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Abstract. In this paper, we are concerned with the Cauchy problem on the compressible

isentropic two-fluids Euler-Maxwell equations in three dimensions. The global existence of

solutions near constant steady states with the vanishing electromagnetic field is established,

and also the time-decay rates of perturbed solutions in Lq space for 2 ≤ q ≤ ∞ are obtained.

The proof for existence is due to the classical energy method, and the investigation of

the large-time behavior is based on the linearized analysis of the one-fluid Euler-Maxwell

equations and the damped Euler equations. As a byproduct of our approach, some time-

decay rates obtained in [18] for the nonlinear damped Euler system are improved.
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1. Introduction

The two-fluids Euler-Maxwell system in plasma physics describe dynamics of two separate
compressible fluids of ions and electrons interacting with their self-consistent electromagnetic
field [17]. Many famous nonlinear dispersive PDE, such as Zakharovs equation, nonlinear
Schrödinger equations, as well as KdV equations, can be formally derived from two-fluids
Euler-Maxwell system under various asymptotic limits, see [1, 2] and references therein. In
this paper, we consider the compressible isentropic two-fluids Euler-Maxwell system in three
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dimensions, taking the form of

∂tn± +∇ · (n±u±) = 0,

∂tu± + u± · ∇u± +
1
n±
∇p±(n±) = ∓(E + u± ×B)− ν±u±,

∂tE −∇×B = n+u+ − n−u−,
∂tB +∇× E = 0,

∇ · E = n− − n+, ∇ ·B = 0.

(1.1)

Here, n± = n±(t, x) ≥ 0 and u± = u±(t, x) ∈ R3 with t > 0, x ∈ R3, respectively, are densities
and velocities of the ion (−) and electron (+). E = E(t, x) ∈ R3 and B = B(t, x) ∈ R3 denote
the electromagnetic field. Initial data is given as

[n±, u±, E,B]|t=0 = [n±0, u±0, E0, B0], x ∈ R3,(1.2)

with the compatibility conditions

∇ · E0 = n−0 − n+0, ∇ ·B0 = 0, x ∈ R3.(1.3)

The pressure functions p±(·) depending only on the density satisfy the power law p±(n±) =
A±n

γ
± with constants A± > 0 and the adiabatic exponent γ > 1. Constants ν± > 0 are the

velocity relaxation frequency of ions and electrons. Notice that in general the Euler-Maxwell
system depends on many other physical parameters; refer to [1]. Here, we have skipped them
and only consider how the strictly positive relaxation frequency play in the whole theory.
Moreover, through this paper, we assume A+ = A− = A and ν+ = ν− = ν, and for simplicity
we also let A = ν = 1. In such simple case, as we shall show later on, the corresponding
linearized Euler-Maxwell system can be written as two-decoupled subsystems, i.e., the one-
fluid Euler-Maxwell system and the damped Euler system, which is essentially used in the
study of the time-decay property for the two-fluids Euler-Maxwell system above. The case
for general choices of A± and ν± that lead to more complex coupling structure is left for the
future study.

Before stating the main result, let us recall some previous related work. For the one-fluid
Euler-Maxwell system when ions only provide a uniform constant background, by using the
fractional Godunov scheme as well as the compensated compactness argument, Chen-Jerome-
Wang [4] proved global existence of weak solutions to the initial-boundary value problem in
one space dimension for arbitrarily large initial data in L∞. Jerome [11] established a local
smooth solution theory for the Cauchy problem over R3 by adapting the classical semigroup-
resolvent approach of Kato [13]. Peng-Wang [16] justified convergence of the compressible
Euler-Maxwell system to the incompressible Euler system for well-prepared smooth initial
data. Recently, Duan [6] proved the existence and uniqueness of global smooth solutions
with small amplitude to the one-fluid Euler-Maxwell system in three space dimensions, and
obtained the optimal large-time behavior of solutions in terms of the detailed analysis of the
Green’s function. The similar results are independently given by Ueda-Wang-Kawashima
[22] and Ueda-Kawashima [21] by using the pure time-weighted energy method. Much more
studies have been made for the Euler-Poisson system when the magnetic field is absent; see
[8, 9, 14, 5, 15, 3] and references therein for discussion and analysis of the different issues
such as the existence of global smooth irrotational flow [8] for an electron fluid and [9] for
the ion dynamics, large time behavior of solutions [14], stability of star solutions [5, 15] and
finite time blow-up [3].

However, there are few results on the two-fluids Euler-Maxwell system. As we pointed
out before, depending on the choice of physical parameters, the case of two-fluids exhibits
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much more complex decay structure than that of one-fluid; see (3.1) as well as (3.4) and
(3.6). The detailed analysis of the linearized system in the case when A+ = A− = 1 and
ν+ = ν− = 1 will be given in Section 3, cf. Proposition 3.1 and Theorem 3.1. Concerning the
nonlinear two-fluids Euler-Maxwell system, the main result is stated as follows. Notations
will be explained at the end of this section.

Theorem 1.1. Let N ≥ 4 and (1.3) hold. There are δ0 > 0, C0 such that if

‖[n±0 − 1, u±0, E0, B0]‖N ≤ δ0,

then, the Cauchy problem (1.1)-(1.2) of the Euler-Maxwell system admits a unique global
solution [n±(t, x), u±(t, x), E(t, x), B(t, x)] with

[n±(t, x)− 1, u±(t, x), E(t, x), B(t, x)] ∈ C([0,∞);HN (R3)) ∩ Lip([0,∞);HN−1(R3)),

and

sup
t≥0
‖[n±(t)− 1, u±(t), E(t), B(t)]‖N ≤ C0‖[n±0 − 1, u±0, E0, B0]‖N .

Moreover, there are δ1 > 0, C1 such that if

‖[n±0 − 1, u±0, E0, B0]‖13 + ‖[n±0 − 1, u±0, E0, B0]‖L1 ≤ δ1,

then, the solution [n±(t, x), u±(t, x), E(t, x), B(t, x)] satisfies that for any t ≥ 0,

‖n+(t)− n−(t)‖Lq ≤ C1(1 + t)−2− 1
q ,(1.4)

‖n+(t) + n−(t)− 2‖Lq ≤ C1(1 + t)−
3
2
+ 3

2q ,(1.5)

‖[u+(t)± u−(t), E(t)‖Lq ≤ C1(1 + t)−2+ 3
2q ,(1.6)

‖B(t)‖Lq ≤ C1(1 + t)−
3
2
+ 3

2q ,(1.7)

with 2 ≤ q ≤ ∞.

The proof of existence in Theorem 1.1 above is based on the classical energy method. As
in [6], the key point is to obtain the uniform-in-time a priori estimates in the form of

EN (V (t)) + λ

∫ t

0
DN (V (s)) ds ≤ EN (V0),

where V (t) is the perturbation of solutions, and EN (·), DN (·) denote the energy functional
and energy dissipation rate functional. Although along the same line, our construction of
EN (·) and DN (·) is a little different from that for the one-fluid case as in [6] because of the
more complex structure of two-fluids system. In particular, since the system is degenerate
over some components of the whole solution, one has to construct some interactive functionals
so as to capture the optimal form of the energy dissipation rate which plays a vital role for
the study of time-decay property of solutions to the nonlinear system. We here notice the
general theory of hypocoercivity in [23].

Moreover, in order to obtain the rates of convergence of solutions in Theorem 1.1, our
approach is the combination of the analysis of Green’s function of the linearized system
and the refined energy estimates with the help of the Duhamel’s principle. Related to this
approach, we only mention [12] for the systematic study of systems of a hyperbolic-parabolic
composite type, and also notice that the theoretical framework developed in [12] can not be
applied to the two-fluids Euler-Maxwell system considered here. Thus, we first discuss the
time-decay rates of the linearized equations. When ν+ = ν−, the linearized homogeneous
equations of the two-fluids Euler-Maxwell system (1.1) can be written as two decoupled
subsystems (3.10) and (3.13). For (3.10), the corresponding results can be obtained in a
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parallel way as [6]. It is observed that (3.13) is the linearized homogeneous system also
corresponding to the 3-D compressible Euler equations with damping (5.1). For the Cauchy
problem (5.1)-(5.2) of the damped Euler system, Sideris-Thomases-Wang [18] actually has
obtained the time-decay rates of solutions by using the Fourier analysis. Here we shall revisit
this issue to consider the optimal rates of each component in the solution by exploring the
explicit solution to the Cauchy problem (3.13)-(3.14) in the Fourier space. In fact, our
Proposition 5.1 in Appendix is an improved result of [18, Lemma 6.1] in the sense that the
momentum component has an extra time-decay (1 + t)−1/2 in L2. Notice that the time-
decay rates obtained in Corollary 3.1 can be used to refine [18, Theorem 6.1]. In that sense,
Appendix can be viewed as a generalization of [18].

Let us introduce some notations for the use throughout this paper. C denotes some positive
(generally large) constant and λ denotes some positive (generally small) constant, where both
C and λ may take different values in different places. For two quantities a and b, a ∼ b means
λa ≤ b ≤ 1

λa for a generic constant 0 < λ < 1. For any integer m ≥ 0, we use Hm, Ḣm

to denote the usual Sobolev space Hm(R3) and the corresponding m-order homogeneous
Sobolev space, respectively. Set L2 = Hm when m = 0. For simplicity, the norm of Hm is
denoted by ‖ · ‖m with ‖ · ‖ = ‖ · ‖0. We use 〈·, ·〉 to denote the inner product over the Hilbert
space L2(R3), i.e. 〈f, g〉 =

∫
R3 f(x)g(x)dx, f = f(x), g = g(x) ∈ L2(R3). For a multi-index

α = [α1, α2, α3], we denote ∂α = ∂α1
x1
∂α2
x2
∂α3
x3

. The length of α is |α| = α1 + α2 + α3. For
simplicity, we also set ∂j = ∂xj , j = 1, 2, 3.

We conclude this section by stating the arrangement of the rest of this paper. In Section
2, we reformulate the Cauchy problem under consideration and prove the global existence
and uniqueness of solutions. In Section 3, we investigate the linearized homogeneous system
to obtain the Lp − Lq time-decay property and the explicit representation of solutions. In
Section 4, we study the time-decay rates of solutions to the reformulated nonlinear system
and finish the proof of Theorem 1.1. In the last Section 5, we use an appendix to investigate
the time-decay rates of solutions to the Cauchy problem on the damped Euler system (5.1),
which improves the corresponding results in [18].

2. Global solutions for the nonlinear system

2.1. Reformulation of the problem. Let [n±, u±, E,B] be a smooth solution to the
Cauchy problem of the Euler-Maxwell system (1.1) with given initial data (1.2) satisfying
(1.3). Set


σ±(t, x) =

2
γ − 1

{
[n±(

t
√
γ
, x)]

γ−1
2 − 1

}
, v± =

1
√
γ
u±(

t
√
γ
, x),

Ẽ =
1
√
γ
E(

t
√
γ
, x), B̃ =

1
√
γ
B(

t
√
γ
, x).

(2.1)
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Then, V := [σ±, v±, Ẽ, B̃] satisfies

(2.2)



∂tσ± + v± · ∇σ± + (
γ − 1

2
σ± + 1)∇ · v± = 0,

∂tv± + (
γ − 1

2
σ± + 1)∇σ± + v± · ∇v± = ∓(

1
√
γ
Ẽ + v± × B̃)− 1

√
γ
v±,

∂tẼ −
1
√
γ
∇× B̃ =

1
√
γ
v+ +

1
√
γ

[Φ(σ+) + σ+]v+ −
1
√
γ
v− −

1
√
γ

[Φ(σ−) + σ−]v−,

∂tB̃ +
1
√
γ
∇× Ẽ = 0,

∇ · Ẽ = − 1
√
γ

[Φ(σ+) + σ+] +
1
√
γ

[Φ(σ−) + σ−], ∇ · B̃ = 0. t > 0, x ∈ R3,

with initial data

V |t=0 = V0 := [σ±0, v±0, Ẽ0, B̃0], x ∈ R3.(2.3)

Here, Φ(·) is defined by

Φ(σ) = (
γ − 1

2
σ + 1)

2
γ−1 − σ − 1,

and V0 = [σ±0, v±0, Ẽ0, B̃0] is given from [n±0, u±0, E0, B0] according to the transform (2.1),
and hence V0 satisfies

∇ · Ẽ0 = − 1
√
γ

[Φ(σ+0) + σ+0] +
1
√
γ

[Φ(σ−0) + σ−0],

∇ · B̃0 = 0, x ∈ R3.

(2.4)

In what follows, the integer N ≥ 4 is always assumed. Besides, for V = [σ±, v±, Ẽ, B̃], we
define the full instant energy functional EN (V (t)) and the high-order instant energy functional
EhN (V (t)) by

(2.5)

EN (V (t)) = ‖V (t)‖2N

+κ1
∑

|α|≤N−1

(〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉)

+κ2
∑

|α|≤N−1

〈∂α(v+ − v−),∇∂αẼ〉 − κ3
∑

|α|≤N−2

〈∇ × ∂αẼ, ∂αB̃〉

and

(2.6)

EhN (V (t)) = ‖∇V (t)‖2N−1 + κ1

∑
1≤|α|≤N−1

(〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉)

+ κ2

∑
1≤|α|≤N−1

〈∂α(v+ − v−),∇∂αẼ〉 − κ3

∑
1≤|α|≤N−2

〈∇ × ∂αẼ, ∂αB̃〉,

respectively, where 0 < κ3 � κ2 � κ1 � 1 are constants to be properly chosen in the later
proof. Notice that since all constants κi (i = 1, 2, 3) are small enough, one has

EN (V (t)) ∼ ‖[σ±, v±, Ẽ, B̃]‖2N , EhN (V (t)) ∼ ‖∇[σ±, v±, Ẽ, B̃]‖2N−1.

We further define the dissipation rates DN (V (t)), DhN (V (t)) by

DN (V (t)) = ‖[v+, v−]‖2N+‖∇[σ+, σ−]‖2N−1

+ ‖∇[Ẽ, B̃]‖2N−2 + ‖Ẽ‖2 + ‖σ+ − σ−‖2,
(2.7)
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DhN (V (t)) = ‖∇[v+, v−]‖2N−1 + ‖∇2[σ+, σ−]‖2N−2

+ ‖∇2[Ẽ, B̃]‖2N−3 + ‖∇Ẽ‖2 + ‖∇(σ+ − σ−)‖2.
(2.8)

Notice that different from the one-fluid case as in [6], ‖σ++σ−‖2 and hence ‖σ±‖2 are excluded
from DN (V (t)), and ‖∇(σ+ +σ−)‖2 and thus ‖∇σ±‖2 do not appear in DhN (V (t)) any more.
Now, concerning the reformulated Cauchy problem (2.2)-(2.3), one has the following global
existence result.

Proposition 2.1. Suppose (2.4) for given initial data V0 = [σ±0, v±0, Ẽ0, B̃0]. Then, there are
EN (·) and DN (·) given by (2.5) and (2.7) such that the following holds true. If EN (V0) > 0
is small enough, the Cauchy problem (2.2)-(2.3) admits a unique global nonzero solution
V = [σ±, v±, Ẽ, B̃] satisfying

V ∈ C([0,∞);HN (R3)) ∩ Lip([0,∞);HN−1(R3)),(2.9)

and

EN (V (t)) + λ

∫ t

0
DN (V (s))ds ≤ EN (V0)(2.10)

for any t ≥ 0.

Moreover, solutions obtained in Proposition 2.1 indeed decay in time with some rates
under some extra regularity and integrability conditions on initial data. For that, given
V0 = [σ±0, v±0, Ẽ0, B̃0], set εm(V0) as

εm(V0) = ‖V0‖m + ‖[σ±0, v±0, Ẽ0, B̃0]‖L1 ,(2.11)

for the integer m ≥ 4. Then one has

Proposition 2.2. Suppose (2.4) for given initial data V0 = [σ±0, v±0, Ẽ0, B̃0]. If εN+2(V0) >
0 is small enough, then the solution V = [σ±, v±, Ẽ, B̃] satisfies

‖V (t)‖N ≤ CεN+2(V0)(1 + t)−
3
4(2.12)

for any t ≥ 0. Furthermore, if εN+6(V0) > 0 is small enough, then the solution V =
[σ±, v±, Ẽ, B̃] also satisfies

‖∇V (t)‖N−1 ≤ CεN+6(V0)(1 + t)−
5
4(2.13)

for any t ≥ 0.

The existence result in Theorem 1.1 directly follows from Proposition 2.1, and the deriva-
tion of rates of convergence (1.4)-(1.7) in Theorem 1.1 is based on Proposition 2.2 with the
help of the bootstrap argument that will be shown in Subsection 4.3.

2.2. A priori estimates. In this subsection we devote ourselves to the proof of Proposition
2.1. The key part is to apply the classical energy method to obtain some uniform-in-time a
priori estimates for smooth solutions to the Cauchy problem (2.2)-(2.3). Notice that (2.2) is
a quasi-linear symmetric hyperbolic system.

Theorem 2.1. (a priori estimates). Let 0 < T ≤ ∞ be given. Suppose that V = [σ±, v±, Ẽ, B̃] ∈
C([0, T );HN (R3)) is smooth with

sup
0≤t<T

‖σ±(t)‖N ≤ 1,(2.14)
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and that V satisfies the system (2.2) for t ∈ (0, T ). Then, there are EN (·) and DN (·) in the
form (2.5) and (2.7) such that

d

dt
EN (V (t)) + λDN (V (t)) ≤ C[EN (V (t))

1
2 + EN (V (t))]DN (V (t))(2.15)

for any 0 ≤ t < T .

Proof. It is divided by five steps as follows.

Step 1. It holds that

(2.16)
1
2
d

dt
‖V ‖2N +

1
√
γ
‖[v+, v−]‖2N ≤ C‖V ‖N (‖[v+, v−]‖2 + ‖∇[σ+, σ−, v+, v−]‖2N−1).

In fact, from the first two equations of (2.2), energy estimates on ∂ασ± and ∂αv± with |α| ≤ N
give

1
2
d

dt
‖∂α[σ+, σ−, v+, v−]‖2 +

1
√
γ
‖∂α[v+, v−]‖2 +

1
√
γ
〈∂αẼ, ∂αv+〉

− 1
√
γ
〈∂αẼ, ∂αv−〉 = −

∑
β<α

Cαβ Iα,β(t) + I1(t).
(2.17)

Here, Iα,β(t) = I+
α,β(t) + I−α,β(t), I1(t) = I+

1 (t) + I−1 (t) with

I+
α,β(t) = 〈∂α−βv+ · ∇∂βσ+, ∂

ασ+〉+
γ − 1

2
〈∂α−βσ+∇ · ∂βv+, ∂ασ+〉

+
γ − 1

2
〈∂α−βσ+∇∂βσ+, ∂

αv+〉+ 〈∂α−βv+ · ∇∂βv+, ∂αv+〉

+〈∂α−βv+ × ∂βB̃, ∂αv+〉,

I−α,β(t) = 〈∂α−βv− · ∇∂βσ−, ∂ασ−〉+
γ − 1

2
〈∂α−βσ−∇ · ∂βv−, ∂ασ−〉

+
γ − 1

2
〈∂α−βσ−∇∂βσ−, ∂αv−〉+ 〈∂α−βv− · ∇∂βv−, ∂αv−〉

−〈∂α−βv− × ∂βB̃, ∂αv−〉,

and

I+
1 (t) =

1
2
〈∇ · v+, |∂ασ+|2 + |∂αv+|2〉+

γ − 1
2
〈∇σ+ · ∂ασ+, ∂

αv+〉 − 〈v+ × ∂αB̃, ∂αv+〉,

I−1 (t) =
1
2
〈∇ · v−, |∂ασ−|2 + |∂αv−|2〉+

γ − 1
2
〈∇σ− · ∂ασ−, ∂αv−〉+ 〈v− × ∂αB̃, ∂αv−〉,

where integration by parts was used. When |α| = 0, it suffices to estimate I1(t) by

I1(t) = I+
1 (t) + I−1 (t)

≤ C‖[σ+, v+]‖H1‖∇[σ+, v+]‖2 + C‖∇B̃‖H1‖v+‖2

+C‖[σ−, v−]‖H1‖∇[σ−, v−]‖2 + C‖∇B̃‖H1‖v−‖2

≤ C‖[σ+, σ−, v+, v−]‖H1‖∇[σ+, σ−, v+, v−]‖2 + C‖∇B̃‖H1‖[v+, v−]‖2,

which is further bounded by the r.h.s. term of (2.16). When |α| ≥ 1, since each term in
Iα,β(t) and I1(t) is the integration of the three-terms product in which there is at least one
term containing the derivative, one has

Iα,β(t) + I1(t) ≤ C‖[σ+, σ−, v+, v−, B̃]‖N‖∇[σ+, σ−, v+, v−]‖2N−1,
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which is also bounded by the r.h.s. term of (2.16). On the other hand, from (2.2), energy
estimates on ∂αẼ and ∂αB̃ with |α| ≤ N give

1
2
d

dt
‖∂α[Ẽ, B̃]‖2 − 1

√
γ
〈∂αv+, ∂αẼ〉+

1
√
γ
〈∂αẼ, ∂αv−〉

=
1
√
γ
〈∂α[(Φ(σ+) + σ+)v+], ∂αẼ〉 − 1

√
γ
〈∂α[(Φ(σ−) + σ−)v−], ∂αẼ〉

:=I+
2 (t) + I−2 (t).

(2.18)

In a similar way as [6], for |α| ≤ N , one has

I+
2 (t) ≤ C‖Ẽ‖N (‖∇[σ+, v+]‖2N−1 + ‖v+‖2),

and

I−2 (t) ≤ C‖Ẽ‖N (‖∇[σ−, v−]‖2N−1 + ‖v−‖2).

Thus, for |α| ≤ N , one has

I+
2 (t) + I−2 (t) ≤ C‖Ẽ‖N (‖∇[σ+, σ−, v+, v−]‖2N−1 + ‖[v+, v−]‖2),

which is bounded by the r.h.s. term of (2.16). Then (2.16) follows by taking summation of
(2.17) and (2.18) over |α| ≤ N .

Step 2. It holds that

d

dt
E intN,1(V ) + λ(‖∇[σ+, σ−]‖2N−1 + ‖σ+ − σ−‖2)

≤C‖[v+, v−]‖2N + C‖[σ+, σ−, v+, v−, B̃]‖2N‖∇[σ+, σ−, v+, v−]‖2N−1,
(2.19)

where E intN,1(·) is defined by

E intN,1(V ) =
∑

|α|≤N−1

(
〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉

)
.

In fact, the first four equations of (2.2) can be rewritten as

∂tσ+ +∇ · v+ = f+
1 ,(2.20)

∂tσ− +∇ · v− = f−1 ,(2.21)

∂tv+ +∇σ+ +
1
√
γ
Ẽ = f+

2 −
1
√
γ
v+,(2.22)

∂tv− +∇σ− −
1
√
γ
Ẽ = f−2 −

1
√
γ
v−,(2.23)

where 

f+
1 = −v+ · ∇σ+ −

γ − 1
2

σ+∇ · v+,

f−1 = −v− · ∇σ− −
γ − 1

2
σ−∇ · v−,

f+
2 = −v+ · ∇v+ −

γ − 1
2

σ+∇σ+ − v+ × B̃,

f−2 = −v− · ∇v− −
γ − 1

2
σ−∇σ− + v− × B̃.
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Let |α| ≤ N − 1. Applying ∂α to (2.23), multiplying it by ∂α∇σ−, taking integrations in x

and then using integration by parts and also the final equation of (2.2), replacing ∂tσ− from
(2.21) gives

d

dt
〈∂αv−,∇∂ασ−〉+ ‖∇∂ασ−‖2 +

1
γ
‖∂ασ−‖2 −

1
γ
〈∂ασ+, ∂

ασ−〉

= −1
γ
〈∂αΦ(σ−), ∂ασ−〉+

1
γ
〈∂αΦ(σ+), ∂ασ−〉+ 〈∂αf−2 ,∇∂

ασ−〉

− 1
√
γ
〈∂αv−,∇∂ασ−〉+ ‖∇ · ∂αv−‖2 − 〈∂αf−1 ,∇ · ∂

αv−〉.

In a similar way as above, from (2.22) and (2.20), one has

d

dt
〈∂αv+,∇∂ασ+〉+ ‖∇∂ασ+‖2 +

1
γ
‖∂ασ+‖2 −

1
γ
〈∂ασ−, ∂ασ+〉

= −1
γ
〈∂αΦ(σ+), ∂ασ+〉+

1
γ
〈∂αΦ(σ−), ∂ασ+〉+ 〈∂αf+

2 ,∇∂ασ+〉

− 1
√
γ
〈∂αv+,∇∂ασ+〉+ ‖∇ · ∂αv+‖2 − 〈∂αf+

1 ,∇ · ∂αv+〉.

Taking further the summation of the previous two equations implies

d

dt
(〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉) + ‖∇∂α[σ+, σ−]‖2 +

1
γ
‖∂ασ+ − ∂ασ−‖2

= ‖∇ · ∂αv+‖2 + ‖∇ · ∂αv−‖2 +
1
γ
〈∂αΦ(σ+), ∂ασ− − ∂ασ+〉+ 〈∂αf+

2 ,∇∂ασ+〉

+〈∂αf−2 ,∇∂ασ−〉+
1
γ
〈∂αΦ(σ−), ∂ασ+ − ∂ασ−〉 −

1
√
γ
〈∂αv+,∇∂ασ+〉

− 1
√
γ
〈∂αv−,∇∂ασ−〉 − 〈∂αf+

1 ,∇ · ∂αv+〉 − 〈∂αf
−
1 ,∇ · ∂αv−〉.

Then, it follows from Cauchy-Schwarz inequality that
(2.24)

d

dt
(〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉) + λ(‖∇∂α[σ+, σ−]‖2 + ‖∂ασ+ − ∂ασ−‖2)

≤ C(‖∇ · ∂αv+‖2 + ‖∇ · ∂αv−‖2) + C(‖∂αv+‖2 + ‖∂αv−‖2)

+C(‖∂αΦ(σ+)‖2 + ‖∂αf+
1 ‖2 + ‖∂αf+

2 ‖2) + C(‖∂αΦ(σ−)‖2 + ‖∂αf−1 ‖2 + ‖∂αf−2 ‖2).

Noticing that Φ(σ) is smooth in σ with Φ(0) = Φ′(0) = 0 and f+
1 , f

−
1 , f

+
2 , f

−
2 are quadrat-

ically nonlinear, one has from (2.14) that

‖∂αΦ(σ+)‖2 + ‖∂αf+
1 ‖2 + ‖∂αf+

2 ‖2 + ‖∂αΦ(σ−)‖2 + ‖∂αf−1 ‖2 + ‖∂αf−2 ‖2

≤ C‖[σ+, v+, B̃]‖2N‖∇[σ+, v+]‖2N−1 + C‖[σ−, v−, B̃]‖2N‖∇[σ−, v−]‖2N−1.

Plugging this into (2.24) taking summation over |α| ≤ N − 1 yields (2.19).

Step 3. It holds that

(2.25)

d

dt
E intN,2(V ) + λ‖Ẽ‖2N−1

≤C‖[v+, v−]‖2N + C‖∇[σ+, σ−]‖2N−1 + C‖[v+, v−]‖N‖∇B̃‖N−2

+ C‖[σ+, σ−, v+, v−, B̃]‖2N‖∇[σ+, σ−, v+, v−]‖2N−1,
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where E intN,2(·) is defined by

E intN,2(V ) =
∑

|α|≤N−1

〈∂α(v+ − v−), ∂αẼ〉.

In fact, for |α| ≤ N − 1, from (2.22) and (2.23), we have

∂t(v+ − v−) + (∇σ+ −∇σ−) +
2
√
γ
Ẽ

=f+
2 − f

−
2 −

1
√
γ

(v+ − v−).
(2.26)

Applying ∂α to (2.26), multiplying it by ∂αẼ, taking integrations in x and using integration
by parts and replacing ∂tẼ from the third equation of (2.2) gives

d

dt
〈∂α(v+ − v−), ∂αẼ〉+

2
√
γ
‖∂αẼ‖2

=
1
√
γ
‖∂α(v+ − v−)‖2 +

1
√
γ
〈∂α(v+ − v−),∇× ∂αB̃〉

+
1
√
γ
〈∂α(v+ − v−), ∂α[Φ(σ+)v+ + σ+v+]〉

− 1
√
γ
〈∂α(v+ − v−), ∂α[Φ(σ−)v− + σ−v−]〉 − 1

√
γ
〈∂α(v+ − v−), ∂αẼ〉

−〈∂α(∇σ+ −∇σ−), ∂αẼ〉+ 〈∂α(f+
2 − f

−
2 ), ∂αẼ〉,

which from Cauchy-Schwarz inequality, further implies

d

dt
〈∂α(v+ − v−), ∂αẼ〉+ λ‖∂αẼ‖2

≤ C‖∂α(v+ − v−)‖2 + C‖[v+, v−]‖N‖∇B̃‖N−2 + C‖∇[∂ασ+ − ∂ασ−]‖2

+C‖[σ+, σ−, v+, v−, B̃]‖2N‖∇[σ+, σ−, v+, v−]‖2N−1.

Thus (2.25) follows from taking summation of the above estimate over |α| ≤ N − 1.

Step 4. It holds that

(2.27)
d

dt
E intN,3(V ) + λ‖∇B̃‖2N−2 ≤C‖[v+, v−, Ẽ]‖2N−1

+ C‖[σ+, σ−]‖2N‖∇[v+, v−]‖2N−1,

where E intN,3(·) is defined by

E intN,3(V ) = −
∑

|α|≤N−2

〈∇ × ∂αẼ, ∂αB̃〉.

In fact, for |α| ≤ N−2, applying ∂α to the third equation of (2.2), multiplying it by ∂α∇×B̃,
taking integrations in x and using integration by parts and replacing ∂tB̃ from the fourth
equation of (2.2) implies

− d

dt
〈∂αẼ,∇× ∂αB̃〉+

1
√
γ
‖∇ × ∂αB̃‖2

=
1
√
γ
‖∇ × ∂αẼ‖2 − 1

√
γ
〈∂αv+,∇× ∂αB̃〉+

1
√
γ
〈∂αv−,∇× ∂αB̃〉

− 1
√
γ
〈∂α[Φ(σ+)v+ + σ+v+],∇× ∂αB̃〉+

1
√
γ
〈∂α[Φ(σ−)v− + σ−v−],∇× ∂αB̃〉.
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The above estimate gives (2.27) by further using Cauchy-Schwarz inequality and taking sum-
mation over |α| ≤ N − 2, where we also used

‖∂α∂xiB̃‖ = ‖∂xi∆−1∇× (∇× ∂αB̃)‖ ≤ ‖∇ × ∂αB̃‖

for each 1 ≤ i ≤ 3, due to the fact that ∂xi∆
−1∇ is bounded from Lp to itself for 1 < p <∞

[19].

Step 5. Now, following four steps above, we are ready to prove (2.15). Let us define

EN (V (t)) = ‖V (t)‖2N +
3∑
i=1

κiE intN,i(V (t)),

that is,

(2.28)

EN (V (t)) = ‖[σ+, σ−, v+, v−, Ẽ, B̃]‖2N

+κ1
∑

|α|≤N−1

(〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉)

+κ2
∑

|α|≤N−1

〈∂α(v+ − v−),∇∂αẼ〉 − κ3
∑

|α|≤N−2

〈∇ × ∂αẼ, ∂αB̃〉

for constants 0 < κ3 � κ2 � κ1 � 1 to be determined. Notice that as long as 0 < κi � 1
is small enough for i = 1, 2, 3, then EN (V (t)) ∼ ‖V (t)‖2N holds true. Moreover, letting
0 < κ3 � κ2 � κ1 � 1 with κ3/2

2 � κ3, the sum of (2.16), (2.19)×κ1, (2.25)×κ2, (2.27)×κ3

implies that there is λ > 0, C > 0 such that (2.15) holds true with DN (·) defined in (2.7).
Here, we have used the following Cauchy-Schwarz inequality

2κ2‖[v+, v−]‖N‖∇B̃‖N−2 ≤ κ1/2
2 ‖[v+, v−]‖2N + κ

3/2
2 ‖∇B̃‖

2
N−2.

and due to κ3/2
2 � κ3, both terms on the r.h.s. of the above inequality were absorbed. This

completes the proof of Theorem 2.1. �

Since (2.2) is a quasi-linear symmetric hyperbolic system, the short-time existence can be
proved in much more general case as in [13]; see also ([20] Theorem 1.2, Proposition 1.3 and
Proposition 1.4 in Chapter 16). From Theorem 2.1 and the continuity argument, it is easy
to see that EN (V (t)) is bounded uniformly in time under the assumption that EN (V0) > 0 is
small enough. Therefore, the global existence of solutions satisfying (2.9) and (2.10) follows
in the standard way; see also [6]. This completes the proof of Proposition 2.1. �

3. Linearized homogeneous system

In order to study the time-decay property of solutions to the nonlinear system (1.1) later
on, we have to consider the following Cauchy problem on the corresponding linearized system
around the constant state [1, 0, 0, 0]. In fact, by setting ρ± = n±−1, Then U := [ρ±, u±, E,B]
satisfies

(3.1)



∂tρ± +∇ · u± = −∇ · (ρ±u±),

∂tu± + u± ± E + γ∇ρ± = −u± · ∇u± − γ[(ρ± + 1)γ−2 − 1]∇ρ± ∓ (u± ×B),

∂tE −∇×B − u+ + u− = ρ+u+ − ρ−u−,
∂tB +∇× E = 0,

∇ · E = ρ− − ρ+, ∇ ·B = 0, t > 0, x ∈ R3,

with initial data

U |t=0 = U0 := [ρ±0, u±0, E0, B0], x ∈ R3,(3.2)
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satisfying the compatibility conditions ∇ ·E0 = ρ−0 − ρ+0, ∇ ·B0 = 0. Here, ρ±0 = n±0 − 1.
To capture the decay structure of the linearized system above, we now take the sum and

difference of ± equations. Let

ρ1 =
ρ+ − ρ−

2
, u1 =

u+ − u−
2

.(3.3)

Then [ρ1, u1, E,B] satisfies

(3.4)



∂tρ1 +∇ · u1 =
1
2

(g+
1 − g

−
1 ),

∂tu1 + u1 + E + γ∇ρ1 =
1
2

(g+
2 − g

−
2 ),

∂tE −∇×B − 2u1 =
1
2

(g+
3 − g

−
3 ),

∂tB +∇× E = 0,
1
2
∇ · E = −ρ1, ∇ ·B = 0, t > 0, x ∈ R3,

with initial data U1|t=0 = U1,0 := [ρ1,0, u1,0, E0, B0], x ∈ R3, satisfying the compatibility

conditions
1
2
∇ · E = −ρ1,0, ∇ · B0 = 0, and [ρ1,0, u1,0] is given from [ρ+0, ρ−0, u+0, u−0]

according to the transform (3.3). Furthermore, we also set

ρ2 =
ρ+ + ρ−

2
, u2 =

u+ + u−
2

.(3.5)

Then [ρ2, u2] satisfies

(3.6)


∂tρ2 +∇ · u2 =

1
2

(g+
1 + g−1 ),

∂tu2 + u2 + γ∇ρ2 =
1
2

(g+
2 + g−2 ), t > 0, x ∈ R3,

with initial data U2|t=0 = U2,0 := [ρ2,0, u2,0], x ∈ R3, where [ρ2,0, u2,0] is given from
[ρ+0, ρ−0, u+0, u0] according to the transform (3.5). Here the nonlinear source term takes
the form of 

g±1 = −∇ · (ρ±u±),

g±2 = −u± · ∇u± ∓ u± ×B − γ[(1 + ρ±)γ−2 − 1]∇ρ±,

g±3 = ρ±u±.

(3.7)

Then, by Duhamel’s principle, the solution U1 = [ρ1, u1, E,B] and U2 = [ρ2, u2] can be
formally written as

U1(t) = etLU1,0 +
1
2

∫ t

0
e(t−s)L[g+

1 (s)− g−1 (s), g+
2 (s)− g−2 (s), g+

3 (s)− g−3 (s), 0]ds,(3.8)

and

U2(t) = etLU2,0 +
1
2

∫ t

0
e(t−s)L[g+

1 (s) + g−1 (s), g+
2 (s) + g−2 (s)]ds,(3.9)

where etLU1,0 and etLU2,0, respectively, denote the solution to the Cauchy problems (3.10)-
(3.11) and (3.13)-(3.14) both without nonlinear sources, which will be given later on.

Thus, in this section, we are concerned with the time-decay estimates on two decoupled
linearized homogeneous systems corresponding to (3.4) and (3.6). Notice that the decoupled
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feature essentially comes from our assumption of A+ = A− = A and ν+ = ν− = ν in (1.1).
The linearized homogeneous system of (3.4) reads

(3.10)



∂tρ1 +∇ · u1 = 0,

∂tu1 + u1 + E + γ∇ρ1 = 0,

∂tE −∇×B − 2u1 = 0,

∂tB +∇× E = 0,
1
2
∇ · E = −ρ1, ∇ ·B = 0, t > 0, x ∈ R3,

with initial data

U1|t=0 = U1,0 := [ρ1,0, u1,0, E0, B0], x ∈ R3,(3.11)

satisfying the compatibility conditions

1
2
∇ · E = −ρ1,0, ∇ ·B0 = 0.(3.12)

And the linearized homogeneous equations of (3.6) become

(3.13)

{
∂tρ2 +∇ · u2 = 0,

∂tu2 + u2 + γ∇ρ2 = 0, t > 0, x ∈ R3,

with initial data

U2|t=0 = U2,0 := [ρ2,0, u2,0], x ∈ R3.(3.14)

Here [ρ2,0, u2,0] is given from [ρ+0, ρ−0, u+0, u0] according to the transform (3.5).
From now on, we always denote U1 = [ρ1, u1, E,B] as the solution to the linearized homo-

geneous system (3.10), and U2 = [ρ2, u2] as the one to (3.13). And since smooth solutions to
the nonlinear system (2.2) and (3.1) are equivalent, time-decay properties of the solution to
(3.1) can be directly applied to (2.2).

First of all, for the linearized equations (3.10)-(3.12), the Lp−Lq time decay property was
proved in [6]. We only list some special Lp − Lq time decay inequalities in the following

Proposition 3.1. Suppose U1(t) = etLU1,0 is the solution to the Cauchy problem (3.10)-
(3.11) with the initial data U1,0 = [ρ1,0, u1,0, E0, B0] satisfying (3.12). Then U1 = [ρ1, u1, E,B]
satisfies the following time-decay property:

‖ρ1(t)‖ ≤ Ce−
t
2 ‖[ρ1,0, u1,0]‖,

‖u1(t)‖ ≤ Ce−
t
2 ‖ρ1,0‖+ C(1 + t)−

5
4 ‖[u1,0, E0, B0]‖L1∩Ḣ2 ,

‖E(t)‖ ≤ C(1 + t)−
5
4 ‖[u1,0, E0, B0]‖L1∩Ḣ3 ,

‖B(t)‖ ≤ C(1 + t)−
3
4 ‖[u1,0, E0, B0]‖L1∩Ḣ2 ,

(3.15)

and 

‖ρ1(t)‖∞ ≤ Ce−
t
2 ‖[ρ1,0, u1,0]‖L2∩Ḣ2 ,

‖u1(t)‖∞ ≤ Ce−
t
2 ‖ρ1,0‖L2∩Ḣ2 + C(1 + t)−2‖[u1,0, E0, B0]‖L1∩Ḣ5 ,

‖E(t)‖∞ ≤ C(1 + t)−2‖[u1,0, E0, B0]‖L1∩Ḣ6 ,

‖B(t)‖∞ ≤ C(1 + t)−
3
2 ‖[u1,0, E0, B0]‖L1∩Ḣ5 ,

(3.16)
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and moreover,  ‖∇B(t)‖ ≤ C(1 + t)−
5
4 ‖[u1,0, E0, B0]‖L1∩Ḣ4 ,

‖∇N [E(t), B(t)]‖ ≤ C(1 + t)−
5
4 ‖[u1,0, E0, B0]‖L1∩ḢN+3 .

(3.17)

As we mention before, the time-decay property of the damped Euler system (3.13) was
studied in [18]. The rest of this section is to get the refined time-decay property by exploring
the explicit solution to the Cauchy problem (3.13)-(3.14). In fact, compared with the result
in [18, Lemma 6.1], it will be shown that the momentum component has an extra time-decay
(1 + t)−1/2 in L2.

3.1. Representation of solutions for (3.13) and (3.14). We first find the explicit rep-
resentation of the Fourier transform of the solution U2 = [ρ2, u2] = etLU2,0 to the Cauchy
problem (3.13)-(3.14). For an integrable function f : R3 → R, its Fourier transform is defined
by

f̂(k) =
∫

R3

e−ix·kf(x)dx, x · k :=
3∑
j=1

xjkj , k ∈ R3,

where i =
√
−1 ∈ C is the imaginary unit.

Taking the time derivative for the first equation of (3.13), and using the second equation
to replace ∂tu2 we have

∂ttρ2 + ∂tρ2 − γ4ρ2 = 0.(3.18)

Initial data is given by

ρ2|t=0 = ρ2,0 =
ρ+0 + ρ−0

2
, ∂tρ2|t=0 = −∇ · u2,0.(3.19)

By taking the Fourier transform of (3.18)-(3.19), we get the second order ODE as
∂ttρ̂2 + ∂tρ̂2 + γ|k|2ρ̂2 = 0,

ρ̂2|t=0 = ρ̂2,0,

∂tρ̂2|t=0 = −ik · û2,0.

It is straightforward to obtain

ρ̂2 = ρ̂2,0
χ+e

χ−t − χ−eχ+t

χ+ − χ−
− ik · û2,0

eχ+t − eχ−t

χ+ − χ−
,

where χ± = −1
2
± 1

2

√
1− 4γ|k2| are the roots of the characteristic equation χ2+χ+γ|k|2 = 0.

Similarly, taking the time derivative for the second equation of (3.13), and using the first
equation to replace ∂tρ2 we have

∂ttu2 + ∂tu2 − γ∇(∇ · u2) = 0.

Further taking the divergence, one has

∂tt(∇ · u2) + ∂t(∇ · u2)− γ∆(∇ · u2) = 0.(3.20)

Notice

∇ · u2|t=0 = ∇ · u2,0,(3.21)

∂t∇ · u2|t=0 = −∇ · u2,0 − γ∆ρ2,0.(3.22)
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Here and in the sequel we set k̃ = k/|k| for |k| 6= 0. By taking the Fourier transform of (3.20),
(3.21) and (3.22), we get the second order ODE as

∂tt(k̃ · û2) + ∂t(k̃ · û2) + γ|k|2(k̃ · û2) = 0,

(k̃ · û2)|t=0 = k̃ · û2,0,

∂t(k̃ · û2)|t=0 = −k̃ · û2,0 − iγ|k|ρ̂2,0.

Therefore,

k̃ · û2 =
χ+e

χ+t − χ−eχ−t

χ+ − χ−
k̃ · û2,0 +

eχ+t − eχ−t

χ+ − χ−
[−iγ|k|ρ̂2,0].

Here we have used the fact χ+ + 1 = −χ− and χ− + 1 = −χ+.
Moreover, by taking the curl for the equation of ∂tu2 and in terms of the Fourier transfor-

mation in x, one has

∂t(k̃ × û2) + (k̃ × û2) = 0.(3.23)

Initial data is given as

(k̃ × û2)|t=0 = k̃ × û2,0.(3.24)

By solving the initial value problem (3.23) and (3.24), one has

k̃ × û2 = e−t(k̃ × û2,0).

For t ≥ 0 and k ∈ R3 with |k| 6= 0, one has the decomposition û2 = k̃k̃ · û2 − k̃ × (k̃ × û2) as
in [6].

û2 =
χ+e

χ+t − χ−eχ−t

χ+ − χ−
k̃k̃ · û2,0

+
eχ+t − eχ−t

χ+ − χ−
[−iγkρ̂2,0]− e−tk̃ × (k̃ × û2,0).

Now, let us summarize the above computations on the explicit representation of Fourier
transform of the solution U2 = [ρ2, u2].(

ρ̂2(t, k)
û2(t, k)

)
= Ĝ(t, k)

(
ρ̂2(0, k)
û2(0, k)

)
,

with

(3.25) Ĝ(t, k) =

 χ+e
χ−t−χ−eχ+t

χ+−χ−
eχ+t−eχ−t
χ+−χ− (−ikT )

eχ+t−eχ−t
χ+−χ− (−iγk) e−t(I3 − k

⊗
k

|k|2 ) + χ+e
χ+t−χ−eχ−t
χ+−χ−

k
⊗
k

|k|2

 ,

where the superscript T denotes the transpose of the vector k.

3.2. Refined Lp − Lq time-decay property. In this subsection, we use (3.25) to obtain
some refined Lp − Lq time-decay property for U2 = [ρ2, u2]. For that, we first find the time-
frequency pointwise estimates on ρ̂2, û2 in the following lemma; see [10] for the similar study
of the linearized Navier-Stokes system.

Lemma 3.1. Let U2 = [ρ2, u2] be the solution to the linearized homogeneous system (3.13)
with initial data U2,0 = [ρ2,0, u2,0]. Then, there exist constants ε > 0, λ > 0, C > 0 such that
for all t > 0, |k| ≤ ε,

|ρ̂2(t, k)| ≤C(|k|2e−λt + e−λ|k|
2t)|ρ̂2,0(k)|

+ C(|k|e−λ|k|2t + |k|e−λt)|û2,0(k)|,
(3.26)
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|û2(t, k)| ≤C(|k|e−λ|k|2t + |k|e−λt)|ρ̂2,0(k)|

+ C(|k|2e−λ|k|2t + e−λt)|û2,0(k)|,
(3.27)

and for all t > 0, |k| ≥ ε,

|ρ̂2(t, k)| ≤ Ce−λt|[ρ̂2,0(k), û2,0(k)]|,(3.28)

|û2(t, k)| ≤ Ce−λt|[ρ̂2,0(k), û2,0(k)]|.(3.29)

Proof. In order to get the upper bound of ρ̂2(t, k) and û2(t, k), we have to estimate Ĝ11, Ĝ12,
Ĝ21 and Ĝ22. Here we denote

Ĝ11 =
χ+e

χ−t − χ−eχ+t

χ+ − χ−
, Ĝ12 =

eχ+t − eχ−t

χ+ − χ−
(−ikT )

Ĝ21 =
eχ+t − eχ−t

χ+ − χ−
(−iγk), Ĝ22 = e−t(I3 −

k ⊗ k
|k|2

) +
χ+e

χ+t − χ−eχ−t

χ+ − χ−
k ⊗ k
|k|2

.

If 1− 4γ|k2| ≥ 0, then χ± = −1
2
± 1

2

√
1− 4γ|k|2 are real. It is straightforward to obtain

χ+ = −O(1)|k|2, χ− = −1 +O(1)|k|2,

χ+ − χ− =
√

1− 4γ|k|2 = O(1),

as |k| → 0. And on the other hand, if 1 − 4γ|k2| < 0, then χ± = −1
2
± 1

2
i
√

4γ|k|2 − 1 are
complex conjugate. Moreover, one has

|χ±| = O(1)|k|,

χ+ − χ− = i
√

4γ|k|2 − 1 = iO(1)|k|,

as |k| → ∞. Then, there exists ε ≤
√

1
4γ
≤ R, with 0 < ε� 1� R <∞ such that one can

estimate Ĝ as follows:

|Ĝ11| ≤ C|k|2e−λt + Ce−λ|k|
2t,

|Ĝ12|+ |Ĝ21| ≤ C|k|(e−λt + e−λ|k|
2t),

|Ĝ22| ≤ Ce−t + C|k|2e−λ|k|2t + Ce−λt,

≤ C|k|2e−λ|k|2t + Ce−λt,

as |k| ≤ ε, and

|Ĝ11| ≤ Ce−
1
2 t ≤ Ce−λt,

|Ĝ12|+ |Ĝ21| ≤ Ce−
1
2 t ≤ Ce−λt,

|Ĝ22| ≤ Ce−t + e−
1
2 t ≤ Ce−λt,

as |k| ≥ R.
In what follows we estimate only Ĝ12 over ε ≤ |k| ≤ R. When |k| ≤ 1√

4γ
,

lim
|k|→

√
1
4γ

eχ+t − eχ−t

χ+ − χ−
= te−

1
2 t ≤ Ce−λt.
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When |k| ≥ 1√
4γ

,

eχ+t − eχ−t

χ+ − χ−
=

2e−
1
2 t sin(1

2

√
4γ|k|2 − 1t)√

4γ|k|2 − 1
,

and

lim
|k|→

√
1
4γ

2e−
1
2 t sin(1

2

√
4γ|k|2 − 1t)√

4γ|k|2 − 1
= te−

1
2 t ≤ Ce−λt.

Then there exists δ > 0, if ||k| − 1√
4γ
| ≤ δ, one has∣∣∣∣eχ+t − eχ−t

χ+ − χ−

∣∣∣∣ ≤ Ce−λt, ∣∣∣∣eχ+t − eχ−t

χ+ − χ−
(−ikT )

∣∣∣∣ ≤ Ce−λt.
Next, let’s consider Ĝ12 over {ε ≤ |k| ≤ R, ||k| − 1√

4γ
| ≥ δ}. Notice that in this domain,∣∣∣∣eχ+t − eχ−t

χ+ − χ−
(−ikT )

∣∣∣∣ ≤ Ce−λt,
where the fact that{

χ± < 0 whenever χ± real,

Rχ± = −1
2 whenever χ± non-real and conjugate,

has been used. Therefore, in the completely same way, we can get

|Ĝ11|+ |Ĝ21|+ |Ĝ22| ≤ Ce−λt,

over ε ≤ |k| ≤ R. In summary,

|Ĝ11| ≤ C|k|2e−λt + Ce−λ|k|
2t,

|Ĝ12|+ |Ĝ21| ≤ C|k|(e−λt + e−λ|k|
2t),

|Ĝ22| ≤ Ce−t + |k|2e−λ|k|2t + e−λt,

≤ C|k|2e−λ|k|2t + Ce−λt,

(3.30)

as |k| ≤ ε, and

|Ĝij | ≤ Ce−λt, 1 ≤ i, j ≤ 2,(3.31)

as |k| ≥ ε.
Now, in terms of (3.30), we can estimate ρ̂2(t, k), û2(t, k) as

|ρ̂2(t, k)| =|Ĝ11ρ̂2,0(k) + Ĝ12û2,0(k)|

≤|Ĝ11||ρ̂2,0(k)|+ |Ĝ12||û2,0(k)|

≤C(|k|2e−λt + e−λ|k|
2t)|ρ̂2,0(k)|

+ C(|k|e−λ|k|2t + |k|e−λt)|û2,0(k)|,

|û2(t, k)| =|Ĝ21ρ̂2,0(k) + Ĝ22û2,0(k)|

≤|Ĝ21||ρ̂2,0(k)|+ |Ĝ22||û2,0(k)|

≤C(|k|e−λ|k|2t + |k|e−λt)|ρ̂2,0(k)|

+ C(|k|2e−λ|k|2t + e−λt)|û2,0(k)|,
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for |k| ≤ ε, which prove (3.26) and (3.27). Finally, (3.28) and (3.29) directly follow from
(3.31). This completes the proof of Lemma 3.1. �

Based on Lemma 3.1, it is standard to obtain the following time-decay property for each
component of the solution [ρ2, u2]; the details of proof are omitted for simplicity.

Theorem 3.1. Let 1 ≤ p, r ≤ 2 ≤ q ≤ ∞, and let m ≥ 1 be an integer. Suppose that
U2(t) = etLU2,0 is the solution to the Cauchy problem (3.13)-(3.14). Then U2 = [ρ2, u2]
satisfies

‖∇mρ2(t)‖Lqx ≤ C(1 + t)−
3
2 (

1
p−

1
q )−m2 ‖[ρ2,0, u2,0]‖Lp

+ Ce−λt‖∇m+[3(
1
r−

1
q )]+ [ρ2,0, u2,0]‖Lr ,

‖∇mu2(t)‖Lqx ≤ C(1 + t)−
3
2 (

1
p−

1
q )−m+1

2 ‖[ρ2,0, u2,0]‖Lp

+ Ce−λt‖∇m+[3(
1
r−

1
q )]+ [ρ2,0, u2,0]‖Lr ,

for any t ≥ 0, where C = C(m, p, r, q) and [3(1
r −

1
q )]+ is defined as[

3
(

1
r
− 1
q

)]
+

=

 0, if ` is integer and r = q = 2,

[3(1
r −

1
q )]− + 1, otherwise,

where [·]− denotes the integer part of the argument.

For later use, from Theorem 3.1, let us list some special cases in the following

Corollary 3.1. Suppose U2(t) = etLU2,0 is the solution to the Cauchy problem (3.13) with
initial data (3.14). Then U2 = [ρ2, u2] satisfies ‖ρ2(t)‖ ≤ C(1 + t)−

3
4 ‖[ρ2,0, u2,0]‖L1 + Ce−λt‖[ρ2,0, u2,0]‖,

‖u2(t)‖ ≤ C(1 + t)−
5
4 ‖[ρ2,0, u2,0]‖L1 + Ce−λt‖[ρ2,0, u2,0]‖,

(3.32)

 ‖∇ρ2(t)‖ ≤ C(1 + t)−
5
4 ‖[ρ2,0, u2,0]‖L1 + Ce−λt‖∇[ρ2,0, u2,0]‖,

‖∇u2(t)‖ ≤ C(1 + t)−
7
4 ‖[ρ2,0, u2,0]‖L1 + Ce−λt‖∇[ρ2,0, u2,0]‖,

(3.33)

{
‖ρ2(t)‖∞ ≤ C(1 + t)−

3
2 ‖[ρ2,0, u2,0]‖L1 + Ce−λt‖∇2[ρ2,0, u2,0]‖,

‖u2(t)‖∞ ≤ C(1 + t)−2‖[ρ2,0, u2,0]‖L1 + Ce−λt‖∇2[ρ2,0, u2,0]‖.
(3.34)

4. Decay in time for the non-linear system

4.1. Time rate for full instant energy functional. In this subsection, we shall prove
(2.12) in Proposition 2.2. The main idea follows from [7] for introducing a general approach
of the combination of energy estimates and spectral analysis. First of all, from Theorem 2.1,
one has

Lemma 4.1. Let V = [σ±, v±, Ẽ, B̃] be the solution to the the Cauchy problem (2.2)-(2.3)
with initial data V0 = [σ±0, v±0, Ẽ0, B̃0] satisfying (2.4). Then, if EN (V0) is sufficiently small,

d

dt
EN (V (t)) + λDN (V (t)) ≤ 0(4.1)

holds for any t > 0, where EN (V (t)), DN (V (t)) are in the form of (2.5) and (2.7), respectively.



TWO-FLUIDS EULER-MAXWELL EQUATIONS 19

Now, we proceed by making the time-weighted estimate and iteration for the Lyapunov
inequality (4.1). Let ` ≥ 0. Multiplying (4.1) by (1 + t)` and taking integration over [0, t],
one gets

(1 + t)`EN (V (t)) + λ

∫ t

0
(1 + s)`DN (V (s))ds

≤EN (V0) + `

∫ t

0
(1 + s)`−1EN (V (s))ds.

Noticing

EN (V (t)) ≤ C(DN+1(V (t)) + ‖B̃‖2 + ‖σ+ + σ−‖2),

it follows that

(1 + t)`EN (V (t)) + λ

∫ t

0
(1 + s)`DN (V (s))ds

≤EN (V0) + C`

∫ t

0
(1 + s)`−1(‖B̃‖2 + ‖σ+ + σ−‖2)ds

+ C`

∫ t

0
(1 + s)`−1DN+1(V (s))ds.

Similarly, it holds that

(1 + t)`−1EN+1(V (t)) + λ

∫ t

0
(1 + s)`−1DN+1(V (s))ds

≤EN+1(V0) + C(`− 1)
∫ t

0
(1 + s)`−2(‖B̃‖2 + ‖σ+ + σ−‖2)ds

+ C(`− 1)
∫ t

0
(1 + s)`−2DN+2(V (s))ds,

and

EN+2(V (t)) + λ

∫ t

0
DN+2(V (s))ds ≤ EN+2(V0).

Then, for 1 < ` < 2, by iterating the above estimates, one has

(1 + t)`EN (V (t)) + λ

∫ t

0
(1 + s)`DN (V (s))ds

≤CEN+2(V0) + C

∫ t

0
(1 + s)`−1(‖B̃‖2 + ‖σ+ + σ−‖2)ds.

(4.2)

For this time, to estimate the time integral term on the r.h.s. of (4.2), let’s define

EN,∞(V (t)) = sup
0≤s≤t

(1 + s)
3
2EN (V (s)).(4.3)

Lemma 4.2. For any t ≥ 0, it holds that

‖B̃‖2 + ‖σ+ + σ−‖2 ≤ C(1 + t)−
3
2

(
E2
N,∞(V (t))+‖[σ±0, v±0]‖2L1∩L2

+ ‖[v±0, Ẽ0, B̃0]‖2
L1∩Ḣ2

)
.

(4.4)

Proof. By applying the fourth linear estimate on B in (3.15) and the first linear estimate on
ρ2 in (3.32) to the mild form (3.8) and (3.9), respectively, one has

‖B(t)‖ ≤ C(1 + t)−
3
4 ‖[u±0, E0, B0]‖L1∩Ḣ2

+ C

∫ t

0
(1 + t− s)−

3
4 ‖[g+

2 (s)− g−2 (s), g+
3 (s)− g+

3 (s)]‖L1∩Ḣ2ds,
(4.5)



20 RENJUN DUAN, QINGQING LIU, AND CHANGJIANG ZHU*

‖[ρ+(t) + ρ−(t)]‖ ≤C‖ρ2‖ ≤ Ce−λt‖[ρ±0, u±0]‖+ C(1 + t)−
3
4 ‖[ρ±0, u±0]‖L1

+ C

∫ t

0
e−λ(t−s)‖[g+

1 (s) + g−1 (s), g+
2 (s) + g−2 (s)]‖ds

+ C

∫ t

0
(1 + t− s)−

3
4 ‖[g+

1 (s) + g−1 (s), g+
2 (s) + g−2 (s)]‖L1ds.

(4.6)

Here, the definition for ρ1, u1 and ρ2, u2 in (3.3) and (3.5) has been used.
Recall the definition (3.7) of g+

1 , g−1 , g+
2 g−2 and g+

3 , g−3 . It is straightforward to verify that
for any 0 ≤ s ≤ t,

‖[g+
2 (s)− g−2 (s), g+

3 (s)− g+
3 (s)]‖L1∩Ḣ2 ≤ CEN (U(s)),

‖[g+
1 (s) + g−1 (s), g+

2 (s) + g−2 (s)]‖L1∩L2 ≤ CEN (U(s)).

Notice that EN (U(s)) ≤ CEN (V (
√
γs)). From (4.3), for any 0 ≤ s ≤ t,

EN (V (
√
γs)) ≤ (1 +

√
γs)−

3
2EN,∞(V (

√
γt)).

Then, it follows that for 0 ≤ s ≤ t,

‖[g+
2 (s)− g−2 (s), g+

3 (s)− g+
3 (s)]‖L1∩Ḣ2 ≤ C(1 +

√
γs)−

3
2EN,∞(V (

√
γt),

‖[g+
1 (s) + g−1 (s), g+

2 (s) + g−2 (s)]‖L1∩L2 ≤ C(1 +
√
γs)−

3
2EN,∞(V (

√
γt).

Putting the above two inequalities into (4.5) and (4.6) respectively gives

‖B(t)‖ ≤ C(1 + t)−
3
4 (‖[u±0, E0, B0]‖L1∩Ḣ2 + EN,∞(V (

√
γt))),

‖ρ+(t) + ρ−(t)‖ ≤ C(1 + t)−
3
4 (‖[ρ±0, u±0]‖L1∩L2 + EN,∞(V (

√
γt))),

which imply (4.4) due to

‖B̃(t)‖ ≤ C‖B(t/
√
γ)‖, ‖σ+(t) + σ−(t)‖ ≤ C‖ρ+(t/

√
γ) + ρ−(t/

√
γ)‖

and the fact that [ρ±, u±, E,B] is equivalent with [σ±, v±, Ẽ, B̃] up to a positive constant.
This completes the proof of Lemma 4.2. �

Now, the rest is to prove the uniform-in-time bound of EN,∞(V (t)) which yields the time-
decay rates of the Lyapunov functional EN (V (t)) and thus ‖V (t)‖2N . In fact, by taking
` = 3

2 + ε in (4.2) with ε > 0 small enough, one has

(1 + t)
3
2
+εEN (V (t)) + λ

∫ t

0
(1 + s)

3
2
+εDN (V (s))ds

≤CEN+2(V0) + C

∫ t

0
(1 + s)

1
2
+ε(‖B̃‖2 + ‖[σ+ + σ−]‖2)ds.

Here, using (4.4) and the fact that EN,∞(V (t)) is non-decreasing in t, it further holds that∫ t

0
(1 + s)

1
2
+ε(‖B̃‖2 + ‖[σ+ + σ−]‖2)ds

≤C(1 + t)ε
(
E2
N,∞(V (t)) + ‖[σ±0, v±0]‖2L1∩L2 + ‖[v±0, Ẽ0, B̃0]‖2

L1∩Ḣ2

)
.

Therefore, it follows that

(1 + t)
3
2
+εEN (V (t)) + λ

∫ t

0
(1 + s)

3
2
+εDN (V (s))ds

≤CEN+2(V0) + C(1 + t)ε
(
E2
N,∞(V (t)) + ‖[σ±0, v±0]‖2L1∩L2 + ‖[v±0, Ẽ0, B̃0]‖2

L1∩Ḣ2

)
,
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which implies

(1 + t)
3
2EN (V (t)) ≤C

(
EN+2(V0) + E2

N,∞(V (t)) + ‖[σ±0, v±0]‖2L1∩L2 + ‖[v±0, Ẽ0, B̃0]‖2
L1∩Ḣ2

)
.

Thus, one has

EN,∞(V (t)) ≤ C
(
ε2N+2(V0) + E2

N,∞(V (t))
)
.

Here, recall the definition of εN+2(V0). Since εN+2(V0) > 0 is sufficiently small, EN,∞(V (t)) ≤
Cε2N+2(V0) holds true for any t ≥ 0, which implies

‖V (t)‖N ≤ CEN (V (t))1/2 ≤ CεN+2(V0)(1 + t)−
3
4 ,

for any t ≥ 0. This proves (2.12) in Proposition 2.2. �

4.2. Time rate for higher-order instant energy functional. This subsection turns to
the proof of (2.13) in Proposition 2.2. We start with the high-order energy estimate by the
following

Lemma 4.3. Let V = [σ±, v±, Ẽ, B̃] be the solution to the Cauchy problem (2.2)-(2.3) with
initial data V0 = [σ±0, v±0, Ẽ0, B̃0] satisfying (2.4) in the sense of Proposition 2.1. Then if
EN (V0) is sufficiently small, there are the higher-order instant energy functional EhN (·) and
the corresponding dissipation rate DhN (·) such that

d

dt
EhN (V (t)) + λDhN (V (t)) ≤ C‖∇(σ+ + σ−)‖2(4.7)

holds for any t ≥ 0.

Proof. It can be done by modifying the proof of Theorem 2.1 a little. In fact, by letting the
energy estimates made only on the higher-order derivatives, then corresponding to (2.16),
(2.19), (2.25) and (2.27), it can be re-verified that

1
2
d

dt
‖∇V ‖2N−1 +

1
√
γ
‖∇[v+, v−]‖2N−1 ≤ C‖V ‖N‖∇[σ+, σ−, v+, v−]‖2N−1,

d

dt

∑
1≤|α|≤N−1

(〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉) + λ‖∇2[σ+, σ−]‖2N−2

≤C‖∇[v+, v−]‖2N−1 + C‖V ‖2N‖∇[σ+, σ−, v+, v−]‖2N−1,

d

dt

∑
1≤|α|≤N−1

〈∂α(v+ − v−), ∂αẼ〉+ λ‖∇Ẽ‖2N−2

≤C‖∇[v+, v−]‖2N−1 + C‖∇2[σ+, σ−]‖2N−2 + C‖∇[v+, v−]‖N−1‖∇2B̃‖N−3

+ C‖V ‖2N‖∇[σ+, σ−, v+, v−]‖2N−1,

− d

dt

∑
1≤|α|≤N−2

〈∇ × ∂αẼ, ∂αB̃〉+ λ‖∇2B̃‖2N−3

≤C‖∇2Ẽ]‖2N−3 + C‖∇[v+, v−]‖2N−3 + C‖V ‖2N‖∇[σ+, σ−, v+, v−]‖2N−1.
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Here, the details of proof are omitted for simplicity. Now, in the similar way as in (2.28), let
us define

(4.8)

EhN (V (t)) = ‖∇V ‖2N−1 + κ1

∑
1≤|α|≤N−1

(〈∂αv+,∇∂ασ+〉+ 〈∂αv−,∇∂ασ−〉)

+ κ2

∑
1≤|α|≤N−1

〈∂α(v+ − v−),∇∂αẼ〉 − κ3

∑
1≤|α|≤N−2

〈∇ × ∂αẼ, ∂αB̃〉.

Similarly, one can choose 0 < κ3 � κ2 � κ1 � 1 with κ
3/2
2 � κ3, such that EhN (V (t)) ∼

‖∇V (t)‖2N−1. Furthermore, the linear combination of the previously obtained four estimates
with coefficients corresponding to (4.8) yields (4.7) with DhN (·) defined in (2.8). This com-
pletes the proof of Lemma 4.3. �

By comparing (2.8) and (2.6) for the definitions of EhN (V (t)) and DhN (V (t)), it follows from
(4.7) that

d

dt
EhN (V (t)) + λEhN (V (t)) ≤ C(‖∇B̃‖2 + ‖∇N [Ẽ, B̃]‖2 + ‖∇(σ+ + σ−)‖2),

which implies

EhN (V (t)) ≤ e−λtEhN (V0)

+ C

∫ t

0
e−λ(t−s)(‖∇B̃(s)‖2 + ‖∇N [Ẽ, B̃](s)‖2 + ‖∇(σ+ + σ−)(s)‖2)ds.

(4.9)

To estimate the time integral term on the r.h.s. of the above inequality, one has

Lemma 4.4. Let V = [σ±, v±, Ẽ, B̃] be the solution to the Cauchy problem (2.2)-(2.3) with
initial data V0 = [σ±0, v±0, Ẽ0, B̃0] satisfying (2.4) in the sense of Proposition 2.1. Then if
εN+6(V0) is sufficiently small, where εN+6(V0) is defined in (2.11), then

‖∇B̃(t)‖2 + ‖∇N [Ẽ(t), B̃(t)]‖2+‖∇(σ+(t) + σ−(t))‖2

≤ Cε2N+6(V0)(1 + t)−
5
2

(4.10)

holds for any t ≥ 0.

For this time, suppose that the above lemma is true. Then by using (4.10) in (4.9), it is
immediate to obtain

EhN (V (t)) ≤ e−λtEhN (V0) + Cε2N+6(V0)(1 + t)−
5
2 ,

which proves (2.13) in Proposition 2.2.

Proof of Lemma 4.4: Suppose that εN+6(V0) > 0 is sufficiently small. Notice that, by the
first part of Proposition 2.2,

‖V (t)‖N+4 ≤ CεN+6(V0)(1 + t)−
3
4 ,

which further implies from (2.1) that for U = [ρ±, u±, E,B],

‖U(t)‖N+4 ≤ CεN+6(V0)(1 + t)−
3
4 .(4.11)

Similar to obtaining (4.5), one can apply the linear estimate (3.17) to the mild form (3.4) of
the solution U1(t), and the linear estimate on ρ2 to the mild form (3.6) of the solution U2(t)
so that

‖∇B(t)‖ ≤ C(1 + t)−
5
4 ‖[u±0, E0, B0]‖L1∩Ḣ4 ,

+ C

∫ t

0
(1 + t− s)−

5
4 ‖[g+

2 (s)− g−2 (s), g+
3 (s)− g−3 (s)]‖L1∩Ḣ4ds,

(4.12)



TWO-FLUIDS EULER-MAXWELL EQUATIONS 23

‖∇N [E(t), B(t)]‖ ≤ C(1 + t)−
5
4 ‖[u±0, E0, B0]‖L1∩ḢN+3

+ C

∫ t

0
(1 + t− s)−

5
4 ‖[g+

2 (s)− g−2 (s), g+
3 (s)− g−3 (s)]‖L1∩ḢN+3ds,

(4.13)

and

‖∇(ρ+(t) + ρ−(t))‖ ≤ C(1 + t)−
5
4 ‖[ρ±0, u±0]‖L1 + e−λt‖∇[ρ±0, u±0]‖,

+ C

∫ t

0
(1 + t− s)−

5
4 ‖[g+

1 (s) + g−1 (s), g+
2 (s) + g−2 (s)]‖L1ds

+ C

∫ t

0
e−λ(t−s)‖∇[g+

1 (s) + g−1 (s), g+
2 (s) + g−2 (s)]‖ds.

(4.14)

Recalling the definition (3.7), it is straightforward to verify

‖[g+
1 (t) + g−1 (t), g+

2 (t) + g−2 (t)]‖L1∩Ḣ1 ≤ C‖U(t)‖24,

‖[g+
2 (t)− g−2 (t), g+

3 (t)− g−3 (t)]‖L1∩Ḣ4 ≤ C‖U(t)‖2max{5,N},

‖[g+
2 (t)− g−2 (t), g+

3 (t)− g−3 (t)]‖L1∩ḢN+3 ≤ C‖U(t)‖2N+4.

The above estimates together with (4.11) give

‖[g+
1 (t) + g−1 (t), g+

2 (t) + g−2 (t)]‖L1∩Ḣ1 + ‖[g+
2 (t)− g−2 (t), g+

3 (t)− g−3 (t)]‖L1∩Ḣ4

+ ‖[g+
2 (t)− g−2 (t), g+

3 (t)− g−3 (t)]‖L1∩ḢN+3 ≤ C‖U(t)‖2N+4 ≤ Cε2N+6(V0)(1 + t)−
3
2 .

Then it follows from (4.12), (4.13) and (4.14) that

‖∇B(t)‖+ ‖∇N [E(t), B(t)]‖+‖∇[ρ+(t) + ρ−(t)]‖

≤ CεN+6(V0)(1 + t)−
5
4 ,

where the smallness of εN+6(V0) was used. This implies (4.10) by the definition (2.1) of σ±,
Ẽ and B̃. The proof of Lemma 4.4 is complete. �

4.3. Time rate in Lq. In this subsection we shall prove the time-decay rates in Lq with
2 ≤ q ≤ ∞ corresponding to (1.4)-(1.7) in Theorem 1.1 for solutions U = [ρ±, u±, E,B] to
the Cauchy problem (3.1)-(3.2). Throughout this subsection, we suppose that ε13(V0) > 0 is
sufficiently small. In addition, for N ≥ 4, Proposition 2.1 shows that if εN+2(V0) is sufficiently
small,

‖U(t)‖N ≤ CεN+2(V0)(1 + t)−
3
4 ,(4.15)

and if εN+6(V0) is sufficiently small,

‖∇U(t)‖N−1 ≤ CεN+6(V0)(1 + t)−
5
4 .(4.16)

Now, we begin with the estimates on B, [u+−u−, E], u+ +u−, ρ+− ρ− and ρ+ + ρ− in turn
as follows.

Estimate on ‖B‖Lq . For L2 rate, it is easy to see from (4.15) that

‖B(t)‖ ≤ Cε6(V0)(1 + t)−
3
4 .

For L∞ rate, by applying the L∞ linear estimate on B in (3.16) to the mild form (3.4), one
has

‖B(t)‖∞ ≤ C(1 + t)−
3
2 ‖[u±0, E0, B0]‖L1∩Ḣ5 ,

+ C

∫ t

0
(1 + t− s)−

3
2 ‖[g+

2 (s)− g−2 (s), g+
3 (s)− g−3 (s)]‖L1∩Ḣ5ds.
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Since by (4.15),

‖[g+
2 (t)− g−2 (t), g+

3 (t)− g−3 (t)]‖L1∩Ḣ5 ≤ C‖U(t)‖26 ≤ Cε28(V0)(1 + t)−
3
2 ,

it follows that

‖B(t)‖L∞ ≤ Cε8(V0)(1 + t)−
3
2 .

So, by L2 − L∞ interpolation,

‖B(t)‖Lq ≤ Cε8(V0)(1 + t)−
3
2
+ 3

2q ,(4.17)

for 2 ≤ q ≤ ∞.

Estimate on ‖[u+ − u−, E]‖Lq . For L2 rate, applying the L2 linear estimate on [u+ − u−, E]
in (3.15) to the mild form (3.4),

‖u+(t)− u−(t)‖ ≤ C(1 + t)−
5
4
(
‖ρ±0‖+ ‖[u±0, E0, B0]‖L1∩Ḣ2

)
+C

∫ t

0
(1 + t− s)−

5
4
(
‖g+

1 (s)− g−1 (s)‖+ ‖[g+
2 (s)− g−2 (s), g+

3 (s)− g−3 (s)]‖L1∩Ḣ2

)
ds,

and

‖E(t)‖ ≤C(1 + t)−
5
4 ‖[u±0, E0, B0]‖L1∩Ḣ3

+ C

∫ t

0
(1 + t− s)−

5
4 ‖[g+

2 (s)− g−2 (s), g+
3 (s)− g−3 (s)]‖L1∩Ḣ3ds.

Since by (4.15),

‖g+
1 (t)− g−1 (t)‖+ ‖[g+

2 (t)− g−2 (t), g+
3 (t)− g−3 (t)]‖L1∩Ḣ3

≤C‖U(t)‖24 ≤ Cε26(V0)(1 + t)−
3
2 ,

it follows that

‖u+(t)− u−(t)‖+ ‖E(t)‖ ≤ Cε6(V0)(1 + t)−
5
4 .(4.18)

For L∞ rate, by applying the L∞ linear estimate on u+ − u− and E in (3.16) to (3.4), one
has
‖u+(t)− u−(t)‖∞ ≤ C(1 + t)−2(‖ρ±0‖L2∩Ḣ2 + ‖[u±0, E0, B0]‖L1∩Ḣ5)

+ C

∫ t

0
(1 + t− s)−2

(
‖g+

1 (s)− g−1 (s)‖L2∩Ḣ2 + ‖[g+
2 (s)− g−2 (s), g+

3 (s)− g−3 (s)]‖L1∩Ḣ5

)
ds,

and
‖E(t)‖∞ ≤ C(1 + t)−2‖[u±0, E0, B0]‖L1∩Ḣ6 ,

+ C

∫ t

0
(1 + t− s)−2‖[g+

2 (s)− g−2 (s), g+
3 (s)− g−3 (s)]‖L1∩Ḣ6ds.

Since
‖g+

1 (t)− g−1 (t)‖L2∩Ḣ2 + ‖[g+
2 (t)− g−2 (t), g+

3 (t)− g−3 (t)]‖Ḣ5∩Ḣ6

≤C‖∇U(t)‖26 ≤ Cε213(V0)(1 + t)−
5
2 ,

and
‖[g+

2 (t)− g−2 (t),g+
3 (t)− g−3 (t)]‖L1 ≤ C‖U(t)‖(‖∇U(t)‖+ ‖u±(t)‖)

≤ C(ε6(V0)(1 + t)−
3
4 )(ε10(V0)(1 + t)−

5
4 ) ≤ Cε210(V0)(1 + t)−2,

where (4.15), (4.16) and (4.18) were used, then, it follows that

‖[u+(t)− u−(t), E(t)‖L∞ ≤ Cε13(V0)(1 + t)−2.
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So, by L2 − L∞ interpolation,

‖[u+(t)− u−(t), E(t)‖Lq ≤ Cε13(V0)(1 + t)−2+ 3
2q ,(4.19)

for 2 ≤ q ≤ ∞. A similar argument can be applied to the estimates on ‖u+ + u−‖Lp . For L2

and L∞ rate, applying the L2 and L∞ linear estimate on u+ +u− in (3.32) and (3.34) to the
mild form (3.6), one has

‖u+(t) + u−(t)‖Lq ≤ Cε13(V0)(1 + t)−2+ 3
2q ,(4.20)

for 2 ≤ q ≤ ∞. Combining (4.19) and (4.20), we deduce

‖u±(t)‖Lq ≤ Cε13(V0)(1 + t)−2+ 3
2q ,

for 2 ≤ q ≤ ∞.

Estimate on ‖ρ+ − ρ−‖Lq . For L2 rate, by applying the L2 linear estimate on ρ+ − ρ− in
(3.15) to (3.4), one has

‖ρ+(t)− ρ−(t)‖ ≤Ce−
t
2 ‖[ρ±0, u±0]‖

+ C

∫ t

0
e−

t−s
2 ‖[g+

1 (s)− g−1 (s), g+
2 (s)− g−2 (s)]‖ds.

(4.21)

Due to
‖[g+

1 (t)− g−1 (t), g+
2 (t)− g−2 (t)]‖ ≤ C(‖∇U(t)‖21 + ‖u+(t) + u−(t)‖ · ‖B(t)‖∞)

≤ Cε210(V0)(1 + t)−
5
2 ,

(4.22)

where (4.16), (4.17), (4.20) were used, then (4.21) gives the slower time-decay estimate

‖ρ+(t)− ρ−(t)‖ ≤ Cε10(V0)(1 + t)−
5
2 .(4.23)

Similarly for ‖ρ+ + ρ−‖, by using the L2 linear estimate on ρ+ + ρ− in (3.32) to (3.6), one
has the slower time-decay estimate

‖ρ+(t) + ρ−(t)‖ ≤ Cε10(V0)(1 + t)−
3
4 .(4.24)

Then from (4.23) and (4.24) we have

‖ρ±(t)‖ ≤ Cε10(V0)(1 + t)−
3
4 .

For L∞ rate, by applying the L∞ linear estimates on ρ+ − ρ− in (3.16) to (3.4), one has

‖ρ+(t)− ρ−(t)‖L∞ ≤Ce−
t
2 ‖[ρ±0, u±0]‖L2∩Ḣ2

+
∫ t

0
e−

t−s
2 ‖[g+

1 (s)− g−1 (s), g+
2 (s)− g−2 (s)]‖L2∩Ḣ2ds.

Notice that one can check

‖[g±1 (t), g±2 (t)]‖Ḣ2 ≤ C‖∇U(t)‖4(‖ρ±(t)‖+ ‖[u±(t), B(t)]‖L∞ + ‖u±(t)‖).(4.25)

The above inequality and (4.22) imply

‖[g±1 (t), g±2 (t)]‖Ḣ2∩L2 ≤ Cε13(V0)(1 + t)−2,

which from (4.25), further gives

‖[ρ+(t)− ρ−(t)]‖L∞ ≤ Cε13(V0)(1 + t)−2.

So, by L2 − L∞ interpolation,

‖[ρ+(t)− ρ−(t)]‖Lq ≤ Cε13(V0)(1 + t)−2− 1
q ,(4.26)

for 2 ≤ q ≤ ∞.
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For ‖ρ+ + ρ−‖L∞ , by using the L∞ linear estimate on ρ+ + ρ− in (3.34) to (3.6), one has
the slower time-decay estimate

‖ρ+(t) + ρ−(t)‖L∞ ≤ Cε13(V0)(1 + t)−
3
2 .(4.27)

Combining (4.27) and (4.24), we deduce that

‖ρ+(t) + ρ−(t)‖Lq ≤ Cε13(V0)(1 + t)−
3
2
+ 3

2q ,(4.28)

for 2 ≤ q ≤ ∞.
Thus, (4.17), (4.19), (4.20), (4.26), (4.28) give (1.7), (1.6), (1.4), and (1.5) respectively.

This completes the proof of Theorem 1.1.

5. Appendix

In this appendix, as a byproduct of Theorem 3.1 and Corollary 3.1, we shall improve the
results in [18] about the time-decay rates of solutions to the following Cauchy problem on
the damped Euler system: 

∂tu+∇ · v = −v · ∇u− γ − 1
2

u∇ · v,

∂tv +∇u+ av = −v · ∇v − γ − 1
2

u∇u,
(5.1)

with initial data

(u, v)|t=0 = (u0, v0),(5.2)

where a > 0 is a constant. Here, we have used the notion [u, v] instead of [ρ2, u2] for
convenience of comparison with [18]. In fact, from Corollary 3.1, we notice that the decay
rates (3.32), (3.33) and (3.34) for the linearized system of (5.1) are much better than those
in Lemma 6.1 of [18]. In order to obtain the same rates in the nonlinear case, we need the
energy inequality of solutions under smallness of initial data as in (4.1).

Lemma 5.1. For the damped Euler system (5.1), the solution [u, v] to the Cauchy problem
of (5.1) with initial data [u0, v0] satisfying ‖[u0, v0]‖H3 ≤ δ for δ > 0 small enough has the
following proposition

(5.3)
d

dt
‖[u, v]‖2H3 + λ(‖∇u‖2H2 + ‖v‖2H3) ≤ 0

for any t > 0.

Proof. For each multi-index |α| ≤ 3, from the first two equations of (5.1), energy estimates
on ∂αu and ∂αv give

1
2
d

dt
‖∂α[u, v]‖2 + a‖∂αv‖2 = −

∑
β<α

Cαβ Iα,β(t) + I1(t),

with

Iα,β(t) = 〈∂α−βv · ∇∂βu, ∂αu〉+
γ − 1

2
〈∂α−βu∇ · ∂βv, ∂αu〉

+
γ − 1

2
〈∂α−βu∇∂βu, ∂αv〉+ 〈∂α−βv · ∇∂βv, ∂αv〉,

and

I1(t) =
1
2
〈∇ · v, |∂αu|2 + |∂αv|2〉+

γ − 1
2
〈∂αv · ∇u, ∂αu〉,
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where integration by parts was used. In a similar way as in the proof of Theorem 2.1, we can
bound |I1(t)|+ |Iα,β(t)| by

|I1(t)|+ |Iα,β(t)| ≤ C‖[u, v]‖H1‖∇[u, v]‖2H2 .

Taking summation over |α| ≤ 3, we deduce

1
2
d

dt
‖[u, v]‖2H3 + a‖v‖2H3 ≤ C‖[u, v]‖H3‖∇[u, v]‖2H2 .(5.4)

Furthermore, to include the estimate on ‖∇∂αu‖2 when |α| ≤ 2, applying ∂α to (5.1)2 taking
integrations in x and then using integration by parts, and also replacing ∂tu from (5.1)1 gives

d

dt
〈∂αv,∇∂αu〉+ ‖∇∂αu‖2

= −a〈∂αv,∇∂αu〉+ ‖∇ · ∂αv‖2 + 〈∂α(v · ∇u+
γ − 1

2
u∇ · v),∇ · ∂αv〉

−〈∂α(v · ∇v +
γ − 1

2
u∇u),∇∂αu〉.

Then, it follows from Cauchy-Schwarz inequality and taking summation over |α| ≤ 2 that

d

dt

∑
|α|≤2

〈∂αv,∇∂αu〉+ λ‖∇u‖2H2 ≤ C‖v‖2H3 + ‖[u, v]‖2H3‖∇[u, v]‖2H2 .(5.5)

Combining (5.4) and (5.5), similar to Lemma 4.1, (5.3) follows due to smallness of initial
data. This completes the proof of Lemma 5.1. �

Proposition 5.1. Let [u, v] be the solution to the Cauchy problem of (5.1)-(5.2) with initial
data satisfying ‖[u0, v0]‖H3 + ‖[u0, v0]‖L1 ≤ δ for δ > 0 small enough. Then, one has the
following time-decay estimates:

‖u(t)‖ ≤ C(1 + t)−
3
4 , ‖∇u(t)‖ ≤ C(1 + t)−

5
4 , ‖u(t)‖L∞ ≤ C(1 + t)−

3
2 ,

‖v(t)‖ ≤ C(1 + t)−
5
4 , ‖∇v(t)‖ ≤ C(1 + t)−

7
4 , ‖v(t)‖L∞ ≤ C(1 + t)−2,

for any t ≥ 0, Furthermore, ‖[u, v]‖H3 ≤ C(1 + t)−
3
4 .

Proof. Define the time-weighted sup-norms:

L0(t) = sup
0≤s≤t

{(1 + s)
3
4 ‖u(·, s)‖+ (1 + s)

5
4 ‖v(·, s)‖},

L1(t) = sup
0≤s≤t

{(1 + s)
5
4 ‖∇u(·, s)‖+ (1 + s)

7
4 ‖∇v(·, s)‖},

L∞(t) = sup
0≤s≤t

{(1 + s)
3
2 ‖u(·, s)‖L∞ + (1 + s)2‖v(·, s)‖L∞},

E(t) = sup
0≤s≤t

{(1 + s)
3
4 ‖[u, v](·, s)‖H3}.

In the following, we will prove the bound of L0(t), E(t), L1(t), and L∞(t) by four steps.

Step 1. The bound of L0(t)
It follows from Theorem 3.1 and Duhamel principle, we have

‖v(t)‖ ≤ C(1 + t)−
5
4 ‖[u0, v0]‖L1 + Ce−λt‖[u0, v0]‖

+
∫ t

0
(1 + t− s)−

5
4 ‖G(U,∇U)(·, s)‖L1ds+

∫ t

0
e−λ(t−s)‖G(U,∇U)(·, s)‖ds.(5.6)
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By some direct calculations, we have the following estimates:

‖G(U,∇U)(·, s)‖L1 ≤ C‖U(·, s)‖‖∇U(·, s)‖ ≤ CL0(t)L1(t)(1 + s)−
9
4 ,(5.7)

‖G(U,∇U)(·, s)‖L2 ≤ C‖U(·, s)‖L∞‖∇U(·, s)‖ ≤ CL∞(t)L1(t)(1 + s)−
11
4 .(5.8)

The above two estimates (5.7)-(5.8) together with (5.6) give

‖v(t)‖ ≤ C(1 + t)−
5
4 (δ + L0(t)L1(t) + L1(t)L∞(t)).

Similarly, we have

‖u(t)‖ ≤ C(1 + t)−
3
4 (δ + L0(t)L1(t) + L1(t)L∞(t)).

Therefore, we have

L0(t) ≤ C(δ + L0(t)L1(t) + L1(t)L∞(t)).(5.9)

Step 2. The bound of E(t)
From Lemma 5.1, (5.3) implies a Lyapunov-type inequality

d

dt
‖[u, v]‖2H3 + λ‖[u, v]‖2H3 ≤ C‖u‖2.

It is immediate to obtain

(5.10)

‖[u, v]‖2H3 ≤ Ce−λt‖[u0, v0]‖+
∫ t

0
e−λ(t−s)‖u(s)‖2ds

≤ C(1 + t)−
3
2 (δ + L0(t)L1(t) + L1(t)L∞(t)),

where we have used the estimate of ‖u‖ in (4.18). (5.10) implies that E(t) is bounded in the
following form

E(t) ≤ C(δ + L0(t)L1(t) + L1(t)L∞(t)).(5.11)

Step 3. The bound of L1(t)
It follows from Theorem 3.1 and Duhamel’s principle, we have

‖∇v(t)‖ ≤ C(1 + t)−
7
4 ‖[u0, v0]‖L1 + Ce−λt‖∇[u0, v0]‖

+
∫ t

0
(1 + t− s)−

7
4 ‖G(U,∇U)(·, s)‖L1(s)ds+

∫ t

0
e−λ(t−s)‖∇G(U,∇U)(·, s)‖ds.(5.12)

Here, we only to estimate ‖∇G(U,∇U)‖ as follows:

‖∇G(U,∇U)(·, s)‖ ≤ C‖U(·, s)‖L∞‖∇2U(·, s)‖+ ‖∇U(·, s)‖2L4

≤ C‖U(·, s)‖L∞‖∇2U(·, s)‖
≤ CL∞(t)E(t)(1 + s)−

9
4 .

Plugging the above estimate and (5.7) into (5.12), we have

‖∇v(t)‖ ≤ C(1 + t)−
7
4 (δ + L0(t)L1(t) + L∞(t)E(t)).(5.13)

Similarly, we have

‖∇u(t)‖ ≤ C(1 + t)−
5
4 ‖[u0, v0]‖L1 + Ce−λt‖∇[u0, v0]‖

+
∫ t

0
(1 + t− s)−

5
4 ‖G(U,∇U)(·, s)‖L1(s)ds+

∫ t

0
e−λ(t−s)‖∇G(U,∇U)(·, s)‖ds

≤ C(1 + t)−
5
4 (δ + L0(t)L1(t) + L∞(t)E(t)).(5.14)
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Combing (5.13) and (5.14), we have

L1(t) ≤ C(δ + L0(t)L1(t) + L1(t)E(t)).(5.15)

Step 4. The bound of L∞(t)
It follows from Theorem 3.1 and Duhamel principle, we have

‖v(t)‖L∞ ≤ C(1 + t)−2‖[u0, v0]‖L1 + Ce−λt‖∇2[u0, v0]‖

+
∫ t

0
(1 + t− s)−2‖G(U,∇U)(·, s)‖L1(s)ds

+
∫ t

0
e−λ(t−s)‖∇2G(U,∇U)(·, s)‖ds.

The rest is to obtain the estimate of ‖∇2G(U,∇U)‖,

‖∇2G(U,∇U)(·, s)‖ ≤ C‖U(·, s)‖L∞‖∇3U(·, s)‖+ C‖∇2U∇U‖
≤ C‖U(·, s)‖L∞‖∇3U(·, s)‖
≤ CL∞(t)E(t)(1 + s)−

9
4 ,

which implies

‖v(t)‖L∞ ≤ C(1 + t)−2(δ + L0(t)L1(t) + L∞(t)E(t)).

The similar argument for ‖u(t)‖L∞ with decay rate (1 + t)−
3
2 , then we have

L∞(t) ≤ C(δ + L0(t)L1(t) + E(t)L∞(t)).(5.16)

Now, define Q(t) = L∞(t) + L0(t) + L1(t) + E(t). The summation of (5.9), (5.11), (5.15)
and (5.16) implies that

Q(t) ≤ C(δ +Q(t)2).

Since δ > 0 is small enough, Q(t) ≤ Cδ holds true for any t ≥ 0, which implies L0(t), L1(t),
E(t) and L∞(t) is bounded for all time. Then the proof of Proposition 5.1 is complete. �

Remark 5.1. The rates shown in Proposition 5.1 are better than Theorem 6.1 in [18] in the
sense that the momentum component has an extra time-decay (1 + t)−

1
2 in L2. In this sense,

the appendix here can be viewed as a generalization of [18] with respect to the time-decay
rates.
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