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2 Centre de Mathématiques et de Leurs Applications, ENS de Cachan, 61 av. du
Président Wilson, 94235 Cachan Cedex, France.

3 Department of Mathematics, Kunming University of Science and Technology,
Yunnan, P.R.China.

Abstract. We focus on exact histogram specication when the input
image is quantified. The goal is to transform this input image into an
output image whose histogram is exactly the same as a prescribed one. In
order to match the prescribed histogram, pixels with the same intensity
level in the input image will have to be assigned to different intensity
levels in the output image. A novel method enabling to order strictly
all pixel values was proposed to solve the problem by using auxiliary
attributes to classify pixels with the same intensity value. Local average
intensities and wavelet coefficients have been used by the past as the
second attribute. However, these methods cannot enable strict-ordering
without degrading the image. In this paper, we propose a variational
approach to establish an image preserving strict-ordering of the pixel
values. We show that strict-ordering is achieved with probability one. Our
method is image preserving in the sense that it reduces the quantization
noise in the input quantified image. Numerical results show that our
method gives better quality images than the preexisting methods.

Key words: Exact histogram specification, strict-ordering, variational methods,
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1 Introduction

Image histogram processing is the act of altering each individual pixel of an
image by modifying its dynamic range in order to improve the contrast of the
whole image. It is an important image processing task with many real-world
applications, such as contrast enhancement, segmentation, watermarking, among
many others.
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Grant 2060408. E-mail: rchan@math.cuhk.edu.hk,nikolova@cmla.ens-cachan.fr,
wenyouwei@gmail.com.
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In histogram processing, image intensity level is viewed as a random variable
characterized by its probability density function. The histogram of an image
shows the empirical distribution of the intensity levels of its pixels. One of the
basic histogram processing problem is histogram equalization [10, 18]. It aims to
find a transformation so that the output image has a uniform histogram. In the
continuous setting the random variable defined by the cumulative distribution
function of the intensity levels is uniformly distribution in [0, 1], and hence such
a function can always be found. More generally, we may want to yield an out-
put image with pre-specified histogram shapes. This problem is called histogram
specification or histogram matching. The prescribed histogram can be given ac-
cording to various needs. For example, it can be the histogram of another image,
a modified version of the original histogram [19], or a “weighted” histogram of
two histograms [6, 7].

Numerous methods have been proposed to modify the histogram of an input
image. The simplest method is histogram linear stretching [13]. Histogram clip-
ping method [19] limits the maximum number of pixels for each intensity level to
a given constant and the clipped pixels are then uniformly distributed among the
other intensity levels with pixels less than the clip limit. Several other methods
were proposed to preserve the mean brightness of the input image [3, 12, 23]. In
[20], Sapiro and Caselles proposed histogram modification via image evolution
equations. Arici et al. proposed a general framework for histogram modification
[1].

The principle behind histogram specification methods is straightforward for
real-valued (analog) images: the histogram of the input image and the prescribed
histogram should be equalized to uniform distribution first, say by Ti and Tt
respectively. Then the output image can be obtained from the composite trans-
formation T−1

t ◦ Ti. Since the images are real-valued, Ti and Tt are one-to-one
functions, and hence T−1

t ◦ Ti is well-defined. The principle fails, however, for
quantized (digital) images, which is the case of all digital video systems. The
reason is that for quantized images, the intensity levels of all pixels take a lim-
ited number of discrete values. Therefore their cumulative density functions are
staircase functions rather than strictly increasing functions like those for the
real-valued images. Indeed, there are groups of pixels with the same intensity
value. Some pixels in such a group will have to be mapped to pixels with dif-
ferent intensity values to match the prescribed histogram. This task cannot be
achieved without the use of some auxiliary information on pixel values.

Methods to obtain strict ordering based on a quantized image were proposed
in [4, 5, 22]. Once all pixels are ordered strictly, the prescribed intensity values
are assigned exactly according to histogram specification.

Then the prescribed intensity value is assigned according to the resulting
ordering. Coltuc et al. considered to use the average intensities of neighboring
pixels as the auxiliary attribute [5]. Considering two pixels with the same in-
tensity value, the mean values over the neighborhoods centered on each pixel
are compared to order these two pixels. If the mean values are still the same,
then they choose larger neighborhoods and continue in the same way until all
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pixels are ordered. Wan and Shi argued that the local mean approach fails to
sharpen the edges of the output image [22]. They proposed to order the pixels
according to the absolute values of its wavelet coefficients. The wavelet-based
approach tends to amplify the noise since a noise in a smooth region may be
mistaken as an edge and hence is sharpened. Post-processing approach or itera-
tive methods can be applied to suppress the amplified noises [2]. We emphasize
that both the local mean approach and the wavelet-based approach cannot real-
ize strict ordering without degrading the input quantized image. This is a major
drawback.

In this paper, we propose a variational method that enables to order strictly
the pixel values of a quantified image by restoring it from the quantization
noise. We prove that the pixels of the restored image can be totally-ordered
with probability equal to one. Our experimental results show that the proposed
method is very efficient and produces images of better quality than both the
local mean method [5] and the wavelet-based method [22].

The outline of the paper is as follows. In Section 2, we present the proposed
method. In Section 3, numerical examples are given to demonstrate the effec-
tiveness of the proposed model. Concluding remarks are given in Section 4.

2 Variational Approach for Exact Histogram Specification

In this section, we introduce the definition of strict-ordering and then we propose
our variational approach for exact histogram specification. First, let us present
the problem of exact histogram specification.

Consider an M -by-N input quantized image u whose pixel values live in
the set P = {p1, · · · , pL}. We assume, without loss of generality, that pi are
in increasing order. For 8-bit images, P = {0, · · · , 255}. Let the grid of u be
denoted by

Ω := {x : x = (i, j), 1 ≤ i ≤M, 1 ≤ j ≤ N}.

The intensity of u at the pixel x is given by ux. Define

Ωk := {x ∈ Ω : ux = pk}, k = 1, 2, · · · , L.

The associated histogram of u is the L-tuple (|Ω1|, |Ω2|, . . . , |ΩL|), where | · |
denotes the cardinality of the set. The problem of exact histogram specification
that we consider can be stated as follows: given the input image u, obtained from
an original real-valued (analog) image uo by quantization, and a pre-specified
histogram h = (h1, h2, . . . , hL), find an output image v such that its histogram
is h and for any x,y ∈ Ω, we have vx ≤ vy if uo,x ≤ uo,y.

2.1 Sorting Algorithms

Since MN ≫ L generally, there are many pixels that share the same intensity
value. In order to order strictly the pixels with the same intensity, auxiliary
information must be used. Combining the auxiliary information, we can create
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a K-vector defined as
(
ux, κ

1
x, . . . , κ

K−1
x

)
for x ∈ Ω, where κix ∈ R is the i-th

auxiliary information of the pixel x. Our approach to determine the auxiliary
information will be outlined later.

Now we can define an ascending ordering “≺” for pixels in Ω based on such
K-tuples. To facilitate the discussions, let κ0x := ux. For any two pixels x and y
in Ω, we say that x ≺ y if for some 0 ≤ ℓ ≤ K − 1

κjx = κjy for all 0 ≤ j ≤ ℓ− 1 and κℓx < κℓy. (1)

For good choices of auxiliary information and K sufficiently large, one can in
principle sort all pixels x in Ω according to the ordering ≺. That is, we can order
the pixels x in Ω in such a way that x1 ≺ x2 ≺ . . . ≺ xNM .

Once such a strict-ordering is obtained, matching the input histogram to the
prescribed one is straightforward. This can be done by dividing the ordered list
from left to right into L groups. Starting from x1 on the list, the first h1 pixels
belong to the first group, and are assigned the intensity of p1. The next h2 pixels
belong to the second group and are assigned the intensity of p2, and so on until
all pixels are assigned to their new intensities.

Several ideas have been proposed for the auxiliary information. Coltuc et
al. proposed to use the local average intensities of a pixel’s neighborhood as
auxiliary information [5]. For pixels having the same intensity, if the average
intensities of their neighborhoods are the same, then a larger neighborhood will
be chosen to compute the average intensity. This procedure is repeated until
all pixels are ordered. The author claimed that K = 6 is appropriate for any
application. Wan and Shi proposed to order the pixels according to the absolute
values of the wavelet coefficients of the whole image [22]. Here we propose a
variational approach to obtain pertinent auxiliary information.

2.2 A Variational Approach

Let us emphasize that the input (digital) image u is obtained from an original
real-valued (analog) image uo by quantization. Since the pixels of uo have a
continuous range, they can be totally-ordered with probability one. The input
image u contains quantization noise. The most natural way to define the ordering
for the pixels of u is to restore the original real-valued image uo using u and a
good prior knowledge. Such a restoration can efficiently be done using a detail
preserving variational method as the one we are proposing here.

For any x ∈ Ω, let Nx ⊂ Ω be the set of neighboring pixels of x (in our
experiment, we choose Nx to be the four neighboring pixels of x in the vertical
and horizontal directions). Now we order the pixels by minimizing f in the cost
functional J : RM×N × RM×N → R given below

J (f, u) =
∑
x∈Ω

ψ(f(x)− u(x)
)
+ β

∑
y∈Nx

ϕ
(
f(x)− f(y)

) . (2)

Here β > 0 is the regularization parameter and
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H1 ϕ : R 7→ R and ψ : R 7→ R are even functions in Cs with s ≥ 2, such that
ϕ′′(t) > 0 and ψ′′(t) > 0, ∀t ∈ R.

For instance we can choose

ψ(t) =
√
t2 + α1 and ϕ(t) =

√
t2 + α2 , α1 > 0, α2 > 0 (3)

which are C∞ and analytic. The minimizer of J in (2) is denoted by f̂ .
We know that the quantization noise is bounded, ∥uo−u∥∞ ≤ 0.5. This con-

straint should not be used explicitly however because many pixels may then be
stuck on the box constraint which will make strict ordering impossible. Instead,
the constraint can be satisfied in a relaxed way by using a slightly smoothed ℓ1
data-fidelity term like ψ in (3) for α1 ' 0 and β ' 0 in (2). By choosing β ' 0,
data-fidelity is enhanced. If ψ(t) = |t|, some data entries would be kept intact

[15] and since data-fidelity is enhanced we would find f̂ = u. But taking ψ as

in (3) for α1 ' 0 entails that f̂
≈
̸= u. A prior holding for large classes of natural

images is that they are almost nowhere constant (see [11]) and that they involve
edges and fine structures. Nowhere constant implies that ϕ must be smooth at
the origin [16]. For edges and fine structures, ϕ must be affine or nonconvex away
from the origin. Since pixels must change no more than |0.5| for an image range
equal to 255, the best choice is a convex ϕ of the form (3) for α2 ' 0. Below we

show that the pixels of f̂ can be ordered with probability one.

Definition 1. A function F : O 7→ RM×N , where O is an open domain in
RM×N , is said to be a minimizer function relevant to J (·, O) if for every u ∈ O,

the point f̂ = F(u) is a strict local minimizer of J (·, u).

For any u ∈ RM×N , the functional J (·, u) in (2), satisfying H1, is strictly convex
and coercive, hence for any u and β > 0, it has a unique minimizer. What is
more, one can show that J has a unique minimizer function F : RM×N 7→ RM×N

which is Cs−1 continuous, see [14].
We denote by LM×N the Lebesgue measure on M ×N subsets of matrices

using the isomorphism between M ×N real matrices and MN -length real vec-
tors. Our main theoretical results , proven in [14], are summarized below. The
components of the minimizer function F are denoted by Fx, x ∈ Ω.

Theorem 1. Let J in (2) satisfy H1. For its minimizer function F : RM×N 7→
RM×N , define the sets Q and R as follows:

Q = {u ∈ RM×N : Fx(u) = Fy(u) , (x,y) ∈ Ω ×Ω, x ̸= y} , (4)

R = {u ∈ RM×N : Fx(u) = uy , (x,y) ∈ Ω ×Ω, x ̸= y} . (5)

The sets Q and R are closed, and satisfy LM×N (Q) = 0 and LM×N (R) = 0 .

The set Q in (4) contains all possible u ∈ RM×N such that the minimizer

f̂ = F(u) might have two equal entries, Fx(u) = Fy(u) for some x ̸= y belonging
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to Ω. The set R in (5) contains all possible u ∈ Rp such that the minimizer

f̂ = F(u) might contain some quantized entries, Fx(u) = uy for some x,y ∈ Ω.
Even though Q is not empty, since Q is closed and of null Lebesgue measure,

the chance that real-world quantized images u live in it, is null. Thus, Fx(u) ̸=
Fy(u), for x ̸= y, is a generic property of the minimizers F of J , as given
in (2) and satisfying H1. For any real-world quantized image u, the entries of

the minimizer f̂ = F(u) can be classified with probability one. In the numerous
experiments we have done, we never found natural quantized images belonging
to Q nor to R, i.e. in all cases we could perfectly order the pixels of f̂ .

There are many methods to compute the minimizer f̂ of J (·, u) in (2) [8,

9, 17, 21]. We applied fixed point iteration method [21] to find f̂ . Once we have

find the minimizer f̂ , we establish the ordering of the pixels based on the 2-tuple
(ux, f̂x) to produce the quantized output image v.

3 Experimental Results

The performance of the proposed method for exact histogram specification was
evaluated using extended numerical experiments. Some of them are presented
below. We compare our method with the local mean (LM) algorithm [5] for
K = 6 as recommended by the authors and with the wavelet-based algorithm
(WA) in [22]. For our method, we set αi, i = 1, 2, in (3) to 0.01, and β in (2)
to 0.1. We stop the iteration when the relative difference between the iterant is
less than 10−8.

In order to measure the results quantitatively, we start out with a given
true quantized image w with histogram hw; then we degrade it to obtain an
input quantized image u. By applying the three methods on u with prescribed
histogram hw, we obtain an output image v which is in fact a restored version of
w. We use peak-signal-to-noise-ratio to measure the quality of the output image
v with respect to w. It is defined as PSNR = 20 log10(255NM/∥v − w∥2). We
tried two sets of degradation to obtain the input image u.

3.1 Contrast Compression

In our first set of degradation, the true quantized images w are chosen to be the
256-by-256 8-bit images of “Cameraman”, “Lenna” and “Peppers”. The input
image u is obtained from w by the degradation: u = round(ρ · w), where ρ < 1
is a constant. This situation arises when a picture is taken with insufficient
exposure time, or when we want to compress the image by reducing the number
of intensity levels. For example, a 7-bit image can be obtained from an 8-bit
image by using ρ = 0.5. The input images u for ρ = 0.3 are shown in the first
row of Figure 1. In the tests, we used LM, WA and our method to obtain the
output images v having a prescribed histogram hw.

The comparisons of LM, WA and our algorithm are shown in Table 1. We see
from the PSNR values that our method outperforms LM and WA in all cases.
In order to save space, we just show the output images v by our method, see
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Fig. 1. First row: the input images. Second row: the output images by our method.

the second row of Figure 1. The difference images between the true image w and
the output image v are shown in Figure 2. We can discern more features in the
first row and the second row than in the third row. It demonstrates that our
algorithm yields the best restoration.

Cameraman Lenna Peppers

ρ LM WA Ours LM WA Ours LM WA Ours

0.8 55.97 55.86 56.07 55.64 55.50 55.73 55.98 55.68 56.05

0.7 54.15 54.07 54.33 53.93 53.77 53.98 54.17 53.82 54.24

0.6 52.96 52.84 53.09 52.69 52.50 52.74 52.93 52.64 53.02

0.5 51.93 51.84 52.06 51.67 51.51 51.74 51.97 51.66 52.04

0.4 49.24 49.12 49.45 49.01 48.72 49.15 49.40 48.90 49.58

0.3 47.16 46.98 47.42 46.74 46.32 47.00 47.19 47.42 47.50

0.2 44.07 33.87 44.46 43.70 43.14 44.07 44.39 43.57 44.94

0.1 38.75 38.55 39.36 38.72 37.83 39.38 39.44 38.36 40.38

Table 1. The PSNR (dB) between the true image w and the output image v.

One important indicator for a good exact histogram specification algorithm
is to see if it can establish a strict ordering for all the pixels. If a sorting method
yields two pixels sharing the same value, we consider this as a failure of the
method. We call a pair-pixel for any two pixels having the same value at the
issue of the sorting algorithm. Table 2 shows the numbers of pair-pixels produced
by the three methods. We find that LM and WA have a high number of pair-
pixels while our method can give a total ordering of all pixels for all three images.
Incidentally, for the “Cameraman” image, there are 13,859 pair-pixels for ρ = 0.1
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Fig. 2. The difference images between the true quantized image w and the output
image v. First row: LM method. Second row: WA method. Third row: our method.

for WA. Compared with the image size, which has 65,532 pixels, the ordering
failure rate is about 21%.

3.2 Histogram Equalization Inversion

The second set of degradation is done as follows. Given the true quantized image
w with histogram hw, we apply each individual method to get the pixel ordering
of w. Then we use the ordering to match w to an image with uniform histogram.
The resulting image is used as the input image u of our experiment. Given u
and the prescribed histogram hw, we apply each individual method to obtain
the output image v. If the ordering among the pixels is preserved by the method,
we should have v = w exactly.

For this experiment, we tried the three images in Section 3.1 together with 15
real 768-by-512 8-bit images available at http://r0k.us/graphics/kodak/. Color
images are converted to the gray-scale images first. Table 3 shows the PSNR of
the results by the three methods. Figures 3–5 give the difference images between
w and v on “Cameraman”, “Lenna”, “Peppers” and two of the 15 images. We
notice from Table 3 that WA method yields better PSNR than LM method in
all images, but worse than our method in all cases except for the “Lenna” and
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Cameraman Lenna Peppers

ρ LM WA Ours LM WA Ours LM WA Ours

0.8 3 154 0 0 7 0 0 13 0

0.7 90 377 0 0 8 0 0 15 0

0.6 88 437 0 0 15 0 0 35 0

0.5 76 587 0 0 26 0 1 38 0

0.4 344 1,267 0 1 66 0 1 145 0

0.3 829 2,293 0 1 177 0 20 403 0

0.2 2,146 4,529 0 36 803 0 109 1,205 0

0.1 6,517 13,859 0 1,493 5,499 0 3,211 7,230 0

Table 2. The numbers of pair-pixels from the three methods.

“Peppers” images. Though WA method yields better PSNR than our method in
those two cases, from the figures, we can discern more features in the difference
images by WA method than by our method. This indicates that our method is
more accurate.

Image LM WA Ours Image LM WA Ours

Cameraman 48.25 48.44 48.79 Kadim07 43.74 43.83 48.09

Lenna 51.24 51.75 51.50 Kadim08 48.33 48.55 50.77

Peppers 51.99 52.66 52.14 Kadim09 44.85 44.94 48.71

Kadim01 41.77 41.81 43.36 Kadim10 44.74 44.85 47.29

Kadim02 43.32 43.38 45.12 Kadim11 45.26 45.35 46.63

Kadim03 44.69 44.76 47.95 Kadim12 40.66 40.70 45.64

Kadim04 45.92 45.99 46.86 Kadim13 47.42 47.58 50.39

Kadim05 49.41 49.71 49.81 Kadim14 45.76 45.86 47.19

Kadim06 44.88 44.95 48.80 Kadim15 49.00 49.23 49.71

Table 3. The PSNR (dB) between the true image w and output images v.

4 Conclusions

In this paper, we propose a variational approach for exact histogram specifica-
tion. Since the energy we minimize is smooth, its minimizers enable to order
strictly all the pixels in the image. Noticing also that our method reduces the
quantification noise, the obtained results outperform the preexisting methods.
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