∂α

x n)‖ ≤ Cε
∑

|α′|≤N

‖∂α′

x u2‖+ Cε
∑

|α′|≤N−1

‖∂α′

x ∇x(a, b, c)‖,

where the moment function Aij(·), Bi(·) are defined in (2.24).
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Proof. In fact, Aij(l), Bi(l) are in the form of∫
R3

e(ξ)ldξ =
∫

R3
e(ξ)[−ξ · ∇xu2 + e−φLu +∇xφ · ∇ξu2 −

1
2
ξ · ∇xφu2]dξ,

and similarly, Aij(n), Bi(n) take the form as∫
R3

e(ξ)ndξ =
∫

R3
e(ξ)Γ(u, u)dξ,

where
e(ξ) = (ξiξj − 1)

√
M or (|ξ|2 − 1)ξi

√
M.

Thus, similar as in [28], the lemma is proved by taking the velocity integration by parts and
using the exponential decay of e(ξ), the compactness of K and Lemma 3.2.

The following lemma gives the macroscopic dissipation. Its proof is initiated by [16], and
here we shall use the idea of [7] to provide another proof by introducing the free energy func-
tional. Lemma 3.3 and Lemma 3.5 have been used in the proof.

Lemma 3.6. Assume that (3.1) and (3.2) hold for 0 < ε, εφ ≤ 1 small enough. There are
constants λ > 0, C independent of ε, εφ such that for any 0 ≤ t ≤ T , one has

d

dt

∑
|α|≤N−1

∑
ij

〈Aij(∂α
x u2), ∂α

x (∂ibj + ∂jbi)〉+
∑

j

〈Ajj(∂α
x u2), ∂α

x ∂jbj〉


+λ

∑
|α|≤N−1

‖∂α
x∇xb‖2

≤ C(δ + ε)
∑

|α|≤N−1

‖∂α
x∇x(a + 3c, c)‖2 +

C

δ

∑
|α|≤N

‖∂α
x u2‖2, (3.7)

d

dt

∑
|α|≤N−1

∑
i

〈Bi(∂α
x u2), ∂α

x ∂ic〉+ λ
∑

|α|≤N−1

‖∂α
x∇xc‖2

≤ C(δ + ε)
∑

|α|≤N−1

‖∂α
x∇x(a + 3c, b)‖2 +

C

δ

∑
|α|≤N

‖∂α
x u2‖2, (3.8)

and

d

dt

∑
|α|≤N−1

〈∂α
x∇x(a + 3c), ∂α

x b〉+ λ
∑

|α|≤N−1

‖∂α
x∇x(a + 3c)‖2

≤ C
∑

|α|≤N−1

(
‖∂α

x∇x(b, c)‖2 + ‖∂α
x∇xu2‖2

)
, (3.9)

where the constant 0 < δ ≤ 1 is arbitrary.

Proof. To prove (3.7), let |α| ≤ N − 1, and then it follows from (2.28) that

d

dt
〈
∑

i

∂iAij(∂α
x u2) +

1
2
∂jAjj(∂α

x u2),−∂α
x bj〉+ ‖∂α

x∇xbj‖2 + ‖∂α
x ∂jbj‖2

= 〈
∑

i

Aij(∂α
x ∂iu2) +

1
2
Ajj(∂α

x ∂ju2),−∂α
x ∂tbj〉

+
∑
ik`

Cik`
1,j 〈Aik(∂α

x (l + n)), ∂α
x ∂`bj〉+

∑
ik`

Cik`
2,j 〈∂α

x (bi∂kφ), ∂α
x ∂`bj〉

= I1 + I2 + I3.
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Here, I1 is estimated as

I1 ≤ δ‖∂α
x ∂tbj‖2 +

C

δ
‖∇x∂α

x u2‖2

≤ Cδ
∑

|α|≤N−1

‖∂α
x∇x(a, c)‖2 +

C

δ
‖∇x∂α

x u2‖2,

where we used the balance law (2.18) for b. I2, I3 are estimated as

I2 =
1
2
‖∂α

x∇xbj‖2 + C
∑
ik

‖Aik(∂α
x (l + n))‖2

≤ 1
2
‖∂α

x∇xbj‖2 + C
∑
|α|≤N

‖∂α
x u2‖2 + Cε

∑
|α|≤N−1

‖∂α
x∇x(a, b, c)‖2,

and

I3 ≤ εφ‖∂α
x∇xbj‖2 +

C

εφ

∑
ik

‖∂α
x (bi∂kφ)‖2 ≤ Cεφ

∑
|α|≤N−1

‖∂α
x∇xb‖2.

Thus (3.7) is proved by collecting the above inequalities.
To prove (3.8), similarly let |α| ≤ N − 1, and then from (2.27), it follows that

d

dt
〈Bi(∂α

x u2), ∂α
x ∂ic〉+ ‖∂α

x ∂ic‖2

= 〈Bi(∂α
x ∂iu2),−∂α

x ∂tc〉+ 〈Bi(∂α
x (l + n)), ∂α

x ∂ic〉+ 〈−∂α
x (c∂iφ), ∂α

x ∂ic〉
= I4 + I5 + I6,

where I4 is estimated by the balance law (2.19) as

I4 ≤ δ‖∂α
x ∂tc‖2 +

C

δ
‖∂α

x∇xu2‖2 ≤ Cδ
∑

|α|≤N−1

‖∂α
x∇xb‖2 +

C

δ
‖∂α

x∇xu2‖2,

and I5, I6 are estimated as

I5 ≤
1
2
‖∂α

x ∂ic‖2 + C‖Bi(∂α
x (l + n))‖2

≤ 1
2
‖∂α

x ∂ic‖2 + C
∑
|α|≤N

‖∂α
x u2‖2 + Cε

∑
|α|≤N−1

‖∂α
x∇x(a, b, c)‖2,

and

I6 ≤ εφ‖∂α
x ∂ic‖2 +

C

εφ
‖∂α

x (c∂iφ)‖2 ≤ Cεφ

∑
|α|≤N−1

‖∂α
x∇xc‖2.

Thus (3.8) follows from the above estimates.
To prove (3.9), for |α| ≤ N − 1, it follows from (2.18) that

d

dt
〈∂α

x∇x(a + 3c), ∂α
x · b〉+ ‖∂α

x∇x(a + 3c)‖2

= 〈∂α
x∇x∂t(a + 3c), ∂α

x · b〉+ 〈∂α
x∇x(a + 3c), ∂α

x [−2∂α
x c−∇x ·A(u2)]〉

+〈∂α
x∇x(a + 3c), ∂α

x [−∇xφ(a + 3c)]〉
= I7 + I8 + I9,

where it holds that
I7 = ‖∂α

x∇x · b‖2,
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I8 ≤
1
2
‖∂α

x∇x(a + 3c)‖2 + C(‖∂α
x∇xc‖2 + ‖∂α

x∇xu2‖2),

I9 ≤ Cεφ

∑
|α|≤N−1

‖∂α
x∇x(a + 3c)‖2.

Here (2.17) for the conservation of mass was used. Hence (3.9) follows. This completed the
proof of Lemma 3.6.

Corollary 3.1. There exists the free energy Efree(·) with

|Efree(u(t))| ≤ C‖u‖2L2
ξ(HN

x ), (3.10)

such that
d

dt
Efree(u(t)) + λ‖(a + 3c, b, c)‖2HN

x
≤ C‖u2‖2L2

ξ(HN
x ). (3.11)

Proof. Define Efree(u(t)) by

Efree(u(t)) = M
∑

|α|≤N−1

∑
ij

〈Aij(∂α
x u2), ∂α

x (∂ibj + ∂jbi)〉

+M
∑

|α|≤N−1

∑
j

〈Ajj(∂α
x u2), ∂α

x ∂jbj〉

+M
∑

|α|≤N−1

∑
i

〈Bi(∂α
x u2), ∂α

x ∂ic〉

+
∑

|α|≤N−1

〈∂α
x∇x(a + 3c), ∂α

x b〉

for a properly large constant M > 0. From Lemma 3.6, it follows that

d

dt
Efree(u(t)) + λ‖∇x(a + 3c, b, c)‖2

HN−1
x

≤ ‖u2‖2L2
ξ(HN

x ).

Therefore, (3.11) follows by further using Lemma 3.3, and (3.10) holds by the definitions of
Aij(·) and Bi(·). This completes the proof of Corollary 3.1.

3.3 Proof of uniform a priori estimates

Recall that under the a priori assumption (3.1) and the smallness condition (3.2), Lemma 3.4
and Corollary 3.1 hold. The linear combination of (3.4), (3.5) and (3.11) gives the dissipation
of both the macroscopic part (a + 3c, b, c), microscopic part u2 and their space derivatives with
the small-coefficient L2-norms of space-velocity derivatives as the remaining term. On the other
hand, the linear combination of (3.6) for 1 ≤ k ≤ N gives the dissipation in L2-norm of the
space-velocity derivatives. Thus, the further linear combination leads to

d

dt
E(u(t)) + λD(u(t)) ≤ 0,

where E(u(t)), D(u(t)) are equivalent with ‖u(t)‖2HN , ‖u(t)‖HN
ν

, respectively. Since

E(t) ≤ CD(u(t)),

then one has
E(u(t)) ≤ E(u0)e−λt.

By the equivalence, (1.3) and (1.4) hold for any 0 ≤ t ≤ T in terms of the unperturbation
f ≡ fS +

√
Mu. Finally the obtained uniform a priori estimates together with the normal local

existence as well as the continuum argument imply the global existence. This completes the
proof of Theorem 1.1.
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4 L1 stability of solutions

For the non-symmetric potential function φ(x) or non-symmetric initial data f0(x, ξ), we can
not prove the nonlinear asymptotical stability even in the framework of small perturbations
given in Theorem 1.1. However, for the general initial data with finite mass, mechanical energy
and energy, the stationary state fS is stable in L1-norm. Precisely, as stated in Theorem 1.2,
as long as the initial data is sufficiently close to fS in terms of energy and entropy, then the
solution remains close to fS in L1-norm. This nonlinear stability is applicable to the global
weak solution from the DiPerna-Lions renormalized solution theory [5, 6].

To prove Theorem 1.2, let us define the Kullback relative entropy H(f |g) for the distribution
function with respect to the function g as

H(f |g) =
∫∫

T3×R3
f log

f

g
dxdξ.

Recall the Csiszár-Kullback inequality which states that

1
2
‖f − g‖2L1 ≤ H(f |g)

whenever f and g are two probability distributions. One can apply the above inequality to the
solution f(t) to the Boltzmann equation (1.1) and the stationary state fS . Notice that fS has
been normalized and f(t) has the same total mass with fS at any time t by the assumption
(1.5). Thus one has

‖f(t)− fS‖L1 ≤
√

2H(f |fS).

On the other hand, from the entropy and energy inequalities, and the conservation of mass, it
holds that

d

dt
H(f |fS) =

d

dt

∫∫
T3×R3

[
f(t) log f(t) + (φ(x) +

1
2
|ξ|2)f(t)

]
dxdξ ≤ 0,

which further implies
H(f |fS) ≤ H(f0|fS).

One can rewrite H(f0|fS) as

H(f0|fS) =
∫∫

T3×R3
(f0 log f0 − fS log fS)dxdξ

+
∫∫

T3×R3
(φ(x) +

1
2
|ξ|2)(f0 − fS).

Therefore, for any η > 0, there exists δ = η2/2 such that if (1.7) holds, then one has

‖f(t)− fS‖L1 ≤ η.

Then (1.8) holds. This completes the proof of Theorem 1.2.
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