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Parameter Selection for Total Variation Based
Image Restoration Using Discrepancy Principle

You-Wei Wen, Raymond H. Chan

Abstract—The key issues in solving image restoration problem
successfully are: the estimation of the regularization parameter
which balances the data-fidelity with the regularity of the solu-
tion; and the development of efficient numerical techniques for
computing the solution. In this paper, we derive a fast algorithm
that simultaneously estimates the regularization parameter and
restores the image. The new approach is based on total-variation
(TV) regularized strategy and Morozov discrepancy principle.
The TV norm is represented by the dual formulation that changes
the minimization problem into a minimax problem. A proximal
point method is developed to compute the saddle point of the
minimax problem. By adjusting the regularization parameter
adaptively in each iteration, the solution is guaranteed to satisfy
the discrepancy principle. We will give the convergence proof of
our algorithm and show numerically that it is better than some
state-of-the-art methods in both speed and accuracy.

Index Terms—Regularization parameter, discrepancy princi-
ple, primal-dual, total variation (TV), constrained/unconstrained
problem.

I. INTRODUCTION

Image restoration is an important image processing task
with many real-world applications, such as surveillance, mi-
croscopy imaging, and remote sensing. During acquisition and
transmission, digital images are often degraded due to sensor
noise, the relative motion between the camera and the original
scene, defocusing of the lens system, and the physical size
of the sensor elements. In general, the degradation process
of a static scene can be modeled with a spatially linear shift-
invariant system, where the original image is convolved with a
spatially invariant point spread function and added with Gaus-
sian white noise [2]. In digital image processing, an image is
represented by a matrix or by a vector formed by stacking up
the columns of the matrix. In the latter representation of an
n1×n2 image, the (r, s)-th pixel becomes the ((r−1)n1+s)-
th entry of the vector. The discrete imaging model of the
degradation process can be expressed as follows:

g = Hfclean + n. (1)

Here fclean and g are the original image and the observed
image respectively, H is the blurring matrix which we assume
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to be known, and n is a vector of zero-mean Gaussian white
noise with variance σ2. The task of image restoration is to
recover the original image fclean from the observed image g
with unknown n such that f ≈ fclean.

The simple approach in image restoration is inverse filtering,
which solves the least squares problem minf ‖Hf − g‖22.
Obviously f = (HTH)−1HTg. However, the approach is
not feasible either because (HTH)−1 does not exist or it is
very ill-conditioned that a small perturbation in the observed
image g can produce a large perturbation in the restored image
f .

The ill-conditioning can be alleviated by using Total Varia-
tion (TV) regularization [55]. The main advantage for the TV
formulation is the ability to preserve edges in the image due to
the piecewise smooth regularization property of the TV norm.
The objective function of the TV image restoration problem
is given by

min
f

Φ(f ;λ) ≡
{

TV(f) +
λ

2
‖Hf − g‖22

}
, (2)

where λ > 0 is a fixed, given regularization parameter and
TV(f) = ‖∇f‖1 is the TV norm of f . A number of numerical
methods have been proposed for solving (2). They include
time marching schemes [40], [55], fixed point iteration method
[59], primal-dual Newton method [17], multilevel optimization
methods [16], [19], splitting schemes [38], [63], [64] and
Nesterov’s algorithm [6]. When the TV norm is approximated
by an anisotropic TV norm, i.e., TV(f) = ‖∇xf‖1 + ‖∇yf‖1
with ∇z being the forward difference operator in the z-
direction for z ∈ {x, y}, there are some other efficient solvers
[22], [23], [30].

The objective function in (2) is a weighted sum of two
terms: the regularization term and the data fidelity term.
The regularization parameter λ plays an important role. By
adjusting λ, a compromise is achieved to suppress the noise
and preserve the nature of the original image. The appropriate
compromise highly depends on the choice of λ. If λ is too
large, the regularized solution is under-smoothed, while if λ
is too small, the regularized solution does not fit the given data
properly. A good recovered image can be obtained by choosing
a suitable λ. According to the implicit functions theorem, the
minimizer of (2) is a continuous function with respect to λ.
Given a λ, we will use f(λ) to denote the optimal solution of
the problem (2) for that λ. When there is no ambiguity, we will
simply denote f(λ) by f . Usually, λ is determined manually by
trial-and-error method, the generalized cross validation (GCV)
method [32], [33], the L-curve method [37], the discrepancy
principle [45], or the variational Bayes approach [4], [5], [48].
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The GCV evaluation formula can be derived when the
regularization term has a quadratic form. However, due to the
non-linearity of TV-norm, it is impossible to derive the GCV
evaluation formula when TV-norm is used as the regularization
term. When lagged diffusivity fixed point iterations are applied
to solve the Euler-Lagrange equation derived from (2), the TV
term is linearized by a quadratic formulation in each iteration.
Lin et al. [43] have applied the unbiased predictive risk estima-
tor (UPRE) to compute the λ of the quadratic approximation.
Liao et al. [42] incorporated the GCV technique into the
splitting-and-regularization framework to handle the parameter
estimation for TV-based image reconstruction problem. More
precisely, they applied GCV approach to choose the optimal
λ for the corresponding Tikhonov problem in each iteration
when the alternating minimization method was applied to
calculate the minimizer. However, it is usually difficult to
calculate the minimizer of the GCV function. Also, it is
well known that the GCV method tends to under-smooth the
solution. Sometimes, the GCV function can have multiple
minimizers [39].

L-curve method is another method to choose the regu-
larization parameter [37], [41]. The L-curve is a parametric
plot of (log TV(f(λ)), log ‖Hf(λ)− g‖22). Basically, the L-
curve is made up of a “flat” part and a “vertical” part. The
chosen regularization parameter is the corner point of the L-
curve. It is shown that the corner point produces the point
of maximum curvature [36]. The main difficulty with L-curve
method is that we need to solve (2) many times for different
λ’s and therefore the algorithm is computational expensive.
Sometimes, it is difficult to locate the corner or there does not
exist a corner. Also the regularized solutions obtained by the
L-curve approach fail to converge to the original image when
the noise variance σ → 0, see [27], [35], [60].

Another regularization parameter method is Morozov’s dis-
crepancy principle which selects λ by matching the norm of
the residual to some upper bound, i.e., a good regularized
solution f should lie in the set

D =
{
f : ‖Hf − g‖22 ≤ c

2
}
, (3)

where c is a constant which depends on the noise level [3],
[10], [32], [47], [62]. When the variance σ2 of the noise is
available, the upper bound is given by c2 = τn1n2σ

2 with τ
being a pre-determined parameter. In general, one sets τ = 1
[32]. If the variance σ2 of the noise is unknown, it can be
estimated using the median rule [44].

Under the discrepancy principle, the image restoration prob-
lem can be represented as solving a constrained optimization
problem described as

min
f∈D

TV(f). (4)

A common method [8] to solve (4) is to apply Lagrangian
method to convert the constrained minimization problem into
an unconstrained minimization problem (2). Mathematically,
problems (2) and (4) are equivalent. Assume that there exists
a solution for problem (4), it will also be a solution of (2) for
a particular choice of λ ≥ 0, which is the Lagrange multiplier
corresponding to the constraint f ∈ D in (4).

Complementarity condition can be used to show that for the
minimizer of (4), we have either f(0) ∈ D or

‖Hf(λ)− g‖22 = c2 (5)

for λ > 0. If λ = 0, then minimizing (2) is equivalent to
minimizing TV(f) and so the solution f is a constant image,
which is not the situation that happens for real world images.
Thus the discrepancy principle is trying to seek a λ > 0 such
that (5) holds when the minimizer f in (4) is not a constant
image.

Notice that there does not exist a closed-form solution for
(2), and hence it is difficult to find a solution of λ in (5).
Blomgren and T. Chan [10] developed a modular solver to
update λ in order to make use of existing methods of the un-
constrained problem to compute the corresponding constrained
one. In [3], Aujol and Gilboa considered to automate the
choice of λ for denoising problems. Their approach was to
compute the optimal solution of (2) for a given parameter λ
by applying Chambolle’s projection algorithm. If (5) does not
hold for the solution f(λ), an updating rule is applied to adjust
the parameter λ. This procedure is applied iteratively until (5)
is satisfied. However, the approaches in [3] and [10] need to
solve problem (2) many times for a sequence of λ’s. Hence
the computational cost is expensive.

In [11], [49], the authors used the iterated refinement
method to solve TV image restoration problem (2). The
residual ‖Hf − g‖22 would decrease monotonically during the
iterative procedure, and hence (5) was used as a stopping
criterion. In fact, the iteration number plays the role of
regularization in the iterative procedure. However, the main
aim of [11], [49] was to use Bregman distances to design
an iterative regularization procedure in order to improve TV
restoration results rather than to find the minimizer of (4). The
iterated refinement method also requires to solve a series of
problems (2) for different g’s.

In [47], [62], projected gradient descent method was applied
to solve (4). In each iteration, in order to ensure that the
current iterant is a feasible one, it is projected on the feasible
set D. Finding the projection onto the set D is equivalent
to solving a constrained least square problem. Its solution
can be computed efficiently when the blur matrix H can be
diagonalized. This is the case under the assumption of periodic
boundary condition or for symmetric point spread function
with Neumann boundary condition [46].

In this paper, we apply the discrepancy principle to estimate
the regularization parameter λ. A proximal-based primal-dual
method, where Legendre-Fenchel’s duality is used to represent
the TV norm, is used to solve (4). The minimization problem
is solved by finding a saddle point of the primal-dual function.
Proximal point iterations are applied to the sub-differential of
the primal-dual function alternately with the primal variable
and the dual variable fixed alternatively. In each iteration, λ
is updated in order to guarantee that the primal variable is in
the feasible set D. Numerical results show that our algorithm
is very effective in finding a good λ, and it is even faster than
the methods that solve the unconstrained problem (2) in [56],
[61].
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We will provide a convergence proof of our algorithm.
We emphasize that the convergence property is unknown in
the parameter selection methods using GCV approach [42],
[43]. We now highlight the major differences between our
method and previous methods using the discrepancy principle
to solve the TV problems. The methods in [3], [10], [15], [11],
[49], require to solve a series of unconstrained minimization
problems (2) where each problem corresponds to a different
λ. Our method just needs to solve one minimization problem
where λ is changing adaptively during the iterations. Also
the methods in [1], [15], [47] were more complex than our
method since several variables were introduced while our
algorithm only introduces a dual variable and hence is easier
to implement. In fact, all the parameters in our algorithm
are either fixed constants or computed automatically by the
algorithm itself, so the algorithm can be run without any
supervision.

The outline of the paper is as follows. In Section II, we
present a primal-dual model for TV-based image restoration
problem where the TV norm is presented by Fenchel’s duality.
In Section III, we apply the discrepancy principle to choose
the regularization parameter λ in each iteration. We also give
the convergence proof for our algorithm. Experiment results
are reported in Section IV to demonstrate the effectiveness
of our algorithm in choosing λ. Finally, a short conclusion is
given in Section V.

II. PRIMAL-DUAL MODEL

A. Notations

Let us describe the notations we will be using throughout
this paper. We denote by X the Euclidean space Rn1×n2 ,
and Y = X × X . For g ∈ X , gi,j ∈ R denotes the
((i − 1)n1 + j)-th component of g. For p ∈ Y , pi,j =
(pi,j,1, pi,j,2) ∈ R2 denotes the ((i− 1)n1 + j)-th component
of p. Define the inner product 〈g, f〉X =

∑
i,j gi,jfi,j ,

〈p,q〉Y =
∑
i,j

∑2
k=1 pi,j,kqi,j,k and the norm ‖f‖2 =√

〈f , f〉X , ‖p‖2 =
√
〈p,p〉Y and ‖p‖∞ = maxi,j {|pi,j |}

with |pi,j | =
√
p2i,j,1 + p2i,j,2.

To define a discrete total variation, we introduce a discrete
version of the gradient operator. For any f ∈ X , the gradient
∇ is a linear operator from X to Y , ∇f is a vector in Y given
by (∇f)i,j = ((∇xf)i,j , (∇yf)i,j). The discrete version of the
divergence operator is defined by div = −∇T where ∇T is
the adjoint of ∇. Therefore, for every p ∈ Y and f ∈ X , we
have 〈−divp, f〉X = 〈p,∇f〉Y .

Define the set

A ≡ {p ∈ Y : ‖p‖∞ ≤ 1} , (6)

and the characteristic function δA of A as δA(p) = 0 for
p ∈ A and δA(p) = +∞ if p /∈ A. The discrete TV of the
image f is also the Legendre-Fenchel conjugate of δ [13], [17]

TV(f) = max
p∈Y
{〈divp, f〉X − δA(p)} = max

p∈A
〈divp, f〉X .

(7)

B. Primal-dual Model

We present a primal-dual model for problem (2). Using
Legendre-Fenchel’s duality (7) to represent the TV norm,
problem (2) can be written as

min
f

max
p∈A
J (f ,p;λ) (8)

with

J (f ,p;λ) ≡
〈
f ,divp

〉
X

+
λ

2

∥∥Hf − g
∥∥2
2
. (9)

To emphasize the dependence of J on the parameter λ, we
explicitly write λ out in its arguments. We note that J (f ,p;λ)
in (9) is convex in f and concave in p. We call a pair (f∗,p∗)
a saddle point for J (f ,p;λ) if

J (f∗,p;λ) ≤ J (f∗,p∗;λ) ≤ J (f ,p∗;λ), ∀f ,p.

Notice that the null space of H does not contain any constant
vectors since H is a blur matrix generated by some point
spread function and we have H1 = 1, where 1 is the vector
of all ones. On the contrary, the null space of ∇ is the set of all
constant vectors. Thus the intersection of the null space of H
and the null space of ∇ is an empty set. Hence there exists a
saddle point (f∗,p∗) of J (f ,p;λ) [7]. Using the existence of
the saddle point of J (f ,p;λ), convex analysis can be applied
to show that the minimum and the maximum in (8) can be
swapped, i.e.

min
f

max
p∈A
J (f ,p;λ) = J (f∗,p∗;λ) = max

p∈A
min
f
J (f ,p;λ).

Using primal-dual model, an optimal solution f∗ of (2) can
be obtained by calculating the saddle point of J (f ,p;λ). By
using Proposition 2.6.1 in [7], a pair (f∗,p∗) is a saddle point
of (8) if and only if f∗ and p∗ are the optimal solutions of
the problems

f∗ = argmin
f
J (f ,p∗;λ) (10)

p∗ = argmax
p∈A

J (f∗,p;λ), (11)

respectively. From (8) and (10), we obtain

divp∗ + λHT (Hf∗ − g) = 0. (12)

The KKT necessary conditions of the dual optimality for (11)
yield the existence of the Lagrange multipliers γi,j ≥ 0,
associated with the constraint p ∈ A, such that we have(

∇f∗)i,j + γi,jp
∗
i,j = 0, ∀i, j

where either γi,j > 0 with |pi,j | = 1, or γi,j = 0 with |pi,j | <
1. We see that in either case γi,j = |

(
∇f∗)i,j |. Therefore, if

p∗ is a solution of (11), we have(
∇f∗)i,j + |

(
∇f∗)i,j |p∗i,j = 0, ∀i, j. (13)

Hence we have the following lemma.

Lemma 1. Assume that (f∗,p∗) is the saddle point of
J (f ,p;λ) witth p ∈ A, see (8). Then the equations (12) and
(13) hold.
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C. Proximal Point Method

Seeking the saddle point of (8) is equivalent to solving the
system (10)–(11). Note that (11) involves a non-differentiable
function which poses a serious computational difficulty. To
deal with it, we use iterative methods. We apply primal-dual
proximal point method [18], [21], [25], [26], [53], [54], [58]
to compute the saddle point of (8) alternately with the primal
variable f and the dual variable p fixed alternatively. More
specifically, starting at a point (f (0),p(0)), the sequence is
generated successively according to the iteration

p(k+ 1
2 ) = argmin

p∈A
ψk(p; f (k), λ), (14)

f (k+1) = argmin
f

φk(f ;p(k+ 1
2 ), λ), (15)

p(k+1) = argmin
p∈A

ψk(p; f (k+1), λ), (16)

where

ψk(p; f , λ) ≡ −J (f ,p;λ) +
1

2s

∥∥p− p(k)
∥∥2
2
, (17)

φk(f ;p, λ) ≡ J (f ,p;λ) +
1

2t

∥∥f − f (k)
∥∥2
2

(18)

with the constants s, t > 0. We remark that our method is
different from the primal-dual method proposed in [65], [66]
where a gradient descent method is employed to the primal
and dual variables alternatively. Our method resembles in some
way the dual method in [31] which uses a predictor-corrector
scheme [18] in the alternating direction iterations for the dual
variable. We remark that in order to prove convergence of our
method, we iterate p twice and f once in each iteration and
it suffices to set t = 1 and s = 1/16, see Sections III-A and
IV-B.

Next we discuss how to solve subproblems (14)–(16).
1) Subproblems for the dual variable p: In order to solve

problems (14) and (16), we first define the projection operator
onto the set A given by (6). The projection of a vector q onto
A can be conveniently expressed as

PA(q) = argmin
p∈A

‖p− q‖22 . (19)

Lagrangian method can be applied to calculate the projection
operator PA. The Lagrangian function associated with (19) is

‖p− q‖22 +
∑
i,j

βi,j
(
|pi,j |2 − 1

)
,

where βi,j ≥ 0 is the Lagrangian multiplier associated with the
constraint |pi,j |2 ≤ 1. Its complementarity conditions implies
that for the optimal βi,j , either βi,j = 0 with |pi,j |, |qi,j | < 1,
or βi,j > 0 with |pi,j | = 1 and |qi,j | ≥ 1. In the former case,
we have pi,j = qi,j . In the latter case, the KKT conditions
yields

pi,j − qi,j + βi,jpi,j = 0, ∀i, j.

Therefore, we have βi,j = |qi,j |−1, and thus pi,j = qi,j/|qi,j |.
Hence, we obtain(

PA(q)
)
i,j

=
qi,j

max(1, |qi,j |)
. (20)

We consider the solution of (14) now. By (17), problem (14)
can be written as

p(k+ 1
2 ) = argmin

p∈A

{〈
p,∇f (k)

〉
Y

+
1

2s

∥∥p− p(k)
∥∥2
2

}
= argmin

p∈A

1

2s

{
2
〈
p− p(k), s∇f (k)

〉
Y

+
∥∥p− p(k)

∥∥2
2

}
= argmin

p∈A

∥∥p− (p(k) − s∇f (k)
)∥∥2

2
.

The minimization problem is equivalent to computing the
projection of

(
p(k) − s∇f (k)

)
onto the set A. Therefore

p(k+ 1
2 ) = PA

(
p(k) − s∇f (k)

)
. (21)

Similarly, p(k+1) in (16) can be computed by

p(k+1) = PA(p(k) − s∇f (k+1)). (22)

2) Subproblem for the primal variable f : From (18), we see
that the objective function in (15) is quadratic with respect to
f . Hence f (k+1) can easily be computed by the formula

f (k+1) =
(
λtHTH + I

)−1(
λtHTg + uk

)
, (23)

where
uk = f (k) − tdivp(k+ 1

2 ). (24)

We remark that in image restoration H is a block-circulant
with circulant-block (BCCB) matrix when periodic boundary
conditions are applied to the image boundary. The matrix
H can be diagonalized by fast Fourier transform matrix
[14]. Therefore, (24) can be solved using three Fast Fourier
Transforms (FFT) in O(n1n2 log(n1n2)) operations for an
n1×n2 restored image, see for instance [46]. In the following,
we will use periodic boundary conditions.

The resulting algorithm for TV image restoration using the
primal-dual model is summarized in Algorithm 1.

Algorithm 1 Primal-Dual Model for TV Image Restoration
Algorithm (PDM-TV)
Function: f = PDM-TV(g,H).
Input: g, H .

1: Initialize f (0) and p(0). Set the step sizes s and t.
2: while stopping criterion is not satisfied do
3: p(k+ 1

2 ) = PA
(
p(k) − s∇f (k)

)
;

4: uk = f (k) − tdivp(k+ 1
2 );

5: f (k+1) =
(
λtHTH + I

)−1(
λtHTg + uk

)
;

6: p(k+1) = PA(p(k) − s∇f (k+1));
7: end while
8: return f = f (k+1).

III. ADAPTIVE REGULARIZATION PARAMETER SELECTION

In this section, the discrepancy principle strategy is used
to determine the regularization parameter λ in each iteration
step. Note that Algorithm 1 is a proximal-based primal-dual
method applied to solve the unconstrained problem (2). We
will modify it to generate a sequence (f (k),p(k), λk) where
λk will converge to the Lagrange multiplier λ∗ corresponding
to the constraint f ∈ D given in (3) and (f∗,p∗) will converge
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to the saddle point of J (f ,p;λ∗) in (8). The convergence
proof will be given in Section III-A. Our strategy is to adjust
λ adaptively during the iterations so that the restored image
is always in the feasible set D. More specifically, we replace
the iteration step (15) with the following one:

f (k+1) = argmin
f∈D

φk(f ;p(k+ 1
2 ), λk+1). (25)

Here λk+1 ≥ 0 is the Lagrange multiplier corresponding to
the constraint f ∈ D. Hence the updating rule in Step 5 of
Algorithm 1, i.e. (23), is modified as

f (k+1)(λk+1) =
(
λk+1tH

TH + I
)−1(

λk+1tH
Tg + uk

)
.

(26)
Since f (k+1) has a closed-form solution, it is possible to
analyse the discrepancy ek+1 given by

ek+1 = Hf (k+1)(λk+1)− g

= H
(
λk+1tH

TH + I
)−1(

λk+1tH
Tg + uk

)
− g

Using the identity µH
(
µHTH + I

)−1
=
(
µHHT +

I
)−1

HT , we obtain

ek+1 =
(
λk+1tHHT + I

)−1(
Huk − g

)
. (27)

Define the function K(λ,u) as

K(λ,u) ≡
∥∥∥(λtHHT + I

)−1(
Hu− g

)∥∥∥2
2
. (28)

It is obviously that K(λk+1,uk) = ‖ek+1‖22. The following
lemma states that there must exist a unique regularization λk+1

such that
∥∥Hf (k+1)(λk+1)−g

∥∥2
2

= c2 when
∥∥Huk−g

∥∥2
2
>

c2 . Similar results can be found in [12], [51].

Lemma 2. Let r = Hu− g and K(λ,u) be defined by (28).
Then K(λ,u) is a strictly positive and strictly monotonically
decreasing convex function of λ. Moreover, the equation

K(λ,u) = b2 (29)

has a unique solution λ > 0 for any b satisfying ‖r0‖22 ≤
b2 < ‖r‖22, where r0 denotes the orthogonal projection of r
onto the null space of HHT .

Lemma 2 can be proven by directly computing the first and
second order derivatives of K(λ,u) with respect to λ and the
unique solution of λ is guaranteed by the strict convexity of K.
From Lemma 2, we know that when ‖Huk − g‖22 > c2, i.e.,
when uk /∈ D, there exists a unique solution to the equation
K(λ,uk) = c2. It means that we can find a unique λk+1 > 0
such that ‖Hf (k+1)(λk+1) − g‖22 = c2. When uk ∈ D, we
can simply choose λk+1 = 0. This leads to f (k+1) = uk ∈ D,
see (26). Therefore, there always exists a unique λk+1 ≥ 0
such that f (k+1) ∈ D. Notice that problem (29) is nonlinear,
we therefore apply Newton method to solve it. In order to
accelerate the convergence speed, we use λk as the initial value
when computing λk+1.

The resulting algorithm is summarized in Algorithm 2.

Algorithm 2 Discrepancy Principle Based Primal-Dual Model
for TV Image Restoration Algorithm (DP-PDM-TV)
Function: (f , λ) = DP-PDM-TV(g,H, c2).
Input: g, H , c2.

1: Initialize f (0) and p(0). Set the step sizes s and t.
2: while stopping criterion is not satisfied do
3: p(k+ 1

2 ) = PA
(
p(k) − s∇f (k)

)
;

4: uk = f (k) − tdivp(k+ 1
2 );

5: if uk ∈ D; then
6: λk+1 = 0;
7: else
8: Solve K(λk+1,uk) = c2;
9: end if

10: f (k+1) =
(
λk+1tH

TH + I
)−1(

λk+1tH
Tg + uk

)
;

11: p(k+1) = PA(p(k) − s∇f (k+1));
12: end while
13: return f = f (k+1) and λ = λk+1.

A. Convergence Analysis

We now show that the sequence f (k) generated by Algorithm
2 converges to the minimizer f∗ of the problem (4) and
the sequence λk converges to the Lagrange multiplier λ∗

corresponding to the constraint f ∈ D, i.e., the solution of (4)
is also a solution of (2) for the choice of λ = λ∗. Note that by
(2) and (8), we have Φ(f ;λ∗) = maxp∈A J (f ,p;λ∗). Thus
we need to show that the sequence (f (k),p(k)) generated by
Algorithm 2 is convergent to the saddle point of J (f ,p;λ∗)
with p ∈ A.

We need two Lemmas and their proofs are given in Ap-
pendix. The first Lemma gives a lower bound of the difference
between the primal variables at two consecutive iterations. The
bound can be obtained precisely because we have performed
two proximal steps to the dual variable in each iteration. The
second Lemma states that the sequence (f (k),p(k)) generated
by (14), (16), and (25) (i.e., Algorithm (2)) is bounded when
st ≤ 1/16.

Lemma 3. Let (f (k),p(k), λk) be the sequence generated by
Algorithm 2, see (14), (16), and (25). Then

8s
∥∥f (k+1)−f (k)

∥∥2
2
≥
〈
f (k+1)−f (k),div(p(k+1)−p(k+ 1

2 ))
〉
X
.

(30)

Lemma 4. Assume that (f (k),p(k), λk) be the sequence gener-
ated by Algorithm 2, see (14), (16), and (25). When st ≤ 1/16,
we have

1

t
‖f∗ − f (k)‖22 +

1

s
‖p∗ − p(k)‖22

≥ 1

t
‖f∗ − f (k+1)‖22 +

1

s
‖p∗ − p(k+1)‖22. (31)

In particular, the sequence (f (k),p(k), λk) converges to some
limit point (f†,p†, λ†) and either λ† = 0 with f† ∈ D or
λ† > 0 is the solution to the equation

∥∥Hf†(λ)− g
∥∥2
2

= c2.

We first show that the limit point (f†,p†) is a saddle point
of J (f ,p;λ†) with p† ∈ A (see (8)). According the Steps
4 and 10 of Algorithm 2, we know that (f†,p†) satisfies the
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following equation:

f† =
(
λ†tHTH + I

)−1(
λ†tHTg + f† − tdivp†

)
.

Multiplying
(
λ†tHTH + I

)
on both sides, and re-arranging

the terms, we have divp† + λ†HT
(
Hf† − g

)
= 0, which is

exactly equation (12) with λ replaced by λ†.
According to Step 11 in Algorithm 2, we know that (f†,p†)

also satisfies the following equation:

p† = PA(p† − s∇f†)

According to the property of the projection operator PA (see
(20)), we have

p†i,j =
p†i,j − s

(
∇f†

)
i,j

max
(
1,
∣∣p†i,j − s(∇f†)i,j∣∣) .

Therefore if
∣∣p†i,j − s(∇f†)i,j∣∣ ≤ 1, we have

(
∇f†

)
i,j

= 0

and
∣∣p†i,j∣∣ ≤ 1. If

∣∣p†i,j − s(∇f†)i,j∣∣ > 1, we have
∣∣p†i,j∣∣ = 1

and s
(
∇f†

)
i,j

= (1 −
∣∣p†i,j − s(∇f†)i,j |)p†i,j . Thus p† ∈ A

and the KKT optimality condition for the dual variable, i.e.
(13), holds.

Thus we have the following theorem.

Theorem 1. Assume that (f∗,p∗) is the saddle point of
J (f ,p;λ∗), where λ∗ is the Lagrange multiplier correspond-
ing to the constraint f ∈ D. Then the sequence (f (k),p(k), λk)
generated by Algorithm 2 converges to (f∗,p∗, λ∗) provided
that st ≤ 1/16. In particular, f (k) converges to the minimizer
of (4), λk converges the Lagrange multiplier corresponding
to the constraint f ∈ D associated with the unconstrained
problem (2).

B. Upper Bound c2

A good choice for the upper bound c2 should minimize the
error in the restored image. However, since the original image
fclean is unknown, the upper bound should be chosen according
to the noise level [3], [10], [32], [47], [62]. If the knowledge
of the noise variance σ2 is not available, it can be estimated
using the median rule [44]. Given a wavelet transform with
ĝHH being the high-high coefficients of the observed image
g at the finest wavelet transform level, the noise variance can
be estimated by

σ = median(|ĝHH |)/0.6745.

Here median(|ĝHH |) is the median of the absolute value of
ĝHH . Once we have σ, the upper bound c2 is generally chosen
as c2 = τn1n2σ

2 for some constant τ . A typical choice is to
set τ = 1 [3], [10], [32], [47], [62]. It was observed however
in [24], [32] that the choice of λ based on τ = 1 usually
yields an over-smooth solution, which implies that λ is too
small. Lemma 2 states that the norm of the discrepancy is a
monotonically decreasing function of λ. In order to obtain a
larger λ, we should choose a τ less than 1.

In order to determine a good τ , we use the approach
of equivalent Degrees of Freedom (DF) [32], [34], [57]. It
provides an estimator of τ by solving the equation

‖Hf(λ)− g‖22 = DF · σ2,

where DF is the effective number of degrees of freedom. The
main challenge for DF approach is the lack of an analytical
expression of DF since there does not exist a closed-form for-
mula for the solution f(λ). Our aim is to find an approximate
one.

Let (f†,p†, λ†) be the solution generated by Algorithm 2
for the parameter τ = 1. The discrepancy e† = Hf† − g is
given by

e† = H
(
λ†tHTH + I

)−1(
λ†tHTg + u†

)
− g,

where u† = f† − tdivp†, see (24) or Step 4 of Algorithm 1.
Hence by (1) we obtain

e† = êf −
(
λ†tHHT + I

)−1
n,

where êf = H
(
λ†tHTH + I

)−1
u† −

(
λ†tHHT +

I
)−1

Hfclean is a fixed vector. As a consequence, ‖e†‖22 is
χ2-distributed with variance σ2 and its degrees of freedom is
equal to trace

[
(λ†tHHT +I)−1

]
[32], [34], [57]. Therefore,

we choose the parameter τ as

τ = trace
[
(λ†tHHT + I)−1

]
/(n1n2). (32)

Notice that λ†t > 0, hence τ < 1, as we would expect. In the
experiments of Section IV-A, we can see that (32) performs
quite well in approximating the optimal τ .

We remark that the parameter τ is dependent on the degrees
of freedom. However, the degrees of freedom are difficult to
derive analytically and how to compute them is still an open
problem. What we have done above is to estimate the degrees
by using τ = 1 rather than to propose an iterative scheme to
update τ . Thus it is enough to start with τ = 1 and update τ
only one time.

In Algorithm 3, we give our algorithm that selects the reg-
ularization parameter λ automatically. Note that by Theorem
1, both Steps 2 and 4 there are convergent. Hence Algorithm
3 is convergent too.

Algorithm 3 Automatic Regularization Parameter Selection
(AutoRegSel) for TV-Based Image Restoration
Function: (f , λ) = AutoRegSel(g,H).
Input: g, H .

1: Estimate σ2 and set c20 = n1n2σ
2.

2: (f , λ0) = DP-PDM-TV(g,H, c20).
3: Compute τ by (32) and set c2 = τn1n2σ

2.
4: (f , λ) = DP-PDM-TV(g,H, c2).
5: return f , λ.

IV. NUMERICAL RESULTS

In this section, experimental results are given to illustrate
the performance of our proposed approach. The experiments
were performed under Windows 7 and MATLAB v7.8 on
a Thinkpad T400s Laptop with an Intel Core(TM)2 Duo
P9400 processor and 2GB of RAM. The Blurred Signal-
to-Noise Ratio (BSNR) and the Improved Signal-to-Noise
Ratio (ISNR) are used to measure the quality of the ob-
served images and the restoration results respectively. They
are defined as follows: BSNR = 10 log10

(
‖g‖22/‖n‖22

)
and

ISNR = 10 log10

(
‖g − fclean‖22/‖f − fclean‖22

)
, see (1).



7

A. Experiment 1—The choice of τ

In the first experiment, we illustrate how to choose a
suitable upper bound c2 = τn1n2σ

2 for the discrep-
ancy principle. In particular, we show that the choice
of τ we derive in (32) is a good one. The test im-
ages are Lena and Cameraman images with size 256 ×
256. MATLAB commands fspecial(’Gaussian’,[9
9],3) and fspecial(’average’,9) respectively are
used to generate the Gaussian blur and uniform blur used in the
experiment. We remark that many previous works for image
restoration [5], [9], [42] have reported the ISNR performance
for these two blur kernels. To each blurred image, a Gaussian
noise is added such that the BSNR of the observed images are
10, 20, 30 and 40dB respectively. The stopping criterion is set
to ‖f (k+1) − f (k)‖2/‖f (k)‖2 < 10−4. According to Theorem
1, we fix the parameter t = 1 and s = 1/16.

The plots in Figure 1 show the changes of ISNR against
τ . The ISNR’s obtained by the general setting of τ = 1 are
marked by “∇”, and those obtained by our choice of τ given
in (32) are marked by “o”. It is clearly seen that for τ = 1,
only when the noise is high (i.e. BSNR = 10dB), will the ISNR
be close to the maximum. For other noise levels, its ISNR’s
are far from the maximum. However, the ISNR’s obtained by
using the τ in our Algorithm are always close to the maximum,
and it is especially good when the noise are not high (BSNR
≥ 20dB).

The plots of the regularization parameter λ versus the
iteration number are shown in Figure 2. We observe that the
higher the level of the noise, the smaller the λ is, as one would
expected. According to (32), the smaller the λ is, the closer τ is
to 1, a fact reflected already in Figure 1. We remark that there
is always a jump in λ in Figure 2 because the set {λk} consists
two parts: one from Step 2 in Algorithm 3 where we set τ = 1
and another from Step 4 in the same algorithm where we set
τ by (32). We observe that λk stabilizes within 100 iterations.
We also plot the figure of the CPU time (seconds) versus the
ISNR in Figure 3. We see that the whole algorithm usually
converges within 5 seconds.

B. Experiment 2—Step size t

The convergence proof requires that st ≤ 1/16. Here we
investigate if their values affect the regularization parameter
λ. We plot t versus λ in Figure 4 for t = 0.1k with k =
2, 3, . . . , 20 and s = 1

16t . Though the value of λ is gradually
decreasing when t increases, the absolute error between the
maximum of λ and the minimum of λ divided by the minimum
of λ is less than 4×10−3 in the experiment. This means that t
has very little influence on λ. Therefore, in all our experiments,
we fix the parameters t = 1 and s = 1/16.

C. Experiment 3—Is our λ good?

We now compare the results obtained by our method (which
chooses the regularization parameter λ automatically) with
those presented in [5], [9], [42]. Babacan et al. [5] considered
the Gamma distribution for the hyperpriors of the regulariza-
tion parameter. Bioucas-Dias et al. [9] adopted majorization-
minimization approach to estimate the original image and λ

which is assumed to follow the Jeffeys’ distribution. Liao et al.
[42] considered splitting the primal variable and then applying
the GCV technique to choose λ in each restoration step. For
simplicity, we call the approach of Bioucas-Dias et al. [9] as
BFO, the approach of Babacan et al. [5] as BMA and the
approach of Liao et al. [42] as LLN.

The ISNR values of the Lena, Cameraman and Shepp-
Logan images blurred by the kernels in Experiment 1 are
shown in Table I. The symbol “–” in the table means that the
results are not given in the reference paper. The bold numbers
in the table stand for the best ISNR’s obtained among all the
methods. The results show that the ISNR’s of our method
are better than the other methods, except in the Lena and
Cameraman images when the noise is low (BSNR=40dB).
Even in those two cases, our ISNR are close to best results
by BMA than the other two methods. The results indicate that
our λ’s are good.

TABLE I
ISNRS OBTAINED BY DIFFERENT METHODS.

Gaussian blur with variance 9
BSNR Image BFO [9] BMA [5] LLN[42] Proposed

20 Lena 2.99 2.87 2.57 3.12
Cameraman 2.21 1.72 1.82 2.59

Shepp-Logan 4.24 1.85 – 7.01
30 Lena 3.82 3.87 4.17 4.21

Cameraman 3.59 2.63 3.43 4.05
Shepp-Logan 7.21 4.31 – 9.07

40 Lena 4.41 4.78 5.44 5.84
Cameraman 5.78 3.39 5.02 6.21

Shepp-Logan 10.27 6.69 – 12.21
9× 9 uniform blur

BSNR Image BFO [9] BMA [5] LLN[42] Proposed
20 Lena 4.05 3.72 3.15 4.28

Cameraman 3.27 2.42 2.88 3.85
Shepp-Logan 6.25 3.01 – 7.45

30 Lena 5.43 5.89 4.43 5.94
Cameraman 5.69 5.41 5.57 5.86

Shepp-Logan 10.49 7.77 – 11.49
40 Lena 6.22 8.42 6.92 8.01

Cameraman 8.46 8.57 7.86 8.46
Shepp-Logan 16.39 13.69 – 17.32

D. Experiment 4—Comparison in speed and accuracy

In this experiment, we compare our algorithm (AutoRegSel)
with the current state-of-the-art methods: alternating direc-
tion methods presented in [47] (Ng-Weiss-Yuan), FTVd-v41

[56], [61], and C-SALSA2 [1], [28]. The stopping criterion
of all the methods is that the relative difference between
the successive iterate of the restored image should satisfy
‖f (k+1) − f (k)‖22/‖f (k)‖22 ≤ 10−6 or the number of iterations
is larger than 1000. We consider the three image restoration
problems in [29]: in the first problem, the point spread function
is a 9 × 9 uniform blur with the noise variance σ2 = 0.562

(Prob. 1); and in the last two problems, the point spread
function is given by hij = 1/(1+i2+j2) for i, j = −7, . . . , 7
with σ2 = 2 (Prob. 2) and σ2 = 8 (Prob. 3) respectively.
The upper bound c2 for AutoRegSel, Ng-Weiss-Yuan and C-
SALSA is set to c2 = τn1n2σ

2 where τ is computed by (32).

1http://www.caam.rice.edu/∼optimization/L1/ftvd/v4.1/
2http://cascais.lx.it.pt/∼mafonso/salsa.html

http://www.caam.rice.edu/~optimization/L1/ftvd/v4.1/
http://cascais.lx.it.pt/~mafonso/salsa.html
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Fig. 1. The parameter τ versus ISNR for cameraman image and Lena image. The images are blurred by a uniform blur of size 9 × 9 (first row) and a
Gaussian blur of size 9×9 with variance 9 (second row). The ISNRs obtained by the proposed method and by τ = 1 are marked by “o” and “∇” respectively.
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Fig. 2. The regularization parameter versus iterations for cameraman image (solid line) and Lena image (dash line). The images are blurred by a uniform
blur of size 9× 9 (first row) and a Gaussian blur of size 9× 9 with variance 9 (second row).

Since λ should be predetermined in FTVd-v4, we choose the
λ from our algorithm as the one in FTVd-v4. The plots of
ISNR versus CPU time are shown in Figure 5. Table II shows
the ISNR values, the number of iteration to reach convergence
and the CPU running times. We emphasize that our method
chooses λ automatically, while for method like FTVd-v4, one
has to determine λ manually, for example, by running the
algorithm many time to determine the best λ by trial-and-error.
From the tables and the plots, we observe that our algorithm
produces the best ISNRs when compared to those discrepancy
principle based methods (i.e., Ng-Weiss-Yuan and C-SALSA).

V. CONCLUSION

We develop a primal-dual model and the accompanying al-
gorithm for TV image restoration problem. Since the variance
of the noise in any given observed image can be estimated

easily, Morozov discrepancy principle is applied to find the
best regularization parameter λ. During the iteration, λ is
automatically updated to converge to the best λ. We gave a
convergence proof for the algorithm and the numerical results
show that the proposed algorithm performs competitively with
the best state-of-the-art methods both in time and accuracy.

VI. APPENDIX

A. Proof of Lemma 3
Proof: Let q1 = p(k)−s∇f (k+1) and q2 = p(k)−s∇f (k).

According to the definition of the operators div and ∇, we
have div = −∇T . Thus by (21) and (22), we obtain

s
〈
f (k+1) − f (k),div(p(k+1) − p(k+ 1

2 ))
〉
X

=−
〈
s∇(f (k+1) − f (k)),PA(q1)− PA(q2)

〉
Y

=
〈
q1 − q2,PA(q1)− PA(q2)

〉
Y
.
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Fig. 3. ISNR versus iterations for cameraman image (solid line) and Lena image (dash line). The images are blurred by a uniform blur of size 9× 9 (first
row) and a Gaussian blur of size 9× 9 with variance 9 (second row).
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The absolute error between the maximum of λ and the minimum of λ divided by the minimum of λ is less than 4× 10−3.

Using the classical inequality 2xTy ≤ ‖x‖22 + ‖y‖22 for any
vectors x and y, we have〈

q1 − q2,PA(q1)− PA(q2)
〉
Y

≤ 1

2

(
‖q1 − q2‖22 + ‖PA(q1)− PA(q2)‖22

)
≤ ‖q1 − q2‖22 = s2

∥∥∇(f (k+1) − f (k))
∥∥2
2
.

The last inequality uses the fact that the projection operator is
nonexpansive [20]. By definition, for any f , we have

‖∇f‖22 =
∑
r,s

(
(fr+1,s − fr,s)2 + (fr,s+1 − fr,s)2

)
≤ 2

∑
r,s

(
f2r+1,s + 2f2r,s + f2r,s+1

)
≤ 8‖f‖22.

Hence, the result holds.

B. Proof of Lemma 4

Proof: Notice that ψk(·; f) in (17) and φk(·;p, λ) in
(18) are strongly convex functions with respect to p and f
respectively. Recall that a differentiable function ϕ is called

strongly convex with modulus µ if [50]:

ϕ(w) ≥ ϕ(v)+∇ϕ(v)T (w−v)+
µ

2
‖w−v‖22, ∀v,w. (33)

A twice differentiable function ϕ is strongly convex with
modulus µ if and only if (∇2ϕ−µI) is semi-positive definite,
where ∇2ϕ is the Hessian matrix [52, p268][53].

Consider ϕ(p) = ψk(p; f (k)). Notice that the Hessian
matrix of ϕ(·) at p(k+ 1

2 ) is 1
sI , so ϕ(·) is a strongly convex

function with modulus 1/s. By using Proposition 4.7.2 in [7],
p(k+ 1

2 ) minimizes ψk(p(k+ 1
2 ); f (k), λk) over A if and only if

there exists a d ∈ ψk(p(k+ 1
2 ); f (k), λk) such that

〈
d,p− p(k+ 1

2 )
〉
Y
≥ 0, ∀p ∈ A. (34)

Thus by using (33), we have

−
〈
f (k),divp

〉
X

+
1

2s

∥∥p− p(k)
∥∥2
2
≥ −

〈
f (k),divp(k+ 1

2 )
〉
X

+
1

2s

∥∥p(k+ 1
2 ) − p(k)

∥∥2
2

+
1

2s

∥∥p(k+ 1
2 ) − p

∥∥2
2
, ∀p ∈ A.
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Fig. 5. ISNR versus CPU time (in seconds) for cameraman image (top row) and Lena image (bottom row). The images are blurred by a 9× 9 uniform blur
with noise variance σ2 = 0.562 (first column) and a 15× 15 point spread function given by hij = 1/(1 + i2 + j2) with noise variance 2 (second column)
and 8 (third column) respectively.

TABLE II
COMPARISON WITH OTHER METHODS. “TIMES” STANDS FOR CPU TIMES IN SECONDS.

Cameraman Lena
Problem Method ISNR Iterations Times ISNR Iterations Times
Prob.1 AutoRegSel 8.49 399 9.76 7.58 442 11.01

FTVd-v4 [56], [61] 8.24 1000 19.54 7.52 1000 19.58
Ng-Weiss-Yuan [47] 6.53 1000 29.02 6.26 1000 29.92
C-SALSA [1], [28] 8.20 917 45.06 7.07 824 37.40

Prob.2 AutoRegSel 7.10 336 8.34 7.00 391 9.52
FTVd-v4 [56], [61] 6.89 1000 19.94 7.09 1000 19.82
Ng-Weiss-Yuan [47] 5.75 1000 29.54 6.33 1000 29.92
C-SALSA [1], [28] 6.31 586 26.40 6.22 594 27.10

Prob.3 AutoRegSel 5.13 450 11.40 5.49 507 12.77
FTVd-v4 [56], [61] 5.04 1000 19.88 5.51 1000 20.15
Ng-Weiss-Yuan [47] 4.46 1000 29.81 5.05 1000 29.26
C-SALSA [1], [28] 4.66 590 26.54 4.87 602 26.60

Substituting p = p(k+1), we obtain

〈
f (k),div

(
p(k+ 1

2 ) − p(k+1)
)〉
X

+
1

2s

∥∥∥p(k+1) − p(k)
∥∥∥2
2

≥ 1

2s

∥∥p(k+ 1
2 ) − p(k)

∥∥2
2

+
1

2s

∥∥p(k+ 1
2 ) − p(k+1)

∥∥2
2
. (35)

Using similar arguments on (16), we have

〈
f (k+1),div

(
p(k+1) − p∗

)〉
X

+
1

2s
‖p∗ − p(k)‖22

≥ 1

2s
‖p(k+1) − p(k)‖22 +

1

2s
‖p(k+1) − p∗‖22. (36)

Next we let ϕ(f) = φk(f ;p(k+ 1
2 ), λk+1), see (18). We have

0 ∈ ∂ϕ(f (k+1)) and f (k+1) = argminf∈Dϕ(f). Similar to
(34), we have ∇φ(f (k+1))T

(
f − f (k+1)

)
≥ 0, for all f ∈ D.

Using the fact that ϕ(f) is a strongly convex function with

modulus 1/t and applying the inequality (33), we obtain〈
f∗,divp(k+ 1

2 )
〉
X

+
λk+1

2

∥∥Hf∗ − g
∥∥2
2

+
1

2t

∥∥f∗ − f (k)
∥∥2
2

≥
〈
f (k+1),divp(k+ 1

2 )
〉
X

+
λk+1

2

∥∥Hf (k+1) − g
∥∥2
2

+
1

2t
‖f (k+1) − f (k)‖22 +

1

2t
‖f (k+1) − f∗‖22.

From Steps 5–9 of Algorithm 2, we have i) uk ∈ D and
λk+1 = 0 or ii) uk /∈ D, λk+1 > 0 and

∥∥Hf (k+1)−g
∥∥2
2

= c2.
For Case i), we have〈

f∗ − f (k+1),divp(k+ 1
2 )
〉
X

+
1

2t

∥∥f∗ − f (k)
∥∥2
2

≥ 1

2t
‖f (k+1) − f (k)‖22 +

1

2t
‖f (k+1) − f∗‖22. (37)

For Case ii), using the fact that f∗ ∈ D, we derive that
λk+1

2

(∥∥Hf∗ − g
∥∥2
2
− c2

)
≤ 0. Hence the inequality (37) also

holds.
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Adding the inequalities (30), (35), (35) and (37), we obtain〈
f∗,divp(k+ 1

2 )
〉
X

+ (8s− 1

2t
)‖f (k+1) − f (k)‖22

+
1

2t
‖f∗ − f (k)‖22 +

1

2s
‖p∗ − p(k)‖22

≥
〈
f (k+1),divp∗

〉
X

+
1

2t
‖f (k+1) − f∗‖22 +

1

2s
‖p(k+1) − p∗‖22

+
1

2s

(
‖p(k+ 1

2 ) − p(k)‖22 + ‖p(k+ 1
2 ) − p(k+1)‖22

)
.

Notice that (f∗,p∗) is the saddle point of minimax function,
therefore〈

f∗,divp(k+ 1
2 )
〉
X
≤
〈
f∗,divp∗

〉
X
≤
〈
f (k+1),divp∗

〉
X
.

Then we obtain

(16s− 1

t
)‖f (k+1) − f (k)‖22 +

1

t
‖f∗ − f (k)‖22 +

1

s
‖p∗ − p(k)‖22

≥1

t
‖f (k+1) − f∗‖22 +

1

s
‖p(k+1) − p∗‖22.

Therefore, the inequality (31) holds when st ≤ 1/16. Thus
the sequence (f (k),p(k)) is bounded and hence contains a
subsequence (f (ki),p(ki)) converging to some limit point
(f†,p†).

Since the subsequence
(
f (ki),p(ki)

)
converges, for any ε >

0, there exists a constant i0 such that
1

t

∥∥f (ki) − f†
∥∥2
2

+
1

s

∥∥p(ki) − p†
∥∥2
2
< ε, ∀i > i0

According to (31), for any given ε > 0, there is an k0 such
that

1

t

∥∥f (k) − f†
∥∥2
2

+
1

s

∥∥p(k) − p†
∥∥2
2
< ε, ∀k > k0

Notice that u† = f†− tdivp†. Thus according to Steps 5–9
of Algorithm 2, we have either i) u† ∈ D which implies λ† =
0 or ii) u† 6∈ D which implies λ† > 0 and K(λ†,u†) = c2.
Case i) implies that f† = u† ∈ D while Case ii) implies that∥∥Hf†(λ†)− g

∥∥2
2

= K(λ†,u†) = c2, cf (27). Hence the result
holds.
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