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Abstract. High-resolution image reconstruction refers to the reconstruction of high-resolution
images from multiple low-resolution, shifted, degraded samples of a true image. In this paper, we
analyze this problem from the wavelet point of view. By expressing the true image as a function in
L(R2), we derive iterative algorithms which recover the function completely in the L sense from the
given low-resolution functions. These algorithms decompose the function obtained from the previous
iteration into different frequency components in the wavelet transform domain and add them into
the new iterate to improve the approximation. We apply wavelet (packet) thresholding methods
to denoise the function obtained in the previous step before adding it into the new iterate. Our
numerical results show that the reconstructed images from our wavelet algorithms are better than
that from the Tikhonov least-squares approach. Extension to super-resolution image reconstruction,
where some of the low-resolution images are missing, is also considered.
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1. Introduction. Many applications in image processing require deconvolving
noisy data, for example the deblurring of astronomical images [11]. The main objective
in this paper is to develop algorithms for these applications using a wavelet approach.
We will concentrate on one such application, namely, the high-resolution image recon-
struction problem. High-resolution images are often desired in many situations, but
made impossible because of hardware limitations. Increasing the resolution by image
processing techniques is therefore of great importance. The earliest formulation of the
problem was proposed by Tsai and Huang [24] in 1984, motivated by the need of im-
proved resolution images from Landsat image data. Kaltenbacher and Hardie [14], and
Kim, Bose, and Valenzuela [15] applied the work of [24] to noisy and blurred images,
using least-squares minimization. The high-resolution image reconstruction also can
be obtained by mapping several low-resolution images onto a single high-resolution
image plane, then interpolating it between the nonuniformly spaced samples [3, 23].
The high-resolution image reconstruction can also be put into a Bayesian framework
by using a Huber–Markov random field; see, for example, Schultz and Stevenson [22].

Here we follow the approach in Bose and Boo [1] and consider creating high-
resolution images of a scene from the low-resolution images of the same scene. When
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we have a full set of low-resolution images, the problem is referred to as high-resolution
image reconstruction; when only some of the low-resolution images are available,
the problem is called super-resolution image reconstruction. In both cases, the low-
resolution images are obtained from sensor arrays which are shifted from each other
with subpixel displacements. The reconstruction of the high-resolution image can be
modeled as solving a linear system Lf = g, where L is the convolution operator, g is
a vector formed from the low-resolution images, and f is the desired high-resolution
image; see [1].

In this paper, we look at this problem from the wavelet point of view and analyze
the process through multiresolution analysis. The true image can be considered as
a function f in L2(R

2) and the low-resolution images can be thought of as the low-
frequency samples of f obtained by passing f through some lowpass filters. Thus
the problem can be posed as reconstructing a function from the given multiple low-
frequency samples of f . To recover f , we iteratively deconvolve the high-frequency
components of f which are hidden in the low-frequency samples. Our iterative process
decomposes the function obtained in the previous iteration into different frequency
components in the wavelet transform domain and then adds them to the new iterate
to improve the approximation. In this setting, it is easy to apply wavelet methods
to denoise the function obtained in the previous step before adding it into the new
iterate.

The high-resolution image reconstruction problem is closely related to the decon-
volution problem. In the recent works of [12] and [13], an analysis of minimizing the
maximum risk over all the signals in a set of signals is given. Then, it was applied to
estimate the risk of the wavelet thresholding method used on the deconvoluted signals.
Their wavelet thresholding algorithm is proven to be close to the optimal risk bound
when a mirror wavelet basis is used. The main difficulty in denoising deconvoluted
signals is that when the convolution lowpass filter has zeros at high frequency, the
noise variance in the solution has a hyperbolic growth [12]. To overcome this diffi-
culty, a mirror wavelet basis is constructed to define a sparse representation of all the
signals in the set of given signals and to nearly diagonalize the covariance operator of
the noise in the deconvoluted solution in order to reach the optimal risk bound.

The approach here is different. The highpass filters are added to perturb the
zeros of the convolution kernel to prevent the noise variance from blowing up. Our
wavelet (packet) thresholding method, which is a wavelet denoising method, is built
into each iterative step so as to remove the noise from the original data. It also keeps
the features of the original signal while denoising. In this sense, our method is more
related to the Tikhonov least-squares method [8], where a regularization operator
is used to perturb the zeros of the convolution kernel and a penalty parameter is
used to damp the high-frequency components for denoising. Since the least-squares
method penalizes the high-frequency components of the original signal at the same
rate as that of the noise, it smoothes the original signal. In contrast, our thresholding
method penalizes the high-frequency components of the signal in a rate significantly
lower than that of the noise, and hence it will not smooth the original signal in general.
Moreover, there is no need to estimate the regularization parameter in our method.
Our numerical tests show that the reconstructed images are of better quality. Also,
our algorithms can easily be extended to the super-resolution case.

The outline of the paper is as follows. In section 2, we give a mathematical model
of the high-resolution image reconstruction problem. In section 3, we derive our algo-
rithms. Extensions to the super-resolution case are also discussed there. Numerical
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examples are given in section 4 to illustrate the effectiveness of the algorithms. After
the concluding remarks, we provide in the appendix an analysis of our algorithms via
the multiresolution analysis.

2. The mathematical model. Here we give a brief introduction to the math-
ematical model of the high-resolution image reconstruction problem. Details can be
found in [1]. Suppose the image of a given scene can be obtained from sensors with
N1 × N2 pixels. Let the actual length and width of each pixel be T1 and T2, respec-
tively. We will call these sensors low-resolution sensors. The scene we are interested
in, i.e., the region of interest, can be described as

S =
{
(x1, x2) ∈ R2 | 0 ≤ x1 ≤ T1N1, 0 ≤ x2 ≤ T2N2

}
.

Our aim is to construct a higher-resolution image of the same scene by using an array
of K1 × K2 low-resolution sensors. More precisely, we want to create an image of
S with M1 × M2 pixels, where M1 = K1N1 and M2 = K2N2. Thus the length and
width of each of these high-resolution pixels will be T1/K1 and T2/K2, respectively. To
maintain the aspect ratio of the reconstructed image, we consider only K1 = K2 = K.
Let f(x1, x2) be the intensity of the scene at any point (x1, x2) in S. By recon-

structing the high-resolution image, we mean to find or approximate the values

K2

T1T2

∫ (i+1)T1/K

iT1/K

∫ (j+1)T2/K

jT2/K

f(x1, x2)dx1dx2, 0 ≤ i < M1, 0 ≤ j < M2,

which is the average intensity of all the points inside the (i, j)th high-resolution pixel:[
i
T1

K
, (i+ 1)

T1

K

]
×
[
j
T2

K
, (j + 1)

T2

K

]
, 0 ≤ i < M1, 0 ≤ j < M2.(1)

In order to have enough information to resolve the high-resolution image, there are
subpixel displacements between the sensors in the sensor arrays. Ideally, the sensors
should be shifted from each other by a value proportional to the length and the width
of the high-resolution pixels. More precisely, for sensor (k1, k2), 0 ≤ k1, k2 < K, its
horizontal and vertical displacements dxk1k2

and dyk1k2
with respect to the point (0, 0)

are given by

dxk1k2
=

(
k1 +

1−K

2

)
T1

K
and dyk1k2

=

(
k2 +

1−K

2

)
T2

K
.

For this low-resolution sensor, the average intensity registered at its (n1, n2)th pixel
is modeled by

gk1k2 [n1, n2] =
1

T1T2

∫ T1(n1+1)+dx
k1k2

T1n1+dx
k1k2

∫ T2(n2+1)+dy
k1k2

T2n2+dy
k1k2

f(x1, x2)dx1dx2+ηk1k2
[n1, n2].

(2)
Here 0 ≤ n1 < N1 and 0 ≤ n2 < N2 and ηk1k2

[n1, n2] is the noise; see [1]. We remark
that the integration is over an area the same size of a low-resolution pixel.
Notice that using the midpoint quadrature rule and neglecting the noise ηk1k2 [n1, n2]

for the moment,

gk1k2 [n1, n2] ≈ f

(
T1

(
n1 +

1

2

)
+ dxk1k2

, T2

(
n2 +

1

2

)
+ dyk1k2

)
= f

(
T1

K

(
Kn1 + k1 +

1

2

)
,
T2

K

(
Kn2 + k2 +

1

2

))
.
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Fig. 1. Construction of the observed high-resolution image.

Thus, if we intersperse all the low-resolution images gk1k2
to form an M1 ×M2 image

g by assigning

g[Kn1 + k1,Kn2 + k2] = gk1k2 [n1, n2],(3)

then

g[i, j] ≈ f

(
T1

K

(
i+
1

2

)
,
T2

K

(
j +
1

2

))
, 0 ≤ i < M1, 0 ≤ j < M2,

which is the value of f at the midpoint of the (i, j)th high-resolution pixel in (1).
Thus g is an approximation of f . Figure 1 shows how to form a 4 × 4 image g from
four 2× 2 sensor arrays {gk1k2

}1
k1,k2=0, where all gk1k2 have 2× 2 pixels. The image

g, called the observed high-resolution image, is already a better image (i.e., better
approximation of f) than any one of the low-resolution samples gk1,k2

themselves; see
Figure 5(a)–(c) in section 4.
To obtain an image that is better than the observed high-resolution image g, one

will have to solve (2) for f . According to [1], we solve it by first discretizing it using
the rectangular quadrature rule. Or equivalently, we assume that for each (i, j)th
high-resolution pixel given in (1), the intensity f is constant and is equal to f [i, j]
for every point in that pixel. Then carrying out the integration in (2), and using the
reordering (3), we obtain a system of linear equations relating the unknown values
f [i, j] to the given low-resolution pixel values g[i, j]. This linear system, however,
is not square. This is because the evaluation of gk1k2

[n1, n2] in (2) involves points
outside the region of interest S. For example, g00[0, 0] requires the values f(x1, x2),
where x1 < 0 and x2 < 0, i.e., it involves f [−1,−1]. Thus we have more unknowns
than given values, and the system is underdetermined.
To compensate for this, one imposes boundary conditions on f for xi outside the

domain. A standard way is to assume that f is periodic outside:

f(x+ iT1N1, y + jT2N2) = f(x, y), i, j ∈ Z;
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see, for instance, [9, section 5.1.3]. Other boundary conditions, such as the symmet-
ric (also called Neumann or reflective) boundary condition and the zero boundary
condition, can also be imposed; see [1, 18]. We emphasize that different boundary
conditions will introduce different boundary artifacts in the recovered images. For ex-
ample, compare Figure 5(d) with Figure 5(g) in section 4. For simplicity, we will only
develop our algorithms for periodic boundary conditions here. For other boundary
conditions, similar algorithms can be derived straightforwardly.
Using the periodic boundary condition and ordering the discretized values of f

and g in a row-by-row fashion, we obtain anM1M2×M1M2 linear system of the form

Lf = g.(4)

The blurring matrix L can be written as

L = Lx ⊗ Ly,(5)

where ⊗ is the Kronecker tensor product and Lx is the M1 × M1 circulant matrix
with the first row given by

1

K

[
1, . . . , 1,

1

2
, 0, . . . , 0,

1

2
, 1, . . . , 1

]
.

Here the first K/2 entries are equal to 1. We note that the last K/2 nonzero entries
are there because of our periodic assumption on f . The M2 ×M2 blurring matrix Ly

is defined similarly.
We note that the matrix L is a block-circulant-circulant-block (BCCB) matrix.

Thus (4) can be solved by using three two-dimensional (2D) fast Fourier transforms
(FFTs) in O(M1M2 log(M1M2)) operations; see, for instance, [9, section 5.2.2]. As
examples, the matrices Lx for the cases of 2 × 2 and 4 × 4 sensor arrays are given,
respectively, by

L2 ≡ 1
4


2 1 1
1 2 1
. . .

. . .
. . .

1 2 1
1 1 2

 and L4 ≡ 1
8



2 2 1 1 2
2 2 2 1 1
1 2 2 2 1
. . .

. . .
. . .

. . .
. . .

1 2 2 2 1
1 1 2 2 2
2 1 1 2 2


.

(6)
Because (2) is an averaging process, the system in (4) is ill-conditioned and sus-

ceptible to noise. To remedy this, one can use the Tikhonov regularization which
solves the system

(L∗L+ βR)f = L∗g.(7)

Here R is a regularization operator (usually chosen to be the identity operator or some
differential operators) and β > 0 is the regularization parameter; see [9, section 5.3].
If the boundary condition of R is chosen to be periodic, then (7) is still a BCCB
system and hence can be solved by three FFTs in O(M1M2 log(M1M2)) operations.
If the symmetric boundary condition is used, then (7) is a block Toeplitz-plus-Hankel
system with Toeplitz-plus-Hankel blocks. It can be solved by using three 2D fast
cosine transforms (FCTs) in O(M1M2 log(M1M2)) operations; see [18].
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We note that (7) is derived from the least-squares approach of solving (4). In the
next section, we will derive algorithms for finding f by using the wavelet approach.
They will improve the quality of the images when compared with (7).

3. Reconstruction. In this section, we analyze the model given in section 2
using the wavelet approach. Since (2) is an averaging process, the matrices in (6)
can be considered as a lowpass filtering acting on the image f with a tensor product
refinement mask, say a. Let φ be the tensor product bivariate refinable function with
such a refinement mask. Here, we recall that a function φ in L2(R

2) is refinable if it
satisfies

φ = 4
∑
α∈Z2

a(α)φ(2 · −α).

The refinable function φ is also known as a scaling function. The sequence a is called
a refinement mask (also known as a lowpass filter or a scaling coefficient). The symbol
of the sequence a is defined as

â(ω) :=
∑
α∈Z2

a(α)e−iαω.

The function φ is stable if its shifts (integer translates) form a Riesz system, i.e.,
there exist constants 0 < c ≤ C < ∞, such that for any sequence q ∈  2(Z

2),

c‖q‖2 ≤
∣∣∣∣∣
∣∣∣∣∣∑
α∈Z2

q(α)φ(· − α)

∣∣∣∣∣
∣∣∣∣∣
2

≤ C‖q‖2.(8)

Stable functions φ and φd are called a dual pair when they satisfy

〈φ, φd(· − α)〉 =
{
1, α = 0;
0, α ∈ Z2 \ {(0, 0)}.

We will denote the refinement mask of φd by ad.
For a given compactly supported refinable stable function φ ∈ L2(R

2), define
S(φ) ⊂ L2(R

2) to be the smallest closed shift-invariant subspace generated by φ and
define

Sk(φ) := {u(2k·) : u ∈ S(φ)}, k ∈ Z.

Then the sequence Sk(φ), k ∈ Z, forms a multiresolution analysis of L2(R
2). Here

we recall that a sequence Sk(φ) forms a multiresolution analysis when the follow-
ing conditions are satisfied: (i) Sk(φ) ⊂ Sk+1(φ); (ii) ∪k∈ZS

k(φ) = L2(R
2) and

∩k∈ZS
k(φ) = {0}; (iii) φ and its shifts form a Riesz basis of S(φ); see [5]. The

sequence Sk(φd), k ∈ Z, also forms a multiresolution analysis of L2(R
2).

The tensor product of univariate refinable functions and wavelets used in this
paper will be derived from the following examples.

Example 1 (see [5, p. 277]). For 2 × 2 sensor arrays, using the rectangular rule
for (2), we get L2 in (6). Correspondingly, the refinement mask m is the piecewise
linear spline, i.e.,

m(−1) = 1
4
, m(0) =

1

2
, m(1) =

1

4
,
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and m(α) = 0 for all other α. The nonzero terms of the dual mask of m used in this
paper are

md(−2) = −1
8
, md(−1) = 1

4
, md(0) =

3

4
, md(1) =

1

4
, md(2) = −1

8
.

In general, the tensor product bivariate filters for the dilation 2I, where I is
the identity matrix, are generated as follows. Let φ and φd be a dual pair of the
univariate refinable functions with refinement masks m and md, respectively. Then,
the biorthonormal wavelets ψ and ψd are defined by

ψ := 2
∑
α∈Z

r(α)φ(2 · −α) and ψd := 2
∑
α∈Z

rd(α)φd(2 · −α),

where

r(−1) = 1
8
, r(0) =

1

4
, r(1) = −3

4
, r(2) =

1

4
, r(3) =

1

8

and

rd(0) =
1

4
, rd(1) = −1

2
, rd(2) =

1

4

are the wavelet masks; see, for example, [5] for details. The tensor product dual pair of
the refinement symbols are given by â(ω) = m̂(ω1)m̂(ω2), â

d(ω) = m̂d(ω1)m̂
d(ω2), and

the corresponding wavelet symbols are b̂(0,1)(ω) = m̂(ω1)r̂(ω2), b̂
d
(0,1)(ω) = m̂d(ω1)r̂

d(ω2),

b̂(1,0)(ω) = r̂(ω1)m̂(ω2), b̂
d
(1,0)(ω) = r̂d(ω1)m̂

d(ω2), b̂(1,1)(ω) = r̂(ω1)r̂(ω2), b̂
d
(1,1)(ω) =

r̂d(ω1)r̂
d(ω2), where ω = (ω1, ω2).

Although we give here only the details of refinable functions and their correspond-
ing wavelets with dilation 2I, the whole theory can be carried over to the general
isotropic integer dilation matrices. The details can be found in [10] and the references
therein. In the next example, we give the refinable and wavelet masks with dilation
4I that are used to generate the matrices for 4× 4 sensor arrays.

Example 2. For 4× 4 sensor arrays, using the rectangular rule for (2), we get L4

in (6). The corresponding mask is

m(α) =
1

8
,
1

4
,
1

4
,
1

4
,
1

8
, α = −2, . . . , 2,

with m(α) = 0 for all other α. It is the mask of a stable refinable function φ with
dilation 4 (see, e.g., [16] for a proof). The nonzero terms of a dual mask of m are

md(α) = − 1
16

,
1

8
,
5

16
,
1

4
,
5

16
,
1

8
,− 1
16

, α = −3, . . . , 3.

The nonzero terms of the corresponding wavelet masks (see [20]) are

r1(α) = −1
8
,−1
4
, 0,
1

4
,
1

8
, α = −2, . . . , 2,

r2(α) = − 1
16

,−1
8
,
5

16
,−1
4
,
5

16
,−1
8
,− 1
16

, α = −2, . . . , 4,
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r3(α) =
1

16
,
1

8
,− 7
16

, 0,
7

16
,−1
8
,− 1
16

, α = −2, . . . , 4.

The dual wavelet masks are

rd1(α) = (−1)1−αr3(1− α), rd2(α) = (−1)1−αm(1− α), rd3(α) = (−1)1−αr1(1− α),

for appropriate α.
In the next two subsections, we will use the wavelet approach to design algorithms

for recovering the high-resolution image from the low-resolution images of a true
image. In section 3.1, we first consider the true image as a representation of a function
in a certain subspace of L2(R

2), and using wavelet means we recover this function
from the given set of low-resolution images. In section 3.2, we translate the wavelet
algorithms into matrix terminologies.

3.1. Function reconstruction. Since Sk(φd), k ∈ Z, forms a multiresolution
analysis of L2(R

2), we can assume without loss of generality that the pixel values of
the original image are the coefficients of a function f in Sk(φd) for some k. The pixel
values of the low-resolution images can be considered as the coefficients of a function
g in Sk−1(φd) and its 1/2k translates, i.e., g is represented by φd(2k−1(·−α/2k)) with
α ∈ Z2. The low-resolution images keep most of the low-frequency information of f
and the high-frequency information in f is folded by the lowpass filter a. Hence, to
recover f , the high-frequency information of f hidden in the low-resolution images
will be unfolded and combined with the low-frequency information to restore f . We
will unfold the high-frequency content iteratively using the wavelet decomposition and
reconstruction algorithms.
For 2×2 sensor arrays, the multiresolution analysis Sk(φd) used is from a refinable

function with dilation matrix 2I. In general, K × K sensor arrays can be analyzed
by the multiresolution analysis generated by a refinable function with dilation matrix
K · I. For simplicity, we give the analysis for the case that the dilation matrix is 2I
and k = 1. A similar analysis can be carried out for more general cases.
Let f ∈ S1(φd). Then,

f =
∑
α∈Z2

〈f, 2φ(2 · −α)〉2φd(2 · −α) := 2
∑
α∈Z2

v(α)φd(2 · −α).(9)

The numbers v(α), α ∈ Z2, are the pixel values of the high-resolution image we are
seeking, and they form the discrete representation of f under the basis 2φd(2 · −α),
α ∈ Z2. The given data set (a ∗ v)(α) is the observed high-resolution image. By using
the refinability of φd, one finds that a ∗ v is the coefficient sequence of the function g
represented by φd(· − α/2), α ∈ Z2, in S1(φd). We call this g the observed function
and it is given by

g :=
∑
α∈Z2

(a ∗ v)(α)φd(· − α/2).(10)

The observed function can be obtained precisely once a ∗ v is given.
When only a∗v is given, to recover f , one first finds v from a∗v and then derives f

using the basis 2φd(2·−α), α ∈ Z2, as in (9). Here we provide an iterative algorithm to
recover v. At step (n+1) of the algorithm, it improves the high-frequency components
of f by updating the high-frequency components of the previous step. The algorithm
is presented in the Fourier domain, where the problem becomes the following: for a
given â ∗ v = âv̂, one needs to find v̂ in order to restore f .
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Denote Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Our algorithm will make use of the fol-

lowing fact from the biorthogonal wavelet theory: for a given tensor product bivariate
refinement mask a corresponding to a stable refinable function φ, one can find a tensor
product dual mask ad and the corresponding wavelet masks bν and bdν , ν ∈ Z2

2\{(0, 0)},
such that the symbols of the refinement masks and wavelet masks satisfy the following
equation [5]:

âdâ+
∑

ν∈Z
2
2\{(0,0)}

b̂dν b̂ν = 1.(11)

We note that when the refinable function φ of the convolution kernel a and its shifts
form an orthonormal system (e.g., in the Haar case), then (11) holds if we choose

âd = â and b̂dν = b̂ν . This leads to orthonormal wavelets. When φ and its shifts form
only a Riesz system, one has to use biorthogonal wavelets.

By (11), we have v̂ = âdâ ∗ v+(
∑

ν∈Z
2
2\{(0,0)} b̂dν b̂ν)v̂. Hence we have the following

algorithm.
Algorithm 1.
(i) Choose v̂0 ∈ L2[−π, π]2;

(ii) Iterate until convergence:

v̂n+1 = âdâ ∗ v +

 ∑
ν∈Z

2
2\{(0,0)}

b̂dν b̂ν

 v̂n.(12)

We remark that the first term âdâ ∗ v = âdâv̂ in the right-hand side of (12)
represents the approximation of the low-frequency components of f , whereas the
second term improves the high-frequency approximation.
Given v̂n, fn is defined via its Fourier transform as

f̂n(·) := v̂n(·/2)φ̂d(·/2) ∈ S1(φd).(13)

Strictly speaking, f̂n and φ̂d are the Fourier transform of, respectively, f and φ while
v̂n is the symbol of the sequence vn. But here to simplify the notation, we will use the
same “hat” notation to denote both. We now show that the functions fn converge to
the function f in (9).

Proposition 3.1. Let φ and φd be a pair of dual refinable functions with refine-
ment masks a and ad and let bν and bdν , ν ∈ Z2

2 \ {(0, 0)}, be the wavelet masks of the

corresponding biorthogonal wavelets. Suppose that 0 ≤ âdâ ≤ 1 and its zero set has
measure zero. Then, the sequence v̂n defined in (12) converges to v̂ in the L2-norm
for any arbitrary v̂0 ∈ L2[−π, π]2. In particular, fn in (13) converges to f in (9) in
the L2-norm.

Proof. For an arbitrary v̂0 ∈ L2[−π, π]2, applying (12), we have

v̂ − v̂n =

 ∑
ν∈Z

2
2\{(0,0)}

b̂dν b̂ν

n

(v̂ − v̂0).

It follows from 0 ≤ âdâ ≤ 1 and (11) that∣∣∣∣∣∣
∑

ν∈Z
2
2\{(0,0)}

b̂dν b̂ν

∣∣∣∣∣∣ ≤ 1.
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Since âdâ ≥ 0 and its zero set has measure zero, the inequality∣∣∣∣∣∣
∑

ν∈Z
2
2\{(0,0)}

b̂dν b̂ν

∣∣∣∣∣∣ < 1
holds almost everywhere. Hence, ∑

ν∈Z
2
2\{(0,0)}

b̂dν b̂ν

n

(v̂ − v̂0)→ 0, as n → ∞ a.e.

By the dominated convergence theorem (see, e.g., [19]), v̂n converges to v̂ in the
L2-norm.
Since φd(· − α) is a Riesz basis of S0(φd), from (8), 2φd(2 · −α) is a Riesz basis

of S1(φd). Hence by (8) again,

‖fn − f‖2 =

∥∥∥∥∥∑
α∈Z2

(vn(α)− v(α))2φ(2 · −α)

∥∥∥∥∥
2

≤ C‖vn − v‖2 =
C

2π
‖v̂n − v̂‖2 −→ 0.

Remark 1. The symbols of the refinement masks and the corresponding dual
masks used in this paper are tensor products of univariate ones that satisfy the as-
sumptions of this proposition.

Remark 2. The above convergence result is also applicable to the super-resolution
case. Assume for simplicity that a ∗ v is downsampled to four subsamples (a ∗ v)(ν −
2α), ν ∈ Z2

2. For the super-resolution case, one only has some of the subsamples,
(a ∗ v)(ν − 2α), ν ∈ A ⊂ Z2

2. In this case, one first applies an interpolatory scheme
(e.g., [10]) to obtain the full set of the sample w approximately. Let the  2 solution
of the equation a ∗ z = w be u. Then, (a ∗ u)(ν − 2α) = (a ∗ v)(ν − 2α) for ν ∈ A.
Applying Algorithm 1 to a ∗ u, the above proposition asserts that it converges to u.
When there is noise in the given data a∗v, one may subtract some high-frequency

components from v̂n at each iteration to reduce the noise, since noise is in the high-
frequency components. Then we get the following modified algorithm.

Algorithm 2.
(i) Choose v̂0 ∈ L2[−π, π]2;

(ii) Iterate until convergence:

v̂n+1 = âdâ ∗ v + (1− β)

 ∑
ν∈Z

2
2\{(0,0)}

b̂dν b̂ν

 v̂n, 0 < β < 1.(14)

In this denoising procedure, the high-frequency components are penalized uni-
formly by the factor (1− β). This smoothes the original signals while denoising.
To remedy this, we now introduce a wavelet thresholding denoising method. It is

based on the observation that b̂ν v̂n = b̂ν ∗ vn, ν ∈ Z2
2 \ {(0, 0)}, are the exact wavelet

coefficients of the wavelet decomposition (without downsampling) of the function fn,
the nth approximation of f . A further decomposition of bν ∗ vn, by using the lowpass
filter a and the highpass filters bν several times, will give the wavelet coefficients of
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the decomposition of fn by the translation-invariant wavelet packets defined by the
biorthogonal filters a, ad and bν , b

d
ν (see, e.g., [17] and [25]). More precisely, by using

(11) we have

b̂ν v̂n =
(
âd
)J
(â)

J
b̂ν v̂n +

J−1∑
j=0

(
âd
)j ∑

γ∈Z
2
2\{(0,0)}

b̂dγ b̂γ (â)
j
b̂ν v̂n,

where J is the number of levels used to decompose b̂ν v̂n. For each j and γ ∈
Z2

2 \ {(0, 0)}, b̂γ (â)j b̂ν v̂n are the coefficients of the wavelet packet (see, e.g., [25])
down to the jth level. A wavelet thresholding denoising procedure is then applied to
b̂γ (â)

j
b̂ν v̂n, the coefficients of the wavelet packet decomposition of fn, before bν ∗ vn

is reconstructed back by the dual masks. This denoises the function fn. Our method
keeps the features of the original signal. Moreover, since we do not downsample (by
a factor of 2) in the decomposition procedure, we are essentially using a translation-
invariant wavelet packet system [17], which is a highly redundant system. As was
pointed out in [4] and [17], a redundant system is desirable in denoising, since it
reduces the Gibbs oscillations.
Another potential problem with Algorithm 2 is that at each iteration, v̂n+1 inher-

its the noise from the observed data â ∗ v present in the first term on the right-hand
side of (14). If the algorithm converges at the n0th step, then v̂n0 still carries the
noise from â ∗ v. One can eliminate part of these noise by passing the final iterate v̂n0

through the wavelet thresholding scheme we mentioned above (see step (iii) below).
We summarize our thresholding method in the following algorithm.

Algorithm 3.
(i) Choose v̂0 ∈ L2[−π, π]2;

(ii) Iterate until convergence:

v̂n+1 = âdâ ∗ v +
∑

ν∈Z
2
2\{(0,0)}

b̂dνT
(
b̂ν v̂n

)
,

where

T (̂bν v̂n) =
(
âd
)J
(â)

J
b̂ν v̂n +

J−1∑
j=0

(
âd
)j ∑

γ∈Z
2
2\{(0,0)}

b̂dγD
(
b̂γ (â)

j
b̂ν v̂n

)
,

and D is a thresholding operator (see, for instance, (19) below).
(iii) Let v̂n0

be the final iterate from step (ii). The final solution of our algorithm
is

v̂c =
(
âd
)J
(â)

J
v̂n0
+

J−1∑
j=0

(
âd
)j ∑

γ∈Z
2
2\{(0,0)}

b̂dγD
(
b̂γ (â)

j
v̂n0

)
,

where D is the same thresholding operator used in step (ii).
In both the regularization method (Algorithm 2) and the thresholding method

(Algorithm 3), the nth approximation fn is denoised before it is added to the iterate
to improve the approximation. The major difference between Algorithms 2 and 3
is that step (ii) in Algorithm 2 is replaced by step (ii) of Algorithm 3, where the
thresholding denoising procedure is built in.
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3.2. Image reconstruction. Let us now translate the results above from wavelet
notations into matrix terminologies. Denote by L, Ld, Hd

ν , andHν the matrices gener-

ated by the symbols of the refinement and wavelet masks â, âd, b̂ν , and b̂dν , respectively.
For the periodic boundary conditions, the matrix L is already given in (5) and the
matrices Ld, Hd

ν , and Hν will be given in detail in section 4. Using these matrices,
(11) can be written as

LdL+
∑

ν∈Z
2
2\{(0,0)}

Hd
νHν = I.(15)

Also, (12) can be written as

fn+1 = Ldg +

 ∑
ν∈Z

2
2\{(0,0)}

Hd
νHν

 fn,(16)

where g (∼ a ∗ v) is the observed high-resolution image given in (4) and fn are the
approximations of f at the nth iteration.
Rewriting (16) as

fn+1 −
 ∑

ν∈Z
2
2\{(0,0)}

Hd
νHν

 fn = Ldg,

one sees that it is a stationary iteration for solving the matrix equationI −
 ∑

ν∈Z
2
2\{(0,0)}

Hd
νHν

 f = Ldg.

Therefore by (15), we get the matrix form of Algorithm 1.
Algorithm 1 (in matrix form).

LdLf = Ldg.(17)

We note that there is no need to iterate on (16) to get f .
In a similar vein, one can show that Algorithm 2 is actually a stationary iteration

for the matrix equationLdL+ β
∑

ν∈Z
2
2\{(0,0)}

Hd
νHν

 f = Ldg.

Here, β is a regularization parameter. By (15), this reduces to the following algorithm.
Algorithm 2 (in matrix form).(

LdL+
β

1− β
I

)
f =

1

1− β
Ldg.(18)

Again, there is no need to iterate on (14) to get f . For periodic boundary con-
ditions, both the matrices L and Ld in (18) are BCCB matrices of sizeM1M2×M1M2

and hence (18) can be solved efficiently by using three 2D FFTs inO(M1M2 log(M1M2))
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operations; see [9, section 5.2.2]. For symmetric boundary conditions, both matrices
L and Ld are block Toeplitz-plus-Hankel matrices with Toeplitz-plus-Hankel blocks.
Thus (18) can be solved by using three 2D FCTs in O(M1M2 log(M1M2)) operations
(see [18]). It is interesting to note that (18) is similar to the Tikhonov least-squares
method (7), except that instead of L∗, we use Ld.
In (16), it is easy to further decompose Hνfn, ν ∈ Z2

2 \ {(0, 0)}, by applying the
matrices L and Hγ , γ ∈ Z2

2\{(0, 0)}, to obtain the wavelet packet decomposition of fn.
Then we can apply the threshold denoising method we have discussed in section 3.1.
To present the matrix form of Algorithm 3, we define Donoho’s thresholding operator
[7]. For a given λ, let

Dλ((x1, . . . , xl, . . .)
T ) = (tλ(x1), . . . , tλ(xl), . . .)

T ,(19)

where the thresholding function tλ is either (i) tλ(x) = xχ|x|>λ, referred to as the
hard threshold, or (ii) tλ(x) = sgn(x)max(|x| − λ, 0), the soft threshold.

Algorithm 3 (in matrix form).
(i) Choose an initial approximation f0 (e.g., f0 = Ldg);
(ii) Iterate until convergence:

fn+1 = Ldg +
∑

ν∈Z
2
2\{(0,0)}

Hd
νT (Hνfn) .

Here

T (Hνfn) = (L
d)J(L)J(Hνfn) +

J−1∑
j=0

(Ld)j
∑

γ∈Z
2
2\{(0,0)}

Hd
γDλn,ν

(
Hγ(L)

jHνfn
)

(20)
with Dλn,ν given in (19) and λn,ν = σn,ν

√
2 log(M1M2), where σn,ν is the

variance of Hνfn estimated numerically by the method provided in [7].
(iii) Let fn0

be the final iterate from step (ii). The final solution of our algorithm
is

fc = (L
d)J(L)J fn0 +

J−1∑
j=0

(Ld)j
∑

γ∈Z
2
2\{(0,0)}

Hd
γDλn0

(
Hγ(L)

jfn0

)
,

where Dλn0
is the thresholding operator used in step (ii).

According to [7], the choice of λn,ν in step (ii) is a good thresholding level for
orthonormal wavelets as well as biorthonormal wavelets.
The computational complexity of Algorithm 3 depends on the number of iterations

required for convergence. In each iteration, we essentially go through a J-level wavelet
decomposition and reconstruction procedure once; therefore it needs O(M1M2) opera-
tions. As for the value of J , the larger it is, the finer the wavelet packet decomposition
of fn will be before it is denoised. This leads to a better denoising scheme. However, a
larger J will cost slightly more computational time. From our numerical tests, we find
that it is already good enough to choose J to be either 1 or 2. The variance σn,ν is es-
timated by the method given in [7] which uses the median of the absolute value of the
entries in the vector Hνfn. Hence the cost of computing σn,ν is O(M1M2 log(M1M2));
see for instance [21]. Finally, the cost of step (iii) is less than one additional itera-
tion of step (ii). One nice feature of Algorithm 3 is that it is parameter-free—we do
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not have to choose the regularization parameter β as in the Tikhonov method (7) or
Algorithm 2.
For the super-resolution case, where only some of the subsamples (a ∗ v)(ν −

2α), ν ∈ A ⊂ Z2
2, are available, we can first apply an interpolatory scheme (e.g.,

interpolatory subdivision scheme in [6] and [10]) to obtain the full set of the sample
w approximately. Then, with w as the observed image, we find an approximation
solution u from either Algorithm 2 or Algorithm 3. To tune up the result, we can
compute Lu to obtain (a∗u)(ν−2α), ν ∈ Z2, and replace the component (a∗u)(ν−2α),
ν ∈ A, by the sample data, i.e., (a ∗ v)(ν − 2α), ν ∈ A. With this new observed high-
resolution image, we again use either Algorithm 2 or Algorithm 3 to get the final
high-resolution image f .

4. Numerical experiments. In this section, we implement the wavelet algo-
rithms developed in the last section to one-dimensional (1D) and 2D examples and
compare them with the Tikhonov least-squares method. We evaluate the methods
using the relative error (RE) and the peak signal-to-noise ratio (PSNR), which com-
pare the reconstructed signal (image) fc with the original signal (image) f . They are
defined by

RE =
‖f − fc‖2

‖f‖2

and

PSNR = 10 log10
‖f‖2

2

‖f − fc‖2
2

,

for 1D signals, and

PSNR = 10 log10
2552NM

‖f − fc‖2
2

,

for 2D images, respectively, where the size of the signals (images) is N ×M .
In our tests, N = 1 for 1D signals while N =M for 2D images. For the Tikhonov

method (7), we will use the identity matrix I as the regularization operator R. For
both (7) and Algorithm 2, the optimal regularization parameters β∗ are chosen by
trial and error so that they give the best PSNR values for the resulting equations.
For Algorithm 3, we use the hard thresholding for Dλ in (19) and J = 1 in (20), and
we stop the iteration as soon as the values of PSNR peak. The number of iterations
for Algorithm 3 is denoted as Ite.

4.1. Numerical simulation for 1D signals. To emphasize that our algorithms
work for general deblurring problems, we first apply our algorithms to two 1D blurred
and noisy signals. The blurring is done by the filter given in Example 2. The matrices
Ld, L, Hd

p , and Hp, p = 1, 2, 3, are generated by the corresponding univariate symbols

of the refinement and wavelet masks m̂d, m̂, r̂dp, and r̂p, respectively (with either
periodic or symmetric boundary conditions). For example, the matrix L for the
periodic boundary condition is given by the matrix L4 in (6) (cf. section 4.2.1 for how
to generate the other matrices).
The Tikhonov method (7) and Algorithm 2 reduce to solving the linear systems

(L∗L+ βI)f = L∗g and

(
LdL+

β

1− β
I

)
f =

1

1− β
Ldg,
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respectively. For Algorithm 3, steps (ii) and (iii) become

fn+1 = Ldg +

3∑
p=1

Hd
p

(
LdLHpfn +

3∑
q=1

Hd
qDλn,p

(HqHpfn)

)
,

fc = LdLfn0
+

3∑
p=1

Hd
pDλn,p

(Hpfn0
) .

The 1D signals in our test are taken from the WaveLab toolbox at http://www-
stat.stanford.edu/˜wavelab/ developed by Donoho’s research group. Figure 2(a) shows
the first original signal f . Figure 2(b) depicts the blurred and contaminated signal
with white noise at signal-to-noise ratio (SNR) = 25. The results of deblurring by
(7), Algorithm 2, and Algorithm 3 with periodic boundary conditions are shown in
Figures 2(c)–(e), respectively.
It is clear from Figure 2 that Algorithm 3 outperforms the other two methods.

When the symmetric boundary condition is used, the numerical results for each algo-
rithm are almost the same as that of the corresponding algorithms with the periodic
boundary condition. Hence, we omit the figures here. The similarity of the perfor-
mance for the two different boundary conditions is due to the fact that the extensions
of the signal by both boundary conditions are very close. (Note that the original
signal has almost the same values at the two end points.)
In the second example (Figure 3), the different boundary conditions lead to dif-

ferent extensions of the signal. It is therefore not surprising to see in Figure 3 that the
symmetric boundary condition gives better PSNR values and visual quality than those
of the periodic one. We omit the figures generated by Algorithm 2 for this example.
The numerical results from both tests show clearly that Algorithm 3 (the threshold-
ing method) outperforms the regularization methods (the least-squares method and
Algorithm 2). To see exactly how Algorithm 3 performs, we show in Figure 4(a)–(e)
the intermediate results in each of the five iterations of step (ii) in Algorithm 3. Let
us look at the values of these five iterations at the point 0.4. They are 12.63, 13.20,
13.53, 13.80, and 13.99, respectively. The value of the original signal (see Figure 3(a))
is 15.17 at the point 0.4. Thus there are some improvements in each iteration. Fig-
ure 4(f) is the result after step (iii) of Algorithm 3.

4.2. High-resolution image reconstruction. This section illustrates the ef-
fectiveness of the high-resolution image reconstruction algorithm derived from the
wavelet analysis. We use the “boat” image of size 260 × 260 and the “Lena” image
of size 512 × 512 as the original images in our numerical tests. To simulate the real
world situations, the pixel values of the low-resolution images near the boundary are
obtained from the discrete equation of (2) by using the actual pixel values of the true
images instead of imposing any boundary conditions on these pixels.

4.2.1. 2× 2 sensor array. For 2× 2 sensor arrays, (2) is equivalent to blurring
the true image with a 2D lowpass filter a which is the tensor product of the lowpass
filter given in Example 1. Gaussian white noise is added to the resulting blurred image,
and it is then chopped to size 256×256 for the “boat” image and size 508×508 for the
“Lena” image to form our observed high-resolution image g. We note that the pixels
of g are already the pixels of the low-resolution images. Therefore the four 128× 128
low-resolution frames for the “boat” image and the four 254 × 254 low-resolution
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Fig. 2. (a) Original signal; (b) Observed signal, blurred by the filter a in Example 2 and
contaminated by white noise at SNR = 25; (c) Reconstructed signal from the least-squares method
with the identity regularization (PSNR = 43.19dB, RE = 0.0987, β∗ = 0.0402); (d) Reconstructed
signal from Algorithm 2 (PSNR = 44.44dB, RE = 0.0855, β∗ = 0.2205); (e) Reconstructed signal
from Algorithm 3 after 12 iterations (PSNR = 45.75dB, RE = 0.0735).

frames for the “Lena” image can be obtained by downsampling g by a factor of 2 in
both the horizontal and the vertical directions.

The vector g is then used in the Tikhonov method (7), Algorithm 2, and Algo-
rithm 3 to recover the high-resolution image vector f . We recall from section 2 that
the matrix system relating g and f is not a square system; in order to recover f , we
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Fig. 3. (a) Original signal; (b) Observed signal, blurred by the filter a in Example 2 and
contaminated by white noise at SNR = 25; (c) Reconstructed signal from the least-squares method
with the identity regularization and periodic boundary conditions (PSNR = 45.80dB, RE = 0.1183,
β∗ = 0.0619); (d) Reconstructed signal from Algorithm 3 with periodic boundary condition and after
2 iterations (PSNR = 48.90dB, RE = 0.0828); (e) Reconstructed signal from the least-squares method
with the identity regularization and symmetric boundary condition (PSNR = 47.86dB, RE = 0.0933,
β∗ = 0.0421); (f) Reconstructed signal from Algorithm 3 with symmetric boundary condition and
after 5 iterations (PSNR = 50.94dB, RE = 0.0654).
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Fig. 4. (a)–(e) Reconstructed signals in the first five iterations of step (ii) of Algorithm 3,
under symmetric boundary condition; (f) Reconstructed signal from step (iii) of Algorithm 3 from
the signal shown in (e).

impose boundary assumptions on f to make the matrix system a square system; see
(4). We have tested both the periodic and symmetric boundary conditions for all
three methods. For simplicity, we will only write out the matrices for the periodic
case. The matrices for the symmetric boundary condition can be derived analogously;
see [18, 2].

In what follows, all images are viewed as column vectors by reordering the entries
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of the images in a rowwise order. For the periodic boundary conditions, both the
Tikhonov method and Algorithm 2 are BCCB systems and hence can be solved effi-
ciently by three 2D FFTs; see [9, section 5.2.2]. For symmetric boundary conditions,
the systems can be solved by three 2D FCTs; see [18]. For Algorithm 3, we have
L = L2 ⊗ L2, H(0,1) = L2 ⊗H2, H(1,0) = H2 ⊗ L2, H(1,1) = H2 ⊗H2, L

d = Ld
2 ⊗ Ld

2,

Hd
(0,1) = Ld

2 ⊗Hd
2 , H

d
(1,0) = Hd

2 ⊗ Ld
2, and Hd

(1,1) = Hd
2 ⊗Hd

2 . Here L2 is given in (6)
and

Ld
2 ≡ 1
8



6 2 −1 −1 2
2 6 2 −1 −1

−1 2 6 2 −1
−1 2 6 2 −1

. . .
. . .

. . .
. . .

. . .

−1 2 6 2 −1
−1 −1 2 6 2
2 −1 −1 2 6


,

H2 ≡ 1
8



2 −6 2 1 1
1 2 −6 2 1

1 2 −6 2 1
. . .

. . .
. . .

. . .
. . .

1 2 −6 2 1
1 1 2 −6 2
2 1 1 2 −6

−6 2 1 1 2


,

Hd
2 ≡ 1
4


1 1 −2

−2 1 1
1 −2 1
. . .

. . .
. . .

1 −2 1

 .

Tables 1 and 2 give the PSNR and RE values of the reconstructed images for dif-
ferent Gaussian noise levels, the optimal regularization parameter β∗ for the Tikhonov
method and Algorithm 2, and also the number of iterations required for step (ii) in
Algorithm 3. For the periodic boundary condition, Algorithm 2 and Algorithm 3
are comparable and both are better than the Tikhonov method. For the symmetric
boundary condition, Algorithm 3 performs better than both the Tikhonov method
and Algorithm 2. In general, symmetric boundary conditions perform better than the
periodic ones.

4.2.2. 4× 4 sensor array. We have done similar numerical tests for the 4× 4
sensor arrays. The bivariate filters are the tensor product of the filters in Example 2.
The observed high-resolution image is generated by applying the bivariate lowpass
filter on the true images. Again, true pixel values are used and no boundary conditions
are assumed. After adding the noise and chopping to size 256 × 256 for the “boat”
image and size 508×508 for the “Lena” image, we obtain the observed high-resolution
image g. Again, we note that the pixels of g are already the pixels of the low-
resolution images. Therefore the image g can be downsampled by a factor of 4 in
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Table 1
The results for the 2 × 2 sensor array with periodic boundary condition.

Least-squares model Algorithm 2 Algorithm 3
Image SNR PSNR RE β∗ PSNR RE β∗ PSNR RE Ite
Boat 30 30.00 0.0585 0.0291 32.31 0.0449 0.2596 32.34 0.0447 2

40 30.39 0.0560 0.0275 32.67 0.0430 0.2293 32.53 0.0438 2
Lena 30 33.16 0.0421 0.0216 36.80 0.0277 0.3551 37.04 0.0270 2

40 33.89 0.0388 0.0197 37.34 0.0261 0.2878 37.41 0.0258 2

Table 2
The results for the 2 × 2 sensor array with symmetric boundary condition.

Least-squares model Algorithm 2 Algorithm 3
Image SNR PSNR RE β∗ PSNR RE β∗ PSNR RE Ite
Boat 30 32.55 0.0437 0.0173 33.82 0.0377 0.0364 34.48 0.0350 9

40 33.88 0.0375 0.0132 34.80 0.0337 0.0239 35.23 0.0321 12
Lena 30 34.51 0.0360 0.0175 37.32 0.0261 0.0704 38.10 0.0239 6

40 35.89 0.0308 0.0134 38.11 0.0238 0.0480 38.78 0.0221 8

both the horizontal and the vertical directions to generate the sixteen 64 × 64 low-
resolution frames for the “boat” image and the sixteen 127×127 low-resolution frames
for the “Lena” image. We emphasize that the process is the same as obtaining the
low-resolution frames via (2). The vector g is then used in the Tikhonov method,
Algorithm 2, and Algorithm 3 to recover f . Again, all three methods here make use
of either the periodic or the symmetric boundary conditions to form the coefficient
matrix L. The matrices L4, L

d
4, Hν , and Hd

ν , ν = 1, 2, 3, can be generated by the
corresponding filters in Example 2, as we did in section 4.2.1.

Table 3
The results for the 4 × 4 sensor array with periodic boundary condition.

Least-squares model Algorithm 2 Algorithm 3
Image SNR PSNR RE β∗ PSNR RE β∗ PSNR RE Ite
Boat 30 25.09 0.1031 0.0448 26.45 0.0882 0.2354 26.58 0.0868 3

40 25.13 0.1026 0.0444 26.47 0.0880 0.2313 26.59 0.0867 3
Lena 30 29.42 0.0648 0.0297 31.35 0.0519 0.1918 31.55 0.0507 3

40 29.55 0.0638 0.0297 31.41 0.0515 0.1843 31.59 0.0505 3

Tables 3 and 4 give the results of different methods. We see from the tables that
the performance of Algorithm 3 is again better than that of the least-squares method
and Algorithm 2 in all the cases. Figure 5 depicts the reconstructed high-resolution
image with noise at SNR = 30dB for the “boat” image. As is shown in the figures,
the periodic boundary condition introduces boundary artifacts in the recovered f ,
while the symmetric one has less boundary artifacts. A comparison of Figures 5(g)–
(i) reveals that Algorithm 3 gives better denoising performance than the other two
methods. The recovered high-resolution images for the “Lena” image show the same
result and therefore we omit them.

4.3. Super-resolution image reconstruction. In this test, we tried a partial
set of the low-resolution images indexed by A ⊂ Z2

4. The following procedure is used
to approximate the original high-resolution image f :

Step 1: From the given partial set of low-resolution images, we apply an interpo-
latory subdivision scheme such as those in [6, 10] to obtain an approxi-
mate observed high-resolution image w.
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Table 4
The results for the 4 × 4 sensor array with symmetric boundary condition.

Least-squares model Algorithm 2 Algorithm 3
Image SNR PSNR RE β∗ PSNR RE β∗ PSNR RE Ite
Boat 30 29.49 0.0621 0.0125 29.70 0.0601 0.0158 30.11 0.0579 30

40 30.17 0.0573 0.0089 30.30 0.0566 0.0101 30.56 0.0549 45
Lena 30 32.67 0.0446 0.0147 33.49 0.0406 0.0270 34.43 0.0364 50

40 33.43 0.0409 0.0114 33.96 0.0384 0.0188 34.73 0.0352 50

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. (a) The original “boat” image; (b) Low-resolution 64 × 64 image from the (0, 0)th
sensor; (c) Observed high-resolution 256 × 256 image (with white noise at SNR=30dB added); (d)
Reconstructed 256 × 256 image from the least-squares method with periodic boundary condition; (e)
Reconstructed 256×256 image from Algorithm 2 with periodic boundary condition; (f) Reconstructed
256 × 256 image from Algorithm 3 with periodic boundary condition; (g) Reconstructed 256 × 256
image from the least-squares method with symmetric boundary condition; (h) Reconstructed 256×256
image from Algorithm 2 with symmetric boundary condition; (i) Reconstructed 256×256 image from
Algorithm 3 with symmetric boundary condition.
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Step 2: Using w as the observed high-resolution image, we solve for the high-
resolution image u by using the least-squares model, Algorithm 2, or
Algorithm 3.

Step 3: After obtaining u, we reformulate a set of low-resolution frames from u
by passing it through the lowpass filter and then replacing those in the
set A by the given ones. Then we have a new observed high-resolution
image g.

Step 4: With this new observed high-resolution image g, we solve for the final
high-resolution image f by using the least-squares model, Algorithm 2,
or Algorithm 3.

In our test, the interpolatory filter from [6] is used in step 1 and the subset A is
chosen to be {(0, 0), (0, 2), (1, 1), (1, 3), (2, 0), (2, 2), (3, 1), (3, 3)}. As in section 4.2.2,
the tensor product of the lowpass filter m in Example 2 is used to generate the low-
resolution images, and white noise at SNR = 40dB is added. Table 5 shows the
results of the least-squares model and Algorithms 2 and 3 with symmetric boundary
conditions. The optimal β∗ in step 2 and step 4 is 0.0121 and 0.0105 for the least-
squares method and 0.0170 and 0.0161 for Algorithm 2, respectively. The total number
of iterations for Algorithm 3 in step 2 and step 4 is 35. Figure 6(a) is the approximation
of the observed low-resolution image after the interpolatory subdivision scheme (i.e.,
it is the vector w in step 1) and Figure 6(b) is the resulting picture from our super-
resolution algorithm with Algorithm 3 (i.e., the vector f in step 4).

Table 5
The results of the super-resolution image reconstruction.

Least-squares model Algorithm 2 Algorithm 3
PSNR RE PSNR RE PSNR RE
27.44 0.0787 27.82 0.0753 28.03 0.0734

(a) (b)

Fig. 6. (a) Approximation of the observed low-resolution image; (b) The reconstructed high-
resolution image using Algorithm 3 with symmetric boundary condition.

5. Concluding remarks. Using examples in high-resolution image reconstruc-
tion, we have shown that our new wavelet thresholding algorithm is better than the
traditional Tikhonov least-squares algorithm. We emphasize that the main issue here
is essentially deconvolving noisy data by wavelet approach. Our new algorithm works
not only for high-resolution image reconstruction but also for more general deblur-
ring problems, as the 1D examples in section 4.1 have shown. More precisely, our
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method works if, for the given low pass filter a, we can find the corresponding ad, bν ,
and bdν that satisfy (11). If it is not the case, for example, if the blurring function
is a Gaussian-shaped function, one can first approximate it by a (refinable) B-spline
function (or its dyadic dilation). Then, its refinement mask will be a choice of a. The
dual ad of a can be found easily (see, e.g., [5] and [10]). When a dyadic dilation of
B-spline is used to approximate a Gaussian-shaped function, since a dyadic dilation of
refinable B-spline is vector refinable, one can derive algorithms similar to those given
here in terms of multiwavelets.

Appendix. Analysis via residuals. In this appendix, we explain through the
residual analysis why (17) is the right equation to solve for the image reconstruction
problem. For this, we first derive (17) by analyzing the observed function g given
in (10). Since φd is refinable and since S1(φd) is a half integer shift-invariant space,
φd(· − α/2), α ∈ Z2, are in S1(φ). Hence, g is in S1(φd) and can be written as

g = 2
∑
α∈Z2

h(α)φd(2 · −α).

By substituting φd(·) and its half integer translates in (10) by

φd = 2
∑
α∈Z2

ad(α)φd(2 · −α)

and its half integer shifts, we see that h = ad(−·) ∗ a ∗ v. Therefore, the solutions of

ad(−·) ∗ a ∗ z = ad(−·) ∗ a ∗ v(21)

are possible approximations of v since the given observed function g can be generated
from this solution. In fact, (17) is the corresponding matrix equation for (21).
On the other hand, recovering the original image from the observed high-resolution

image a ∗ v is to deconvolve the equation

a ∗ z = a ∗ v.(22)

In fact, (4) is the matrix representation of this equation.
Here, we give some residual analysis on the difference between using (22) and (21),

when only numerical approximation solutions can be obtained. Let v1 be a numerical
solution of (22) and v2 be a numerical solution of (21). Define

f1 := 2
∑
α∈Z2

v1(α)φ
d(2 · −α),

and

f2 := 2
∑
α∈Z2

v2(α)φ
d(2 · −α).

Then f1 and f2 are the approximations of f corresponding to v1 and v2. Then,

g1 =
∑
α∈Z2

(a ∗ v1)(α)φ
d(· − α/2)

and

g2 = 2
∑
α∈Z2

(ad(−·) ∗ a ∗ v2)(α)φ
d(2 · −α)
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are the observed functions of f1 and f2, respectively, which are the approximations of
g, the observed function of f . Since only g is available, we may compare the difference
between g and g1 and also the difference between g and g2 in terms of the residual
errors of v1 and v2, respectively.
Since the system φd(2 · −α), α ∈ Z2, is a Riesz basis of S1(φd), we will have

(23)

c‖ad(−·)a ∗ v − ad(−·) ∗ a ∗ v2‖2 ≤ ‖g − g2‖2 ≤ C‖ad(−·)a ∗ v − ad(−·) ∗ a ∗ v2‖2.

The upper bound of (23) indicates that the corresponding g2 is a good approximation
of g as long as v2 has a small residual error. The lower bound of (23) asserts that
any good approximation of g must come from the solutions of (21) which have small
residual errors. More precisely, let

f3 := 2
∑
α∈Z2

v3(α)φ
d(2 · −α)

be an arbitrary approximate solution of f , and g3 be the corresponding observed func-
tion. The lower bound estimate of (23) asserts that ‖ad(−·) ∗ a ∗ v − ad(−·) ∗ a ∗ v3‖2

must be small if ‖g − g3‖2 is small.
On the other hand, since the system φd(· −α/2), α ∈ Z2, normally is not a Riesz

system (only the upper Riesz bound in (8) holds for this system), we have only

‖g − g1‖2 ≤ C‖a ∗ v − a ∗ v1‖2.(24)

This indicates that those solutions of (22) with small residual errors will have their
observed function close to g. However, the lack of lower bound estimate for (24)
indicates that not all good approximations of g necessarily come from the solutions
of (22) with small residual errors.

REFERENCES

[1] N. Bose and K. Boo, High-resolution image reconstruction with multisensors, International
J. Imaging Systems and Technology, 9 (1998), pp. 294–304.

[2] C. Brislawn, Classification of nonexpansive symmetric extension transforms for multirate
filter banks, Appl. Comput. Harmon. Anal., 3 (1996), pp. 337–357.

[3] D. Capel and A. Zisserman, Super-resolution enhancement of text image sequences, in Pro-
ceedings of the International Conference on Pattern Recognition, International Association
for Pattern Recognition, Vol. 1, 2000.

[4] R. Coifman and D. Donoho, Wavelet and Statistics, Lecture Notes in Statist. 103, Springer–
Verlag, New York, 1994, pp. 125–150.

[5] I. Daubechies, Ten Lectures on Wavelets, CBMS–NSF Regional Conf. Ser. in Appl. Math.,
61, SIAM, Philadelphia, 1992.

[6] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx.,
5 (1989), pp. 49–68.

[7] D. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), pp. 613–
627.

[8] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1996.

[9] R. Gonzalez and R. Woods, Digital Image Processing, Addison–Wesley, Reading, MA, 1993.
[10] H. Ji, S. Riemenschneider, and Z. Shen,Multivariate compactly supported fundamental refin-

able functions, dual and biorthogonal wavelets, Stud. Appl. Math., 102 (1999), pp. 173–204.
[11] S. Jefferies and J. Christou, Restoration of astronomical images by iterative blind decon-

volution, Astrophysics J., 415 (1993), pp. 862–874.
[12] J. Kalifa and S. Mallat, Thresholding estimators for inverse problems

and deconvolutions, Ann. Statist., submitted, also available online from
http://www.cmap.polytechnique.fr/∼mallat.



1432 R. CHAN, T. CHAN, L. SHEN AND Z. SHEN

[13] J. Kalifa, S. Mallat, and B. Roug, Minimax deconvolution in mirror wavelet
bases, IEEE Trans. Image Process, submitted; also available online from
http://www.cmap.polytechnique.fr/∼mallat.

[14] E. Kaltenbacher and R. Hardie, High resolution infrared image reconstruction using mul-
tiple, low resolution, aliased frames, in Proceedings of IEEE 1996 National Aerospace and
Electronic Conference, IEEE Computer Society Press, Piscataway, NJ, 1996, pp. 702–709.

[15] S. Kim, N. Bose, and H. Valenzuela, Recursive reconstruction of high resolution image from
noisy undersampled multiframes, IEEE Trans. Acoust., Speech, and Signal Process., 38
(1990), pp. 1013–1027.

[16] W. Lawton, S. L. Lee, and Z. Shen, Stability and orthonormality of multivariate refinable
functions, SIAM J. Math. Anal., 28 (1997), pp. 999–1014.

[17] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, San Diego, CA,
1999.

[18] M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models with Neu-
mann boundary conditions, SIAM J. Sci. Comput., 21 (1999), pp. 851–866.

[19] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.
[20] Z. Shen, Extension of matrices with Laurent polynomial entries, in Proceedings of the 15th

IMACS World Congress 1997 on Scientific Computation, Modelling and Applied Mathe-
matics, A. Syclow, ed., 1997, pp. 57–61.

[21] S. Skiena, The Algorithm Design Manual, Springer–Verlag, Berlin, 1997.
[22] R. Schultz and R. Stevenson, Extraction of high-resolution frames from video sequences,

IEEE Trans. Image Process., 5 (1996), pp. 996–1011.
[23] A. Tekalp, M. Ozkan, and M. Sezan, High-resolution image reconstruction from lower-

resolution image sequences and space-varying image restoration, in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. III, IEEE
Press, Piscataway, NJ, 1992, pp. 169–172.

[24] R. Tsai and T. Huang, Multiframe image restoration and registration, Advances in Computer
Vision and Image Processing, 1 (1984), pp. 317–339.

[25] M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, A. K. Peters,
Boston, MA, 1994.


