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Abstract

We give a comprehensive discussion on high-resolution image reconstruction based on tight frame.
We first present the tight frame filters arising from the problem of high-resolution image reconstruction
and the associated matrix representation of the filters for various boundary extensions. We then propose
three algorithms for high-resolution image reconstruction using the designed tight frame filters and show
analytically the properties of these algorithms. Finally, we numerically illustrate the efficiency of the
proposed algorithms for natural images.

1 High-Resolution Image Reconstruction Model

The problem of high-resolution image reconstruction is to reconstruct a high-resolution (HR) image from
multiple, under-sampled, shifted, degraded and noisy frames where each frame differs from the others by
some sub-pixel shifts. The problem arises in a variety of scientific, medical, and engineering applications.
The problem of HR image reconstruction is a hot field. In the past few years, two special issues on the topic
was published: IEEE Signal Processing Magazine (Volume 20, Issue 3, May 2003) and International Journal
of Imaging Systems and Technology (Volume 14, No. 2, 2004).

The earliest study of HR image reconstruction was motivated by the need to improve the resolution
of images from Landsat image data. In [28], Huang and Tsay used the frequency domain approach to
demonstrate the improved reconstruction image from several down-sampled noise-free images. Later on, Kim
el al. [30] generalized this idea to noisy and blurred images. Both methods in [28, 30] are computational
efficiency, but, they are prone to model errors, and that limits their use [1]. Statistical methods have
appeared recently for super-resolution image reconstruction problems. In this direction, tools such as a
maximum a posteriori (MAP) estimator with the Huber-Markov random field prior and a Gibbs image prior
are proposed in [25, 43]. In particular, the task of simultaneous image registration and super-resolution image
reconstruction are studied in [25, 45]. Iterative spatial domain methods are one popular class of methods for
solving the problems of resolution enhancement [3, 21, 22, 23, 27, 31, 32, 36, 38, 39, 41]. The problems are
formulated as Tikhonov regularization. A great deal of work has been devoted to the efficient calculation of
the reconstruction and the estimation of the associated hyperparameters by taking advantage of the inherent
structures in the HR system matrix. Bose and Boo [3] used a block semi-circulant matrix decomposition
in order to calculate the MAP reconstruction. Ng et al. [36] and Ng and Yip [37] proposed a fast discrete
cosine transform based approach for HR image reconstruction with Neumann boundary condition. Nguyen
et al. [40, 41] also addressed the problem of efficient calculation. The proper choice of the regularization
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Figure 1: Windows without and with shift error when K = 2 (left and right respectively).

tuning parameter is crucial to achieving robustness in the presence of noise and avoiding trial-and-error in
the selection of an optimal tuning parameter. To this end, Bose et al. [4] used a L-curve based approach.
Nguyen et al. [41] used a generalized cross-validation method. Molina et al. [33] used an expectation-
maximization algorithm. Lu et al. [32] proposed multiparameter regularization methods which introduce
different regularization parameters for different frequency bands of the regularization operator.

Low-resolution images can be viewed as outputs of the original high-resolution image passing through a
low-pass filter followed by a decimation process. This viewpoint suggests that a framework of multiresolution
analysis can be naturally adopted to produce an HR image from a set of low-resolution images of the same
scene with sub-pixel shifts. In this fashion, a series of work has been done recently, see, e.g., [9, 10, 11, 12, 13].
Extension of these work will be discussed in the paper.

Here we present a mathematical model proposed by Bose and Boo in [3] for high-resolution image re-
construction. Consider K ×K sub-window-shifted low-resolution images in which each image has N1 ×N2

interrogation windows and the size of each interrogation window is T1×T2. Here, K×K denotes K shifts in
both the vertical and horizontal directions. The goal is to reconstruct a much higher resolution image with
M1 ×M2 sub-windows, where M1 = K ×N1 and M2 = K ×N2.

In order to have enough information to resolve the high-resolution image, it is assumed that there are
sub-window shifts between the low-resolution images. For a low-resolution image denoted by (k1, k2), where
0 ≤ k1, k2 < K with (k1, k2) 6= (0, 0), its vertical and horizontal shifts dx

k1,k2
and dy

k1,k2
with respect to the

(0, 0)th reference low-resolution image are given by dx
k1,k2

=
(
k1 + εx

k1,k2

)
T1
K and dy

k1,k2
=

(
k2 + εy

k1,k2

)
T2
K .

Here εx
k1,k2

and εy
k1,k2

are the vertical and horizontal shift errors respectively. We assume that |εx
k1,k2

| < 1
2

and |εy
k1,k2

| < 1
2 . Figure 1 shows the example of 2× 2 shifted low-resolution images.

For a low-resolution image (k1, k2), the average quantity at its (n1, n2)th interrogation window is modelled
by:

gk1,k2 [n1, n2] =
1

T1T2

∫

Ak1,k2;n1,n2

f(x, y) dx dy + ηk1,k2 [n1, n2], (1)

where the interrogation window in the low-resolution image is

Ak1,k2;n1,n2 =
[
T1(n1 − 1

2
) + dx

k1,k2
, T1(n1 +

1
2
) + dx

k1,k2

]
×

[
T2(n2 − 1

2
) + dy

k1,k2
, T2(n2 +

1
2
) + dy

k1,k2

]
.

Here (n1, n2) indicates an interrogation window in the low-resolution image (k1, k2) (where 0 ≤ n1 < N1

and 0 ≤ n2 < N2) and ηk1,k2 [n1, n2] is the noise (refer to [3]). We interlace all the sub-window-shifted
low-resolution images gk1,k2 to form an M1 ×M2 image g by assigning

g[Kn1 + k1,Kn2 + k2] = gk1,k2 [n1, n2].
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The pseudo high-resolution image g is called the observed high-resolution image.
The integral values on the sub-window of the high-resolution image is approximated by

f [i, j] =
K2

T1T2

∫

Ai,j

f(x, y) dx dy, 0 ≤ i < M1, 0 ≤ j < M2, (2)

which is the average quantity inside the (i, j)th high-resolution sub-window:

Ai,j =
[
i
T1

K
, (i + 1)

T1

K

]
×

[
j
T2

K
, (j + 1)

T2

K

]
, 0 ≤ i < M1, 0 ≤ j < M2. (3)

To obtain the true high-resolution image f from the observed high-resolution image g, one will have to
solve (1) for f . By discretizing (1) and (2) using the rectangular quadrature rule, we have

gk1,k2 [n1, n2] =
K∑

p,q=0

W [p, q]f [Kn1 + k1 + p,Kn2 + k2 + q] + ηk1,k2 [n1, n2], (4)

where the weighting matrix W for descretizing the integral equation (1) in the case without shift error is

W =
1

K2



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


(5)

which is assigned for associated sub-windows of the high-resolution image. Equation (4) is a system of linear
equations relating the unknown values f [i, j] to the given observed high-resolution image values g[i, j].

For simplifying the exposition, f and g will be considered as the column vectors formed by f [i, j] and
g[i, j]. This linear system corresponding to (4) for high-resolution image reconstruction is reduced to

Hf + η = g, (6)

where the blurring matrix H, which is formulated from (4), varies under different boundary conditions and
η is the noise vector. For the case without shift error, the blurring matrix H is given by

H =
1

K4




. . . . . . . . . . . . . . .
1
2 1 · · · 1 1

2
. . . . . . . . . . . . . . .



⊗




. . . . . . . . . . . . . . .
1
2 1 · · · 1 1

2
. . . . . . . . . . . . . . .




where the Kronecker operator ⊗ is defined by A⊗B = [aijB] with A = [aij ]. The key problem is to recover
the true high-resolution image f from the observed high-resolution image g by solving (6).

If the low-resolution images are shifted by exactly half of the window, then the problem reduces to
solving a spatially invariant linear system. Depending on the boundary conditions we impose on the images,
the coefficient matrix H is either Topelitz or Toeplitz-like. The model was then solved in [3, 36] using
preconditioned conjugate gradient method.

We next discuss in details several approaches that will use tight frame for solving the system (4) or (6).
The performance of these methods will be examined in numerical simulations. In the next section, we will
give a brief review on the frame theory. In particular, we will present the tight frame system with (5) as its
low-pass filter.

The outline of this paper is as follows. In Section 2, we give a brief review on tight frames with an
emphasis on the unitary extension principle. Section 3 contains four main parts. The first part presents
the tight frames arising from the problem of HR image reconstruction. The matrix representations of the
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tight frame filters associated with the HR image reconstruction are given, by imposing the periodic and
symmetric boundary conditions, in the second and third parts, respectively. It follows by showing the multi-
level framelet decomposition and reconstruction in the last part. We propose three framelet-based algorithms
to tackle the problem of HR image reconstruction in Section 4. In particular, we give a complete analysis
for Algorithm I in Section 5. Numerical experiments for all three algorithms are presented in Section 6.

2 Preliminaries on Tight Framelets

The notion of frame was first introduced by Duffin and Schaeffer [20] in 1952. A countable system X ⊂ L2(R)
is called a frame of L2(R) if

α‖f‖22 ≤
∑

h∈X

|〈f, h〉|2 ≤ β‖f‖22 (7)

where the constants α and β, 0 < α ≤ β < ∞, are lower and upper bounds of the frame system X. The
notation 〈·, ·〉 and ‖ · ‖2 = 〈·, ·〉1/2 are the inner product and norm of L2(R). When α = β(= 1), the frame
system X is called a tight frame. In what follows, our discussion is concentrated on the tight frame.

Two operators, namely analysis operator and synthesis operator, are associated with the tight frame.
The analysis operator of the frame is defined as

F : L2(R) −→ `2

with
F(f) = {〈f, h〉}h∈X .

Its adjoint operator F∗, called the synthesis operator, is defined as

F∗ : `2 −→ L2(R)

with
F∗(c) =

∑

h∈X

chh, c = {ch}h∈X

Hence, X is a tight frame if and only if F∗F = I. This is true if

f =
∑

h∈X

〈f, h〉h, ∀f ∈ L2(R), (8)

which is equivalent to
‖f‖22 =

∑

h∈X

|〈f, h〉|2, ∀f ∈ L2(R). (9)

Equation (8) is the perfect reconstruction formula of the tight frame. Identities (8) and (9) hold for an
arbitrary orthonormal basis of L2(R). In this sense, an orthonormal basis is a tight frame, and a tight
frame is a generalization of orthonormal basis. But tight frames sacrifice the orthonormality and the linear
independence of the system in order to get more flexibility. Therefore tight frames can be redundant.

For a tight frame system X, we have
∑

h∈X

|〈f, h〉|2 ≤
∑

h∈X

|ch|2

for all possible representation of f =
∑

h∈X chh, {ch} ∈ `2. In other words, the sequence F(f) obtained by
the analysis operator F has the smallest `2 norm among all sequences {ch} ∈ `2 satisfying f =

∑
h∈X chh.

If X(Ψ) is the collection of the dilations and the shifts of a finite set Ψ ⊂ L2(R), i.e.,

X(Ψ) = {Ki/2ψ(Kix− j) : ψ ∈ Ψ, i, j ∈ Z},

then X(Ψ) is called a wavelet (or affine) system of dilation K. In this case the elements in Ψ are called the
generators. When X(Ψ) is a tight frame for L2(R), then ψ ∈ Ψ are called (tight) framelets.

4



A normal framelet construction starts with a refinable function. A compactly supported function φ ∈
L2(R) is refinable (a scaling function) with a refinement mask τφ if it satisfies

φ̂(K·) = τφφ̂.

Here φ̂ is the Fourier transform of φ, and τφ is a trigonometric polynomial with τφ(0) = 1, i.e., a refinement
mask of a refinable function must be a lowpass filter. One can define a multiresolution analysis from a given
refinable function, details about that is omitted here, but can be found, for instance, in [19, 29].

For a given compactly supported refinable function, the construction of tight framelet systems is to find
a finite set Ψ that can be represented in the Fourier domain as

ψ̂(K·) = τψφ̂

for some 2π-periodic τψ. The unitary extension principle (UEP) of [42] says that the wavelet system X(Ψ)
generated by a finite set Ψ forms a tight frame in L2(R) provided that the masks τφ and {τψ}ψ∈Ψ satisfy:

τφ(ω)τφ

(
ω +

2γπ

K

)
+

∑

ψ∈Ψ

τψ(ω)τψ

(
ω +

2γπ

K

)
= δγ,0, γ = 0, 1, . . . ,K − 1 (10)

for almost all ω in R. Practically, we require all masks to be trigonometric polynomials. Thus, (10) together
with the fact that τφ(0) = 1 imply that τψ(0) = 0 for all ψ ∈ Ψ. Hence, {τψ}ψ∈Ψ must correspond to
highpass filters. The sequences of Fourier coefficients of τψ, as well as τψ itself, are called framelet masks.
The construction of framelets Ψ essentially is to design, for a given refinement mask τφ, framelet masks
{τψ}ψ∈Ψ such that (10) holds. A more general principle of construction tight framelets, the oblique extension
principle, was developed recently in [14, 17].

In the next section, we will use the EUP to construct a framelet system arising from the problem of HR
image reconstruction.

3 Tight Frame System Arising from High-resolution Image Re-
construction

3.1 Filter Design

The low-pass filter (5) for high-resolution image reconstruction is separable and can be written as follows

W = hT
0 h0

where
h0 =

1
K

[
1
2 1 · · · 1 1

2

]
.

Hence, to design a tight frame system with W as its low-pass filter, we just need to construct a tight frame
system with h0 as its low-pass filter. By virtue of the Fourier series of h0, define

φ̂(ω) :=
∞∏

j=1

ĥ0(K−jω) (11)

where

ĥ0(ω) =
1

2K
+

1
K

(
K−1∑

k=1

exp(−ikω)

)
+

1
2K

exp(−iKω).

It was shown in [44] that φ is in L2(R) and Hölder continuous with Hölder exponent ln 2/ ln K.
For any integer L ≥ 2, define

mL,p :=
√

2
L

[
cos

( pπ

2L

)
, cos

(
3pπ

2L

)
, · · · , cos

(
(2L− 1)pπ

2L

)]
,
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and their Fourier series

m̂L,p(ω) =
√

2
L

L∑

`=1

cos
(

(2`− 1)pπ

2L

)
exp(−i`ω),

for p = 1, . . . , L− 1. We further define, for any integer K ≥ 2,

ĥ2p+q(ω) := m̂2,q(ω)m̂K,p(ω) (12)

where p = 1, . . . , K − 1, q ∈ {0, 1}. We can easily check that

1∑
q=0

K−1∑
p=0

ĥ2p+q(ω)ĥ2p+q(ω +
2π`

K
) = δ`,0, ` = 0, 1, . . . , K − 1. (13)

The EUP of [42] yields that the functions

Ψ = {ψ2p+q : 0 ≤ p ≤ K − 1, q = 0, 1, (p, q) 6= (0, 0)}
defined by

ψ̂2p+q(ω) = ĥ2p+q

( ω

K

)
φ̂

( ω

K

)
.

are tight framelets. Furthermore,

X(Ψ) =
{

Kk/2ψ2p+q(Kk · −j) : 0 ≤ p ≤ K − 1, q = 0, 1, (p, q) 6= (0, 0); k, j ∈ Z
}

is a tight frame system of L2(R).
In the following discussion, we always assume that the indexes of all filters h`, run from −K/2 to K/2

for even number K and −(K + 1)/2 to (K − 1)/2 for odd number.
We are interested in the matrix representation of the identity

1∑
q=0

K−1∑
p=0

|ĥ2p+q(ω)|2 = 0 (14)

for filters given by (12). In image processing, periodic and symmetric boundary conditions are usually
imposed to give matrix representation of (14). In the following subsections, we will give the corresponding
representations for both boundary conditions.

3.2 Matrix Representation of Filters with Periodic Boundary Conditions

For simplicity, we are not going to write the matrix forms of the filters given by (12) for a general integer
K. Instead, we give these matrices for the filters with K = 2 and K = 3 only. From there, one can easily
give the matrix representation for filters associated with any integer K.

Example 1. For K = 2, we have, from (12), the low-pass filter h0 = 1
4 [1, 2, 1] and three high-pass filters

h1 = 1
4 [1, 0,−1], h2 = 1

4 [1, 0,−1], and h3 = 1
4 [1,−2, 1], respectively. The corresponding matrix representation

under the periodic boundary condition for filters h0, h1, h2, and h3 are circulant matrices H0, H1, H2, and
H3, respectively, with their first rows being the following

[
1
2
,
1
4
, 0, · · · , 0,

1
4

]
,

[
0,−1

4
, 0, · · · , 0,

1
4

]
,

[
0,−1

4
, 0, · · · , 0,

1
4

]
,

[
−1

2
,
1
4
, 0, · · · , 0,

1
4

]
.

We can check that
HT

0 H0 + HT
1 H1 + HT

2 H2 + HT
3 H3 = I.

We remark that h1 = h2 in above tight frame filters. We can merge h1 and h2 together and deduce a new
tight frame system with the low-pass filter 1

4 [1, 2, 1] and two high-pass filters
√

2
4 [1, 0,−1] and 1

4 [1,−2, 1]. A
similar situation happens in the next example.
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Example 2. For K = 3, we have the low-pass filter h0 = 1
6 [1, 2, 2, 1] and five high-pass filters h1 =

1
6 [1, 0, 0,−1], h2 =

√
6

12 [1, 1,−1,−1], h3 =
√

6
12 [1,−1,−1, 1], h4 =

√
2

12 [1,−1,−1, 1], and h5 =
√

2
12 [1,−3, 3,−1].

The corresponding matrix representation under the periodic boundary condition for filters h0, h1, . . . , h5 are
circulant matrices H0,H1, . . . , H5, respectively, with their first rows being the following

1
6

[2, 1, 0, · · · , 0, 1, 2] ,
1
6

[0,−1, 0, · · · , 0, 1, 0] ,
√

6
12

[−1,−1, 0, · · · , 0, 1, 1] ,
√

6
12

[−1, 1, 0, · · · , 0, 1,−1] ,
√

2
12

[−1, 1, 0, · · · , 0, 1,−1] ,
√

2
12

[3,−1, 0, · · · , 0, 1,−3] .

Again, it can be easily checked that

HT
0 H0 + HT

1 H1 + HT
2 H2 + HT

3 H3 + HT
4 H4 + HT

5 H5 = I.

3.3 Matrix Representation of Filters with Symmetric Boundary Conditions

A filter h is said to be symmetric (or antisymmetric) with symmetric center N
2 for some integer N if

h[N − k] = h[k], k ∈ Z (or h[N − k] = −h[k], k ∈ Z).

We denote c(h) = N
2 the symmetric center of the symmetric (or antisymmetric) filter h. With this definition,

we immediately have the following result.

Proposition 1. Let h` be the filters constructed by (12). Then c(h`) = 0 for even K and c(h`) = 1
2 for odd

K.

For any infinite signal u = (, · · · , u(−1), u(0), u(1), · · · , )t, where u(k) ∈ R, k ∈ Z, if there exists an
integer n such that u(n − k) = u(k) (or u(n − k) = −u(k)), for all k ∈ Z, then we say that u is symmetric
(or antisymmetric) with the center c(u) = n

2 . Accordingly, if c(u) = n
2 is an integer, it is referred to as

whole-sample symmetric (or whole-sample antisymmetric) and denoted by WS (or WA); if c(v) = n
2 is not

an integer, it is referred to as half-sample symmetric (or half-sample antisymmetric) and denoted by HS (or
HA). If u has two centers c1 and c2 with c1 < c2, we denote it by c(u) = (c1, c2).

For a finite-length signal
u = (u(0), · · · , u(N − 1))t,

the infinite signal v = (, · · · , v(−1), v(0), v(1), · · · , )t is an extended signal of u if v(k) = u(k), for 0 ≤ k ≤
N − 1. We define a restriction operator PN as follows:

PN : R∞ → RN ; (· · · , x(−1), x(0), · · · , x(N − 1), x(N), · · · )t 7→ (x(0), · · · , x(N − 1))t.

Hence, if v is an extended signal of a finite length signal u of length N , then u = PN (v).
There are many ways to extend a signal into another signal with infinite length. We are mostly interested

in a symmetric extension method since all filters h` are symmetric or antisymmetric. By doing so, our goal
is to construct matrices H` and H` associated with filters h` and h` (h`[k] = h`[−k]) of size N × N such
that ∑

`

H`H` = I. (15)

Clearly, the properties of extension methods are reflected in the structures of the matrices H` and H`.
To develop the matrix representation of the filters in (12), we therefore restrict ourselves to the following

extension methods:

• The whole-sample symmetric extension (WSWS) E
(1,1)
s :

E(1,1)
s (u) = (· · · , u(2), u(1), u(0), u(1), · · · , u(N − 2), u(N − 1), u(N − 2), u(N − 3), · · · )t.
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• The whole-half-sample extension (WSHS) E
(1,2)
s :

E(1,2)
s (u) = (· · · , u(2), u(1), u(0), u(1), · · · , u(N − 2), u(N − 1), u(N − 1), u(N − 2), u(N − 3), · · · )t.

• The half-whole-sample extension (HSWS) E
(2,1)
s :

E(2,1)
s (u) = (· · · , u(1), u(0), u(0), u(1), · · · , u(N − 2), u(N − 1), u(N − 2), u(N − 3), · · · )t.

• The whole-sample antisymmetric extension (WAWA) E
(1,1)
a :

E(1,1)
a (u) = (· · · ,−u(2),−u(1), u(0), u(1), · · · , u(N − 2), u(N − 1),−u(N − 2),−u(N − 3), · · · )t.

• The whole-half-sample antisymmetric extension (WAHA) E
(1,2)
a :

E(1,2)
a (u) = (· · · ,−u(2),−u(1), u(0), u(1), · · · , u(N − 2), u(N − 1),−u(N − 1),−u(N − 2), · · · )t.

• The half-whole-sample antisymmetric extension (HAWA) E
(2,1)
a :

E(2,1)
a (u) = (· · · ,−u(1),−u(0), u(0), u(1), · · · , u(N − 2), u(N − 1),−u(N − 2),−u(N − 3), · · · )t.

Clearly, c(E(1,1)
s (u)) = (0, N − 1), c(E(1,2)

s (u)) = (0, N − 1
2 ), c(E(2,1)

s (u)) = (− 1
2 , N − 1), c(E(1,1)

a (u)) =
(0, N − 1), c(E(1,2)

a (u)) = (0, N − 1
2 ), and c(E(2,1)

a (u)) = (− 1
2 , N − 1).

Proposition 2. Let u = (u(0), · · · , u(N − 1))T be a signal of length N . Then

1. h∗E
(1,1)
s (u) is symmetric with centers 0 and N −1 if h is a symmetric, odd length filter with c(h) = 0;

2. h ∗E
(1,1)
s (u) is antisymmetric with centers 0 and N − 1 if h is an antisymmetric, odd length filter with

c(h) = 0;

3. h∗E(2,2)
s (u) is symmetric with centers − 1

2 and N− 1
2 if h is a symmetric, odd length filter with c(h) = 0;

4. h ∗ E
(2,2)
s (u) is antisymmetric with centers − 1

2 and N − 1
2 if h is an antisymmetric, odd length filter

with c(h) = 0;

5. h ∗ E
(1,1)
a (u) is symmetric with centers 0 and N − 1 if h is an antisymmetric, odd length filter with

c(h) = 0;

6. h ∗ E
(1,2)
s (u) is symmetric with centers − 1

2 and N − 1 if h is a symmetric, even length filter with
c(h) = 1

2 ;

7. h ∗ E
(1,2)
s (u) is antisymmetric with centers − 1

2 and N − 1 if h is an antisymmetric, even length filter
with c(h) = 1

2 ;

8. h∗E(2,1)
s (u) is symmetric with centers 0 and N− 1

2 if h is a symmetric, even length filter with c(h) = − 1
2 ;

9. h ∗ E
(2,1)
a (u) is symmetric with centers 0 and N − 1

2 if h is an antisymmetric, even length filter with
c(h) = − 1

2 ;

The proof of Proposition 2 is straightforward and will be omitted here.
Now, we will show how to form matrices H` and H` in (15). Without loss of generality, we show

these matrices for the filters with K = 2 and K = 3 only. In a similar fashion, one can give the matrix
representation for filters associated with any integer K.

8



Example 3. For K = 2, we have the low-pass filter h0 = 1
4 [1, 2, 1] and three high-pass filters h1 = 1

4 [1, 0,−1],
h2 = 1

4 [1, 0,−1], and h3 = 1
4 [1,−2, 1], respectively. If we apply the whole-point symmetric extension for the

input signal, then

H0 =
1
4




2 2
1 2 1

. . . . . . . . .
1 2 1

2 2




H1 =
1
4




0 0
1 0 −1

. . . . . . . . .
1 0 −1

0 0




H2 = H1, H3 =
1
4




−2 2
1 −2 1

. . . . . . . . .
1 −2 1

2 −2




By Items 1 and 2 of Proposition 2, matrices H` are

H0 = H0, H1 =
1
4




0 2
−1 0 1

. . . . . . . . .
−1 0 1

−2 0




, H2 = H1, H3 = H3.

If we apply the half-point extension for the input signal, then

H0 =
1
4




3 1
1 2 1

. . . . . . . . .
1 2 1

1 3




, H1 =
1
4




1 −1
1 0 −1

. . . . . . . . .
1 0 −1

1 −1




H2 = H1, H3 =
1
4




−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1




.

By Items 3 and 4 of Proposition 2, matrices H` are

H0 = H0, H1 =
1
4




1 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 −1




, H2 = H1, H3 = H0.

In both the whole-point and half-point extensions, the perfect reconstruction (15) is satisfied. Furthermore,
for the half-point extension for the input signal, we have

HT
0 H0 + HT

1 H1 + HT
2 H2 + HT

3 H3 = I.

Example 4. For K = 3, we have the low-pass filter h0 = 1
6 [1, 2, 2, 1] and five high-pass filters h1 =

1
6 [1, 0, 0,−1], h2 =

√
6

12 [1, 1,−1,−1], h3 =
√

6
12 [1,−1,−1, 1], h4 =

√
2

12 [1,−1,−1, 1], and h5 =
√

2
12 [1,−3, 3,−1].
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Indices of these filters are from −2 to 1. If we apply the half-point extension at the left end and the whole-point
at the right end for the input signal, we have

H0 =
1
6




4 2
3 2 1
1 2 2 1

. . . . . . . . . . . .
1 2 2 1

1 3 2




, H1 =
1
6




0 0
1 0 −1
1 0 0 −1

. . . . . . . . . . . .
1 0 0 −1

1 −1 0




,

H2 =
√

6
12




0 0
2 −1 1
1 1 −1 −1

. . . . . . . . . . . .
1 1 −1 −1

1 0 −1




, H3 =
√

6
12




−2 2
0 −1 1
1 −1 −1 1

. . . . . . . . . . . .
1 −1 −1 1

1 0 −1




H4 =
√

3
3

H3, H5 =
√

2
12




0 0
−2 3 −1
1 −3 3 −1

. . . . . . . . . . . .
1 −3 3 −1

1 −4 3




,

H0 =
1
6




2 3 1
1 2 2 1

. . . . . . . . . . . .
1 2 2 1

1 2 3
2 4




, H1 =
1
6




0 1 1
−1 0 0 1

. . . . . . . . . . . .
−1 0 0 1

−1 0 −1
−2 0




,

H2 =
√

6
12




−1 2 1
−1 −1 1 1

. . . . . . . . . . . .
−1 −1 1 1

−1 −1 0
−2 −2




, H3 =
√

6
12




−1 0 1
1 −1 −1 1

. . . . . . . . . . . .
1 −1 −1 1

1 −1 0
2 −2




,

H4 =
√

3
3

H3, H5 =
√

2
12




3 −2 1
−1 3 −3 1

. . . . . . . . . . . .
−1 3 −3 1

−1 3 −4
−2 6




.

3.4 Multi-level Framelet Decomposition and Reconstruction

To analyze the given signal via a tight frame, one needs to decompose the signal in different levels in the
transform domain. This process can be accomplished through a matrix A which is associated with the
underlying framelet system. Since Ron and Shen’s piecewise linear tight frame [42] will be used in our
algorithms developed in the next section, we just give the matrix A for this particular tight frame.
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The piecewise linear tight frame is generated by the following low-pass h0, bandpass h1, and high-pass
h2 filters:

h0 =
1
4
[1, 2, 1], h1 =

√
2

4
[1, 0,−1], and h2 =

1
4
[1,−2, 1].

The scaling function φ and the wavelets ψ1 and ψ2, associated with h0, h1, and h2, respectively, are given
in the Fourier domain by

φ̂(ω) =
sin2(ω/2)
(ω/2)2

, ψ̂1(ω) = i
√

2
cos(ω/4) sin3(ω/4)

(ω/4)2
, and ψ̂2(ω) = −

√
2
sin4(ω/4)
(ω/4)2

.

For any non-negative integer `, we define

h0,` :=
1
4
[1, 0, · · · , 0︸ ︷︷ ︸

2`−1−1

, 2, 0, · · · , 0︸ ︷︷ ︸
2`−1−1

, 1]

h1,` :=
√

2
4

[1, 0, · · · , 0︸ ︷︷ ︸
2`−1−1

, 0, 0, · · · , 0︸ ︷︷ ︸
2`−1−1

,−1]

h2,` :=
1
4
[1, 0, · · · , 0︸ ︷︷ ︸

2`−1−1

,−2, 0, · · · , 0︸ ︷︷ ︸
2`−1−1

, 1]

Following Example 3 with a half-point symmetric extension, we define matrices H
(`)
0 , H

(`)
1 , and H

(`)
2 associ-

ated with filters h0,`, h1,`, and h2,`, respectively. Further, we have

(H(`)
0 )T H

(`)
0 + (H(`)

1 )T H
(`)
1 + (H(`)

2 )T H
(`)
2 = I.

Now, the matrix A corresponding to the L-level framelet decomposition is

A :=




∏L−1
`=0 H

(L−`)
0

H
(L)
1

∏L−1
`=1 H

(L−`)
0

H
(L)
2

∏L−1
`=1 H

(L−`)
0

...

...
H

(1)
1

H
(1)
2




. (16)

Obviously, the L-level perfect reconstruction formula is

AT A = I.

We remark that a different matrix A is used in our Algorithm III proposed in the next section.

4 Algorithms

For a K × K sensor array, the filters {hi}r
i=0, r = 2K − 1, associated with the high-resolution image

reconstruction are given by (12). With a proper assumption about boundary conditions, we have matrices
{Hi}r

i=0 corresponding to {hi}r
i=0, respectively. These matrices satisfy the perfect reconstruction formula as

follows:
r∑

i=0

HT
i Hi = I. (17)

We emphasize it again that (17) is the matrix representation of (10) with γ = 0 for the tight frame system
arising from the high-resolution image reconstruction.
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For the problem of high-resolution image reconstruction, the model (6) is

g = H0f + n

where n is noise. With one step further, we consider a slightly more general restoration problem

g = Hsf + n (18)

for a certain number s between 0 and r.
We propose two different types of algorithms for solving the problem (18). The algorithm of the first

type is derived directly from the identity (17). It is basically the Landweber algorithm and will be presented
in subsection 4.1. The algorithms of second type are modified versions of the algorithm of the first type by
incorporating various denoising techniques. As we will see in subsection 4.2, some of algorithms are already
appeared in our previous papers [9, 10, 11, 12, 13], but, theoretical results on the convergence of those
algorithms given here are new.

4.1 Basic Algorithm

Multiplying a vector f from both sides of the perfect reconstruction formula (17) yields

f = HT
s Hsf +

∑

i 6=s

HT
i Hif. (19)

By substituting the known data Hsf ≈ g in (18) into (19), we obtain an iteration as

fk+1 = HT
s g +

∑

i 6=s

HT
i Hif

k. (20)

This is our basic algorithm. The proposed algorithms in the following subsection are all modification of
(20) by incorporating different denoising schemes. Algorithm (20) is, in fact, no other than a Landweber’s
iteration. For the completeness, we give the convergence of (20) in the following theorem.

Theorem 1. The sequence fk generated by (20) with initial guess f0 converges to a solution of




min
f
‖f − f0‖2,

s.t. Hsf = g.
(21)

Proof. First we write out the singular value decomposition of Hs, that is,

Hs = UsΣsV
T
s ,

where Us and Vs are orthogonal matrices and Σs is a diagonal matrix. Without loss of generality, we assume
that

Σs =
[
Σs,1

0

]

with Σs,1 being an invertible diagonal matrix. The pseudo-inverse H†
s of Hs reads

H†
s = VsΣ†sU

T
s ,

where the pseudo-inverse Σ†s of Σs is given by

Σ†s =
[
Σ−1

s,1

0

]
.

Corresponding to the structure of Σs or Σ†s, we can have a partition of any vector, say f , as follows

f =
[
f1

f2

]
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where the dimension of f1 is the same as the number of columns of Σs,1.
Now, we turn to the minimization problem (21). The constrained condition Hsf = g implies

ΣsV
T
s f = UT

s g.

It, by the structure of Σs, says that
(V T

s f)1 = Σ−1
s,1(U

T
s g)1. (22)

By using (22), we have

‖f − f0‖22 = ‖V T
s f − V T

s f0‖22
= ‖(V T

s f)1 − (V T
s f0)1‖22 + ‖(V T

s f)2 − (V T
s f0)2‖22

= ‖Σ−1
s,1(U

T
s g)1 − (V T

s f0)1‖22 + ‖(V T
s f)2 − (V T

s f0)2‖22.

Obviously, to minimize ‖f − f0‖22 with the constrained condition Hsf = g, the minimizer of (21), denoted
by f?, should satisfy the following conditions

(V T
s f?)1 = Σ−1

s,1(U
T
s g)1 and (V T

s f?)2 = (V T
s f0)2. (23)

Next, let us look at the iterative algorithm (20). Since
∑

i 6=s HT
s Hs = Vs(I −Σ2

s)V T
s , then (20) becomes

fk+1 = VsΣsU
T
s g + Vs(I − Σ2

s)V
T
s fk,

which is equivalent to
V T

s fk+1 = ΣsU
T
s g + (I − Σ2

s)V
T
s fk. (24)

We can split (24) as {
(V T

s fk+1)1 = Σs,1(UT
s g)1 + (I − Σ2

s,1)(V
T
s fk)1,

(V T
s fk+1)2 = (V T

s fk)2
(25)

Notice that the two iterations for (VsTfk)1 and (VsTfk)2 respectively are independent to each other. In
the first equation of (25), the absolute values of all non-zero elements of the Σs,1 are strictly greater than 0
and less than or equal to 1. Therefore, the first iteration in (24) is a contract mapping, hence converges. Its
limit (V T

s f?)1 is the unique fixed point of the first iteration in (25). More precisely, (V T
s f?)1 satisfies

(V T
s f?)1 = Σs,1(UT

s g)1 + (I − Σ2
s,1)(V

T
s f?)1,

which is equivalent to
(V T

s f?)1 = Σ−1
s,1(U

T
s g)1. (26)

On the other hand, the second iteration in (25) converges obviously to

(V T
s f?)2 = (V T

s f0)2 (27)

Combining (26) and (27) together, we obtain (23). In other words, the limit of (20) is the solution of the
minimization problem (21).

Since (20) is a Landweber’s iteration, it has a regularization property known as semiconvergence: the
iterates fk first approach the true image, but the noise will be amplified when k is larger than a certain
threshold. Thus a stopping criterion, called the discrepancy principle, has to be introduced in order to
obtain the best approximation of the required solution. Furthermore, the regularization property of projected
Landweber’s iterations is related to Tikhonov regularization, hence the edges in the underlying image are
smeared. We further remark that the solution of (21) depends on the initial seed f0.
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4.2 Algorithms with Tight Frame Denoising Scheme

In this subsection, we will incorporate nonlinear denoising schemes into the iterative algorithm (20) with
the aim of improving the quality of the reconstructed images. The Donoho’s soft thresholding operator is
adopted in our nonlinear denoising schemes. The soft-thresholding operator is given as follows

Tλ(u) = [tλ1(u1), . . . , tλn
(un)]T (28)

with λ being a pre-given vector having non-negative components and

tλj (uj) =

{
0, if |uj | ≤ λj ,

sgn(uj)(|uj | − λj), if |uj | ≤ λj .
(29)

In what follows, the matrix A of the multilevel non-downsampled framelet decomposition is defined by
(16) for the first two algorithm although it could be a matrix from any other tight frame system. We have
following three modified algorithms.

4.2.1 Algorithm I

For framelet coefficients Hif
k of fk in (20), we modify Hif

k into AT Tλi
(AHif

k) by using the multilevel
non-downsampled framelet decomposition matrix A and the soft-thresholding operator Tλi . The resulting
algorithm, called Algorithm I, from (20) is given as

fk+1 = HT
s g +

∑

i 6=s

HT
i AT Tλi(AHif

k). (30)

This algorithm was proposed and studied in [5, 8, 10, 11, 12, 13]. However, a complete analysis for this
algorithm is not available. We will prove the convergence of this algorithm in the next section, and give
minimization properties of its limit.

4.2.2 Algorithm II

We incorporate a frame based denoising scheme into each iterate of (20), and obtain Algorithm II as

fk+1 = AT TλA
(
HT

s g +
∑

i 6=s

HT
i Hif

k
)
. (31)

It was proposed and studied in [7, 8, 11], and can be seen as an extension of the algorithm in [16] from
orthornormal system to tight frame systems; another possible extension can be found in [18]. The following
convergence theorem for (31) is proved in [7, 8].

Theorem 2. Let A be a tight frame. Let Hi, 0 ≤ i ≤ r, be satisfying (19). Define

αk = TλA
(
HT

s g +
∑

i6=s

HT
i Hif

k
)
, (32)

where fk is generated by (31). Then αk converges to a solution of

min
α

{
1
2
‖HsA

T α− g‖22 +
1
2
‖(I −AAT )α‖22 + ‖diag(λ)α‖1

}
. (33)

Following [7, 8], the role of each terms in (33) can be explained as follows. The first term is the data
fidelity, and the third term is to ensure the sparsity of the tight frame coefficient. The second term measures
the distance from α to the range of A. By the framelet theory in [2, 24], if the coefficient α is in the range
of A, then the (weighted) `1 norm α is equivalent to some Besov norm of the image AT α. Therefore, the
second term links the (weighted) `1 norm to the regularity of the restored image in some sense. Combining
all terms together, the minimization problem (33) fits the known data, and balances the sparsity of the frame
coefficient and the regularity of restored image.
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4.2.3 Algorithm III

With the same spirit of constructing matrix A using the piecewise linear tight frame in subsection 3.4, we
design a matrix using the filters (12) associated with high-resolution image reconstruction. Such matrix,
denoted by Ã, can be written into

Ã = [Ã−1→LH0,H1, . . . , Hs]T , (34)

where Ã−1→L is the framelet decomposition from level −1 to L. We consider the case that s = 0 and s 6= 0
respectively.

• If s = 0, then we have

Ãf = [Ã−1→LH0f,H1f, . . . , Hrf ]T

= [Ã−1→Lg,H1f, . . . ,Hrf ]T .

We obtain the algorithm
fk+1 = ÃT Tλ[Ã−1→Lg, H1f

k, . . . , Hrf
k]T . (35)

• If s 6= 0, then we have

Ãf = [Ã−1→LH0f, H1f, . . . , Hsf ]T

= [Ã−1→LH0f, H1f, . . . , Hs−1f, g,Hs+1f, . . . ,Hrf ]T .

We obtain the algorithm

fk+1 = ÃT Tλ[Ã−1→LH0f
k,H1f

k, . . . , Hs−1f
k, g, Hs+1f

k, . . . , Hrf
k]T . (36)

This algorithm can be found in [6, 7]. The following results are proved in [7] for the convergence of (35) and
(36).

Theorem 3. Let Ã be a tight frame in the form of (34). Define

αk = Tλ[Ã−1→Lg,H1f
k, . . . , Hrf

k]T ,

where fk is generated by (35). Then αk converges to a solution of

min
α∈C0

{‖(I − ÃÃT )α‖2 + ‖diag(λ)α‖1
}
, (37)

where C0 = {α : α|Γ = T(λ|Γ)Ã−1→Lg} with Γ being the positions corresponding to Ã−1→JH0 in Ã.

Theorem 4. Let Ã be a tight frame in the form of (34). Define

αk = Tλ[Ã−1→LH0f
k,H1f

k, . . . ,Hs−1f
k, g, Hs+1f

k, . . . , Hrf
k]T ,

where fk is generated by (35). Then αk converges to a solution of

min
α∈Cs

{‖(I − ÃÃT )α‖2 + ‖diag(λ)α‖1
}
, (38)

where Cs = {α : α|Γ = T(λ|Γ)g} with Γ being the positions corresponding to Hs in Ã.

Again, the minimization problems (37) and (38) fit the data, and balance the sparsity of the frame
coefficient and the regularity of the restored image. The data fidelity comes from two aspects. On the one
hand, it is obvious that the constraints α ∈ C0 in (37) and α ∈ Cs in (38) fit the data. On the other hand,
the first term ‖(I − ÃÃT )α‖2 in (37) and (38) also measures the data fidelity, since small ‖(I − ÃÃT )α‖2
implies small ‖((I − ÃÃT )α)|Γ‖2 ≈ ‖g − HsÃ

T α‖2. The balance of the sparsity and the regularity comes
from the first and second terms in (37) and (38) as we have explained for (33).
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5 Analysis of Algorithm I

In this section, we focus on the convergence of algorithm (30). The main tool that we will use is an iterative
algorithm of forward-backward splitting based on proximity operators.

5.1 Proximal Forward-Backward Splitting

We first give a brief review of an iterative algorithm of forward-backward splitting based on proximity
operators. This will be used in our analysis. The forward-backward splitting algorithm can be rooted
back to 1950’s for the study of numerical solution for partial differential equations. Here we are interested
in a forward-backward splitting algorithm in [15] based on proximity operator. For any proper, lower
semicontinuous, convex function F (x) where x ∈ Rn, the proximity operator proxF [34, 35] is defined by

∀y ∈ Rn, proxF (y) = arg min
x

{
1
2
‖x− y‖22 + F (x)

}
, (39)

and Moreau’s envelope, or Moreau-Yosida regularization [26], envF is the continuously differentiable function

∀y ∈ Rn, envF (y) = min
x

{
1
2
‖x− y‖22 + F (x)

}
. (40)

There is an important relation between the proximity operator and the envelope function, i.e.,

∇envF (y) = y − proxF (y). (41)

Furthermore, both ∇envF and proxF are all Lipshitz continuous with Lipshitz constant 1, i.e.,

‖(x− proxF (x))− (y − proxF (y))‖2 ≤ ‖x− y‖2, ∀ x, y ∈ Rn,
‖proxF (x)− proxF (y)‖2 ≤ ‖x− y‖2, ∀ x, y ∈ Rn. (42)

The proximal forward-backward splitting in [15] is to solve the minimization problem

min
x
{F1(x) + F2(x)} . (43)

Here F1 and F2 are all proper, lower semicontinuous, convex functions. Moreover, the function F2 is contin-
uously differentiable, and its gradient is Lipshitz-continuous, i.e.,

‖∇F2(x)−∇F2(y)‖2 ≤ 1
c
‖x− y‖2. (44)

With all the above settings, the iteration for solving (43) is

xk+1 = proxdF2
(xk − d∇F2(xk)), (45)

where 0 < d < 2c. The convergence theory for (45) given in [15] is summarized as the following theorem.

Theorem 5. Suppose that F1 and F2 satisfy

1. F1(x) + F2(x) is coercive, i.e., whenever ‖x‖2 → +∞, F1(x) + F2(x) → +∞;

2. F1 is a proper, convex, lower semi-continuous function; and

3. F2 is a proper, convex, differentiable function satisfying (44) and 0 < d < 2c.

Then there exists at least one solution of (43), and for any initial guess x0 the iteration (45) converges to a
solution of (43).
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5.2 Convergence of Algorithm I

Let
B = [AH0; AH1; . . . ; AHr]. (46)

By UEP and AT A = I, we have BT B = I. Therefore, the row vectors of B forms a tight frame. Since A is
a framelet decomposition operator, B is a framelet package decomposition operator. Let

αk = [AH0f
k; . . . ; AHs−1f

k; g; AHs+1f
k; . . . ; AHrf

k].

be the coefficients under the framelet package system B.
Define a new sequence of (r + 1)-tuple as

αk = (TλAH0f
k, TλAH1f

k, . . . , TλAHs−1f
k, g, TλAHs+1f

k, . . . , . . . , TλAHrf
n), (47)

and its i-th entry, i = 0, 1, . . . , r, are subscripted by i, i.e., αk
s = g and αk

i = AHif
k for i 6= s and i = 1, . . . , r.

We write a new matrix B as

B = [AH0;AH1; . . . ;AHs−1; Hs;AHs+1; . . . ; AHr]T .

Note that B and BT correspond to a framelet packet decomposition and reconstruction operator respectively,
see [8]. Since AT A = I and

∑r
i=0 HT

i Hi = I, we have BT B = I. By (30) and (47), we obtain

fk+1 = BT αk. (48)

Lemma 1. The sequence αk converges if and only if the sequence fk does.

Proof. Since all the operators involved in (47) and (48) are all continuous, the lemma follows immediately.

Therefore, we show that fk converges by showing that αk converges. The strategy is the following: we
first transform the iteration into a proximal forward-backward splitting iteration for a special functional;
then by applying Theorem 5, we obtain the convergence for the sequence αk.

Let C = {α|αs = g} which is a subset C of the (r + 1)-tuple. It is obviously a closed nonempty convex
set. We define the indicator function of C by

DC(α) =

{
0, α ∈ C,
∞, α 6∈ C.

Lemma 2. The sequence αk defined in (47) generated by algorithm (30) is equivalent to that generated by
a proximal forward-backward splitting iteration (45) with d = 1 for the minimization problem

min
α∈C



‖(I −BBT )α‖22 +

∑

i 6=s

‖diag(λ)αi‖1



 (49)

where
F1(α) = DC(α) +

∑

i 6=s

‖diag(λ)αi‖1, and F2(α) = ‖(I −BBT )α‖22,

Proof. By (30) and (47), we have

αk+1
s = g, and αk+1

i = Tλ[BBT αk]i, i 6= s. (50)

Here, [·]i denotes the i-th entry of the (r + 1)-tuple. It is clear that

∇F2(α) = α−BBT α. (51)

Comparing (50) and (51) with (45) where d = 1, we see that if we can prove that

proxF1
(α) = (Tλα0, . . . , Tλαs−1, g, Tλαs+1, . . . , Tλαr), (52)
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then we are done. We verify (52) by considering the definition of the proximal operator in the following

proxF1
(α) = arg min

β





1
2
‖β − α‖22 +

1
2
DC(β) +

1
2

∑

i6=s

‖diag(λ)βi‖1



 . (53)

Note that DC(α) =
∑n

i=1 Dgi
(αi,j), where Dgi

(αi,s) = 0 if gi = αi,s and Dgi
(αi,j) = ∞ otherwise. Therefore,

by (53),

[proxF1
(α)]i,s = arg min

βi,s

{
1
2
(βi,s − αi,s)2 +

1
2
Dgi(βi,s)

}
, i = 1, . . . , n,

and

[proxF1
(α)]i,j = arg min

βi,j

{
1
2
(βi,j − αi,j)2 +

1
2
λi|βi,j |

}
, j 6= s.

The above two equations are identical to (52).

By applying Theorem 5, we get that the sequence αk converges to a minimizer of (49).

Theorem 6. The sequence αk generated by (47) converges to a solution of (49).

Proof. We note that the set C is a closed non-empty convex set, hence DC is a proper lower semi-continuous
convex function. Therefore, both the functions F1 and F2 are proper, semi-continuous and convex, and
F2 is differentiable. The gradient of F2 is Lipschitz continuous with Lipschitz constant 1. Indeed, for any
(r + 1)-tuple α and β, we have

‖∇F2(α)−∇F2(β)‖2 = ‖(I −BBT )(α− β)‖2 ≤ ‖I −BBT ‖2‖α− β‖2.
Since the operator (I − BBT ) satisfies (I − BBT )2 = (I − BBT ) and (I − BBT )T = (I − BBT ), it is an
orthonormal projector, hence its norm is 1. Therefore, ∇F2 is Lipschitz continuous with Lipschitz constant
1, hence c = 1. Therefore, d = 1 satisfies the condition in Theorem 5. Thus, by Theorem 5, if we can prove
the existence of the minimizers for (49), we get the lemma.

We show the existence by showing the coercivity of F1 hence of F1 + F2. If α ∈ C, then we have

F1(α) =
∑

i 6=s

‖diag(λ)αi‖1 ≥ min
j

λj

√
(
∑

i 6=s

‖αi‖22) = min
j

λj(‖α‖22 − ‖g‖22).

If α 6∈ C, then it is clear F1(α) = ∞. Therefore, as ‖α‖2 →∞, F1(α) →∞. Hence, F1 is coercive.

5.3 Minimization Property of Algorithm I

We have proven that the limit αk generated by (47) is a solution of (49). Let f? and α? be the limit of the
sequence fk and αk respectively. Then by (47), we have that f? = BT α?. The following lemma explains
the minimization problem (49). It states the optimality property of the pair {f?, α?} in the sense that, if f?

is perturbed by e and α? is perturbed by Be, then the energy ‖Hsf
? − g‖22 +

∑
i 6=s ‖diag(λ)α?

s‖1 increases.
The first term in the energy is a data fidelity, and the second term is a weighted `1 norm which leads to the
sparsity.

Lemma 3. For any vector e ∈ Rn, we have

‖Hs(f? + e)− g‖22 +
∑

i 6=s

‖diag(λ)(AHie + α?
s)‖1 ≥ ‖Hsf

? − g‖22 +
∑

i 6=s

‖diag(λ)α?
s‖1. (54)

Proof. Let
γ := (AH0e, . . . , AHs−1e, 0, AHs+1e, . . . , AHre).

Since α? is a minimizer of (49), we have

‖(I −BBT )(γ + α?)‖22 +
∑

i 6=s

‖diag(λ)(AHie + α?
i )‖1 ≥ ‖(I −BBT )α?‖22 +

∑

i 6=s

‖diag(λ)α?
i ‖1. (55)
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By the definition of B, the (r + 1)-tuple

δ = (AH0e, . . . , AHs−1e,Hse,AHs+1e, . . . , AHre)

satisfies δ = Be. Therefore, by the identity BT Be = e we obtain

(I −BBT )δ = 0, (56)

which implies that
‖(I −BBT )(γ + α?)‖22 = ‖(I −BBT )(γ − δ + α?)‖22. (57)

Notice that
BT (γ − δ) = HT

s Hse. (58)

Substituting (58) and the definition of f? = AT α? into (57), we have that

‖(I −BBT )(γ + α?)‖22 = ‖(α? −Bf?) + (γ − δ)−BHT
s Hse‖22, (59)

which is equivalent to

‖(I −BBT )(γ + α?)‖22
= ‖(α? −Bf?) + (γ − δ)‖22 + ‖BHT

s Hse‖22 − 2〈(α? −Bf?) + (γ − δ), BHT
s Hse〉

= ‖(α? −Bf?) + (γ − δ)‖22 + ‖BHT
s Hse‖22 − 2〈BT (α? −Bf?) + BT (γ − δ),HT

s Hse〉. (60)

Since BT B = I, we have
‖BHT

s Hse‖22 = ‖HT
s Hse‖22 (61)

and
BT (α? −Bf?) = BT α? − f? = 0. (62)

Substituting (61) and (62) into (60), we get

‖(I −BBT )(γ + α?)‖22 = ‖(α? −Bf?) + (γ − δ)‖22 + ‖HT
s Hse‖22 − 2〈BT (γ − δ),HT

s Hse〉,
which together with (58) implies

‖(I −BBT )(γ + α?)‖22
= ‖(α? −Bf?) + (γ − δ)‖22 + ‖HT

s Hse‖22 − 2〈HT
s Hse, H

T
s Hse〉

= ‖(α? −Bf?) + (γ − δ)‖22 − ‖HT
s Hse‖22. (63)

Since the first term in the last equality can be rewritten into

‖(α? −Bf?) + (γ − δ)‖22 =
∑

i6=s

‖α?
i −AHif

?‖22 + ‖g −Hs(f? + e)‖22,

we obtain

‖(I −BBT )(γ + α?)‖22 =
∑

i 6=s

‖α?
i −AHif

?‖22 + ‖g −Hs(f? + e)‖22 − ‖HT
s Hse‖22. (64)

On the other hand, we have

‖(I −BBT )α?‖22 =
∑

i 6=s

‖α?
i −AHif

?‖22 + ‖g −Hsf
?‖22. (65)

Substituting (64) and (65) into (56), we obtain

‖g −Hs(f? + e)‖22 − ‖HT
s Hse‖22 +

∑

i 6=s

‖diag(λ)(AHie + α?
i )‖1 ≥ ‖g −Hsf

?‖22 +
∑

i 6=s

‖diag(λ)α?‖1,

which obviously implies (49).
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6 Numerical Experiments

We now provide numerical experiments of the presented Algorithm I, Algorithm II, and Algorithm III
for high-resolution image reconstruction. The algorithms are evaluated by using peak signal-to-noise ratio
(PSNR) which compares the reconstructed image fc with the original image f . It is defined by

10 log10

2552M1M2

‖f − fc‖22
where the size of the reconstructed images is M1 ×M2.

We use the “Cameraman” and “Bridge” images of size 256 × 256 as the original images, see Figure 2.
The maximum number of iteration is set to 100 and the iteration processes of Algorithm I, Algorithm II,
and Algorithm III are stopped when the reconstructed images achieve the highest PSNR values.

For a 2 × 2 sensor array, the observed images are shown in the top row of Figure 3. The reconstructed
“Bridge” images (from the second row to the fourth row, the left column of Figure 3) via Algorithm I,
Algorithm II, and Algorithm III have PSNR values of 26.10 dB, 26.63 dB, and 25.97 dB, respectively.
Likewise, the reconstructed “Cameraman” images (from the second row to the fourth row, the right column
of Figure 3) via Algorithm I, Algorithm II, and Algorithm III have PSNR values of 31.75 dB, 31.16 dB, and
31.68 dB, respectively.

Similar experiments are conducted for “Bridge” and “Cameraman” images in 4 × 4 sensor array. The
reconstructed “Bridge” images (from the second row to the fourth row, the left column of Figure 4) via Algo-
rithm I, Algorithm II, and Algorithm III have PSNR values of 23.71dB, 24.00dB, and 23.45 dB, respectively.
Likewise, the reconstructed “Cameraman” images (from the second row to the fourth row, the right column
of Figure 3) via Algorithm I, Algorithm II, and Algorithm III have PSNR values of 27.56 dB, 27.38 dB, and
27.56 dB, respectively.

In summary, the proposed algorithms have produced very similar results for high-resolution image re-
construction in terms of the PSNR values and the visual quality of the reconstructed images. However,
from the viewpoint of computational efficiency, we recommend to choose Algorithm II for the problem of
high-resolution image reconstruction.
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Figure 2: Original “Bridge” image (left) and original “Cameranman” images (right).
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Figure 3: 2 × 2 sensor array. Left column (from top to bottom) shows the observed “Bridge” image,
reconstructed images by Algorithm I, Algorithm II, and Algorithm III with PSNR values of 26.10dB, 26.63dB,
and 25.97 dB, respectively. Likewise, right column (from top to bottom) shows the observed “Cameraman”
image, reconstructed images by Algorithm I, Algorithm II, and Algorithm III with PSNR values of 31.75dB,
31.16dB, and 31.68 dB. 24



Figure 4: 4 × 4 sensor array. Left column (from top to bottom) shows the observed “Bridge” image,
reconstructed images by Algorithm I, Algorithm II, and Algorithm III with PSNR values of 23.71dB, 24.00dB,
and 23.45 dB, respectively. Likewise, right column (from top to bottom) shows the observed “Cameraman”
image, reconstructed images by Algorithm I, Algorithm II, and Algorithm III with PSNR values of 27.56dB,
27.38dB, and 27.56 dB. 25


