STABILITY OF THE RAREFACTION WAVE OF THE
VLASOV-POISSON-BOLTZMANN SYSTEM

RENJUN DUAN AND SHUANGQIAN LIU*

ABSTRACT. This paper is devoted to the study of the nonlinear stability of the rarefaction waves of
the Vlasov-Poisson-Boltzmann system with slab symmetry in the case where the electron background
density satisfies an analogue of the Boltzmann relation. We allows that the electric potential may take
distinct constant states at both far-fields. The rarefaction wave is constructed by the quasineutral Euler
equations through the zero-order fluid dynamic approximation and the wave strength is not necessarily
small. We prove that the local Maxwellian with macroscopic quantities determined by the quasineutral
rarefaction wave is time-asymptotically stable under small perturbations for the corresponding Cauchy
problem. The main analytical tool is the combination of techniques we developed in [10] for the viscous
compressible fluid with the self-consistent electric field and the refined energy method based on the
macro-micro decomposition of the Boltzmann equation around a local Maxwellian. Both the time decay
property of the rarefaction waves and the structure of the system play a key role in the proof.
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1. INTRODUCTION

1.1. Problem. There recently has been some progress on the nonlinear stability of three basic wave
patterns for the Boltzmann equation with slab symmetry for the shock, rarefaction wave and contact
discontinuity, respectively, cf. [67, 41l B4], for instance. However, for the Boltzmann equation with forces
(cf. [9 24, [47, [63]), to the best of our knowledge, there are few results on the same issue. In this paper,
we will study the time-asymptotic stability of the rarefaction wave for the Boltzmann equation with a
self-consistent potential force on the line.

In the absence of the magnetic field, the dynamics of ions in a collisional plasma with slab symmetry
can be described by the following one-species Vlasov-Poisson-Boltzmann (VPB for short in the sequel)
system (cf. [36, Chapter 6.6]):

atF+§1aa:F - ax¢a§1F = Q(Fa F),

) (1.1)
—0;0=p—pe(¢), p= | Fde
R3
Here F' = F(t,z,£) > 0 stands for the density distribution function of the only ions particles which have
position # € R and velocity & = (&1, &2,&3) € R? at time ¢ > 0. The slab symmetry with respect to the first

coordinate in the spatial domain R3 has been assumed. The self-consistent electric potential ¢ = ¢(t, )
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is induced by the total charges through the Poisson equation. Q(F, F') is the binary Boltzmann collision
term whose explicit formula will be given later on, and collisions by ions with other particles are ignored.
The system (|1.1)) is supplemented with initial data

F(O,I,g):Fo(.T,f), (12)
and with boundary data at far fields
zgmoo Fo(l‘ g) pi,uiﬁi](f)a U4 = [u1i7070]v (13)
and
lim_o(t.2) = o (1.4)
satisfying the quasineutral assumption
Pt = pe(P)- (1.5)

Here [p4,u+,0+] and ¢. are assumed to be constant states, and My, ., ¢,](§) are global Maxwellians
defined in terms of . Note that ¢+ and pi can be distinct.

The density p. = pe(¢) of electrons in depends only on the potential in the sense of an analogue
of the so-called Boltzmann relation, cf. [7]. Specifically, through the paper we suppose that

(A): pe(®) : (PmsPrr) = (Pm, par) 1S & positive smooth function with

= inf , = su )
Pm = o<om pe(9), Pu ¢,,,L<¢I<)¢Mpe(¢)

satisfying the following three assumptions:

(A1) pe(0) = 1 with 0 € (b, dar);
(A2) pe(®) >0, pl(¢) > 0 for each ¢ € (¢, Pn);
(A3) pe(0)pl(0) < [p(9)]? for each ¢ € (P, dr)-

Since the electric potential in can be up to an arbitrary constant, the assumption (A;) just means
that the electron density has been normalized to be unit when the potential is zero. The other two
assumptions (A2) and (As) assert that the pressure P?(p) generated by the potential force under the
quasineutral assumption p = pe(¢) is a positive, increasing and convex function of p € (pm, par); it is to
be further clarified later on, see (1.24). A typical example satisfying (A) takes the form of

pe(éb) = |:1 + ’)’e’y* 1j:| - 5 ¢m = 7’7 fyi 1Aea ¢M = +o00, (16)

with 7. > 1 and A, > 0 being constants. Note that p.(¢) — e and ¢Gm — —00 as Yo — 1T, which
corresponds to the classical Boltzmann relation. Formally, can be deduced from the momentum
equation of the isentropic Euler-Poisson system for the fluid of electrons with the adiabatic exponent -,
under the zero-limit of electron mass, namely, 0, (Aeple) = peOz¢.

The Boltzmann collision operator Q(-, ) in is assumed to be for the hard sphere model (cf. [3,[5]),
taking the following non-symmetric form

QL) = [ (€= 6wl IR (EVHAE) — i (€)Hale)) ds.d

:anin(Hh HQ) - Qloss(Hla HQ)a
where §2 = {w € % : (£ — &) -w > 0}, and (£, &) and (¢, &]) denote velocities of two particles before
and after an elastic collision, respectively, satisfying
§=E6-[¢—-8&) ww, &=8&+[E—-&) wlw, (1.8)

in terms of the conservations of momentum and energy

E+&=8+&, [P+l =187 +Ie”
Note that |£ — &.| = [’ — &.| holds true.
In the paper, we are interested in the large time asymptotics toward the rarefaction wave of solu-

tions to the Cauchy problem on the VPB system , , ., , . Precisely, we will show
that the local Maxwellian M, ¢y, ur(t,2),67 (¢,2)] ({), where [p (t,z),u ( x), 9’”(75 x)] is a smooth rarefac-

tion wave of the macroscopic quasineutral compressible Euler equations with the same far-field data

(1.7)
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[p+,ux,04] as given in (|1.3)), is stable globally in time in a suitable Sobolev space under small perturba-
tions, and further show that the solution F'(t,z,&) to the Cauchy problem converges in large time in a
velocity-exponential weighted LgoLg norm toward the local Maxwellian M,z 4 /1) uR (2/4),67 (2 /)] (§) With

[p"(z/t),u(x/t), 0% (x/t)] being the centred rarefaction wave of the corresponding Riemann problem
and the electric potential ¢(¢,z) converges in large time in LS norm toward p_ !(pf(z/t)).

1.2. Macro-micro decomposition around local Maxwellians. As in [40], letting F'(¢,2,£) be the
solution to the VPB system , one can decompose it into the summation of the macroscopic (or fluid)
part represented by the local Maxwellian M = M(t, z,£) = M,t,0),u(t,2).0(t,2)] (§), and the microscopic
(or kinetic) part denoted by G = G(t, z,£) as

F(t,z,&) =M(t, z,&) + G(t, z,€). (1.9)

Here, M(t,x,&) is defined by the solution F(t,z,€&) of the VPB system (1.1)) through the five fluid
quantities, i.e., the mass density p(¢,x), momentum density m(t,z) = p(t,x)u(t,z), and the energy
density E(t,z) + 3|u(t,z)|?, given by

pltr) = [ Plta€)ds
p(t,x)uz(t,x) = /1%3 wl(g)F(thag) d£7 1= 172a37

(et Gt )| = [ waorieeoas

in the form of
p(t,ﬂ]‘) |€—U(t,1‘)|2
M =P L S L2
[o(t.2) u(t,),0(t,2)] (§) 2rroa)E P ( RO )

where 6(t, ) is the temperature which is related to the internal energy £(t,z) by £ = 3R6 = 0 with
the gas constant R chosen to be 2 for convenience, and u(t,x) = [u1(t, %), uz(t, ), us(t, x)] is the fluid
velocity in R3. Also, v, i = 0,1,2, 3,4, are the five collision invariants

1
Yo=1, =& (i=1,23), da= gl

(1.10)

satisfying
/ V;Q(F, F)d¢ =0 for i=0,1,2,3,4. (1.11)
R3
For any given Maxwellian M = M[ﬁa g we define an inner product in ¢ € R? as

s = [ T e

for two functions f and g such that the integral on the right is well defined.
Using the above inner product with respect to the Maxwellian M, the following five functions spanning
the macroscopic subspace, are mutually orthogonal:

Rpb
F(epad) =L (S0 o)
) ) b 65 Re )
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where d;; is the Kronecker delta. With the above orthonormal set, the macroscopic projection POﬁ and

the microscopic projection PM can be defined as

Pﬁh:i@ xﬁ> M
AR
PMph = h — P,

Notice that the operators POﬁ and Pll\A/I are orthogonal (and thus self-adjoint) projections with respect to
the inner product (-, )5 , i-e.
py'Pyt =Py, PYPY =P, Py'PY =PYPY =0
Moreover, it is straightforward to check that
<P(1}A/Ih,P1ﬁh> = <Poﬁh, P?h> =0

M

M

holds true for any two Maxwellians M and M.
Using notations above, the solution F(¢,z, &) of (|1.1) satisfies

PY'F=M, PMF=G.
By the macro-micro decomposition, the Boltzmann equation in (1.1)) can be rewritten as
OM+G)+0:(M+G) —0,00:, M+ G) = LmG + Q(G,G), (1.12)

where

is the linearized Boltzmann collision operator around the local Maxwellian M.
Applying PM and PM to (1.12), one has

oM + Pg/l (£10:M) + PIS/I (£10:G) — 0,00, M = 0,

and
G +PM(£,0,M) + PM (£,0,G) — 0,900, G = LmG + Q(G, G), (1.13)
respectively. Notice that (1.13)) further implies
G =Ly (P{“ (glaxM)) +0, (1.14)
with
0 = Ly, [0:G + P} (£10,G) — 0:60:, G] — Ly [Q(G, G)]. (1.15)

1.3. Macroscopic balance laws. Now, due to (1.11]), from
/ Vi (O F + 10, F — 0,¢0¢, F)d§ =0, i=0,1,2,3,4,
R3

the system of macroscopic moments takes the following form

Op + 0z (pur) =0,

Or(pur) + O (pu2) + 0o P + pOyd = — / £20,G de,
R.’B

(1.16)
0t (pui) + Oz (puru;) = —/ £&10,GdE, 1=2,3,
R3

1
Oy [p (5 + 2u|2>} + Oy {ul (p (5 + ;|u|2> + P)} + pu10,9 = —% /RS 1€]%€10, G dE.
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Furthermore, by substituting (1.14)), the above Euler-type system (1.16]) together with the Poisson equa-
tion in (1.1)) lead to the following fluid-type system in the Navier-Stokes-Poisson form (cf. [10]):

Ogp + 8oc(pu1) =0,

Oru1 + u10zuq

3 1
6= 20, (u(O)0su) - [ 0.0

3
P PR (1.17)

Oy (5 + ;|u|2) + u1 0, <5 + ;|u|2> + ax(?”) + w1050

3
= 20, (1(0)0:6) + 20, (uO)sDrr) + 5 3 O (uO)uiden) / P60,

i=2
- 65(;5 =p— pe().
Note that system (|1.17)) is unclosed since © depends on the unknown function G. Here and in the sequel,

2 2
P==2pc="2p8
3¢ = 3F

is the pressure for the monatomic gas, and the viscosity coefficient p(6) and the heat conductivity coef-
ficient (), both depending only on 6, are represented by

M - 29/ 62 1:/[1[1 w,0] €1M[1,u,9]) df
/ §1&iLy, M[1 6] (flgiM[l,uﬁ]) d¢ >0, i=2,3, (1.18)

0) = ~gg [ 16— uPELN, L, (16 = uPEMy ) dE> 0. = 1,23

For completeness, we will deduce the above formulas in the appendix, see also [20 [52].
Recalling £ = 0, the energy equation in ((1.17)) can be reduced to

Po, 1
0,60 + 0,0 + L2 :;5x (r(0)0.0) + %u(e)@xul)?
g ) &P (1.19)
+ —u(0)(0pui) — 7/ < —u- §>£ 0,0 d§.
> @@= [ (5 1
For later use, as in [40], for given p and 6, we also define a corresponding entropy quantity S as
S%?—gmp+dn(?m)+1, (1.20)

and deduce from the first equation of (1.17) together with (1.19) that S satisfies

1
S + 110, S :Fax (k(0)0,0) + p%,u(@)(aggul)2

3

2
+3 g0 - o (- anea

2

Notice that from (|1.20), we have
- %keSPQ/?)

with the constant k given by kL , so that the pressure can be written as

P= gpﬂ = keSpS/S.
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Therefore, whenever P is regarded as a function v = 1/p > 0 and S given by P = keSv=5/3 not only

P is convex in both v and S but also P is uniformly convex in [v, S]. Similarly, it is also the case for
0 = 3keSv=2/3. We also remark that v, 6, P and S obey the second law of thermodynamics

0dS =df + Pdv,

implying that any two thermodynamical quantities among v, #, P and S can uniquely determine all the
other ones.

1.4. Quasineutral Euler equations and rarefaction waves. In order to study the large time behavior

of the solution [F(t,x,¢),¢(t,x)] to the Cauchy problem (L.1), (1.2), (1.3), (1.4), (1.5) on the VPB

system, we expect that the density distribution function F(¢,z, ) tends time-asymptotically to the local
Maxwellian M,z & gr)( /1) (€), where [pf, uff, 0%] (z/t) with uf(z/t) = [uf'(x/t),0,0] is defined to be
the centre-rarefaction wave solution to the Riemann problem on the macroscopic quasineutral Euler
system

Oip + pOyuy + u10p = 0,

o, P
Opur + u10zu1 + P + 0,06 =0,

1.21
Pag;ul ( )

p

00 + u10,0 + =0,

p = pe(9),
with Riemann initial data given by
e p*uu17797 , 2 <0,
0, 0100,2) = [off ity 087 () % | | (1.22)
’ [p+ w4, 04], z>0.

Here we recall P = 2pf. Due to assumptions (A;) and (Az), p; !(-) exists and the quasineutral equation

p = pe(¢) implies ¢ = p1(p), so that the electric potential ¢(t,x) to the Cauchy problem (1.1)), (1.2)),
(1.3)), (1.4), (1.5) correspondingly tends time-asymptotically to

"0 (" ()
¢ ( 7)) =P \P 7))
The rarefaction wave [pf, uff, 0%] (z/t) can be constructed as follows. Recalling (1.20)), system (1.21)
can be rewritten in terms of [p,u1, 5] as

O¢p + pOguy +u19,p =0,
0, P _
0w + u105u1 + 7 +0up2 (p) =0, (1.23)
S +u10,S =0,
with P = ke%p®/3. We define

PYS 4
) /p’@(pe‘l(g))dg

which is called the pressure generated by the potential force such that 0,P?(p) = pd.¢ under the
quasineutral assumption p = p.(¢). It is straightforward to check

_ pe(¢) 2 po _ [p:a(¢)]2 _Pe((b)ﬂg(@
OGS P

with ¢ = p_1(p) on the right. Notice that due to the assumptions (As) and (A3), one has

8PP¢(p)

9,P%(p) >0, 9;P%(p) >0, (1.24)
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for each p € (pm, par). The quasineutral Euler system (|1.23)) has three characteristics
At = Mi(p,ur, §) = us = /9, P(p, S) + 0,P?(p),

)\2 = )\Q(p,ul, S) = Uy, (1.25)

>‘3 = >‘3(p7u15 S) =u + \/app(pa S) + 8PP¢(p)
In terms of two Riemann invariants of the third eigenvalue A3 (p, u1, S), regarding the original quasineutral
Euler system (|1.21)) of variables [p, u1, ], we define the set of right constant states [p4, u14, 6+] to which
a given left constant state [p_,u;_,0_] with p_ > 0 and §_ > 0 is connected through the 3-rarefaction
wave to be

p2/3 p2/3
Rs(p_,ui_,0_) = {[p,ul,ﬁ] ERy xR xR,y ‘ 5 = 9;,
r \/0,P(o,S;) + 0,P?
U — U = \/ b (e, Q)+ P (Q)dg, p>p_, up > ul_}. (1.26)
p—

Here and in the sequel S; o —% Inp_ + 1n(§7n9_) + 1 is a constant. Noticing P(p, S;) = A;p®/? with

def

JEC . wri
A ke“i, one can also write

0,P(p.5)+ 0,P(0) = S+ (50 ()

Throughout the paper, without loss of generality, we consider only the 3-rarefaction wave, and the case
for the 1-rarefaction wave can be treated in a similar way. Now, letting [p4,u14,0+] € R3(p—,u1—,0_),
the Riemann problem , admits a self-similar solution, the 3-rarefaction wave [pR7 ult, GR] (2)
with z = 2/t € R, explicitly defined by

/\3(,0_,1L1_,Si) for z < /\3(p_,u1_,5’i),
A-?) (pR(Z)7u{%(Z)7sl) = z for )\3(p77U17,Si) <z< )\3(p+uu1+75i)7
As(p4,ury, Si)  for 2> Az(py,ui4, i),

W) = [ ”R(Z)\/ 5 Aot + 01 ( d <p1>) (o) do
1 —Ui- = P2y - \Pe )
P 3 dp

07(2) = A, (pR ()%,

Notice SE(z) = S; for SB(z) & —2Inpf(2) + In(370%(2)) + 1.

In order to justify the long-time asymptotic behavior of the solution [F'(¢,x, &), #(t, z)] to the Cauchy
problem on the VPB system to the profile [M[pR7uR7gR](I/t)(€), d)R(:c/t)], it is a usual way to deal with
the stability analysis of its smooth approximation [M[pr7ur7gr](t,x)(€), o (t, x)] in the framework of small
perturbations, where corresponding to , the smooth rarefaction wave [p",u",0"|(¢,z) and ¢"(¢,x)
with u" (¢, z) = [u](¢,2),0,0] are defined by

>‘3(pr(t7 ’JJ), u{(tv Z), S%) = w(t> 3’]),

X P (tx) 5 4 d 1
) —u= [0 Bt ot () 0 de .

0" (t,x) = SA:(p"(t,2))*/%,  ¢"(t,x) = p. (p7 (¢, ),

lim [pr’ uf, 07'](15’ (E) = [p:tv Ui+, Q:I:]a [P+7 UL+, 9+] € R3(p*7 U1—, 0*)7

z—+o0

(1.27)

with w = w(t, ) being the solution to the Burgers’ equation

dw + wo,w = 0,
def 1 1 def (129)
w(0,2) = wo(r) = 5(wy +w_) + 5(wy —w_)tanh(ex), w+ = A3(p+,u1+,5;).

Here € > 0 is a constant to be chosen later on.
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1.5. The main result. We first introduce some notations. Let M, = M. (§) = M{,_ 4, 0.](£) be a global
Maxwellian such that the constant state [ps, us, 0] with u, = [u14, 0, 0] satisfies

1 . .
7 sup  0"(t,w) <O, < inf 0"(t,w),
2 (t,x)ERL xR ( ) (t,z)eERL xR ( )

1.30
sup (|07 (6.2) — pul + [ (62) — ] + 167 () — 0]} <, (1.30)
(t,w)G]R+ xR
for a constant 1y > 0 which is not necessarily small. We say g € Lg <\/1v} (@) if \/Nf 5 € Lg. For

given T € (0, +oc], we define the solution space

0%0Ph(t,x,§)
M. ()

associated with the norm Ep(+) defined by

E(0.7) = {ntt..9) € C(0THL2(RXBY) for ol +]a <2},

. 8°9%h(t, z,€)|?
Er(h) = sup Z / |1\/I()|dxd§,
0SIST | 115 <o TRXR? *

where 0°0° = 5?08;)‘18?, 8? = 8?11 3?228533, and |a] = ag + aq, |B] = B1 + B2 + P3. For conveniences later

on, we also use the similar notation 9 97" = 0?03513511 5‘?22 (9?33 with || = ag+af and [B] = B + 85+ Bs.
The main result of the paper is stated as follows.

Theorem 1.1. Assume that [py,u14,0+] € R3(p—,u1—,0-), pr = pe(d+) with ¢px € (Ppm, Prr), and the
function p.(-) satisfies the assumption (A). Let 6, = |p+ — p—| + |ury —ui—| + |04 — 0_] be the wave
strength which is not necessarily small. There are constants eg > 0, 0 < o9 < 1/3 and Cy > 0, which
may depend on 0, and ng, such that if Fy(x,&) >0 and

2

Haaaﬁ (Fo(z,€) = Mpr ur 671 0.0) ) || 7o (12 L +e<ep,
e p (i) TET o

where € > 0 is the parameter appearing in (2.1)), then the Cauchy problem (L.1), (1.2), (L.3)), (1.4) of the
VPB system admits a unique global solution [F(t,x,&), #(t,x)] satisfying F(t,x,&) >0 and

sup ) ||3“35(F(tvl“vf)*M[pmune%z)(f))||ii<L§( )

t>0
= lal+|B]<2 M. (§)

, (1.32)
+sup > [0 ((t,2) — p (07 (1, 2)) || 10 < Coeg™.

20 1<z

Moreover, it holds that

sup sup{“F(t,x,{) - M[pR,uR,GR](x/t)(g)H

t—+oo zeR

N et x) = ot (pR<x/t>)l} =0 (133)
(o)

We remark that in , all the time derivatives are understood to be the limit as ¢ — 0% of those
terms after iteratively replacing all the time differentiations in terms of the equations of F'(¢,z,£) and
[p",u",07](t,z). Moreover, whenever ¢y > 0 is suitably small, also implies that there exists a
constant C' > 0 such that

> 0% [po(a) = p7(0,2), uo(x) — u” (0, 2), b () — 07 (0, 2)]||*

o <2

2
Lé

+ > Haaaﬁ(M[po<w>,uo<z>,00<mn(§)—M[pmur,eﬂ(o,z)(i))H@(Lg( )

|O‘|‘HB‘S2 \/T(i)
+ 0205 G (x,6)||” <Ce, (1.34)
|a+|zﬁ|§2 22(12(7atm)) 0

where Fo(z,£) = M) (2),u0(2),00 ()] (§) +Go(z, §) is the macro-micro decomposition of initial data Fp(z, &).
Note that ([1.34) will also be used in the proof of Theorem For completeness, the proof of (|1.34) is
given in the appendix.
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1.6. Literature. We first present the main motivations of studying the system (1.1} that we have pro-
posed at the beginning. In general, the motion of charged particles (e.g., electrons and ions) with slab
symmetry is governed by the following two-species system

1
O F; + £10,F; — Eaa;(baglﬂ = Q(F;, Fi) + Q(Fi, F),

1 (1.35)
atFe + glaer + m 8$¢851Fe = Q(Fea Fz) + Q(Fea Fe)7
coupling to
— 0% = / F; d¢ —/ F, d¢. (1.36)
R3 R3

Here F; .(t, z, §) are the number density functions for the ions and electrons respectively, and m; . are their
masses. The Boltzmann collision terms on the right are defined in terms of (1.7) with the relationship

(1.8) replaced by

f e 2my B _
¢ =g — - ulw
;L 2my _ .
€=+ (6~ £) - wlw,

taking in account different masses my,ms € {m;, me}. The study of system , has recently
attracted many attentions. Among them, we mention series of works by Guo [25] 24] 23] 26], including
the study of the more complex Vlasov-Maxwell-Boltzmann system and the case when the Boltzmann
operator is replaced by the more physical Landau collision operator for plasmas. In those works, a robust
energy method is developed to treat the global stability of global Maxwellians for the Cauchy problem
in perturbation regime. The key point is to construct the delicate temporal energy functional and
energy dissipation rate to control the nonlinear terms along the linearized dynamics. There exist many
substantial extensions basing on the Guo’s approach to further study the large time behavior of solutions
on torus or in the whole space, particularly the issue of rates of convergence to the global Maxwellians, for
instance, we would only mention Strain-Guo [53], Duan-Strain [12], Yang-Yu [61], Duan-Yang-Zhao [14],
Duan-Liu [I1], Wang [57], Xiao-Xiong-Zhao [568]. Recently, the spectral analysis is also carried out by
Li-Yang-Zhong [38] for the VPB system in the same spirit of the classical works by Ellis-Pinsky [I5] and
Ukai [55], see also Glassey-Strauss [16] for the early discussion on spectrum of a general kinetic evolution
operator and its application to the VPB system. We emphasize that the appearance of the self-consistent
force may be able to take an essential effect on the structure of systems under consideration and induce
additional analytical difficulties in the application of both the energy method and the spectrum method.

Whenever the initial data Fy(z, ) approaches distinct global Maxwellians at far fields, typically a phase
transition occurring at initial time, we may not expect that the solution to the Cauchy problem on the
Boltzmann equation converges to a constant equilibrium state in large time. Instead, the solution usually
tends time-asymptotically toward the wave patterns of the Boltzmann equation, such as shock wave (cf.,
Caflisch-Nicolaenko [2], Liu-Yu [42]43], Yu [67]), rarefaction wave (cf., Liu-Yang-Yu-Zhao [41], Xin-Yang-
Yu [59]), contact discontinuity (cf., Huang-Yang [35], Huang-Xin-Yang [34]), and their superposition. As
far as either the rarefaction wave or the contact wave is concerned, the wave profile is in the form of a
local Maxwellian with its macroscopic quantities formally determined by the conservation laws with the
same far-field data. To treat the stability of such nontrivial time-asymptotic local Maxwellian, another
kind of energy method is initiated by Liu-Yu [42], developed by Liu-Yang-Yu [40], and later improved by
Yang-Zhao [64]. Here, the main idea of the approach is to make use of the macro-micro decomposition
to rewrite the nonlinear kinetic Boltzmann equation as the form of the compressible Navier-Stokes-
type system, so that the analysis in the context of the viscous conservation laws can be applied. Note that
the kinetic part G(¢t,z,€) is always dissipative due to the so-called H-theorem. For applications of the
approach to the VPB system, see Yang-Yu-Zhao [62] and Yang-Zhao [63]. At this moment we recall that
the nonlinear stability of one-dimensional wave patterns regarding the classical fluid dynamic equations
has been well established, for instance, Goodman [I9], Matsumura-Nishihara [44], 45, 46], Liu-Xin [39],
Huang-Xin-Yang [34], see also the textbooks [8] and [51] for the general theory.

There also exists a huge number of papers to apply the Liu-Yang-Yu’s approach to study the fluid
dynamic limit of the nonlinear Boltzmann equation as the Knudsen number Kn which is proportional to
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the mean free path goes to zero. In this direction, we mention the previous classical works by Nishida
[49], Caflisch [I], Ukai-Asano [56]. Recently, Huang-Wang-Wang-Yang [33] has succeeded in justifying
the convergence of the Boltzmann equation to the compressible Euler system as Kn — 07 in the setting
of a Riemann solution that contains the generic superposition of shock, rarefaction wave, and contact
discontinuity to the full compressible Euler system; see also some previous relative works by Yu [66],
Huang-Wang-Yang [30] 3T, B2], and Xin-Zeng [60] and its improvement Li [37]. On the other hand, Guo
[21] also developed an energy method to deal with the diffusive limit of the Boltzmann equation, that is
the limit to the incompressible Navier-Stokes equations as Kn — 0. Interested readers may refer further
to the book chapter by Golse [I7] and the book by Saint-Raymond [50] for the detailed representations
of the topic mainly in terms of the weak compactness method.

Even though there have been extensive studies of the time-asymptotics to the wave patterns for the
Boltzmann equation and the relative hydrodynamical limits as Kn — 0T, it seems that few results are
devoted to the same issue in the case of appearance of a self-consistent force, for instance, the Vlasov-type
system , . One of the main mathematical difficulties comes from the effect of the self-consistent
force on the coupling system. We observe that the macroscopic system is in the form of the compressible
FEuler-Poisson system up to the zero-order and the compressible Navier-Stokes-Poisson system up to the
first-order. Here we should mention the work by Guo-Jang [27] for the study of the VPB system describing
the dynamics of an electron gas in a constant ion background. By using the L2-L>° method introduced
n [22], they prove that any solution of the VPB system near a smooth local Maxwellian with a small
irrotational velocity converges global in time to the corresponding solution to the Euler-Poisson system,
as Kn — 0.

Back to the fluid level, Duan-Yang [13] recently proved the stability of rarefaction wave and boundary
layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. We point out that due to
the techniques of the proof, it was assumed in [13] that all physical parameters in the model must be
unit, particularly m; = m. and T; = T,, which is obviously unrealistic since ions and electrons generally
have different masses and temperatures. One key point used in [I3] is that the large-time behavior of the
electric potential is trivial and hence the two fluids indeed have the same asymptotic profiles which are
constructed from the Navier-Stokes equations without any force instead of the quasineutral system.

Motivated by [13], we studied in [10] the time-asymptotic stability of rarefaction waves for the isentropic
compressible two-fluid Navier-Stokes-Poisson system or the corresponding one-fluid system for ions under
the Boltzmann relation. One of important improvements is that all physical constants appearing in the
model can be taken in a general way, and the large-time profile of the electric potential is constructed on
the basis of the quasineutral assumption. Compared to the classical Navier-Stokes system without any
force, the main difficulty in the proof for the Navier-Stokes-Poisson system is to treat the estimates on
those terms related to the potential function ¢. Since the large-time behavior of ¢ has a slow time-decay
rate and the strength of rarefaction waves is not necessarily small, it is quite nontrivial to estimate the
coupling term d,¢ in the momentum equation as in (L.17). The key point to overcome the difficulty is to
use the good dissipative property from the Poisson equation. In the case of one-fluid, the technique that
we used is to expand p.(¢) around the asymptotic profile up to the third-order and then make use of some
cancelation property in the energy estimate. In the two-fluid case, the situation is more complicated since
the dissipation of the system becomes much weaker than that in the case of one-fluid ions. We found that
the trouble term turns out to be controlled by taking the difference of two momentum equations with
different weights so as to balance the different masses of fluids, which is essentially due to the symmetry
of the two-fluid model.

Therefore, we expect to combine the techniques employed in [10] at the fluid level with the developed
energy method at the kinetic level to deal with the stability of rarefaction waves of the VPB system
, . In order to figure out the most technical part of the analysis, for brevity we only consider
in the paper the motion of one-species VPB system for ions under the generalized Boltzmann
relation satisfying the assumption (A). Here, we remark that the Boltzmann relation p. = p.(¢) has
been extensively used in the mathematical study of both the fluid dynamic equations, for instance, Guo-
Pausader [28], Suzuki [54], Nishibata-Ohnawa-Suzuki [48], and the kinetic Vlasov-type equations, for
instance, Han-Kwan [29], Charles-Després-Perthame-Sentis [6].

Several closely relative problems could arise from the current work, and we would list some of them
for the future considerations. First of all, it is of course an interesting problem to justify the fluid
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dynamic limit of the VPB system , or the modelling system to the two-fluid Euler-
Poisson system or the one-fluid Euler-Poisson system for ions, respectively. The setting of function
spaces associated with solutions to the fluid dynamic equations can be different, for instance, as used
in [49, 1, [66], B ©60], analytical or smooth solutions, or solutions containing a single wave pattern. In
the mean time, motivated by [I3] and [54], we point out that it should be an even more interesting
and challenging problem to study the proposed model on the half space, which is related to the
justification of the kinetic Bohm criterion (cf. [7]). After all, in the context of plasma, collisions between
particles are usually described by the Boltzmann operator for long-range potentials or more physically by
the classical Landau operator for the Coulomb potential taking into account the grazing effect of plasma.
Thus, it is a problem to extend the current result to those interesting cases.

1.7. Key points of the proof. In what follows we simply outline a few key points of the proof of
Theorem u which are distinct to some extent with the previous work Liu-Yang-Yu-Zhao [4I] concerning
the stability of the rarefaction wave for the Boltzmann equation without any force:

e We work in the Eulerian coordinate instead of the Lagrangian coordinate. It is not only because
it is more convenient to treat the Poisson equation and the coupling term 0,¢0g, F' in the Eulerian
coordinate, but also it seems necessary if one would consider the same issue for the two species
VPB model . Note that the Eulerian coordinate has been also used in [10] to deal with the
Navier-Stokes-Poisson system.

e We choose an appropriate entropy functional to treat the zero-order energy estimate. The relative
entropy functional takes the form of

n(v,u,0;v",u",0") = %9”@ (%) + %|u —u"? 407D <:7> , (1.37)
where ®(7) =7 —In7 -1, " = [u],0,0], and v = 1/p, v" = 1/p". The form is indeed consistent
with the one in the proof of the fluid dynamic limit of the Boltzmann equation to the rarefaction
wave as Kn — 07, for instance [60]. We recall that the quasineutral rarefaction wave is defined
in (T.28), where due to the assumption (A), the induced pressure P?(-) makes no essential effect
on the energy estimates, see for instance.

e We carry out the energy estimates on the inner product term

/ B lp(ur — ub))(6 — &) d,
R

through the Poisson equation after expanding the electron density function p.(¢) to the third-
order. The main reason for this technique is that as mentioned before, the potential profile ¢"
has a slow time-decay. On the other hand, those contributions from the first-order and second
expansions enjoy some cancelation property, see the estimate on .

o We have to introduce the velocity derivatives in the solution space to take care the forcing term
0:$0¢, G which dose not appear in [41]. The energy method for this part is due to [25]. To
control the terms involving 0,¢0¢, G, one has to split it into two parts: 81¢851(~} and 9,00, G,
and then estimate each part respectively; this is different from the works [25] [62] 63, [65].

e The assumptions (As) and (Asz) assure that the delicate term

1/~ do” 1/~
3 (Pt o) - 5 (#puien0a). (1.38)

coming from ({3.35]), is always non-positive, and we point out that the classical Boltzmann relation

pe(0) = ez looks critical in the sense that it can make the above expression vanish; this
phenomenon has been also observed in our previous work [10].

e The energy method around the local Maxwellian that we develop in the paper is a little different
from the standard one used in the previous works, for instance [40} 411, [64]. We have to make some
extra efforts to take care the highest order energy of the fluid component and the dissipation of
G and G; see Section for the detailed discussion.

The rest of the paper is arranged as follows. In Section 2, we present the construction of the quasineu-
tral rarefaction waves as well as their properties. In the main part Section 3, we give the priori estimates
on both the fluid part and the kinetic part. The proof of the local existence is sketched in Section 4, and
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the proof of Theorem is therefore concluded in Section 5. In the Appendix, we give full details that
are left in the proofs of the previous sections for completeness of the paper.

Notations. Throughout this paper, C' denotes some generic positive (generally large) constant and A
denotes some generic positive (generally small) constant, where both C' and A may take different values
in different places. D < E means that there is a generic constant C' > 0 such that D < CE. D ~ FE
means D S Fand ESD. |- |lr (1 <p < 400) stands for the L2 —norm. Sometimes, for convenience,
we use | - || to denote L3 —norm, and use (-,-) to denote the inner product in L2 or L? .. We also use
H* (k > 0) to denote the usual Sobolev space with respect to 2 variable. If each component of o’ is not
greater than that of «, we denote the condition by o’ < a. We also define o/ < aif o/ < v and |&/| < ||
For o/ < «, we also use C'%, to denote the usual binomial coeflicient. The same notations also apply to

B and 3.

2. RAREFACTION WAVES OF THE QUASINEUTRAL EULER SYSTEM
It is well-known that the Riemann problem on the Burgers’ equation
wy + ww, = 0,

(e 0) = w0 = {

w_, x <0,
wy, >0,

for two constants w_ < w,, admits a continuous weak solution wft(x/t) connecting w_ and w., in the
form of

wo, F<w_,
wie/t) =% w- <% <uy,

Wy %>w+.

The solution to the Burgers’ equation becomes smooth whenever the Riemann data is replaced by a
smooth increasing function. Here we refer to the construction introduced in [44] with respect to initial
data whose gradient is proportional to a parameter € > 0. In fact, for given constants w_ < w,y, the
rarefaction wave wf(x/t) can be approximated by a smooth function w(t, ) satisfying

Ow + woy,w = 0,
1 1 (2.1)

w(0,z) = wo(z) = §(w+ +w_)+ §(w+ — w_) tanh(ex).

We now list some basic properties for the smooth rarefaction wave w(z,t) as follows.

Lemma 2.1. Let § = wy —w_ > 0 be the wave strength. Then the problem has a unique smooth
solution w(t,x), satisfying

(1) wo <w(t,z) <wg, Opw >0 for allz € R and t > 0.

(13) For any 1 < p < +o0, there exists a constant C,, such that for t > 0,

|0sw]Lr < Cpmin {561—1/p’51/pt—1+1/p} ,

189w Lo < C,pmin {Sejfl/p,ejflfl/pfl} L >

e . R _
(7i1) t_lg?oogsclelgw(t,x) w (x/t)‘ =0.

It is also well-known that for the full Euler system , the i-th (¢ = 1,3) rarefaction wave can be
constructed along the corresponding rarefaction wave curve R; when the i-th characteristics satisfies the
inviscid Burgers’ equation with increasing data. We should point out that the existence of both (T.27)
and can be directly verified due to the property of P?(p). Recall (1.25) and (T.26). For
two constant states [p+, u1+,0+] with [py,uiy,04] € Rs(p—,u1—,0_), we set wy = A3(p+,u1+,S;). One
can see that [p",ul,0"] = [p", u],0"](t,z) defined in and (1.29)) is the smooth approximation of
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[pT, uf, 0F](z/t) constructed by (1.27). We also emphasize that [p", uf] satisfies the isentropic Euler-type
equations

Oip" + 0u(puy) = 0,

0, [PT + P®(p" (2.2)
Opuy + ujOyut + [ S (e")] =0,
with
P = A, (2.3)
and 0" is determined by
9" = gAi(pT)2/3-

With Lemma [2.3] in hand, one has the corresponding results concerning the smooth rarefaction wave
[, ut, 0] given by (T:25) and (1:29).

Lemma 2.2. [t holds that
(1) Opuli(t,z) >0 and p— < p"(t,x) < py, u1— < uf(t,z) < uiy forx € R and t > 0.
(#3) For any 1 < p < +o0, there exists a constant Cp, such that fort > 0,

102 0" 3,671l < Cpmin {3,e! =117, 6}/re =141/ |
|02 [pr,u{,ﬁr]HLD < Cpmin {57463-71/”,6%1*1/%*1} , J>2.
(#47) lim sup Hpr,u’{,ﬂr] (t,z) — [p%, uft, 0% (x/t)| =0.

t—+4o00 zER

Proof. We prove only (i7) for brevity. Recalling (1.28)) and (|1.25), one has

w = + \/ OuP) (07, S:) + o (jp@ﬁ)) ).

" 5 4 d 1
up =u - +/ \/AiQ3 +o? ((pe )) (e)do,
p— 3 dp

from which as well as (|1.28), it follows that

Orw

_ 2P)(p,80)+ (45 () (o) o (5 (02 1)) (o7)
§Ai T *% + (p" —1(d 1 ) 4 (ap dp ip
VB 0 () () + BRI

Ozp" =

o, =\/ S+ 07 (0 )

00" =A;(p") 3 0,p"

On the other hand, by (Aj3), we see that
d, o . . (d
e+ (

2
2 ) 6 o

This together with the assumption (A) and the definition P(p, S;) = ke p/3 implies that the coefficient
function of 9, w on the right hand side of the first equation of (2.4]) is smooth in p" on the interval [p_, p4]
with p_ > 0. Thus, we can obtain

Dup" || 1p < Cl|0gw| 1 < Cpmin {6, ~1/P §L/Pg=141/p 4
L L D ,
and by an induction argument,
10207 [| ,» < Cpmin {5r6j_1/p,ej_1_1/pt_1} . >

From the second and third equations of (2.4), the similar ones are true for u] and 6”. Therefore (i7)
holds. This completes the proof of Lemma O
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3. THE A PRIORI ESTIMATES

In this section, we will deduce the a priori energy estimates for the Cauchy problem (1.1)), (1.2), (1.3),
(1.4), (1.5)). First of all, let us define the macroscopic perturbation

|:ﬁ7 17, 57 5:| (t,.’E) = [p - pr’ u— ur’ 0 - 97"’ ¢ - ¢T] (t,if),
as well as
S=5-25;,

where we recall that [p", u", 6", ¢"] solving (T.21) is defined in (L.28) and (L.29), and S is given due to
(1.20) by

§=2nl 4wl

3 pr or
Then [57 i, 0, (ﬂ (t,x) satisfies
Oup + Oz (pur) — Oz(p"ui) =0, (3.1)
~ O, P P ~ 3 1
Optty + u10,u1 — uj0ul + ——— +0:0= -0, (1(0)0pur) — — / §%8z@ dg, (3.2)
P p P Jrs
R3

— Pr PTzT
0,0 + u10,0 — 0,07 + imAf zﬁl

1o 3o+ S Lo L[ (€2,
= 2 5000+ 200 + 3o Suo0 [ (B e)aned o

- P
_a;?(g = ﬁ+ pe(d)r) - pe((b) + aid)r’ (35)
[ﬁ;a,é}(o,ag ::[ﬁb,ao,ég}(x)::[po(x)-;f(o,x),uo(x)-— w0, 2), 8o (x) — 67(0,2)] , (3.6)
as well as
0,5 + 11,8 = =0, (k(0)8,0) + —= 1(6) (0 f: )@
t UIO0zO = p9 z R T pe,u Ul 2 uz
<5F ug>ga@% (3.7)
,00 - 2 1Yz ) .

where P" is defined as and O is given by . We note that w; = u; for i = 2,3 and g(t,x) is
determined by the elliptic equation under the boundary condition that a(t, z) = 0asx — too. We
also point out that the structural identity will be of extremal importance for the later proof.

To the end we use M; to denote M, or M for brevity. Since

B

is not integrable with respect to the time variable, it is necessary to consider the following perturbation

2
Lw,&

G=G-G,

where

G_3q}ﬁ%ﬂ&M(i$%+§£M@m”}_ (3.8)
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To prove Theorem the key point is to deduce the a priori energy estimates on the macroscopic

part [ﬁ, u, 5, 5} and the microscopic parts G and G based on the following a priori assumption

N1 = swp [|[75.8) @ + sup Z 10 o, 1,61 (8)]”

0<t<T 0<t<T |

~ 2
3 2 G(t,.’l,‘,g)
+ sup Z / dedﬁ-ﬁ- sup/ Hdmd§
RxR3 RxR3

ost<T | oty M., 0<t<T M., (3.9)

~ 2
9°0°G(t, x, g)‘

+ sup Z / M dxdé 4+ € < e%,
0st<T el 131 <2 RxR? *
BI>1

for an arbitrary positive time 7. Here we note that the above bound for N(T') yields the following
consequences. First, we have

oM 2 Gt 2
o<i<T 5=, SRR M o<i<T £, SR M
9*MO*G(t O*F(t 2
<2 sup / (7$7§)dxd§‘+ sup Z/ Mdmdi
ose<t £ [Jrxrs M ose<T S~ Jrxws M.
, 4 1/2 G (+ 2 1/2
<C sup Z (/ o [u,@}(t)‘ dx) (/ |(’x’§)|daﬁd£>
0<t<T R RxR3 M
o’ |=T]al=2 (3.10)
+ sup / [0°F(t,z, O] dxdé
0<t<T S, Jrx M.
’ 2 0°G(t 2
<Ce Z sup ||0¢ [u,@](t)H +C’eoz sup/ Mdmdﬁ
L ost<T —_ 0<t<T JRxR3 M
<le|<2 || =2
0P (t,z, &)
+ su —0 dxd€.
OSthlaz_:z/RxRi‘ M., £
Moreover,
sup {10 [p, u, 0)(1)|*
a2 OSIST
<C su Z/ Mdmdf—i—C su )aa’[ u, 0] (t))2 i
o O§t£T|a\:2 RXR3 M OSthm’\:l Pt (3.11)
DM (t 2
<C sup Z/ HT’:U’g)'dxdg—i—Ceg sup Z 10%[p, u, 0](£)|* .
OSIST jaj=g TIXR 1<]al<2
Therefore (3.11) together with (3.10]) imply
o 0°G(t,z, &)
> s @+ s Y[ PSR g < o (3.12)
a2 OSIST o<t<T £, SR .
One can also see that (3.9) and (3.12)) lead to the following a priori estimate
-~ 2
swp 2|60 + D ool <€ sup ST EO +Ce< O (3.13)

0st<T 1<]al<2 0<t<T | 1<2

In fact (3.13) follows from the standard elliptic estimates for the Poisson equation (3.5)).
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Remark 3.1. Letting € be small enough, by the a priori assumption (3.9) and in view of (1.30), one
sees that

1 .

= sup 0(t,z) <0, < inf 0(t,x),
(t,2)€[0,T] xR ( ) (t,z)€[0,TTxR ( )

sup p(t,) — pul + lu(t, 2) — wa] + [6(¢,2) — 0] < 10,
(t,x)€[0,T]xR

where ng is the constant given in (1.30). We point out that (3.14) will be frequently used in the later
energy estimates.

(3.14)

The subsequent two subsections are devoted to deducing the desired energy type estimates based on
the a priori assumption (3.9) and the estimates on [p",u7, "] in Lemma[2.2] The first one is concentrated
on the energy estimates on the macroscopic part.

3.1. Energy estimates on the macroscopic part. In this subsection, we consider the energy estimates

on {ﬁ, i, 0, a] (t,z). The main result is given as follows.

Proposition 3.1. Assume that all the conditions in Theorem hold, and for T > 0, © is given by
(1.15) with G € g([O,T]). Let [ﬁ, E&(b} (t,x) be a smooth solution to the Cauchy problem (3.1)), (3.2),
(13-3), (3.4), (3.5) and (3.6) on 0 < t < T and satisfy (3.9). Then there exist constants 0 < op < 1/3,

Co > 1, (1 > 1, and an energy functional & (p,w, 0, ) with

aG.a8.0~ X { o [pa.d o] +]

lal<1

H1

~ 2
o300}
such that the following energy estimate holds

d ~ ~ 7 d o (03
61(p.71,0,0) — ro— |a|z_1 (01, 0%0,p)

2
9%¢(1)

[

ol « ¥ rpadof s 5

1<[al<2 1<]al<2
15.0,0,] S (1) L+ €] o g 2dad
P, U, 7¢ (t) +e ( +t) + Z RxR T| | X E
<R3

1<[al<2

~ 12
106, 0° G2 (1+1¢) |G|
+e / Pa 2 dwde + ¢ / — L L dads,
O(}; RxR3 M * Jrxps M;

(3.15)
<A 41)~¢

where ko is a small positive constant.

Proof. We divide it by the following three steps.

Step 1. Zero-order energy estimates. It is known (cf. [40], for instance) that the zero-order energy

estimates for the Navier-Stokes type system (3.1)), (3.2), (3.3) and (3.4) can not be directly derived by
the usual L? energy method. To overcome this difficulty, one way is to find and make use of a suitable

entropy and entropy-flux. For this, let us introduce an entropy

e~ 1 —r ~
U:W(Pvuvo):9+§|u|2+PU*QTS»

where v = v —v" = % . % = _p:;‘ and P" = P(v",S") = keS" (v")~5/3 = P(p",S"). Notice that the
form of the relative entropy is consistent with (1.37)), and the reason why we use the above equivalent
form is that it seems more convenient for us to derive the consequent equations of 7. One can see that
there is a constant C7 > 0 such that
1 _ - o~ _ -
C—{Z)Q+|u|2+92} <7(p,1,0) < ¢ {ﬁ2+|u|2+92}, (3.16)
1

according to the property of the pressure function P and the a priori assumption (3.9).
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In order to use 7(p, u, 5), we rewrite (3.1]), (3.2), (3.3), (3.4) and (3.7) respectively as

0:0 — (VOzu1 — V" Opul) + u10,v — ujdv" =0, (3.17)
Aytiy + u1dpur — w0 + V0, P — v 0, P + 8,0 = 300, ((0)0yuy) — v/ £20,0d¢,  (3.18)
R3

R3

0,0 + 110,60 — u0,0" + vPOuy — v P Opuf

3
=00, (K v uy)? v )2 —wv @—tp
= 0, (500.) + 3oO) 0, + S en@0:) —v [ (B €] w0, @20)

and

0

2
7% /ﬂ@ ("’;' —u- 5> £19,0 de. (3.21)

3
8, + 10,5 = ga, (1(0)0.0) + 3% () (Dpur)® + %u(@)(@zui)Q
=2

Here P = P(v,S) = keSv="/3 = P(p, S). In view of (3.17), (3.18), (3.19), (3.20), (3.21) and (3.5), by a
straightforward calculation, it follows that

O(pn) + Ox(puan)) = pOen) + pu10:1
=— (ﬁ —~P" —0,P(w",S")o —dsP(v", Sr)g) Opti] — pu20,uy — pliy Dpp

., S
— 8, [al (P- PT)] + :?8vrﬁr8mu{ 4 pi P 0,07 S — p 0P 0pul§ — poP 0l S

“Mza P ou” 96 0)0,.0 39 )(Opur)? + 0 )0,
= 200 P Ogul + 505 (5(0)0:0) + 351(60) (01 ) 25 2 0;)? (3.22)
— 7/ |£|2 f 518 @d§—|—3u18 8 Ul i a U)

0 Jps \ 2 '

3
~u [ @oed-> [ aso0d
w [ oode-3 i [ acood

where we have also used the fact that 9, P = 0, P(v", S7), P = dsP(v",8"), S” = S; = constant, and
9,0" = —P 90"
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Then (3.22) and (3.19) imply that

d D _p" D(aT QTN D, T QT\Q T r\—1~ r
dt/(ﬂ’?)(t@)dfc'ﬁ‘/}g <P—P — 0y P(v",S")v — OsP(v", S )S) 3Iu1dx+/R(v ) ut ol da

I

/ w(0) (0,u1) d;v+Z/ ) (0x;) dx—k/RK(;)(axﬂﬂv)de

/pu18¢dx+3/ () (Ozu1) dm+2/ 8u, % da
\_\/_/
Iz Is
) _ e )
/R /R 310, O0rd ~ Z / / 16:75:0,Oddndt — / /R 3 ( we) oot
Iy
N . ] . 00,0
+3/Rulaw (u(e>awu1)da:+/waw (5(0)0,0 )dx+/RH(9) -
I

~ "2 —_ —_ ~
- / PP 0yl Sd — / L0, P O,utde + / pi P 9,0" Sdw
R RV R

Ig 17
~ 73
,/ﬁﬁpraxUZdeJr/ 61,113 "Opuldr — /ﬁd?@ﬂ/{dm
R RV

Is

We now turn to compute I; (1 <1 < 8) term by term. The procedure of the proof can be outlined as
follows. Since Ig, I7 and Is depend on I; and the third term on the left hand side of (3.23)), we first
estimate Iy, Ig, I7 and Ig by putting them together and taking full advantage of the non-negativity of I;.
Then we compute I5, which needs to be treated carefully too. The estimations for I3, I, and I5 will be
much easier and thus left to the end of this step.

Lemma 3.1.

~712
/ (") @B Opulde + I — I — I — Is > A / |[5.,5]| dyuida. (3.24)
R R

Proof. Noticing that P(v,S) = kv=/3¢S and S” = S; = constant, we have

s
- dr

_1 2 T\ 2 d>*P roQr\~Q 250, r Qr\ Q2 T / ~3 Q3
I = /{a P(v", §7)" + 25— (v", )05 + O5P(v", 57)S 8zu1da?+0(1)RHv7S}

_a, / {20 By g(vr>—§a§+;w)—??}axu{dxw(l)/ .5
R

I(] 19

T
utdr .

By a simple calculation, we obtain

16—A/{ *% — (")~ 358 }8 ujde.

On the other hand, by virtue of (1.28)), one can see that

)2
R G A,

\/gAi(vT)g +or (di( )) (1/07)
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from which, it follows that

. )2
= /R i POyl ) da
3o ()
=— / WP o8 v d
: Y30+ () e
I1o
- / pin P 0,ut S (v)° dz
‘ ¢ A+ (o)) (1)
Iy

Consequently,

~ T
/ (") Y20l dr + Io — Ig — Lip = / [5, i, s} M [’5, i, s] Oy’ de, (3.25)
R

R

with the real symmetric matrix M given by

2A;(0)7F —RA(v)E 0
LA(y™)" 3 14015
* 2 Z(U) 3 _ 4 i
\/§Ai(vr)§+vr(%(p§ ))(1/v7)
0 * ()~

It is straightforward to check that M is positive-definite, since its all leading principal minors are strictly
positive, i.e.

Ay >0,
Agy = %A?(UT)_% >0,
Ags = éA?(vT)‘? - %A? =y (UT)_f — > 0.
SNt 4o () (1/0)
Recalling Sobolev’s inequality,
Ifllze < V2IFIM210. f1? for any f e HY, (3.26)

we see that Ig can be controlled by
2

)

CEO

o i3]

according to (3.9).
Similarly, for Ig and I17, one has

[s| + [I11] S Aiﬁo/ {(Ur)f%ffz + (v’")’%g2 + ﬂf} Oputde.
R

Combing the above estimates on Iy, Is, Ir, Is, I, I1o and I;1, we thus arrive at (3.24]). The proof of
Lemma [3:1] is complete. O

Let us now consider the most delicate term Is. The key technique to handle I is to use the good
dissipative property of the Poisson equation by expanding p.(¢) around the asymptotic profile up to
the third-order. Only in this way, can we observe some new cancelations and obtain the higher order
nonlinear terms.
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Lemma 3.2.
bt N5 (0:0.0:0) + 5 (3.0.60) + 5 (3.02(6)
2 dt 12 ¥y Uz 2 s Pe 3 s Pe
1 2 "er dqsr T / T T
_5 <¢ ) (pe(¢ )dprp _pe(¢ )) axul)‘

~1112
0, [pin 9] |+ Cot+ 072w

S -+ eoCy + )

12
Oy (14 1)74/3 H¢H FeC,(1+1)72 (3.27)
Proof. In light of (3.1)) and (3.5) and by integration by parts, one has

I, = /R@z(Pm)adx = (57 8ta§$2) + (5, O (pe(o™) — Pe(¢))) + (5’ 3t5§¢r> B (57 895(,'0“%)) .

(3.28)
Iz, Iz 2
We now turn to compute the right hand side of (3.28]) term by term. It is straightforward to see that
~ ~ 1d -~ -
2 —_— e — —
(30:020) = =5 = (0:6.0:9) .

For the third term on the right hand side of (3.28)), by integration by parts and employing Lemma
and Cauchy-Schwarz’s inequality with 0 < n < 1, we obtain

’(5, &s@id)")‘ <n ‘ 02 ‘2 + Cpe(1+1)72

FEstimates on Iy 1. For I3 1, we first get from the Taylor’s formula with an integral remainder that

- ?(0— )2
}pg(¢r)¢2 _ Mp’!(g)d@. (3.29)

pe(#") = pe(6) = =0l (¢")6 — 5 . 2

J1
Then it follows that

Iy = — (GE’ O (P/e(fﬁr)(g)) - % (57 O (Pg(W)(p)) + (57 5tJ1) . (3-30)

To compute the right hand side of (3.30)), we first consider ((E, BtJl). Note that

~ @ 1~ ¢
B~ @ 0= [ (- oo+ 5700 [ oo
" "
~ 099" + 0,87 = 006" + 08" + 09" d". (3.31)
In addition, it follows from that
~ (2026,0:6) + (p(¢")016,0:0)
-~ e T e e 1 T Y e e T e
= (07.0:6) = (91 (61(67) 6,946 ) — 5 (01 (61! (67)8?) . 0u0) + (901, 016) + (240267, 049
which implies
12 2 12
|Veenad| +||aa.d| <clo.mamll® + ca+n=2|d| +ca+n (332
according to , , , Lemma and Cauchy-Schwarz’s inequality.
(3-32)

With (3.31)) and in hand, we get from Lemma and Holder’s inequality as well as the Cauchy-
Schwarz inequality with 0 < n < 1 that

[(.000)| <0 |3+ [[90ulor

C e nladl? + O (3 auler )

Oy [ﬁ, al,ﬂ H2 + (1 41)74/3 H%HQ +e(1+1)72

Smax{eCp,n} )
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where Sobolev’s inequality (3.26]) has been also used to obtain the bounds:

o e 2 e e
and
A at) | S AP e e R
o o s R s el 2
il + 4% s -

21

(3.33)

(3.34)

As to the first two terms on the right hand side of ([3.30) m, invoking the first equation of (2.2)), we obtain

(3.0 (16710 ) = — 5 o (F0167) — 5 (7.0
do"

= %df <¢2a e(ébr)) <$27PZ(¢T)dpr Oz (p"uj
J2
and
5 (5.0 (o1)3)) == 3 5 (.0106) - é (8%, a0t (") )
— - 3ai (o) + g (Fren

0. ).

J3

Here J3 can be treated as in (3.33). It is worthwhile pointing out that J; can not be directly controlled
for the time being, and its estimate should be postponed to the subsequent estimates on I3 » by an exact

cancellation with other terms.

Estimates on I 5. As to I, we have from that
~ (3.0.0)) = (5.0 ) — (6, 7015
= (6, (820 + 02 (po(67) = po(6)) + 0267) i)
+ (6. (926 + pel6) = pel@) + 0207 Oyu7)

= 5 (005 (2:6)") = (069807 5) + (3.0 (re0r) = pe(0) 1)

J4 Js
+ (@ (pe@") = pel@)) D1y,

Je

where the last identity holds true due to the following identities:
o~ ~ o~ 1 A 2
(8 020u1) + (8. 0200.u7) = 5 (aqu (2.9) ) :

(3.027u1) + (6,0267 0,7 ) = — (26,0267 )
Notice that |J4| is dominated by

and

~112
am‘ +Ce(1+1)72,

according to the Cauchy-Schwarz inequality with 0 < 7 < 1 and Lemma

(77-1-06)‘
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We now use to expand Js and Jg respectively as
— (6.00 (00003) ut) — 3 (.00 ((6)6) ug) + (5. 82115
< (¢T) ¢r Ozp U1> + L (¢ p.(¢")0xu )

2
(3.0 ‘” ) + 5 (3% 6)000) + (B0,

D= N

and
Js == (.0 (6"00.5) = 5 (3,600 ) + (5, Rsat).

Owing to these, we find

_ 1 2 1nigr d¢r T T 1 T T
Jo+ J5 + Jg =3 ( Pe(9 )dp’“p aw“’l) 5 (¢ A )aa:ul)
J7
+ (B.00000) + (3. 10.0) —5 (Pt 00 Sn0uprur ) = ¢ (300,05,
, U1y y J1Ug g 6 1 6 s Fe 1
Js Jo
(3.35)
Due to the assumptions (Az), (As), and d,u} > 0, one can see that
1 pL(¢")pe(9") — [P (¢T)]2>
J —— 26$ r’ e e S O
T2 <¢ “ PL(@")

For Jg, from (3.33)), it follows that

sl = | (026, ) 0.6

< C’eg

’2
Finally, Jg can be handled in the same way as in (3.34).

Recalling (3.28)) and collecting all estimates above, we thereby complete the estimate on the term Iy
in the way of (3.27)). The proof of Lemma is complete. O

Now we turn to estimate I5, Iy and I5. Noticing that p(6) is a smooth function of 8, we see by using
Cauchy-Schwarz’s inequality with 7, Lemma (3.26) and (3.9)) that for 1 < oy < 5/3,

1.l <C ], _ Nzl + ¢ |8, 0w

~ 1/2‘ 1/2‘

0.8 " 10z + ¢ B o8] sz

7 ~112
<ca],,, 1.+

~|12 ~|12
+ Co |7 0217+

2 2 7— T (3.36)
] ~12 Py ] rio1+1 r # r #
<c||al] ., 1o.a® +n]j0.]| + . 7] Nowurim + Haxulum ||azu1||L1
~ ~12 _
<c|fal] ., 1o.a +nj.9] +c, \ H 0. ulualﬂ
(2 ~]|2 21— 301
<Ceolluiil* +n]|0.8]| + 1+ T L)
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Recalling the definition (1.15]), by integration by parts and utilizing Lemma Corollary Cauchy-

Schwarz’s inequality and Sobolev’s inequality, one has

|I,| <C, / dmd§+n2/ €[*M |0, u1|2dxd§+77/
> f_
3 | o, <0u>

Oy [a 5} H2 +C(1+1)2 H [ﬂ, 5} H2 +0,

dadg + n;/Rst 13

<(n+€o) ’

lal]=1

0.6/, (G + G)|?
M

+
RxR3

Oy [a 5} H2 +C(1+1)2 H [ﬂ, 5} H2 +0,

<(n+e€o) ’

co [ (L) (L

el / 026210, [u”, 07 Pdrde
RxR3

lal=
G
M;

> fow
d:cd&—i—Cn/R(/‘l—Hgl ‘G‘Zé‘ ( ,

(L+ €)1 G2
2 fow e

d§> 0+ Cy| 0,03 /
RxR

2

|€ dzxd€

7
g 2

(1 +[¢)]0G?
M

dxdg¢

dzdg

\Gl2

i€) s

(2

1112 2 112
<(n+eo)||0x [@0] |+ Cueo 029, + 1+ 072 ||[@ 8] ||+ Cue1 4+ 0)2
2
0, G? / (1+ [¢)]0"GJ? (1 +1¢)) |G
+ Cpe / dzdé + C,, 2 dxdf + Ce ———————dzd¢.
" faxge M Z|—:1 RxR3 M " Jaxgs M;
Here the following crucial estimate has been used:
/(/ <1+|£|>|G|2d§) (/ Gng)nd/ /<”|f|>\é lzdg / la-a] ge | da
R R3 M’L R3 Mz - R R3 Ml R3 M
(+ e &l
<ep ————dxaf + u” T
/ N dxd€ C/\a QT]\ d
RxR3 i
(+eh|af
Seo/ ——————dxd¢ + Ce(1 + )72
RxR3 M;
(3.37)

Moreover, we also have used the formula

9°0° { Lyt h} = Lyt (079°h)

la|+]B8]-1
- Y Y ahiai{e(oo (L
J=0 |/ |+|8|=j

+Q (970" M, 00" (L

n), 0097~ M)

;,}h)) } (3.38)
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as well as Corollary and Lemma [6.1] to deduce that

5 2
106, GI? (1+1¢) |Lado” {PM [6M (10,07 + S5 0,07)] |
/Rsﬁid.ggcz:/w M, 2 de

%

<C
181<1
<C|0,[uf, 0] 1.
It should be also noted that

1+ le)t o0 (P [eM (6100 + 500 0,00) L] (3.30)
/R M; d§

10,0106, GI?
=Sl dxd
/]RxR3 M $

can not be directly controlled. One has to use the splitting G = G+G and estimate G and G respectively.
This is different from the previous works [62] [63], where

2
RxR3
is integrable with respect to time.
We now undertake to estimate I5, by performing the similar calculations as those for obtaining .
Since () and k(#) are smooth functions of 6, it follows that

ws/R 21, 7] [ﬂl,gﬂdm—k/ 7 (2.0)" dH/R

R
Next, letting 0 < o2 < 1, by applying Holder’s inequality, Young’s inequality, Lemma[2.2]and the Sobolev

inequality ([3.26]), we have

dr.

[al, 'é] o, [5, 9T] Bulul, 07

[ Jeztur. o) [0,8] | de le2at. 07 e | (70, 1z
R L °2
etz (1401 o [a,d] | 7 || [, 8] |
Sem (1407 o, [, 0] i [[@.] i (3.40)
st o ]+ o358 ]|
sertts {lon [m )| + a0 HE 4 005 | [m.4) ]
/RHa,’e“] 8,00, [v",0"]| dx < n‘ 315‘2 +Cy(1+1)72 H [.9] H2 (3.41)
/ g (aﬁf dz 560’315 : (3.42)
and from , it follows that ‘
[ |[f.8] autro. 01| e <c | [7.8]], _ Nostu.or1?
112 o141 112 7o 21-30
<nfon [ 8] |+ ot + 077 || [ 8] | + o T (14 )7
(3.43)

Therefore (3.40)), (3.41)), (3.42) and (3.43) give

oy 1112 _ 54309 _ 34509
15] sem < || [0+ 1+ 77 4+ (1 )7 m0w

o frnd]|

_~112
[} +n]
o1 +1 21-30;

+Cn(1+t)—2H{a,@”’2+(}n(1+t)— : H[ﬁ,é}HQJrCne%(lﬂ)— i
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Let us now define

C —minJ 2 21—30’1 5+30’2
0 16 4+ 4oy
4 0'1+1 3+50’2
3.44
G = mln{3 5 ,2(1_'_302)}, (3.44)
09 =min-< 1 ﬂ 72
0 — ) 16 a1+0_2 ’

where 1 < 01 < 5/3 and 0 < 02 < 1. Note that 0 < g¢g < 1/3, (o > 1, and ¢; > 1. Due to (3.13)) as well
as the assumption (A), we also observe that there exists Cz > 0 such that
1 = 72 1 ar 1 3 aar
{5 (0:6.0.8) 4 5 (3.00) + 3 (3 00)
~ 1 ~ 1/~ 1/~
< < - - 2 / T - 3 /! T .
<[l < {2 (0:6.0:0) +5 (8%, 6L67) + 5 (" (0 ))}

(3.45)

Defining
60(5,7,0,8) = pil(5,.0) + 5 (9:6,0:8) + 3 (7,006 + 5 (F.(67)

with ([3.44) and (3.45) in hand, we now can conclude from (3.16), (3.23), (3.24), (3.27) and the above
estimates on I3, Iy and I5 that
112
o 5l

i&(ﬁ,ﬂﬁﬁ)+A{/RH'ﬁ,a1,§HQazu;
{5,17, 5, g] H2 +Cpeo(1 —|—t)*c"

S(eo+ 1) H [69[17, 8955, 33(5} H2 Lot t)*Cl

~ 12
(1+gDIo°GI? 0, G (1+1¢)) |G|
e / UL frde + e /R Tt + Cyey / R ol A3

laj=1 RxR3 RxR3 M;
(3.46)
Step 2. Dissipation of 0, ,d), xqb and &5 p, u, 8, x%]
We first differentiate (3.5) and (3.1]) with respect to x, respectively, to obtain
- 3§’¢ = 0up + 0u(pe(07) — pe(@)) + 30", (3.47)

and

0r00 7 + Oyu1 0p P + u1 02 + Bppduily + pd2ity + ﬁaZuq + 0uPOs] + T D" + BypDpliy = 0. (3.48)

Then taking the inner products of (3.47] , and (3.2) with 8I¢, 3u(0) TQP and J,p with respect to x
over R, respectively, one has

(026.020) = (u(pe(6") = pel(9)), 0:0) = (97, 0:0) + (026701 (3.49)

(ataxﬁ, 3‘;(;0)8@ + (3“’@6261,8@

+ (00100 + 1 02 + DppDylly + POZUT + Dy pOptl + T O2p" + Dup” Oyiin, D) = 0,

(3.50)

and

- X Op P — 0, P - (1 1 - ~ 2
(e, 0uP) + (w1 Bpuy — uf Dy}, D) + (p,awp) + (amP’ (p - pr) ,amp> + (026, 97)

= (2M0oz0,0.5) + (o102t 0.) + (2osu)om.0.5) - (3 [ @o0dc.0.5).
(3.51)
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To obtain the dissipation of 5'95(}5, we now expand the second term on the left hand side of (3.47) as

e
pe(87) = pe(9) = —pL(¢")o — " (0 = ¢)p:(e)de- (3.52)

J1o

Similar to (3.31), one has

Jio~ &, Opdio = a:¢/ dQ+¢3x¢/
~ 0200 + 0:8" 5 = 0o0b + 00670 + 020", (3.53)
Applying and noticing the cancellations in , and , we further have
d 3d ~ p(6) EZ 2 27 927 rarNg T o9 7
G0+ 55 (0. 55005) + 5 (2. 0a?) + (026.020) + (p(0710.5.0.9)
=~ (8:0L(0"))8 0:0) + (0210,0.0) + (9267, 0,9

Ji1
— (Out1 0+ 1102 + Oapy iy + FOPUT + D PO + T 02 + D Duin, 0u)

J12

3 0 ~ o~ ~

5 (at (MIEQ)) 8xp7 amp> + (ul, 8158;3[7) - (ulazul - u{@muf,amﬁ)

J1a
J13
_2(0:l08) p 5\ 2 (0:(007) 55\ 2 (8 00 5. ) (aﬁP’" (1 - 1) ,M)
3 P 3 p 3 P p P

:]15

T (3u(0)02u3, 0,5) + <3am(u(0>>azul,axﬁ) - (1 / f%@@d@@ﬁ) . (354)
p P Jrs

J16 J17

We now turn to estimate J; (11 <1 < 17) term by term. We first present the calculations for Jy1, Jia,
J14 and Jy7, since the other terms are similar and easier. For Jip, in light of Lemma (3.11)), (3.53)
and by Cauchy-Schwarz’s inequality with 0 < n < 1, one has

2 12

‘ O, (14 1)72 HQSH 4 Ope(l+ 1)

|J11] < (7 +eo0) ‘ 8,0

The first two terms in Ji5 is equal to
L (Or010,7.0,7)
by integration by parts. We thus obtain
[ Ti2| S (0 + €0+ €)|0:p1” + (0 + €)|02]1* + Cy (L + 1) 2[5, @] |* + Ce(L +1) 72,

by further performing the similar calculations as Jii.
For Ji4, by integration by parts and applying (3.1)), one has

Jia = (0xu1, —0up) — (W + u") 0y (U + ul) — u"Opu’”, 9,p)
= (0511, 05 (pu) — 05 (p"uY)) — (W0 Uy + Uy Dpul + ujOptin, Oyp)
= ((0x11)?, p) + (Balin, pO2u") + (Bain, Dup"tin) + (Duin, p Drtin) — (W10l D:p),

and therefore

|14l < (Ceo + m)l|0xti1 | + p4 |00 |1* + 1|00l + Cy (1 + )72 [1[, ] |-
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As to Ji7, from Cauchy-Schwarz’s inequality with 7, it follows that

L+1¢] 10,02 dxdE.

el <allopl? + €, [
RxR3

To compute the above integral, by applying (3.38)), Corollary Lemma and (3.37)), one further
obtains

1+ (¢ 2
L1890 Pdrde
/I%x]l@ M | |

1 1
<y /XRS +|§||aaG| deds + Y /XRS +|£||30¢G| v, O] Pdnde

la]=2 la)=1
O, 0°G
+eo Z/ 3' BV e + Z/ 0% (0:00,G)|” dudg
laj<1”BXR la<1

LR (L o) oo [ (L o) (L) o
R R3 i R3 % R R3 i R3 i
+/]R (/Rs A+ EDIGI £|?|G|2d§) (/w |G|jd£> |0:[p, u, 0] dz:

1+ €] a L+ €] a
<Z/XR3 |||a G|?dxde + € Z/R ‘||a G|*dxde

xR3
lor|=2 la|=1

|0, 0°G[?
Feo Z /]RXIR3

2 (1+[¢] ’G‘
- ] +60/ = U grde 4 Ce(1 4 1)
laf<1 RxR3

M;

la|<1

(3.55)

Thus,

L+ 1+ g
2 feY 2 « 2
el <nloplP 4, 0 [ eGPt oo X [ IS0 G e

3
| =2 la|=17BXR

~ 12
alaaGQ 1+1¢) |G
+CeOZ/XR3|§ |dd§+C’neo/R 7‘ ‘

la|<1

+ Cheo Z ‘

jal<1

dad¢

xXR3 %

~112
"+ Che1+1)

The estimations for the remaining terms will be much easier. For brevity, we directly give the following
computations:

| T13| < Clloe]p, Ol| = 1021 < Ceol| 017,

2

7

sl < (Ceo + 0717 + C 028 +m 0,717 + c(1+ 172 [5.7]

~1 112
1 T16| < 11|87l + o || 0 [al,e”\ +eCy(1+1)72
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We insert the above estimations for J; (11 <[ < 17) into (3.54) and then choose €, ¢y and 7 suitably
small such that

o (@, zm + 52 (05, 1(0)0.5) + X (0.5, 02) + A (020,026 + X (9:6,0.9)
o 112
< [oud]” + max(r, ooy 192 + (4072 | [750.8.9] |+ 102
1 1
+ 3 / +|§||a°fc;| dadg +ey S / i ‘€| 10°G2dzde (3.56)
RxR3 RxR3

o] =2 lee|=1

2

10,07 G2 [ (1+1¢)) |&|

+€ / dxd€ + € ———dzd¢.
OIC%I RxR3 M * Jrxms M;

Having obtained , one can see that 0, [f), a, 5] also enjoys the dissipation property. To see this, we

get from (|1.16]) and ( - ) that

Otp + 0z (pur — p"uy) =0,

_ 0,P  O,PT ~ 1
Orun + u10zu1 — ujozu] + -—+ Opp = —— / 5%81Gd£,
p P JRr3
1 )
@%+m&%=—;/§&@ﬂ%}i=l& (3:57)
Ri’»
. T T 1 2
010 + 10,0 — u9,0" + POy PTOauy _ _7/ <€| —u- 5) £0,Gd¢,
p P pJrs \ 2
which yields
2 o~ a2 2 1
‘ 8, [p,u,e} H 8, [p,u,e,qs} H Y (14172 H [p,ul,a} H +/ *T‘g'\ame\zdzdg. (3.58)
RxR3

Letting 1 > K1 > kg > 0, taking the summation of (3.46)), (3.56]) x x1, (3.58) x ke and (3.32) X k2, we
have for sufficiently small ¢g > 0, ¢ > 0 and n > 0 that

3/431 d
2 dt

e

A Hat [ﬁ, 7, 5} Hz F (027, 027) + A (ag&, 35;5) A (awas, ast)

~ |2
R R

(1 +[Ehlo"G[? / |0, 0°G[?
+ / e dedé + o P02 ggde,
Z RxR3 Z RxR3

M
1<|a]<2 la|<1

d_, . _~~ d ~
%51(P7U797¢)+/€1 dt (uh mﬁ)+ ( xpvamﬁ)

~112 ~
0| + |0n0d

)

+A/RH5,111,§} ’25‘mu§dx+)\’

(3.59)

<(1+ t)*Cl dxd&

where we also used the fact that v ~ p.
Step 3. The first order energy estimates.
For |a] = 1, taking the inner product of 9*(3.1)), 9%(3.2), 0*(3.3) and 0*(3.4) with 9*p, 0*u,, 0*u;

and 8”‘5, respectively, and then taking the summation of the resulting equations, one has
ZH@ [pa§W+Z 30 o, 00, 0.0 +ZZ aa%aam
2 dt ) ) ‘ |_1 p ) —~ | ‘ : )
9
+ > ( 0:0°0,0 aa9> =Yz,
1=1

o] =1

(3.60)
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where

3
= — (8%0p(puy — p"u}),0%p) , Tp = — (0% (uyBpuy — uf Dyuil), ) = > (0 (wa0x i), 0°Tis),
7=2

~ — T 1
—(0°0u0,0%m) , T = - (aa (‘W) 76%1) = (aa (ampr (1 - )) ,aaal) ,
P PP
3440) o, 00,70 <"””(p€)aaamer,aaam§>7

(% )-
( ) - zi; (aw(e) azai,aaawai> - (6a’;(9) aIe,aaaﬁ) :

30 (0
P
I, = -3 (az <1> 0% (u(0)Dur), %70y | — f: (ax C}) aa(u(a)axai),aa@
1

8 ul,a O U1

P =2

- (aw <p> 0% (1:(0)0,0), aaé) +3 (aa (/1)) O (11(0)0yu), a%)
S (6a <;> ax(uw)axm),aaai) T (aa <1> 8x(m(0)8z0),aa§) ,

=2 p

18=3(aa<“(p€)(au1 ) ae>+§;< (“paw),aaé),

: ~
L . o 9°6
+</R ) @ ed&@( . ))

=3 ( /. &&-aa@daa ‘9
#3 ([ o (%) scivs0ac.00)

and

3
=1

ul )
> ( | ougciomeus M)

3
B ; (5 (P) /R3 £1£:0:09d¢, 0 Ui) .

We now turn to estimate Z; (1 <1 < 9) term by term. By integration by parts and applying Cauchy-
Schwarz’s inequality with 0 < 1 < 1, Sobolev’s inequality (3.26)), a priori assumption (3.9)), the estimates
(3.55)), as well as Lemma one can see that

7] <Cy D 0B ]I + (n+e0) Y 102001 + Cy (14 6) 2[5, @],

la]=1 lo]=1

~12
Tl <o 3 10712 +CO1+ 0 2ml?, (Tl <0 Y 10.0002 +C, 3 [lovd]

la=1 la=1 lo]=1

2
)

Zal < Y 110072 + (eo+ 1) Y N0Pwl2+Cy D |

la|=1 la|=1 lal=1

o [p ]| + v+ o2 57

Zsl <0 Y Haaax [i1,9] H2 4 Cpe(l41)2,

=1
IZs| < [u G}H teo Y ‘0a [u e]H + Cpe(1+1)72
lal=1 =1
T2 | + |Ts| < [u Q}H —i—eoz ‘8"‘ [u H}H +Ce(1+1)2

lof=1
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o [ 4o X |

|a]=1 |a]=1

1+ €] a 1+§ N
+Cy Z/XR& |||a G|*da d§+CeOZ/R "\a G|?dxdg

3
| =2 la|=1 7 RXR

Zo| S

o [a ]

| b Cpe(l )2

~ 12
0e, 0G| / (1 +1€D) ‘G’
+Cheo Y /XRS d zdé + Ceo A v

Jal<1

dzdg.
Plugging the previous computations for Z; (1 <1 <9) into (3.60), we thus arrive at
d
a2 w0 [m.3]|

Z ‘ ‘ (1+t)*2H{ﬁ,ﬂﬂ”2+e(1+t)*2

9 [m e}

lee|=1

8° [,me ¢]H +teo Y ‘

ler|=1

1 1 3.61
+ Z/ lrapancro Y [ Eloraras (361
la|=2 RxR3 la|=1 RxR3
06,0 G2 / (L+ €1y (G\
te / 1967 21 grde + e R R Y
0|az<1 RxR3 M 0 RxR3 Mz

Let us now deduce the second order dissipation of p. For this, letting |a| = 1, taking the inner product

of 0% (3.57), with 0%0,p, we obtain
d (0% (03 2 07‘ (63 -~ (0% -~
%(8 U1, 0%0:p) + 3 (pa 0zp, 0 8zp)

= (801, 8,070, P) — (0% (u10puy — Ui DpuT), O°P) — ; <aa (W) ,aa@.ﬁ)

_2 (o (20000 e 5| -2 (aa (‘MP> 780@5) _ (aa (awpr (1 _ 1)) 78%5)
3 p 3 P pop
- (aaazg, 6%1,’6) . ( 5%80‘8de§,6“6$5> .
RS
(3.62)

By integration by parts and in view of the first equation of (3.57)), the first term on the right hand side
of (3.62)) can be rewritten as

— (8%0, 111, 8,0°p) = (0%, 1, 0 (D (pur — pTul))),
which is further bounded by

Cy D 1070 |)? + (n+ o) |0°0:p)* + €0 Y 10°[5,@]|® + (1 + )2 [5, @] *.

la|=1 |a]=1

The remaining terms on the right hand side of (3.62]) are dominated by

(cotm) Y N0:0°]" +C, Z <. [, 8.] | +<o Z o= [p.30.]||

|a|=1
+C(14+1t)” H[p, H( +e(l+1)2+C, 2/ Rgluﬂm“Gdeg.
Rx
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We next get from substituting the above estimates into (3.62) that

d N
- D (0%T1,0%0,0) + X Y (0%0up, 0°02p)

l|=1 |a|=1

2 Jrocfmde][ o 3 o [mmdl 369

lee]=1

o[~ ~ ¥ _ 1+ ¢] a
4 (141) QH[p,ul,e]H Fe(l41) 2+|QZ /RXRB 10°G [2dzde,

provided i > 0 and € > 0 suitably small.
As to the second order t—derivative of [ﬁ, u, 5], by (3.57)), one has

Jor [pad]| < 3 foro- padd] | +eo 3 flor [rdd] |+ a0 | 7] |

lal=1 laj=1

1+ 0 1+|£| o
+Z/RXRS 10°G| dxd§+eoZ/ 10° G |2dzdE.

3
la]=2 la]=1"BxR

In addition, it follows from (3.5)), (3.52)) and (3.53) that
~ 2
S {lloed] + st} <c 3 1o 40 3 |
|a]=2 |a|=1

|| =2

(3.64)

2 ~
| +] 73

2 ~
‘Hl +C(1L+)72@)? + Ce(1 + )2

(3.65)
Finally, letting ko > k3 > kg > k5 > kg > 0, we get from (3.59) + (3.61) x k3 + (3.63]) x x4 + (3.64) x
k5 + (3.65) x kg that

%Sl(ﬁ,ﬂ,§,$)+n1j (u1,0:p) + 321:;( 20, 0zp) + K3 Z o H@ []0“717 H]H

lee]=1

+ Ky Z (0%uy, 0% x,E)-FA/’ p,u1,§ Bxuwx

HKZKJW el “KZKJ%L“ (3.66)
S+t [ﬁ,ﬁ,@ﬂ“z—keao(l—kﬂ_ao + ) / 171:4'5' 0% G [2dade
1<]af<2 VRXR?

12

06,0 GP [ (1+¢) |G|

te / 1969 5 gde + € =
Ogg:l RxR3 M 0 RxR3 M;

Then (3.15) follows from (3.66[). This concludes the proof of Proposition

Remark 3.2. Note that the above estimates do not include the second order energy of [ﬁ, u, 5} , and they
will be left to the next subsection, where the dissipation of the microscopic part will be mainly addressed.
This special treatment coincides with the energy method developed in [21].

O

3.2. Energy estimates on the microscopic part. Now we turn to deduce the energy estimates on
the microscopic part G. The trick of deducing the desired energy estimates can be outlined as follows.
As mentioned in the previous subsection,

‘ G
VM,

is not integrable with respect to the time variable, we first perform the zeroth order energy estimate on
G. Then we directly present the higher order energy estimates on F. At last, we deduce the mixed

2

2
Lm,s
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derivative energy estimates on 9*9°G for |a| + |8] < 2 and |B| > 1. It is shown that the above energy

estimates only with respect to the global Maxwellian M, or the local Maxwellian M can not be closed.

To overcome this difficulty, one has to use the interplay of these two kinds of weighted energy estimates.
The main result of this subsection is given in the following

Proposition 3.2. Under the conditions listed in Proposition[3.1], it holds that

¢ |pu - ' ‘ Fak
> frfpadof « 3 el [ s s
80‘85(;‘ L+ [¢]) [0°G/”
+ a%@ /Rst da;d£+1<2al:<2/ /ms L dedgdt
/ / 1+\5| \G\ DS s 5 / / (1+1€D) 6‘165(;‘ - (3.67)
e Ia\‘z—‘\[;\lq RxR3 M.,
T a2 ) o )
+/O /RHp,ul,SﬁH puidudt+ Y /O oo [5a.d] || ar+ 3 / od

1<|a|<2 1<]al<2
SC’ONQ(O) + Cpue?®,

for0<t<T.

Proof. We divide the proof by the following three steps.

Step 1. Zeroth order energy estimates for

Notice that G solves

~ ~ 3 _
0,G — LG = —%Pﬁ“ {511\/1 (5 -0 +

G
VM, ’

J— 2 ~ G
5 0i0) | - P (60,6) + 0,006 + Q(G. G) - .G,

(3.68)

where we have used the fact that

PY (60,M) — LG = o PM [51 (eamm'f u® 5. e)]

Remark 3.3. It is worth pointing out that G defined in (3.8)) is designed to deal with the linear term
PM (£,0,M) which can not be directly controlled.

Taking the inner product of | with g7~ over R x R3, one has
2

1d / ‘é GLmG

—— dxdé — dxd
2dt RxR3 M* £ RxR3 M* g

J1
_ M o~ € —u®, ~ G _ M G
Np NE
G G G
+ (&cd)@glG, l\/I*> + (Q(G,G), M*> — (&G, M*> .
Ja NG TJe

From Lemma we see that
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Moreover, we get from Cauchy-Schwarz’s inequality with 0 < < 1 and Remark that
a2
Oz [u7 9} H .

By integration by parts and applying Lemma the a priori assumption (3.9) and (3.39), one can see
that J3, J4 and Jg can be bounded as follows

1+1eD|G 1
7| Sn/ WHDIS] grag + 0 |
RxR3 "

G G
| T3] < <§18IG’1\/I*> + (Pg/l (flamG)7M>
~ 12
(1+1eh|& (11 ) 10.G?
< U grde+C STV el W% S
_n/RxRS M. v " Jrxms M. vl
-~ G _ G
|Ja| < (@c@f’a&(}, 1\/[*> + <8£¢8&1G71\/I*>‘
~ |2 ~ 12
(1+1¢)) |&] (1+ 1)) |&|

<C |95 m/ 7dxd§+n/ — 1 dgde
H ”L RxR3 M. RxR3 M.

+ C, 10260, [uf, 07])

(a+leh|e) e ,
§(60+77)/ ——p - dwdé + Cyeo 6I¢‘ + Cpe(1+1)72,
RxR3 *
~ 12
|T] Sn/nexms dedwcne 3 ]aa [ﬁ,ﬂ,é”f+0ne(1+t)—2.

la]=1

For Js, it follows from (3.37) and Cauchy-Schwarz’s inequality with 7 that

~ 12

~ 12
(1+ 1)) |G| L
S(ﬁo + 77) /]R B Tdfﬂdé_ + Cn6(1 + t) .

Now substituting the above estimates into (3.69)), we arrive at

o |8 (+ieh|af
% /RXR?’ dedf - )\/RX]RS ML deds

(1+[¢]) 10.G|* o2
Sc/nms s O Y dello77] +|

2
‘ +Ce(1+1t)72
laj=1

0

8° [a, 5] Hz} + Ce
(3.70)

Step 2. Higher order dissipation. Let us now deduce the higher order dissipation of G. Note that even
for |a| > 1, one can not directly obtain the dissipation of 3G /v/M with the aid of , since the
linear term (0°PM (£,0,M), WWG) makes a big trouble. To overcome this difficulty, we first deduce the
energy estimates on % F' by using the original equation 1 with respect to the local Maxwellian M, in
this case, the corresponding term becomes (80‘ (£10.F), WWF), which can be smoothly controlled. Then
we turn to obtain another estimates based on the global Maxwellian M,. The desired estimates will be
derived by the interplay of these two kinds of weighted energy estimates.
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Let 1 < |oo| < 2. Taking the inner product of 9 (T1.1)), with Z%2°EF with respect to  and & over R x R3,
1 M
one has

(67 2 (67 (87
11/ ROVFP | e <LMaaG, RO G) - <8°‘81¢851M, R9 M)
RXRS M M

2 dt M
N Ts
_ 1 a ;2 -2 1 a ;)2 RO
=3 (RO(0°F)*, M 8tM)+2 <(a F)?, N
Jo
! ’ ’ ’ OlFW
+ Y., Cy (Q(aa M, 0" G) + Q0™ G, 5% M), Rﬁl\ﬁ/l )
<o’ <a
ROO*M " ROO*F (3.71)
+ (pwora i (FER) ) - (@000, M)
jll j12
o { so—o o ROOF
+ > C (a PR, 8€1F,M>
0<a'<a
J13
00 F 00 F 00 F
+ | 0:90%0¢, F, 169 + | 0%0;00¢, G, 169 +(0°Q(G, G), 169 ,
M M
J14 J1s Ji6
where we have used the fact that
ROOG
. M, 2 = 0.
((’) 0,00, M, M ) 0
We note that Ji3 is just J14 when |a| = 1.
Lemma implies that
1 (03 2
Gas [ rlEEGr
RxR3 M
For Jg, we have
1d ~112 ~12 1d ~ (¢ ~
> Bt |evad|| +||Vereneed| b+ 55 (990 | sltede07d
2 dt 2 dt o
1<[al<2
(2
Slatm Yo |00 +(@tm X oo mal (3.72)
1<|al<2 1<[al<2

2 .
+ G+ 072 |[mad] |+ coe i+ nors,

whose proof is given in the appendix. For the remaining terms in , we only present in what follows
the estimations in the case of || = 1. When |a| = 2, since [|0% [p",u",0",¢"]||.» (p > 1) decays much
faster, the corresponding estimates are similar to those for the case || = 1 and are much easier to obtain.
Hence the details for the case |a| = 2 are omitted for brevity. Now, by applying Lemma Sobolev’s
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inequality and Cauchy-Schwarz’s inequality, we have

*

anal2 a2
Sias Y [ Ul loMe G
Rx 3

lee|=1 le]=1

<y {/ﬂa 7] 10, o8l da + [ 100l P00 da

la|=1
ol T r ari|2 ~ ~ (1+|§|)|80{G‘2

+/R|a Al (at [p,u,@”dm}—i—eo §1AXR3 S

< Nadem w02 020, (o7 w0 00 " w62

|a]=1

+ Y Gyl OO o w67 110:0% " ', 67]

|a]=1
a2
[ ariloet,
RxR3

+ Z €0 +n) Ha [p,u 9”’ + € Z M
al=1 *

Jal=1

< Z (e0+m) H@o‘ [ﬁ,ﬂ,g”‘ + € Z /]R . Wwdxdﬁ—i-cneg/‘l(l—kt)w‘L,
<R3 .

laf=1 la]=1

where we also used the trivial inequality e(1+¢)72 < 3/4(1 +¢)75/4 for 0 < e < 1.
When |a| = 1, one sees that J19 becomes

3 (Q(aaM,Ga QG M),

la|=1

RO G
M b

and then it follows that

Z (1+[¢) oG ( (1+ lghlooM]? ) |G+G\2
< ~ >/ + A BV 7l
|10l S /Rst M dwdt + Gy /R /Rs M d /Rs M de

|a]=1
ang|2 2

2
gn/RXRS (1+|§|)1v1|aaG2dxd§ + Cheo /]RX]R3 (14_131‘6}‘(1‘2(%
+ Cheo Z Haa [ﬁ’ '12,5] H2 + Cpe(1+1)72
ler|=1

35

Note that J11 vanishes for || = 1. By integration by parts and performing the similar calculations as

for obtaining Jy, one sees that | J12| is bounded by

/ (1 +[€D10° (o, w, 0)|(|0° M + |0°G[*)
RxR3

M. dxd§

la]=1

|2
Storn 3 [ [pad)[ v 3 [ OGS o
lo|=1 lo|=1 *
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For J15 and J14 with |a] = 1, we use F = M + G again, to obtain

ROO*G ROO*M ROO*G
|j13|, |\714| :‘ (améaaa&(;a ) + (8w¢808£1M7 M ) + <8w¢aaa£1M7 M ) ‘

M

S /Ic?m\laap,u O)2de + > e |07 [7.3.0.4)| ’ + e Z/ [0 %GI dvde
=1 la|=1 xR3
(1+|§|)’aaa&e‘
+e€ / dxd€ + C, %G [, u", 0" 2
O|a\ | JRxR3 M n|a§_:1 I o I
(1 0°G
60+77 Z/ Md de¢
‘(Xl 1 RXR‘3
12
e (1+\g|)‘aaaglc;]
< alx~
le_:lﬁ [p,u,f),aﬁ]H +€°Z|_:1/nms N dxde
L+ 1€) 07 GF -
+ (€0 + — —dxdf + Ce 1+t ,
(0 77) (}_:l/kaS M 5 n ( )
and
ROO*G
Z |J15| = Z (a“anga&G N )‘

laj=1 |a]=1

g Z Cﬁ/ |aaaz¢|2|a§1G| dzdé + € /R .
X

la=1 RxR3

(1+[¢]) jo°GJ*
+ (0 +n) — 2 dxd¢
>

(1 +1¢) \agléfdxdg

S/ Z CWEO

+ (€0 +1) Z/RR31+|£1\)4|GQG| dwd¢ + Cye(1 + 1)

~ |2
. / (1+1¢]) |0e, G| e
€ —————— AT
0 RxR3 M

As to the last term J14, we get from Lemma [6.1] and Cauchy-Schwarz’s inequality that

S = 3 ROO*G )’

(rac.0).
|a]=1 la|=1

(L+leh 0GP (L+leh oGP G
S e A | (/R Mdf> (/R M)

lal=1 lal=1

Py, /(/ |aolé\<;|2d§> (/ <1+|§|A>|G|2d§>d

lee|=1

S+e) Y, dxde.

|a]=1

It should be noted that when |a] = 2,

/M@ (1+|£1\)/I|aaG|2d:cd§+Cneo/ (1+I£|)’é‘2

RxR3 M

ROOM

ROOG
j16 = <aaQ(G7 G)a ) )

> + <8“Q(G,G), M
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with (8QQ(G,G), RGI?;M) being non-zero, but in case |a| = 2, the term W becomes quadratic,
which can be handled as in (3.10]).
Substituting the above estimates for J; (7 <1 < 16) into (3.71)), we see that

d RO |0“F|? ~ 1 9°G|?
2 EDY / BT eae + £23) y +4 Y / UL DG
1<af<2 /RXR? 1<|a]<2 /RXR

~ 12
(1+€]) ]aaaﬁe\

(1+[¢]) [°G|? /
<C, —d d¢ + Cy dxd
601<%:<2/xn§3 o 60221 RxR3 M i (3.73)
~ |2
(1+ ) | €] AP
voa s rn 3 o pad] o, )
+Cn€3/4(1+t)75/4,
where we have set
~ - ~ - o ~ ~
£(9)= Y. {(a@az¢|2+ H\/pgwwa%f} - X (a%ﬁ p;'(g)dg,@%) ~[o.d] ..
1<]al<2 1<]al<2 ¢ H

Similarly, one can obtain the following energy estimates for 0*F (1 < |a| < 2) with respect to the global
Maxwellian M.,.:

d / 0o F|? / (1+¢)]0°G?
— ——dxd€f + )\ ~ >/ dxd
i 2 fo EEA D T M. <

t M,
1<]al<2 1<|al<2

~ |2 ~ |2
(1+1¢]) [0°06, G| (1+ ) |&|
S (3.74)
St la|<1 »/RXRS M., dadt + (eo 1) /]RX]RB M., et

vo, X | pad[ va, ¥

1<|a|<2 1<]al<2

o712 3/4 —5/4
03| +Cpe i,

whose proof is also given in the appendix. With (3.73) in hand, letting 1 > k7 > 0, we get from the

summation of (3.73) and (3.15)) X k7 that

d e~ d ~
w72 810,10, 0,0) — hirmo = D (9%, 0°0:p)

Jal=1

d RO|0~F|? ~ a2
dt 1<|a‘§2 RxR3 M R

Y e fpad a2 \aai\z Y /med R

1<|a|<2 1<]al<2 1<|al<2

<1416 [5717,57%}“2_’_600(1_,_”—@ T e Z /R ) Mdmdf
X 3

M
lal<1

12
Z /}RX]R3 Md d¢ + € /R w)‘G‘dmdé

3 M
1<|a\<2 xR *

where we have also used the fact that op < 3/4 and 1 < {p < 5/4.
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On the other hand, by choosing 1 > kg > kg > 0, it follows from the summation of (3.70) x k9 and
(13.74) x kg that

d GO‘FI
L1 e + me L / 91 gae
" rxrs M *d Z RxR3

1<\ |<2 M.

~ 12
(1+ &) |9° G (1+1¢)) |G|
+A Y /uwz M. dzd§+/\/RXR3 dxde¢

2 M., (3.76)
S(ks +r9)Cy Z {‘ o [ﬁ’ﬂ’ 5] H2 * ‘ 8“%‘21}
1<]al<2
D¢, 0° G2
+ O+ o) 3 [ N et

Step 3. Energy estimates with mized derivatives. In what follows, we deduce the energy estlmates on
the mixed derivative term 99 G. To do so, letting |8] > 1 and |a| + |B] < 2, acting 9%0” to and
taking the inner product of the resulting equation with LG 8 G gver R x R3, one has

~ 12

1d 0°0°G| dnde 920G L0 0° G
1d vt —

2dt Jorms M, s M,

= > Caly (Q (o070 97 G) + Q (9707 G, 0" 0" M) , a@aﬂc?,)

M.,
le/ 1418 ISlalyisi-

—yl2 2 9B G
[ (g o e 55003)]) 2

9°0BG 9°9PG
<aaaﬁ (PM (£0,G)), N >+ (aaaﬁ (0,00¢, G) >

dzdg

* M*

0798 G —. 9°0°G
a nf _ a nf
(88QGG M ) <8t88G, M )

* *

(3.77)
Similar to those calculations in the above Step 2, we have
~ 12
aaaﬁc.’ 1+ I¢) aaaﬁc\
Z Ca,@/ dedé +1 Y /
ol 161<2 RxR? ol 1p1<3 xIR3 M.
(+ |l
o 1+ 1)) |G| 3.78
<y / 1+|5|)\a G\ddg dvde (3.78)
RxR3 RxR3 M.

1<|a\<2

o [ﬁ, 7.0, g?s] H2 Fe(l+1)72

+Z‘

1<[al<2
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for suitable constants C,g > 0. The proof of (3.78) above is given in the appendix. Consequently, it

follows from (3.75)), (3.76|) and (3.78]) that

d ~ ~ 7 d (0% (03
Ko’f?%gl(ﬂauﬁﬁ) Kokrko > (9%11,0%0.p)

|a]=1
~ 12
d RO|0°F|? - d G|
JrKOdt1<§|<2{/R><]R3 ded§+52(¢)} + Ry ML dxd¢
d / 02 F 2 / 8“8ﬂG‘
+hg L dade + k b1 dpag
Sdt 1§|§§2 RxR3 M* |°’;§Zﬁl<2 RxR3 *
(1+¢) oo G / (1 +1¢h & (3.79)
A L e A T e
! 1<|§<2/RX]R o RxR3 M., zdt
~ 12
(L +|¢D jo~GI* (1+[¢)) |o°0°G|
+A / S VI /
1<|§<2 RXRS a|§<2 RxR3 M*
+/\/RH5,171,S Buldac—l—)\lz o[58+ %: o3l
<a+n |[padd| e,

where K is a positive large constant and k1¢ is also a positive constant but suitably small. Then (3.67))
follows from (3.79) and Gronwall’s inequality. This ends the proof of Proposition O

4. LOCAL EXISTENCE

In this section, we show the existence of the local-in-time solution in the function space & ([0,77]) for a
small T > 0 to the Cauchy problem (1.1)), (1.2]) and (1.4). We adopt the iteration method as in [25] for
the proof, which is based on a uniform energy estimate for the following sequence of iterating approximate
solutions:

0+ 60, = 0,070 P4 P [ (66wl (e deuds

- / (€ — &) - wlF (€ F™() dedo,
R3xS2

(4.1)
— o = [ P puon),

F"H0,2,8) = Fy(z,€), n >0,
Fo(t7x7£) :Fo(fﬁ,g)

Set M,- = M[pr(t’w)’ur(t’m)’er(t}z)] (f) Let

F'=g"+M,, ¢"=¢"—¢", n>0
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Then (4.1]) is equivalent to

{at + flax - 8z$n8€1 } gn+1 + VMT(g)gTH_l - Kgn = anin(gnvgn) - Qloss(gnagn+1)

{00+ €0, — 0,070, | M, + 0,670, 9" + 0,670, M, )
4.2

—02m = [ Ot oo = pulo") + 020

9" 0,2,8) = Fo(#,€) — Mppr(0,.2),um(0,2),607(0,2)]» 9° = Fo(@,€) = Mpr(0,2),u(0,2),67(0,2)]»

where vy, (§) is a multiplier, given by
(€= [ (€6 wM, de.de,
R3 xS

and K (§,€,) is a self-adjoint L? compact operator, defined by

Kgn = anin(Mra gn) - Qloss(gn7 M?') + anin(9n7 Mr)-

As in [65], K(&,£&.) can be also presented as

Kh =v/M,.(§) K, (<h> (E)) » Km, = Kom, — Kim,.,

VM,
Kinh= [ (€ =€)l VMO VML EIAE.) de.do,
Kowh= [ 1€ =€) ol VVE(E) { VMAEIA(E) + VMLEDAE)  duds

In what follows, we begin with the uniform bound in n for [|g"||z, for a small time 7' > 0.

Lemma 4.1. The solution sequence {g™}5>, is well defined. For a sufficiently small constant ey > 0,
there exists T* = T*(eg) > 0 such that if

9298 g0 ?
/ Mdmdﬁ +e< eg’
RxR3

M.
leel+181<2

then for any n, it holds that
Yr(g") = Er(g") + Dr(g") < 265, VT €[0,T7), (4.3)

where Dr(h) is defined by

Dr(h)

T (1+ [¢]) [0°0%h(t, z,€)|”
. /0 /R . o dzde.

|+ B]<2
Proof. We intend to prove (4.3)) by induction on n. Namely, for each integer | > 0, we are going to verify:
Vrlg) < 262, (4.4)

for 0 <T < T*, where T* > 0 will be suitably chosen later on. Clearly the case [ = 0 holds. We assume
re' n+1
l} is true for I = n. Let |a|+|B| < 2, take the inner product of 9°9° [£.2), with % over R x R3,
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to obtain
8o‘3ﬁgn+1 2 o B n+1 8 8ﬁ n+l
, , , , aqf n+1
== > Cally (aa 0 g, 00 9= gt 0T '?wg )
|a,\+\€;lf\ﬁﬂ\<+ﬁ\}ﬂ|*l *
_ Z C f (aﬂ g aaaﬁ B’ n+1 aaﬂé]”ﬂ) Z ng (aalaxanaa_o‘/aﬁg"’q, aa(‘i\ign-l—l>
187|=1 0<a/<a *
’ ’ ’ ’ ’ ’ ’ ’ aaaﬁ n+1
a,B . a’ 98 a—a’' 9f—=p" n\ _ a—a’ 9B—8" n qa’ 98 g
- ,<Zﬁr<5ca 7 <anm <8 " M.,0 0 g ) Cross (8 0 g%, 0% 9 Mr)’ M., )
o a—a’ qB—B" n ga’ 98’ 8aaﬁgn+1
+ > Cyl (ngn (a N M)M>
o'<a,B'<p *
o n o aaaﬁgn+1 N . aaaﬁgnJrl
+ <8 85anin(g y 9 ),1\/-[*> - <6 aszloss( s 9 +1) 1\/-[*>
. 8aaﬁgn+l
_ a5 _ n
(a " ({00 + 10, — 0.070, } M), - )
o 8ﬁgn+l o 8ﬁgn+l
a a3 r n+1 a9 7"
(4.5)

Now by integrating (4.5 with respect to the time variable over [0,¢] with 0 < ¢ < T, and performing the
similar calculations as the proof of (3.74)), one has

Er(g™™) + A\Dr(g" )

10,0°¢° (2, 6)|”
< > / 2 dadg + Ceg + T)Yr(9") +C Y / 8“8w¢) dt + Celn(e +T).
RxR M*
la|+]B8]<2 la|<2
(4.6)
On the other hand, from (4.2),, it follows that
~ 2 ~

> |orauon | < cEr(g) + ce1 42 (4.7)

la|<2

Consequently, . ) and (| . yield

il n+1 ~ n+1 |8aaﬁgo($’ §)|2 2 % n
Er(g"™) + ADr(g"t) < D / 12T IS dude + C(2 + T)Vr(g") + Celn(e + T).
RxR3

M.,
lor|+181<2
This then implies (4.4]) for I = n + 1, since € > 0 can be small enough and both 7% > 0 and ¢y > 0 can
be chosen to be suitably small. The proof of Lemma is therefore complete. O

With the uniform bound on the iterative solution sequence in terms of (4.2) by Lemma we can
give the proof of the local existence of solutions in the following lemma. We remark that the approach
used here is due to Guo [25].

Lemma 4.2. For a sufficiently small €9 > 0, there exists T* = T*(eo) > 0 such that if
9708 g (x, )|
/ |§/I—(£)|dmdf +e< eg,
jal+|gl<2 T BXE .

then there is a unique strong solution F(t,x,&) to the VPB system in (0,T*) x R x R3 with initial
data F(0,2,£) = Fo(x,§), such that

Yr(F —M,) < 262,
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for any T € [0,T*), where ?T() is defined in (4.3). Moreover if Fo(x,&) > 0, then F(t,x,&) > 0 holds
true for T € [0,T%).

Proof. Recalling and , the limit function g(¢, x, &) + M,. of the approximate solution sequence

{g" + M, }52, must be the solution to with F(0,z,&) = Fo(z,€) in the sense of distribution. The

distribution solution turns out to be a strong solution because it can be shown to be unique as in [25].

We omit the details for the proof of the uniqueness. The proof of the positivity of the solution is also

quite standard, cf. [25] for instance. This ends the proof of Lemma O
5. GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR

We are now in a position to complete the

Proof of Theorem[I.1 From the energy estimates obtained in Proposition [3:2] one sees that

sup > [[079” (F<t’w7€>—M[pw,erm,z)(é))Hig<L3< )

0<t=T | 115]<2 NemG)
OF(t 2
< sup Z Ha [p,u 9} ‘ + sup / Mdmdf
0<t<T 0<t<T RxR3 M.,
la|<2 1<|a|<2
B ) (5.1)
Gens) p0Snl
+ sup / ————dxdf + sup Z / dxd€é + €
0<t<T JRxR3 M. 0T |, 5] <o JRXES M.
18121

<CyN?(0) + Coe°®.

Notice that € > 0 is a parameter independent of €. By letting € > 0 be small enough, the global existence
of the solution of the Cauchy problem (1.1 . . 4)) then follows from the standard continuation
argument based on the local existence obtamed in Lemma 2{and the a prlorl estlmate (5.1). In addition,
1) implies ([1.32)). It now remains to prove the large t1me behavior as . For this, we start with
the justiﬁcation of the following two limits:

2

i |19 (E 2 €) = Miprur o, (€)) —0, (5.2)
t—+o0 \/].\T* 2
z,§
and
-~ 2
t_13+moo 8z¢(t)H =0. (5.3)

Indeed, by the global existence, utilizing ([3.67)) and Lemma one can show that

N 2
/ *1d |0z (F(t,2,€) = My ur o7 (2,2 (€)) ‘
0 dt 2

VM. «
+o00o L
:2/0 ’(M: ataz (F(t7 €, 5) - M[p”’,u’f,e’"](t,z) (6)) 76:1: (F(t7 x, 5) - M[pﬁu"',ﬁ"‘](t,m) (5)))| dt

2

+o0
< /0 HM;l/zatax (F(t,x,f)—M[pr’ur’gr](t@)(g))‘L2 dt (5.4)
“+oo 1/ 2&5
+/ HM* 25, (F(t,a;,g)_M[pr,urm(m)(g))]L2 dt
z,§
<c Y /m‘ [p,ue]H dt+C Y /+°°HaaG dt<+oo,
1<|a|<2 70 1<]a|<2

and

P Js(z‘ it = ;/Om |(0:0.,0.9) | dt < +oo. (5.5)

+Ood
[l




RAREFACTION WAVE OF VLASOV-POISSON-BOLTZMANN SYSTEM 43

Thus (5.4) and (5.5) and give (5.2]) and (5.3). With (5.2) and (5.3) in hand, we now get from Sobolev’s
inequality (3.26]) and (5.1 that

2
sup F(t7l‘,£) - M[p"‘,u"',&"‘](t,x) (5)
zER \V4 M* Lg
sup |F(t7x7£) - M[pr,uT,GT](t,m) (£)| ?
< z€ER
< N
Lg
2
1/2 1/2
| VRIE G20 — Mg iy €15 19 (F (E2,€) = My orjeey (€)1 (5.6)
< N
Lg
<9 F(t,x,f) - M[pr,ur,er](t,x)(g) BI(F(t,x,f) - M[pr,urﬂr](t,x) (5))
B Vv M* L2 ! vV M* L2 p
a:r Ftv ’ -M Tum,0m|(tx
<Cey (F(t,z,¢) om0 () (€)) Lo,
VM, .
as t — +oo. Similarly,
- 1/2 )~ 1/2 1/2
sup ‘qﬁ’ < \/i‘ 0,0 ‘ HQSH < Ceg ||0:0 ‘ —0 ast— +oo. (5.7)
zER
Then (1.33) follows from (5.6, (5.7) and (i¢é) in Lemma This completes the proof of Theorem
L1 O

6. APPENDIX

In this appendix, we first list some basic inequalities used in the paper. The following two lemmas,
borrowed from [I8], are concerned with estimates on the nonlinear and linearized collision operators Q(-, -)
and Ly G, respectively.

Lemma 6.1. There exists a positive constant C' > 0 such that

(1+1€)~'Q(f 9)? a+Ens . [ a2 2o [ A+E)g?
/RS — dfgc{/R3 Sraee | e | des | dg}, (6.1)

where M is any Mazwellian such that the above integrals are well defined.

Remark 6.1. In fact both of Qgain(f,9) and Qioss(f, g) enjoy the estimate (6.1)), and they will be used
to compute (4.5).

To perform the energy estimates for the Boltzmann equation, PIN\IF , the microscopic projection of its

solution F'(t,x,&) with respect to a given Maxwellian 1/\\/1, the dissipative effect through the microscopic
H-theorem should be used. In short, the microscopic H-theorem states that the linearized collision
operator Lg; around a fixed global Maxwellian state M is negative definite on the non-fluid element

Pll\A/IF, [], i.e., the coercivity property

— 2
<1+s|>\1°%4F\dg

PMpT (PlﬁF)
- / — ¢ >4
R3 M R3
holds true for some positive constant § > 0. Furthermore, one can vary the background for linearization
and the weight function. That is, we also have the following result whose proof is based on Lemma
cf. [MI].
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~

Lemma 6.2. If ¢ 5 < 0 then there exist two positive constants 6 = §(p,u, 0; p,u,0) and no = no(p,u, 0; p, u, 9\)
such that if |p — p| + |u — G| + |0 — 8] < no, we have for h(¢) € N1,

hLnh (1+ [¢)h?
- ——dE>4 ——dg.
/Rd M = /]R3 M ¢

Here M = M, ,.0/(), M=M_.; #(&) and

{ / V(€ dg—o,i_071,2,3,4}.

Remark 6.2. The constant 1y in Lemma[6.3 is some positive constant depending on the first non-zero
eigenvalue of the linearized operator Lyi. Note that ng is not necessarily small, cf. [41].

A direct consequence of Lemma and the Cauchy inequality is the following corollary, cf. [41].

Corollary 6.1. Under the assumptions in Lemma we have for h(€) € N+,

D) g2 ge < 52 [ LEED PO
/R3 UK / M 3

In the rest part of the appendix, we undertake to give the detailed proofs of (1.18)), (1.34)), (3.72),

(3.74) and (3.78) one by one.

Proof of (1.18]). To verify (1.18)), it suffices to compute

W = 0, / 6 Lyt (PM(6,0,M)) de, 1=1,2,3,
R:}
Hi = Lo, /R JEPeLy; (P (€0.M)) de.

For this, let us first consider H; (I = 1,2, 3). By direct calculations, one has

3

2
M, =0, /R GG Ly PY | ¢ Dyt + ER;;' 0,0 | de
- € — ul?
=0, [ (6= w)(& —un P | (€ — )M Z Lo+ 5 0,0| ) e
0. ([ (6 -l - wryied (=060 “”M) i€ 0,0
RS
1
o, (L / 66 L PM (96 M) dE Dy )
RO Jyo
On the other hand, one can claim that
[Pt (@n) de =3 [ &I (6EM) de, fori £ (62)

To prove (6.2)), we get from the rotational invariance of LK/II and integration that for i # j,
/R GG LM P (GEGM) de = | (&6 = wi) (& — ) Ly PY (6 —wi)(§ — uj)M) dg
= [ 6 = u I PY (6 — M) de = [ SIPY (EM) de,
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27 —1pM (42 _ &+& 1 §i+&;
[ et ae= [ (5 ) Py (( f) )dg
24 ¢2 24 g2
=/R$ <§l;§+&§j> LMIPII\A((g ALY +§Z§]> >d§ (6.3)

1 _ 3 _
—5 [ EIRPY (M) de+ 5 [ oI P (E6M) ds
Then (6.2)) follows from ([6.3)). We next define
/ 5152 glfz ) > 07 1= 2a 37

and

which further equals to

3 _ )
-~ /R GELad,, (6EMg) & i=23

see [52], for instance. Therefore the first formula in (1.18)) holds.
Similarly, for H4, we have

1 3
My =10, /R €26, Lyt P (51 > 0., + &1 0]) e
3 7u2
5’ / € —ul* (& — u1) Ly PY! (fl—ul M ;&Re 2 Uj + |§2R92| aﬂfa]) dg
E € = uP

=1
1
—50 [ l6—uPe - It P (6 - )M [ 52 — GD e

[ 3
+ Ox /RS & u(é —ur) Ly PV ((51 —up)M Z uja UJ]) dg

1 1 _
_7aw <92/ |§ - u|2£1LM1[1,u’9] (|£ - u|2€1M[1,u,9]) df 8$9>

3
+j; <R9u]/ SISEOY M[1 PllvI (&6 M1 0)) dE @cuj) ,

3
which can be reduced to —0, (£(0)0,0) — 30, (u()u10yu1) — > O (u(0)u;05u;) , by defining
i=2

3 20 71 2 .
0) = —ggz [ €= PG, L, (€ = uPEMpLg) dE> 0.1 = 1,23
Thus the second formula in (1.18]) follows, and this completes the proof of (|1.18)). O

Proof of (1.34). For brevity we set Mo = M|y, (2),uq(2),00(x)] (§) and My = M r(2) up(x),05 ()] (§) With
(05, ug, 03] (z ) [p",u",67](0, ). First of all, we show that the first norm on the left hand side of (1.34) is
bounded by Ce3 for a constant C. Notice that the macro-micro decomposition of Fy — M, with respect
to the global Maxwelhan M.,:

Fy — M, = PY" (My — M) + PV (Fy — M),

implies

9oPM- (M, — MTO)’

NSl E M) L L
1#(s) 1w

M. (§) M. (§)
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for each « with |«| < 2. The further integration in = and using ([L.31)) lead to

‘ Lg(Lg<\/Mli(g)>> < [|0%(Fo _M"O)”Lg <L§<\/Ml—m)> < Ce.

On the other hand, from direct computations,

9Py (Mg — Mro)’

4

0°PY™ (Mg — M) = »_ 0° <M0 — Mo, X;VI*>M X3
i=0 ’
with the inner product terms given by
M. T
<M0 — Mo, Xo >M* = Po — Po>
wos — ptul.) — _ru*.
<M0ero,x}“*>M _ (pouoj — pyug;) — (po — pp) i 193
: \/ 3040
and
0o — pi0} ) — us|? — 3ppluor — u.f?
<Mo *MTO,X¥*> _ 3(pofo — pobs)  3(po — pi) I 3poluo — us|® — 3ppluor —u
M. 0.:1/6p+ 6+ 20,/6p.

Since {X;V[*, 0<5< 4} is an orthonormal set of Lg <\/1v}7()>’

< o P3t (M — M)

0 (Mo = M, ) )

05524 2 1 ’

= M w(7w)

Therefore, by integrating it in x, taking the proper linear combination and using smallness of ¢y, one has
> 119%]po = P o — g, 6o — Op]]| < Ceo. (6.4)

laf<2

Finally, the second norm on the left side of (1.34) is bounded by Ce3 due to the mean-value property
as well as (6.4 and smallness of €g, and further the estimate on the third norm immediately follows by
noticing GO = Fo — MO = (FO — Mro) — (MO — 1v[r())7 and

00 MM, )y =06

lee|+18]<2 M (8

Then (1.34) is proved. O

Proof of (3.72). Notice that
Js = (090:9, (&1 —w1)0"M), 1< |a] <2.
Let 0; € {0;,0,} and 0; € {0, 0,}. By a simple calculation,

. _ _ ]2 .
aiMza;)”MJrf “-aiuM+(|§ ul —3>819M.

RO 2RO 2) 0

Then, one can see that for |a] =1,
Ts = / 0%0rpp0“urdz.
R

Furthermore, for |a| = 2 with 0% = 0,0;, one can also obtain from direct calculations that

T = / 0%0,pp0“uy dx + / 0“0y 4(0;pOjur + 0;p0;ur) da .
R R

Jg,0

It is easy to see that

ool < (ot m) X [0°0:8] + (cot) 3 10° a1 + Coel1 +1)2

la]=2 la|=1
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Therefore, to compute > Js, it suffices to calculate
1<|a|<2

> /a Oxpp0®uydy =y /a 0u0pd°Undz+ Y /aaazwpa Urdx

1<]al<2 1<]a|<2 1<]a|<2

+ Y /aa Dpdpduidz+ Y /aaa ¢"p0*uldax .

1<l <2 1<l <2

Js,3 Ts,4

For this, we now turn to estimate Jg; (1 < < 4) term by term. We first have by using (3.1) and
integrating by parts that

Fsi= Y. (0°6.000p)+ Y cu(0°9.0, (070" "))
1<|a] <2 10<<\Q/\:i

(
" o (0000 )+ o cz (06,0 o0~ up))
Car (

= Y (07000 -

1<|a|<2 1<\ <2,
0<a’/<a

> oy (000d. 0% 0w )+ Y (99,07 50,00 up))
g g

In light of and (3.52)), the first term on the right hand side of further equals to
= Y (990.000028) = Y (076,070 (pe(0") = pelo))) = Y (0°6,0°0102")

1<|a|<2 1<|al<2 1<|al<2

L )3 oo

1<lal<2 1<l <2

8,0%0, 9% po—< )

"+ |verenes

9°0,b

K1

> 0 (000,07l (6N)30" " B) + > O (976,07 dupl(97)0" ' 9)
1s\a,|§i, 102\3\2,

Ko

5 (d.00000°9) — Y (0790700207

1<]al<2

K3
Here Ky, K9 and K3 will be estimated as follows. From ([3.53)), it follows that

Ki=— (a“ (am / oo+ 300" [ ¢ i )dg) ,aaEﬁ)

1<|a| <2

1d o 1 al ¢ 17 o
_7%1@'@ <a ¢>/ o)de, 0" >+2 > (3 0, </¢ pe(@)dg> ;0 ¢>

1<]al<2

[ ~
- (a“atw /¢ <>d@,aa> > o (8’1 Dy </¢ rp@’(g)dg)a%)

1<|a|<2 1<|a|<2,
0<a’/ <o

- ¢ .
- oo (gos™ [ pllo)de ), 03] .
3 ( <¢ p /Wp@) g) ¢>

1<]al<2
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We thus find by utilizing Cauchy-Schwarz’s inequality with 0 < < 1 and Sobolev’s inequality (3.26]),

the a priori assumption (3.9)), as well as Lemma that

l1d o ¢ " o
]Cl + = th Z <a (JZS o pe(g)dgaa ¢>

1<]al<2

Steotm Y|

1<]o|<2

~12 ~[12
3“41)‘ +Cn(1+t)*2H¢H + Cpe(1 +1)72

Similarly, it follows that
ol + sl S (o +m) > |
1<]al<2
The second term on the right hand side of (6.5)) can be bounded by

¢ ’; +Cy(141)72 H$H2 + Cpe(1+1)72

) X 007 +a 3 101 o 3o 10 + Gyt + ) [

1<[al<2 1<[al<2 lal=1
As to the third term on the right hand side of (6.5, when |a — /| > 1, it is bounded by
2
oY (2 —2 1~ 2
m+e > | +eo D 0°A° + Cy(1+0)72 [
1<]al<2 jal=1

If |a — o'| = 0, using (3.5)) again, it reads

> (200d00020u) + > (20°0.0% (pe(¢) —pe(@)up) + Y (8.076,0°0%07ur),

1<]al<2 1<|a<2 1<]|a<2
which is further dominated by
(+e) > |
1<]al<2
The last term on the right hand side of (6.5) is controlled by
|2
+eo) Y (070 w0 Do 1071 + o1+ 072 )

1<]al<2 1<|al<2

6aq~5‘;+0(1+t H¢>H + Cpe(1+1)72

We now conclude from the above estimates that

o - ;jtlg%:g{’ 0.9+ |Vortord| }+ i 2 (a% / dg,aaas)
S (co+ 1) 12}9\ 2 2 IR G+ |[3.0.9] | + Cueta +6)

It remains now to estimate Jg 2, Jg,3 and Jg 4. By a similar argument as above, one sees that

Foal +1kal S (0 tm) Y [0°6

1<]a|<2 1<]al<2 la|=1

For Jg 4, when |a| = 2, we directly get from Lemma and Holder’s inequality that
| Tsal S D 100007 [0 10%ui | o S (1 +1)72
|a|=2

If || = 1, thanks to (3.26) and Lemma [2.2] one has
(Tsal £ 30 109007 |1 10:0%u |2 |0%uf |2 < /41 + )75/,

jal=1

Consequently, (3.72)) follows from , (6.7, and . This ends the proof of (3.72]).

2 a~ 112 a~112 —
Lt 2 ol e Y 1091 + Cpell +1) 7

(6.6)

(6.7)
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Proof of (3.74). Performing the similar calculations as for obtaining (3.71]), we have

1d |92 F|? N 80‘G
— (aaa P9, M ) > oo < M, 9~ G) + Q(8°~* G, 9% M) M)
zPUE, 7 ) ) M,
0<a’'<a
Ka o . (6.10)

+ (LMaaG,ﬂﬂ < )) . o <aa ' 9,00% 0, F, v )

0<a’'<a
Ks
N O°F N O°F N 9°F
( 0, 0“0, F, ML ) + (a azqsa&(;,M*) + (a Q(G,G), M )

where 1 < || < 2. We now estimate K4 and K5 only, since that other terms can be treated in the same
way. When |a| = 2, by applying Holder’s inequality, one has

K <3 /|aa 0,60% [p,uw, 0| dz+ S /|aaaw¢| ' [p,u 9’ do

o] =2 la|=2,]a’|=1
<c Yy e [m,ow +CZ o m\ + Ce(L+1)72
1< <2 lel=

When |a| = 1, we get from Holder’s inequality and the same argument as in proving that

ki <0 Y ||o [pad]| + o Z |

Ja|=1 <la|<2

8¢

‘+63/4( 1),

As to Ky, when |a| = 2, by using Cauchy-Schwarz’s inequality with 0 < n < 1 and Lemma we have

1+6)~1/2[Q(M, 9°G oG, M) |I” oM
9°G[? 2
=) / %dmgﬁu@ 3 Haa [p,u,ew + Ope(l+1)72
|af=2 7 RXR? * 1<|al<2

As to |a| = 1, it will be more complicated, and we first rewrite K5 as

S (LMﬁaG,PIIVI (3;41\4)) _y (Q (M,aa(é+é)) +Q (aa(é+é>,1v1) pM (a;m»

lal=1 lal=1
~ ~ 9°M
=— Q0°M,G) +Q (G,0°M ,PM< >)
3 (e(rma) ra(cora) ot
Ks,1
G,M),oPM (8“M>)
& 1( ( ) M.
Ks,2
M
( Q (M,0°G) +Q (9°G. M) P ( ))
|a\ 1 M.
Ks,3

Then utilizing Lemmas [6.1] and [2.2] Cauchy Schwarz’s inequality with 0 < 7 < 1, Sobolev’s inequality
(13.26) as well as the a priori assumption (3 , one can show that
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drdg + (Cy + €)Y Hﬁa [57 a, 5] H2 + Cpe(1+1)72
1<|a|<2

~ 12
(1+1¢)|G|
Kol + Ksal SO+ e0) [
RxR3 *

and
a2
Ksal s Y o [f)| +e/ia+ oo,
laj=1
Here, the details of derivations are omitted for brevity. This completes the proof of (3.74]) after taking
the summation of (6.10) over 1 < |a] < 2 and applying all the estimates above. O

Proof of (3.78). To prove (3.78)), for fixed a and § satisfying |a| + |5] < 2 and |B| > 1, it suffices to
estimate all the terms on the right hand side of (3.77)), since the second term on the left hand side can
be bonded below by

~ |2
(1+Ig)) [9°0° G|
5/ dxd€
RxR3 M*

according to Lemma
From Lemma and Cauchy-Schwarz’s inequality with 0 < 1 < 1, the first term on the right hand
side of (3.77) is bounded by

(1+1¢)) aaaﬁé\ (1+1¢) [0 o7 G‘
n/ N drd¢ +Cp Y / drde
RXxR3 * o' <a,B'<p RXxR3 M.
1+ ) [0 o G‘
+ e / dxdg.
0 Z RxR3 M. ¢

a'<a,p'=pB

The second and sixth terms are dominated by

1+ le 007G
77/]R><]R3

o 8 [ﬁ, 7, 5} HQ + Cpe(1+1)72

dede +C, Y )

1<[al<2

Applying the splitting G = G + G and the macro-micro decomposition &9,G = PM (£,0,G) +
PM (£,0,G), we see that the third term can be rewritten as

N 9°9°G 998G agh
_ (aaaﬁ (glax(;) , 613[ G) - (aaaﬁ (£0.G), 613[ G) + (aaaﬁ (P (£0,G)), 6131 G) ,

which can be further bounded by

2 L2
(1+[¢)) |o°0°G| (1+ ¢ |06 G|

77/ dxdé + C, / dxd§

RxR3 M. ! Z RxR3 M.

|/ |+18"|<|a|+8]
B'<B

o ¥ [ e, 5

1<|a|<2 1<]a|<2

’ o [,5, 7, 5} H2 4 Cpe(1+1)72

Similarly, the fourth term is dominated by
2 L2
ey [ D 90" G| 5 (1+ ¢ [0~ 07 G|
n+e / dxdf + € /
’ RxR3 M., 0 RxR3 M.,

o/ |18 < o418
+Cy Y|

1<]al<2

~ 112
0° [ﬁ, a,e,ﬂ H + Cpe(1 + )2
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Using G = G+G again, one can rewrite the fifth term as

0°9°Q (G, &) ,aj\ié +0°0°Q (6. @), aﬁié
+ aaaﬁQ(G,é),a(ﬁié + a@aﬁQ(G,G),aj\iiﬁ :
which can be controlled by
(UHO)/ (1+£I)‘aaaﬂé‘2dxd£+€0 / (1+1¢)) ‘aa 9% G‘ Lude
R M., P M.,
+0, 3 Haa [,5,17,5”‘2—1—0176(14-75)_

1<]al<2

according to Lemmas and Cauchy-Schwarz’s inequality with 0 < n < 1, Sobolev’s inequality
(3.26) as well as the a priori assumption (3.10]).

Finally, taking a suitable linear combination of the above estimates for all the cases that |a|+ |5] < 2
and || > 1, and noticing that

a+inlord
/]RX]R3 M ’ 6

1<|al<2 *

(1+\€|)|3QG| +¢)) |0°G”
S ) /nm e —dedé + Y /RXR—da:dg

1<]a|<2 M. 1<]a|<2 M.,

S > /}MS U+EDIO"GE e > e [5,a,§w2+e(1+t)—2,

M.
1<|a<2 1<]al<2
one sees that (3.78)) holds, and this ends the proof of (3.78]). O
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