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1. INTRODUCTION

Let K be a nonempty subset in a (real) Banach space X. For each x € X,
we say that y € K is a best approximation to x from K if

lx—yl = inf{l x — z|): ze K.

The set K is called proximinal (Chebyshev) if every point x € X has a (unique)
best approximation from K. It is easy to see that every closed convex set
K in a reflexive space X is proximinal. In addition, if the norm is strictly
convex, then K is Chebyshev. However, if X is not assumed reflexive or K
is not assumed convex, then the above result is false in general. In
[7], Ste€kin introduced the concept of almost Chebyshev. A set X is called
almost Chebyshev if the set of x in X such that K fails to have unique best
approximation to x is a first category subset of X. He proved that if X is
a uniformly convex Banach space, then every closed subset is almost
Chebyshev. By using this concept, Garkavi [4] showed that for any reflexive
subspace F in a separable Banach space, there exists a (in fact, many) sub-
space G which is B-isomorphic to F and is almost Chebyshev. The author
[6] showed that if X is a separable Banach space which is locally uniformly
convex or possesses the Radon-Nikodym property, then ‘“almost all”
closed subspaces are almost Chebyshev. In [3], Edelstein proved that if X -
has the Radon-Nikodym property, then for any bounded closed convex
subset K, the set of x in X which admit best approximations from K is a
weakly dense subset in X.

In this paper, we generalize SteCkin’s result to a wider class of Banach
spaces. A Banach space is called a U-space if for any € > 0, there exists
8 > 0 such that for any x, ye X with || x|| = ||¥|| = 1 and ||(x + »)/2|| >
1 — 38, [I(x* 4+ y*)/2|| > 1 — ¢, where x* and y* are norm 1 support
functionals of the closed unit ball of X at x, y, respectively. We show that
this class of spaces is self-dual, it contains all uniformly convex spaces,
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uniformly Fréchet differentiable spaces and is contained in the class: of
uniformly nonsquare Banach spaces. Our main result is: Every closed subset
in a locally uniformly convex U-space is almost Chebyshev.

In Section 2, we obtain some basic properties of the U-spaces. We prove
the main results in Section 3.

2. U-SPACES

Throughout, we will use the following notation:

X real Banach spaces.

X* dual of the Banach space X.

B(x, r) the set of points whose distance to x is less than or equal to r.
B,  B(x,r)with x = 0.

S, the set of points with norm equal to .

vV, the set of norm 1 support functionals of S at x.

For eachxéSl, x*eV,,andfor1l >r > 0,8 > 0, we let

Nr(x, ) : B\B(—rx, 1 +r — 8),

M, (x,8) = B(rx,1 —r + S)\B,,
- d(x*, Ni(x, 8)) = sup{l — x*(»): y € Ni(x, 8)},
Sd(x*, M,(x, 8)) = sup{l + & — x*(»): y € M (x, 6)}.

The following proposition is the motivation of the definition of U-spaces
and 1ts geometric characterization w1ll be used in the next section (Lemma 3.1,
Proposmon 3.2).

PROPOSITION 2.1. Let X be a Banach space, let x€ S, and let x*e V,,.
Then the following conditions are equivalent:

(1) For any € > 0, there exists & > 0 (depends on x, x*, €) such that
for any y € Sy with ||(x + »)/2]| > 1 — 8, x*(y) > 1 — e.
(i) limg,o d(x*, N(x,0)) = O forany 1 >r = 0.
(iil)) limg,q d(x*, M, (x,8)) = O for any 1 >r > 0.
Proof. The equivalence of (ii), (iii) follows from the fact that N.(x, 8)

is a homothetic translation of M,(x, 8) and vice versa. To prove (1) implies
(i1), suppose there exists 1 > r > 0 such that

laing d(x*, N(x, 8)) > 2e for some e > 0.
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Let 8, > O be a number satisfying
IGe+ )20 > 18, yeS =x¥*y)>1—-e )

For & = min{réy/2, €/2}, choose ye N,(x,8) such that 1 — x*(y) > 2e,
Le., x*(y) <1 — 2e. Notethat]ly +rx|| =14 r—8, hence|ly|| =1 — §;
also note that || y || << 1. Let y, = y/|| ¥ |l, then ||y — y, || < 28 and

X*¥(y) <1 —2e+20 <1 —2¢e+e=1—e
It follows from (*) that |
« e 4+ y)/21 <1 — &
Thus
Iy +rxll <y —yll +11r(e+2 — A =)yl
<20+2r(1 —38) + (1 —r)
<1-+r—24.
This contradicts that y is in N,(x, §).

To prove the sufficiency, suppose that (i) were not true, we can ﬁnd e >0
such that for any § > 0, there exists y € §; with

ICc =201 >1—38, butx*(y) <I1—e (*%)

By (ii), there exists §, such that d(x*, N(x, 8,) < e. Consider § = 8o/2,
there exists y .5, satisfies (**), hence YEN(x,8) and ||y + rx|| <1 4+
r — 8, . Now,

|*52 ] = 557 - 25
- 1¥2—r_|_ 1—|~3—80
ST N

This contradicts the choice of y

DEFINITION 2.2. A Banach space X is called a U-space if for any € > 0,

there exists 8 > 0 such that for any x, y €S, with [[(x + y)/2| > 1 — §,
x*(y) > 1 — eforany x*eV,.

It is clear that in the above definition we can assume x, y € B, mstead of
x, y €S . It also follows easily from the definition that X is a U-space if and
only if for any e > 0, there exists 6 > 0 such that for any x, y € S, with
IGx + )21 > 1 — &, Ix* +y*)/2] > 1 — e for all x*e V,, y*eV,
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In the rest of this section, we will give some classification of the U-spaces.
A Banach space is called uniformly nonsquare [2, 5] if there exists 0 < a < 1.

“satisfies for any x,.y in B, , either [|(x +)/2|| < a or |[(x — »)2] < q,

Following directly from the definitions, we can show that every U-space
is uniformly nonsquare. Also, it is easy to see that a uniformly nonsquare
space is not necessarily a U-space. (The two-dimensional Banach space with
the norm generated by a hexagon will be an example.) In [5], it is proved that
every uniformly nonsquare space is reflexive. Hence, we have

COROLLARY 2.3. Every U-space is reflexive.

THEOREM 2.4. Let X be a Banach space, thén X is a U-space if and only

i X* is a U-space.

Proof. By the above, it suffices to show that X* is a U-space implies X
is a U-space. For any ¢ > 0,let 5 > Obe a number satisfies
““x‘_—%v” x¥,y¥eS* = x*(p) >1—¢6 yeVyu. (9

Letx, ye S, SatISfYH(x + »)2|| > 1 — 8. For z* € Vg » 25((x + y)/2) >
1 — 8 hence .

Z¥(x) > 1 — 28, z¥(y) > 1 — 29.
It follows that

S mei-s (FE) o1

and
H' z* b x*

k[N R N Ea i PO

vChoose z € V,« ; by (¥), we have

x*¥z) >1—e¢, y¥z) >1—e

This implies ||(x* + y*)/2|| > 1 — € and completes the proof.

A Banach space is called locally uniformly convex if for any x € S; and
for any € > 0, there exists § > 0 (depends on e, x) such that for any y € S,
with ||x — y|| > € lI(x +»)/2|| >1— 8. It is called uniformly convex
if the 8 above can be chosen independent of x € S; . A Banach space is called
uniformly Fréchet differentiable if lim,., (| x + y Il — Il x D/l y ] exists for
all x € S; and the limit is independent of x. It is well known [2] that X is
uniformly convex if and only if X* is uniformly Fréchet differentiable.
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COROLLARY 2.5. Uniformly convex spaces and uniformly.Fréchet differen-
tiable spaces are U-spaces. ’ o

3. BEST APPROXIMATION

Let K be a closed subset in a Banach space X, we define the distance
function from x to X as

r(x) = inf{| x — z|: z e K}.
It is clear that | r(x) — r(»)| < || x — y|| for all x,ye€X. Fordé > 0, we let
Ki(x) = B(x, r() + 8) N K,
Kf(x) = {z*:z* e V,_,, dist(z, Ky(x)) < 8},
| do(x) = sup{z*(y; — y2): 1, 2 € Ky(x), z* € KF(x)},
and ‘ |

d(x) = lim dy(x).

-

We remark that Ky(x), KX(x) are decreasing as 6 — 0, hence dy(x) is
decreasing and the limit exists.

- Let X be a U-space, it is clear that the two limits lim 5.4 d(x*, N,(x, §))
and limg,q d(x*, M,(x, 8)) in Proposition 2.1 converge to 0 uniformly for
x €S, and x* eV, . In the following, we need a slightly stronger result.

LemMA 3.1. Let X be a U-space. Then Jor € >0, 1 >r >0, there
exists 8§ > 0 satisfies '

[ 2% — p)l < e
for all y;, y,, z€ M,(x, 8), z*e Ve, XES,.

Proof. Note that M,(x, §) and N,(x, 8) are homothétic translations of
each other, it will be more convenient to prove: for any € > 0, there exists
8 > 0 such that for all y, , y,, z € N,(x, 9),z¥eV,,xes,,

| 2%(n — 2| < e.

Since X is a U-space, we can find 8§, > 0 such that

|

Y1+ e
2

>1 =381, y»,0eB =y >1—(2), y* eV, . (¥
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As lim,., d(x*, N,(x, 8)) = O uniformly for xeS;, x*€V,, there exists
8 < 8, (independent of x € S, , x* € V,)) such that for y € N,(x, 8), x*(y) >
1 — 8, . Hence for y;, ¥5, z € N(x, 8), we have

. x*(z + »)/2) > 1 — 8,1, i =1,2.

This implies ‘

| Iz +yd2l>1—06,, =12

By (%), z*(p;) > 1 — (¢/2), for z*€ V,, i = 1,2, hence | z%(y1 — y2)| < e.
PROPOSITION 3.2. Let X be a U-space and let K be a closed subset in X,

then the set {x: d(x) = O} is a dense G, in X.

Proof. We will show that for each n, the set F, = {x: d(x) (1/n)} is
closed and contains no interior. The Baire theorem will imply that (,_; F,
is a nowhere dense set and hence {x: d(x) = 0} is a dense G5, .

To show that F,, is closed, let x, ¢ F,, . Without loss of generality, we assume
that x, = 0. There exist §, > 0, such that

zX(3 — y)) < (U/n) Yy, ya€ K5 (0), z* € K5(0).
Choose 6, = (80/3) for| x| < &, , we have '
(1) r(x) + 8; < r(0) + 28, , hence K; (x) C K, (O)
(i) z*e Kf(x) = z* € V,_,, where dist(z, K;,(x)) < 01,
e z*eV, ., where dist(z — x, Ky (0)) < S,
= z* e K}(0), |

ie., Kf(x) C K5 (0). ,
It follows that for || x|| < 6;, we have

z¥(yr — y2) < (/n)  Vy1, 5 € Ky(x), ¥ € K* )

hence d; (x) < 1/n and Bs N F, = 7. Thxs completes the proof that F,

is closed.
Assume that F, had nonvoid interior. Without loss of generality, let

B,CF.? (1 >r >0) and r(0) = 1. By Lemma 3.1, there exists § >0
satisfies -

Z¥(yr — yo) < 1/n Vyi,Y2,2€ M(x,8),z2%€V, 4, Xx€S8;. (™
Let 8, = /3, choose x4 € Byy5, N K. Let x; = xo/ll xoll, X, = rx,. Then

Kﬁo(xr) g Mr(xl 3 280)
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and ‘for z such that dist(z, K5 (%)) < 8y, let 2/ = Xz + (1 — X) x, with
A>0and|z| = 1.1tis easy to show that '

| 2" € M,(x1,380) = M,(x,, 9).
Thus (*) implies .

z¥(y, — V) < 1/n Vi, ye € Ks(x,), z*e K;:,(xr);

Le., d(x,) < 1/n. This contradicts that x, e F,°.

DEFINITION 3.3. A subset K in a Banach space is called almost Chebyshey
if the set of x e X which fails to have unique best approximation from K
to x is a first category subset of X. ‘

Recall that a locally uniformly convex space has the following property:
If x, >* x and || x, | — || x I, then x,, —I'll x, ‘

THEOREM 3.4. Let X be a locally uniformly convex U-space, every closed
subset in X is almost Chebyshev. :

Proof. By Proposition 3.2, we know that the set G — {x:d(x) = 0}
is a dense G, . Let x e G, choose y, € B(x, r(x) + (1/m)) N K. Without loss
of generality, by the reflexivity of X, we may assume that { y,} converges to
y weakly. Since d(x) = 0 and lim,, ., Vi m — x) = y¥ (y — x), yX €Vy _a)
we can show that for any ¢ > 0, y e {z: 8z — Xx) = r(x) — ¢} for some n.
This implies||y — x|| = r(x) and ||y, — x| — | Yy — x|. Since X is locally
uniformly convex, by the above remark, y, —I'l x. That X is closed implies
y e K and '

lx =yl =r(x) = inf{]] x — z || ze Kj}.

Hence, every point x € G is a best approximation from K. It is proved in [7]
that under the same assumption, the set in X which has not more than one

‘best approximation from X is also a dense G, . Together with what we proved -

above, we conclude that K is almost Chebyshev.

Remarks. (1) Bya renorming theorem of Asplund [1], we can construct

‘a locally uniformly convex, uniformly Fréchet differentiable space which is
~ not uniformly convex; hence, Theorem 3.5 generalizes the result of Ste&kin.

(2) We do not know whether Theorem 3.4 will hold for reflexive
locally uniformly convex spaces. It is interesting to know whether similar
result holds for U-spaces (In this case, we have to give up the requirement of
uniqueness in the definition of almost Chebyshev subsets). :

(3) Edelstein [3] gave an example that the above theorem may not

.h‘old in separable, strictly convex reflexive Banach spaces.
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Note added in proof. Recently the author proved that Theorem 3.4 holds for reflexive
locally uniformly convex spaces.
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