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Abstract

Let φ(x) = ∑∞
n=0 cnχE(x − n) with {cn}∞

n=0 ∈ l1, and let (φ, a,1), 0 < a � 1 be a Weyl–Heisenberg

system {e2πimxφ(x − na): m,n ∈ Z}. We show that if E = [0,1] (and some modulo extension of E),
then (φ, a,1) is a frame for each 0 < a � 1 (for certain a, respectively) if and only if the analytic function
H(z) = ∑∞

n=0 cnzn has no zero on the unit circle {z: |z| = 1}. These results extend the case of Casazza and

Kalton (2002) [6] that φ(x) = ∑k
i=1 χ[0,1](x −ni) and a = 1, which brought together the frame theory and

the function theory on the closed unit disk. Our techniques of proofs are based on the Zak transform and
the distribution of fractional parts of {na}n∈Z.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let g ∈ L2(R) and a, b ∈ R
+, we use (g, a, b) to denote the Weyl–Heisenberg system

(also called the Gabor system) {EmbTnag: m,n ∈ Z} generated by a window function g. Here
Ebg(t) = e2πibt g(t) is the modulation operator and Tag(t) = g(t −a) is the translation operator.
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We say that (g, a, b) is a Weyl–Heisenberg frame (WH-frame for short) for L2(R) if there exist
two positive constants A, B such that

A‖f ‖2 �
∑

m,n∈Z

∣∣〈f,EmbTnag〉∣∣2 � B‖f ‖2 (1.1)

holds for every f ∈ L2(R). We refer to [4,10,13] for some background materials and the recent
development of this frame theory and related questions.

For any g ∈ L2(R), a fundamental problem in this area is to find all a, b ∈ R
+ such that

(g, a, b) generates a WH-frame for L2(R). One general restriction is ab � 1 due to the well-
known density condition. However, this restriction is far from providing an answer to the funda-
mental problem. There is considerable amount of the literature on this problem (cf. [4–6,8,11–14,
16,20,22–24]), and at this time the problem is completely solved only for three basic functions:
the Gaussian function e−t2

[20,24], the hyperbolic secant (cosh t)−1 [17] and the one-sided ex-
ponential function e−|t |χ[0,∞)(t) [15]. Here we are concerned with the case when the window
function g is a linear combination of certain characteristic functions. If ab � 1, after rescaling
we assume that b = 1 and 0 < a � 1 without loss of generality. It is surprising that even for the
simplest case g = χ[0,c), the classification of all a, c ∈ R

+ is rather difficult, and it is associated
with a complicated set called Janssen’s tie ([16], see also [12]). In [6], Casazza and Kalton con-
sider E = [0,1) + {n1, . . . , nk}, a finite union of the unit length intervals with integer end points.
They showed that (χE,1,1) is a frame (indeed a Riesz basis) if and only if

∑k
i=1 zni has no zeros

on the unit circle. In this paper, we continue this investigation in two directions:

(i) we replace φ = ∑k
i=1 χ[ni ,ni+1] by more general simple functions; and

(ii) we extend a = 1 to more general 0 < a � 1.

Throughout we assume that {cn}n are complex numbers and
∑∞

n=0 |cn| < ∞, and H(z) =∑∞
n=0 cnz

n for |z| � 1. It is clear that H(z) is continuous for {|z| = 1}.
Our main theorem is

Theorem 1.1. Let φ(x) = ∑∞
n=0 cnχ[0,1)(x − n). Then for each 0 < a � 1 (and hence for all

0 < a � 1), (φ, a,1) is a frame if and only if H(z) has no zeros on {|z| = 1}.

Let E be a Borel set in R and let φ(x) = ∑∞
n=0 cnχE(x − n). Then the support of φ is con-

tained in
⋃∞

n=0(E + n). A basic necessary condition for (φ, a,1) to be a frame is that there exist
constants C, D such that

0 < C �
∑
k∈Z

∣∣φ(x − ka)
∣∣2 � D < ∞ a.e.

(see e.g., [7]). This implies that E ≡ [0,1) (mod 1) when a = 1, c0 = 1 and cn = 0 for n > 0. We
say a Borel subset E ⊂ R is a modulo-partition of [0,1] if

E ≡ [0,1] (mod 1) and E ∩ (E + n) = ∅, ∀n = 0.

As a generalization of Theorem 1.1 we have
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Theorem 1.2. Let E be a modulo-partition of [0,1], and let φ(x) = ∑∞
n=0 cnχE(x − n). Then

for each q ∈ N, (φ,1/q,1) is a frame if and only if H(z) = ∑∞
n=0 cnz

n has no zeros on {|z| = 1}.

We can make restrictions on the above modulo-partition set E to allow more general transla-
tions a in the system (φ, a,1).

Theorem 1.3. Let E = [0, c) ∪ [N + c,N + 1) with 0 < c < 1 and N ∈ N. Let φ(x) =∑∞
n=0 cnχE(x − n). Then for each 0 < a � max{c,1 − c}, (φ, a,1) is a frame if and only if

H(z) = ∑∞
n=0 cnz

n has no zeros on {|z| = 1}.

We also give an example to show that the condition 0 < a � max{c,1 − c} in Theorem 1.3
cannot be omitted. It would be interesting to find a sharp condition for such a.

Example 1.4. Let E = [0, 1
2 ) ∪ [N + 1

2 ,N + 1) where N ≡ 1 (mod 3). Assume that H(z) =∑∞
n=0 cnz

n has no zeros on the unit circle, then (φ, 3
4 ,1) is not a frame.

In the study of WH-frames, the Zak transform has been used extensively. For example,
Janssen, Casazza and the others used the transform to study the frame (g, a,1) for the case
a = 1 or a = 1/q , q ∈ N, Ron and Shen [22] and Zibulski and Zeevi [25] used it to consider the
case a is rational. In our investigation here, we will also use the Zak transform, together with
another new technique for the irrational a on the distribution of {na −[na]}n∈Z ([x] is the largest
integer which is less than or equal to x).

The theorems bring together frame theory and analytic function theory on the unit disk. The
zeros of H(z) = ∑∞

n=0 cnz
n on the unit circle have been studied for a long time. There is a

simple sufficient condition (Kakeya theorem) to guarantee that the function H(z) has no zeros
on the unit disk: the coefficients {cn}∞n=0 are a decreasing sequence of positive reals such that
cj−1 > cj > cj+1 for at least one j � 1 ([18], see also [16]). Recently the problem has also
been studied extensively for polynomials with restricted coefficients (e.g., p(z) = ∑N

n=0 anz
n

where an ∈ {0,1} (Newman polynomial) or an ∈ {−1,1} (Littlewood polynomial) (see [1,3,21]
respectively and the references therein)). There are also numerical results in connection with
number theory [9] and analysis [2,19].

For the organization of the paper, we prove the necessity of the theorems, and also the upper
frame bound of the sufficiency in Section 2. The main task is to establish the positive lower frame
bound of the sufficiency. This is proved in Section 3 for the rational translations, and in Section 4
for the irrational translations.

2. Preliminaries

For f ∈ L2(R), we define the Zak transform of f by [4,13]:

Zf (x, t) =
∑
k∈Z

f (x + k)e−2πikt , x, t ∈ [0,1].

It is clear that the series converges in L2(Q) where Q = [0,1) × [0,1). Note that Zf is quasi-
periodic in the following sense:

Zf (x + 1, t) = e2πitZf (x, t), Zf (x, t + 1) = Zf (x, t).
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Hence it is sufficient to consider (x, t) ∈ Q. By definition, we have ZEmTnχ[0,1)
(x, t) =

e2πi(nx+mt) for m,n ∈ Z and (x, t) ∈ Q, it follows that the Zak transform is a unitary map
from L2(R) onto L2(Q) [4,13].

The following lemma will be used throughout the paper.

Lemma 2.1. Let f,g ∈ L2(R), then

∑
m,n∈Z

∣∣〈f,EmTnag〉∣∣2 =
∑
n∈Z

1∫
0

dx

∣∣∣∣∣
1∫

0

Zf (x, t)Zg(x + na, t) dt

∣∣∣∣∣
2

.

Proof. It follows from the definition of the Zak transform that ZEmTnag(x, t) = Zg(x −
na, t)e2πimx . Hence

∑
m,n

∣∣〈f,EmTnag〉∣∣2 =
∑
m,n

∣∣〈Zf ,ZEmTnag〉
∣∣2

=
∑
n

∑
m

∣∣∣∣∣
1∫

0

( 1∫
0

Zf (x, t)Zg(x − na, t) dt

)
e−2πimx dx

∣∣∣∣∣
2

=
∑
n

1∫
0

∣∣∣∣∣
1∫

0

Zf (x, t)Zg(x − na, t) dt

∣∣∣∣∣
2

dx. �

Let E be a bounded Borel subset in R. Define

φ(x) =
∞∑

n=0

cnχE(x − n) (2.1)

where all cn are complex numbers and
∑∞

n=0 |cn| < ∞. Let H(z) = ∑∞
n=0 cnz

n, then H is a
continuous function on {|z| = 1}, and

Zφ(x, t) = ZχE
(x, t)

∞∑
n=0

cne
−2πint = ZχE

(x, t)H
(
e−2πit

)
, (x, t) ∈ Q. (2.2)

To abbreviate the notations in Lemma 2.1, we will fix g = φ, and use S(f ) to denote the two
sums there. Let

F(x; s, k) =
1∫

0

Zf (x, t)Zφ(x + s, t)e−2πikt dt. (2.3)

Hence the quasi-periodic property implies that F(x;�, k) = F(x;0, k + �) for any integer �, and
the above lemma can be rewritten as
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S(f ) =
∑
n

1∫
0

∣∣F(x;na,0)
∣∣2

dx. (2.4)

For the above H(z), we let

A = min|z|=1

∣∣H(z)
∣∣ and B = max

|z|=1

∣∣H(z)
∣∣. (2.5)

It is easy to check that for any bounded Borel set E, φ(x) = ∑∞
n=0 cnχE(x − n) lies in the

Wiener amalgam space W(L∞, �1), it follows that (φ, a,1) is a Bessel sequence [10, Proposi-
tion 6.2.2]. The following proposition states this fact. We give a direct proof for the convenience
of the reader.

Proposition 2.2. Let E be a bounded Borel set and let φ(x) = ∑∞
n=0 cnχE(x −n). Then for each

0 < a � 1, there exists C > 0 dependent on a such that

∑
m,n∈Z

∣∣〈f,EmTnaφ〉∣∣2 � C‖f ‖2 ∀f ∈ L2(R).

Proof. Since E can be decomposed as E = ⋃N
n=−N(En + n) for some N ∈ N where each En ⊆

[0,1), we have ZχE
(x, t) = ∑N

n=−N χEn(x)e−2πint for (x, t) ∈ Q. Note that, for any 0 � α < 1,

ZχE
(x + α, t) =

{
ZχE

(x + α, t), 0 � x < 1 − α;
ZχE

(x + α − 1, t)e2πit , 1 − α � x < 1.

For 0 � x < 1 − α, we have

∣∣F(x;α, k)
∣∣2 =

∣∣∣∣∣
1∫

0

Zf (x, t)

N∑
n=−N

χEn(x + α)e2πintH
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

� (2N + 1)

N∑
n=−N

∣∣∣∣∣
1∫

0

Zf (x, t)e2πi(n−k)tH
(
e−2πit

)
dt

∣∣∣∣∣
2

.

Similarly for 1 − α < x � 1, we have

∣∣F(x;α, k)
∣∣2 � (2N + 1)

N∑
n=−N

∣∣∣∣∣
1∫

0

Zf (x, t)e2πi(n−k−1)tH
(
e−2πit

)
dt

∣∣∣∣∣
2

.

Hence

1∫ ∣∣F(x;α, k)
∣∣2

dx � (2N + 1)

N∑
n=−N

1∫
dx

(∣∣∣∣∣
1∫
Zf (x, t)e2πi(n−k)tH

(
e−2πit

)
dt

∣∣∣∣∣
2

0 0 0
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+
∣∣∣∣∣

1∫
0

Zf (x, t)e2πi(n−k−1)tH
(
e−2πit

)
dt

∣∣∣∣∣
2)

.

Let Fk = {na−[na]: [na] = k, n ∈ Z} where [na] is the largest integer � na, then 1 � #Fk(a) �
1 + a−1. We have, from the above,

S(f ) =
∑
k∈Z

∑
α∈Fk

1∫
0

∣∣F(x;α, k)
∣∣2

dx

� C1

1∫
0

dx

1∫
0

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt � C1B

2‖f ‖2,

where C1 = 2(2N + 1)2(1 + a−1). �
Proposition 2.3. Let E be a bounded Borel set and let φ(x) = ∑∞

n=0 cnχE(x − n). For each
0 < a � 1, suppose there exists C > 0 such that

∑
m,n∈Z

∣∣〈f,EmTnaφ〉∣∣2 � C‖f ‖2 ∀f ∈ L2(R).

Then min|z|=1 |H(z)| = A > 0 where H(z) is given in (2.2).

Proof. If A = 0, there exists t0 ∈ [0,1) such that H(e−2πit0) = 0. For any ε > 0, we have
|H(e−2πit )| � ε when t ∈ I a sub-interval of [0,1). Let f ∈ L2(R) be such that Zf (x, t) =
χI (t). By the same argument as in Proposition 2.2, we have

S(f ) � C1

1∫
0

dx

∫
I

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt � ε2C1‖f ‖2,

where C1 is the same as in the above proposition, this contradicts the hypothesis. �
3. Proofs for rational translations

We first consider Theorem 1.2 with φ(x) = ∑∞
n=0 cnχE(x −n) where E is a modulo-partition

of [0,1]. In that case a = 1/q in the WH-system (φ, a,1).

Proof of Theorem 1.2. We see that the modulo-partition property implies that
⋃

n∈Z(E + n) =
R is a disjoint union. Hence for x ∈ [0,1), there exists a unique integer η(x) such that x +
η(x) ∈ E, then

ZχE
(x, t) = e−2πiη(x)t , x, t ∈ [0,1). (3.1)

Note that na = j/q + k for some j and k. By Lemma 2.1 and (2.3),
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S(f ) =
∑
n∈Z

1∫
0

∣∣F(x;na,0)
∣∣2

dx =
∑
k∈Z

q−1∑
j=0

1∫
0

∣∣F(x; j/q, k)
∣∣2

dx

=
q−1∑
j=0

∑
k∈Z

1−j/q∫
0

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(k−η(x+j/q))t dt

∣∣∣∣∣
2

dx

+
q−1∑
j=0

∑
k∈Z

1∫
1−j/q

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(k−η(x+j/q−1)+1)t dt

∣∣∣∣∣
2

dx
(
by (3.1)

)

= q
∑
k∈Z

1∫
0

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

dx

= q

∫
Q

∣∣Zf H
(
e−2πit

)∣∣2
.

Let A = min|z|=1 |H(z)| and B = max|z|=1 |H(z)| as in (2.5). If A > 0, then the above yields
qA2‖f ‖2 � S(f ) � qB2‖f ‖2, and the sufficiency follows. The necessity follows from the above
identity and the proof of Proposition 2.3. (Note that Proposition 2.3 can be applied directly if E

is bounded, but cannot be applied if E is unbounded.) �
To prove Theorems 1.1 and 1.3 for the rational a, we need one more technique. If a = p/q

where p, q are co-prime, then for 0 � i, j � q − 1, there exist 0 � dij � p and 0 � rij � q − 1
such that

i + jp = dij q + rij .

It is clear that for each i, {rij }q−1
j=0 = {0,1, . . . , q − 1}. The following rearrangement lemma plays

an important role in the proof of the main theorems.

Lemma 3.1. For each 0 � i � q − 1, there exists jk (depending on i) such that

i + jkp = dijk
q + k, k = 0,1, . . . , q − 1.

Moreover

(i) {j0, j1, . . . , jq−1} = {0,1, . . . , q − 1};
(ii) {dijk

, dijk+1, . . . , dijk+p−1} ≡ {0,1, . . . , p − 1} (mod p) for each 0 � k � q − p;
(iii) dijk

≡ dijk+p
(mod p) for 0 � k � q − p − 1.

Proof. (i) follows from the fact that the jk’s are all distinct, and the same for (ii). To prove (iii),
note that the assumption implies (jk+p − jk − 1)p = (dijk+p

− dijk
)q . Hence we have either

dij = dij or |dij − dij | = p. �

k+p k k+p k
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Proof of Theorem 1.1 with rational a. In view of the results in Section 2, it suffices to prove the
existence of a positive lower frame bound. We see that a = 1 is just a special case of Theorem 1.2.
Now let a = p/q < 1 with p, q co-prime. Similar to the above, we have

S(f ) =
∑
k∈Z

q−1∑
j=0

1∫
0

∣∣F(x; jp/q, kp)
∣∣2

dx =
q−1∑
i,j=0

(i+1)/q∫
i/q

∑
k

∣∣F(x; jp/q, kp)
∣∣2

dx.

Fix i, j and let i + jp = dij q + rij as above. Let x ∈ [i/q, (i + 1)/q), and write

x + jp

q
= x − i

q
+ i + jp

q
= x − i

q
+ dij + rij

q
.

Then x + jp/q − dij ∈ [rij /q, (rij + 1)/q). By (2.2),

Zφ(x + jp/q, t) = Zφ(x + jp/q − dij , t)e
2πidij = H

(
e−2πit

)
e2πidij .

Hence, by Lemma 3.1,

S(f ) =
q−1∑
i=0

(i+1)/q∫
i/q

dx

q−1∑
j=0

∑
k

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi·(kp+dij )t dt

∣∣∣∣∣
2

�
q−1∑
i=0

(i+1)/q∫
i/q

dx

p−1∑
�=0

∑
k∈Z

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi·(kp+�)t dt

∣∣∣∣∣
2

=
q−1∑
i=0

(i+1)/q∫
i/q

dx

1∫
0

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt

=
∫
Q

∣∣Zf (x, t)H
(
e2πit

)∣∣2 � A2‖f ‖2.

Hence (φ, a,1) is a frame. �
Proof of Theorem 1.3 with rational a. Again, we need only prove the existence of a positive
lower frame bound. Without loss of generality, we assume that c = max{c,1 − c} (� 1/2). That
E = [0, c) ∪ [N + c,N + 1) implies

Zφ(x, t) =
{

H(e−2πit ), x ∈ [0, c);
e−2πiNtH(e−2πit ), x ∈ [c,1).

Let a = p/q with p, q co-prime. There exists a positive integer β such that β/q � c < (β +1)/q

and thus p � β .
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Note that for x ∈ [i/q, (i + 1)/q) and for 0 � s < p, we can find js and dijs such that x +
jsp/q − dijs ∈ [s/q, (s + 1)/q) ⊂ [0, c) and {dij0, . . . , dijp−1} ≡ {0, . . . , p − 1} (mod p) (by
Lemma 3.1). Similar to the argument in the proof of the last theorem, we have

S(f ) =
q−1∑
i=0

(i+1)/q∫
i/q

dx

q−1∑
s=0

∑
k∈Z

∣∣F(x; jsp/q − dijs , kp + dijs )
∣∣2

�
q−1∑
i=0

(i+1)/q∫
i/q

dx

p−1∑
s=0

∑
k∈Z

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(kp+dijs )t dt

∣∣∣∣∣
2

=
q−1∑
i=0

(i+1)/q∫
i/q

dx

1∫
0

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt

=
∫
Q

∣∣Zf (x, t)H
(
e−2πit

)∣∣2 � A2‖f ‖2,

and the theorem follows. �
In the following we prove Example 1.4, which shows that the condition a � max{c,1 − c} in

Theorem 1.3 cannot be omitted.

Proof of Example 1.4. Let E = [0, 1
2 ) ∪ [N + 1

2 ,N + 1) where N ≡ 1 (mod 3). For a = 3
4 , we

have, as the first identity in the proof of the last theorem,

S(f ) =
3∑

i=0

3∑
j=0

(i+1)/4∫
i/4

dx
∑
k∈Z

∣∣F(x; j3/4 − dij ,3k + dij )
∣∣2

,

where i + j3 = dij 4 + rij for 0 � i, j � 3. We give a calculation of the sum of S(f ) for i = 0.
Note that

Zφ(x, t) =
{

H(e−2πit ), x ∈ [0,1/2);
e−2πiNtH(e−2πit ), x ∈ [1/2,1).

Since d00 = d01 = 0, d02 = 1, d03 = 2, we have

∑
k∈Z

1/4∫
0

dx

3∑
j=0

∣∣F(x; j3/4 − d0j ,3k + d0j )
∣∣2

=
∑
k∈Z

1/4∫
dx

(∣∣∣∣∣
1∫
Zf (x, t)H

(
e−2πit

)
e−2πi(3k)t dt

∣∣∣∣∣
2

0 0
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+
∣∣∣∣∣

1∫
0

Zf (x, t)H
(
e−2πit

)
e−2πi(3k−N)t dt

∣∣∣∣∣
2

+
∣∣∣∣∣

1∫
0

Zf (x, t)H
(
e−2πit

)
e−2πi(3k+1−N)t dt

∣∣∣∣∣
2

+
∣∣∣∣∣

1∫
0

Zf (x, t)H
(
e−2πit

)
e−2πi(3k+2)t dt

∣∣∣∣∣
2)

= 2
∑
k∈Z

1/4∫
0

dx

(∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(3k)t dt

∣∣∣∣∣
2

+
∣∣∣∣∣

1∫
0

Zf (x, t)H
(
e−2πit

)
e−2πi(3k+2)t dt

∣∣∣∣∣
2)

.

Let P = span{e2πi3kt , e2πi(3k+2)t }k∈Z in L2[0,1]. For any nonzero function h ∈ P ⊥, we let
h(t)/H(e−2πit ) = ∑

n∈Z
bne

−2πint . Define

f ∗(x + n) =
{

bn, x ∈ [0,1/4);
0, x ∈ [1/4,1)

for n ∈ Z. Then by the definition of the Zak transform

Zf ∗(x, t) =
{

h(t)/H(e−2πit ), x ∈ [0,1/4);
0, x ∈ [1/4,1).

Hence S(f ∗) = ∑
m,n∈Z

|〈f ∗,EmTn3/4φ〉|2 = 0. This implies that (φ,3/4,1) is not a frame. �
4. Proof for irrational translations

We need a more notation. For fixed a, let

Ak = {
na − �na�: �na� = k and n ∈ Z

}
, k ∈ Z

where �r� is the largest integer � r . Clearly #Ak � 1 + a−1 for each k ∈ Z. Write

α∗k = min{α: α ∈ Ak}, α∗
k = max{α: α ∈ Ak},

and αk = α∗k = α∗ if #Ak = 1.
k
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Lemma 4.1. Let 1/2 < a < 1 be an irrational, then #Ak ∈ {1,2}, and

(i) if #Ak = 2, then 0 � α∗k < 1 − a, a � α∗
k < 1, and k = 0 is the only integer such that

α∗0 = 0, α∗
0 = a;

(ii) if #Ak = 1, then 1 − a � αk < a, and k = −1 is the only integer such that αk = 1 − a.

Proof. We only check the two special cases in (i) and (ii), the rest is clear. Note that A0 = {0, a}
and A−1 = {1 − a}. In (i), if α∗k = 0, then there exists n ∈ Z such that na = k, since a is an
irrational, this forces k = 0. Similarly for α∗

k = a. In (ii), if αk = 1 − a, by definition there exists
n ∈ Z such that na = k + αk = k + 1 − a. This implies that n = −1 because a is irrational, and
thus k = −1. �
Lemma 4.2. Let 0 < a < 1 be an irrational.

(i) If 1/2 < a < 1 and #Ak = #Ak+1 = · · · = #Ak+m for some k ∈ Z, then m � max{ 2a−1
1−a

,
1−a
2a−1 };

(ii) if 1/2 < a < 2/3 and #Ak = 1, then #Ak−1 = #Ak+1 = 2;
(iii) if 2/3 < a < 1 and #Ak = 2, then #Ak−1 = #Ak+1 = 1.

Proof. For (i), we let m be the largest with the property in the hypothesis. When #Ak = 1, by
the definition of Ak and Lemma 4.1, there exists n such that na = k + αk with αk � a, and
(n + m)a = (k + m) + αk+m with αk+m � 1 − a. This yields m � 2a−1

1−a
. The proof for #Ak = 2

is similar.
For (ii), there exists n ∈ Z such that na = k + αk . Let (n + 1)a = k + 1 + x, then x = a − 1 +

αk � 2a − 1 < 1 − a (by Lemma 4.1(ii) and a < 2/3). On the other hand, x > a − 1 + 1 − a = 0
if k = −1 (by Lemma 4.1(ii) again). Hence 0 < x < 1 − a and #Ak+1 = 2 if k = −1. Similarly,
let (n − 1)a = k − 1 + x we have x = 1 − a + αk � 2 − 2a > a and x < 1 − a + a = 1, then
#Ak−1 = 2. For the exceptional case k = −1, we have A−2 = {2 − 3a,2 − 2a} and A0 = {0, a}.
Hence (ii) holds.

The proof of (iii) is similar to (ii). We will show the case that #Ak+1 = 1. Note that the
assumption implies that there exists n ∈ Z such that na = k + α∗

k . Let (n + 1)a = (k + 1) + x,
then x = a − 1 +α∗

k . It follows that 1 − a < 2a − 1 � x < a (by Lemma 4.1(i) and a > 2/3), and
thus Ak+1 = {x} (= {αk+1}). �
Proof for Theorem 1.1 with irrational a. In view of Proposition 2.3, we need only prove the
sufficiency. We separate the proof into three cases:

Case 1: Assume 0 < a < 1/2. Then #Ak � 2, and α∗k ∈ [0,1/2), α∗
k ∈ (1/2,1).

S(f ) =
∑
k∈Z

∑
α∈Ak

1∫
0

∣∣F(x;α, k)
∣∣2

dx

�
∑

k

( 1/2∫ ∣∣F(x;α∗k, k)
∣∣2

dx +
1∫ ∣∣F (

x;α∗
k , k

)∣∣2
dx

)

0 1/2
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=
∑

k

1/2∫
0

∣∣∣∣∣
1∫

0

Zf H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

dx

+
∑

k

1∫
1/2

∣∣∣∣∣
1∫

0

Zf H
(
e−2πit

)
e−2πi(k+1)t dt

∣∣∣∣∣
2

dx

=
∫
Q

∣∣Zf (x, t)H
(
e−2πit

)∣∣2 � A2‖f ‖2.

Hence the sufficiency follows.

Case 2: 1/2 < a < 2/3. We consider the integral of x on [0,1 − a], [1 − a, a] and [a,1] sepa-
rately. By the first identity above,

∑
k∈Z

∑
α∈Ak

1−a∫
0

∣∣F(x;α, k)
∣∣2

dx �
1−a∫
0

∑
k∈Z

∣∣F(x;α∗k, k)
∣∣2

dx

=
1−a∫
0

dx
∑
k∈Z

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

=
1−a∫
0

dx

1∫
0

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt.

A similar estimation for [a,1] holds by replacing α∗k with α∗
k .

For the integral on [1 − a, a], let {kl}l∈Z be the subsequence of all k such that #Ak = 1. By
Lemma 4.2(ii), kl+1 − kl � 2. We split the sum

∑
k∈Z

into
∑

k�
,
∑

k�−1 and
∑

k /∈{k�,k�−1}. We
drop away the first sum, and consider the second sum. By noting that #Akl−1 = 2, we have the
estimation

∑
k�−1

∑
α∈Akl−1

a∫
1−a

∣∣F(x;α, k� − 1)
∣∣2

dx

�
∑
k�−1

a∫
1−a

∣∣F(x;α∗(k�−1), k� − 1)
∣∣2

dx +
∑
k�−1

a∫
1−a

∣∣F (
x;α∗

k�−1, k� − 1
)∣∣2

dx

=
∑
k�−1

a∫
1−a

∣∣F(x;0, k� − 1)
∣∣2

dx +
∑
k�

a∫
1−a

∣∣F(x;0, k�)
∣∣2

dx.

Note that the last equality follows from x + α∗(k�−1) ∈ [0,1] and x + α∗
k�−1 ∈ [1,2] for x ∈

[1 − a, a]. Similarly for the third sum, we have
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∑
k /∈{k�,k�−1}

∑
α∈Ak

a∫
1−a

∣∣F(x;α, k)
∣∣2

dx �
∑

k /∈{n�,n�−1}

a∫
1−a

∣∣F(x;α∗k, k)
∣∣2

dx

=
∑

k /∈{n�,n�−1}

a∫
1−a

∣∣F(x;0, k)
∣∣2

dx.

Summing up the above, we have

∑
k∈Z

∑
α∈Ak

a∫
1−a

∣∣F(x;α, k)
∣∣2

dx �
a∫

1−a

∑
k∈Z

∣∣F(x;0, k)
∣∣2

dx

=
a∫

1−a

dx

1∫
0

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt.

Hence

S(f ) �
1∫

0

1∫
0

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt � A2‖f ‖2.

Case 3: 2/3 < a < 1. We will need another technical lemma that strengthens Lemma 4.2(iii). �
Lemma 4.3. Let a be an irrational number with q+1

q+2 < a <
q+2
q+3 where q ∈ N and #Ak = 2.

(i) If a � α∗
k < (q + 2)(1 − a), then for 1 � s � q , #Ak+s = 1 with (s + 1)a − s � αk+s <

(q + 2 − s)(1 − a), and #Ak+q+1 = 2;
(ii) if (q + 2)(1 − a) � α∗

k < 1, then for 1 � s � q + 1, #Ak+s = 1 with (q + 2 − s)(1 − a) �
αk+s < sa − s + 1, and #Ak+q+2 = 2.

Proof. We consider case (i). By the definition of Ak there exists n ∈ Z such that na = k + α∗
k ,

write (n + 1)a = k + 1 + x. By the assumption on α∗
k , x = α∗

k − (1 − a). It follows that

1 − a < 2a − 1 � x < (q + 1)(1 − a) < a.

This says that Ak+1 = {x} = {αk+1} and αk+1 satisfies (n + 1)a = k + 1 + αk+1. Inductively, for
1 � s � q , we have (n + s)a = k + s + αk+s , then

1 − a � (s + 1)a − s � αk+s < (q + 2 − s)(1 − a) � a, 1 � s � q,

which implies that Ak+s = {αk+s} for 1 � s � q . Finally for s = q + 1, let (n + q + 1)a =
k + q + 1 + x, then by assumption that a < (q + 2)/(q + 3), we have x = α∗(k+q+1) with
0 < (q + 2)a − (q + 1) � α∗(k+q+1) < 1 − a. Thus #Ak+q+1 = 2.

The proof of the second case is similar with some obvious modification. �
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Continuation of the proof of Theorem 1.1. We consider Case 3 that 2/3 < a < 1 is an irrational
number. Similar to the proof of Case 2, it is easy to show that

∑
k∈Z

∑
α∈Ak

d∫
c

∣∣F(x;α, k)
∣∣2

dx �
d∫

c

dx

1∫
0

∣∣Zf (x, t)H
(
e−2πit

)∣∣2
dt (4.1)

holds for both c = 0, d = 1 − a and c = a, d = 1. To estimate the above integrals from 1 − a

to a, we fix a in an open interval (
q+1
q+2 ,

q+2
q+3 ), where q � 1. By Lemma 4.2(iii), there exists an

increasing sequence of integers {kl}l∈Z such that #Ak = 2 if and only if k ∈ {kl}l∈Z. Note that
kl+1 − kl � 2 for l ∈ Z. We estimate the integral for each l ∈ Z through the following two cases:

(i) a � α∗
kl

< (q + 2)(1 − a): then k�+1 = k� + q + 1 by Lemma 4.3(i). We divide [1 − a,1]
as

Ij = [
j (1 − a), (j + 1)(1 − a)

]
, 1 � j � q, and Iq+1 = [

(q + 1)(1 − a),1
)
.

For 1 � j � q + 1, we have the following estimation:

Sj :=
kl+q∑
k=kl

∫
Ij

∑
α∈Ak

∣∣F(x;α, k)
∣∣2

dx

�
∫
Ij

(∣∣F(x;α∗k�
, k�)

∣∣2 + ∣∣F (
x;α∗

kl
, k�

)∣∣2)
dx

+
kl+j−1∑
k=kl+1

∫
Ij

∣∣∣∣∣
1∫

0

F(x;αk, k)

∣∣∣∣∣
2

dx +
kl+q∑

k=kl+j+1

∫
Ij

∣∣∣∣∣
1∫

0

F(x;αk, k)

∣∣∣∣∣
2

dx.

(The first two terms after the inequality follow from #Ak�
= 2; we drop away the term k = k� + j

in the last sum. Note also that for j = q + 1, the last sum is 0 by convention.) Observe that in the
above integrands, x + α∗k�

∈ [0,1], x + α∗
k�

∈ [1,2] by our choice of α∗
kl

in this paragraph. Also
it follows from Lemma 4.3(i) that on the third row, αk + j (1 − a) � 1 in the first sum, so that
x + αk ∈ [1,2], and in the second sum, αk + (j + 1)(1 − a) � 1, so that x + αk ∈ [0,1]. Hence
we have (see the proof of Case 2),

Sj �
∫
Ij

∣∣F(x;0, k�)
∣∣2

dx +
∫
Ij

∣∣F(x;0, kl + 1)
∣∣2

dx

+
kl+j−1∑
k=kl+1

∫
Ij

∣∣F(x;0, k + 1)
∣∣2

dx +
kl+q∑

k=kl+j+1

∫
Ij

∣∣F(x;0, k)
∣∣2

dx

=
kl+q∑
k=kl

∫
I

∣∣F(x;0, k)
∣∣2

dx.
j
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Therefore

kl+q∑
k=kl

a∫
1−a

∑
α∈Ak

∣∣F(x;α, k)
∣∣2

dx �
kl+q∑
k=kl

a∫
1−a

∣∣F(x;0, k)
∣∣2

dx.

(ii) (q + 2)(1 − a) � α∗
kl

< 1: then kl+1 = kl + q + 2 by Lemma 4.3(ii). We adopt the same
proof as in (i) to consider

kl+q+1∑
k=kl

∫
Ij

∑
α∈Ak

∣∣F(x;0, α, k)
∣∣2

dx

where Ij = [(j + 1)a − j, ja − j + 1] for 1 � j � q and Iq+1 = [1 − a, (q + 1)a − q] and
obtain the desired inequality as in case (i), which implies (4.1) by summing all the � ∈ Z. This
completes the proof of Theorem 1.1. �
Proof of Theorem 1.3 for irrational translations. As E = [0, c) ∪ [N + c,N + 1), we have

Zφ(x, t) =
{

H(e−2πit ), x ∈ [0, c);
e−2πiNtH(e−2πit ), x ∈ [c,1).

If α � c, let I
(i)
k (α) = ∫

Ei
|F(x;α, k)|2 dx where E1 = [0, c − α), E2 = [c − α,1 − α) and

E3 = [1 −α,1). Then it is a direct calculation to verify (using x +α ∈ [0, c) or x +α ∈ [c,1) for
all x ∈ Ei ) that

I
(1)
k (α) =

c−α∫
0

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

,

I
(2)
k (α) =

1−α∫
c−α

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(k−N)t dt

∣∣∣∣∣
2

,

I
(3)
k (α) =

1∫
1−α

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(k+1)t dt

∣∣∣∣∣
2

. (4.2)

If α > c, we let J
(i)
k (α) = ∫

Ei
|F(x;α, k)|2 dx with E1 = [0,1 −α), E2 = [1 −α,1 −α + c) and

E3 = [1 − α + c,1). Then we have

J
(1)
k (α) =

1−α∫
0

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(k−N)t dt

∣∣∣∣∣
2

,

J
(2)
k (α) =

1−α+c∫
dx

∣∣∣∣∣
1∫
Zf (x, t)H

(
e−2πit

)
e−2πi(k+1)t dt

∣∣∣∣∣
2

,

1−α 0
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J
(3)
k (α) =

1∫
1−α+c

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πi(k+1−N)t dt

∣∣∣∣∣
2

. (4.3)

Now consider

S(f ) =
∑
k∈Z

∑
α∈Ak

1∫
0

∣∣F(x;α, k)
∣∣2

dx.

We make the estimates by decomposing the integral to the sum of the above forms according to
the relation of c and α and match up the e2πikt on the right. Without loss of generality we assume
c � 1/2 (the proof for c < 1/2 is similar). Note that by the hypothesis of the theorem, a � c.

Case 1: #Ak−1,#Ak � 2. This implies 0 < a < 2/3 by Lemma 4.2, and hence 0 � α∗i < min{1−
a, a} � c for i = k − 1 and k. Let α′

k−1 = max{α ∈ Ak−1: α � c}. Then

I
(1)
k (α∗k) =

c−α∗k∫
0

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

and

I
(3)
k−1

(
α′

k−1

) =
1∫

1−α′
k−1

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

.

If α′
k−1 = α∗

k−1, since (1 − α′
k−1) − (c − α∗k) = 1 − c − (α∗

k−1 − α∗k) = a − c � 0, we have
[0,1] ⊆ [0, c − α∗k) ∪ [1 − α′

k−1,1). Hence

I
(3)
k−1

(
α′

k−1

) + I
(1)
k (α∗k) �

1∫
0

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

.

If α′
k−1 < α∗

k−1, then we define α′
k−1 = s1 < s2 < · · · < sl = α∗

k−1 where sj = sj−1 + a. Note
that sj > c for 2 � j � l, then

J
(2)
k−1(sj ) =

1−sj +c∫
1−sj

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

.

Let Fj denote the interval of the above integral and let F = F2 ∪ · · · ∪ F�. Then

F ⊇ [1 − s�,1 − s2 + c] = [
1 − α∗

k−1,1 − α′
k−1 − a + c

]
.
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We claim that

[0, c − α∗k] ∪ F ∪ [
1 − α′

k−1,1
] ⊇ [0,1].

Indeed it follows from a direct check that F and the first and the last intervals are overlapping
intervals. Now combining the above estimates, we have

I
(1)
k (α∗k) +

�∑
j=2

J
(2)
k−1(sj ) + I

(3)
k−1

(
α′

k−1

)
�

1∫
0

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

. (4.4)

In the rest of the cases, we use the same idea of the above proof by showing that [0,1] is a
subset of the unions of some of the Ei ’s in (4.2) and (4.3), and (4.4) holds similarly.

Case 2: #Ak−1 = 2 and #Ak = 1. Then a > 1/2 (by Lemma 4.2) and αk � a � c. If α∗
k−1 � c,

then

[0, c − αk] ∪ [
1 − α∗

k−1,1
] ⊇ [0,1].

If α∗
k−1 > c, then

[0, c − αk] ∪ [
1 − α∗

k−1,1 − α∗
k−1 + c

] ∪ [1 − α∗(k−1),1] ⊇ [0,1];

Case 3: #Ak−1 = 1, #Ak = 2. Then αk−1 � a � c and α∗k < c. In this case we use

[1 − αk−1,1] ∪ [0, c − α∗k] ⊇ [0,1];

Case 4: #Ak = #Ak−1 = 1. Then a > 2/3 (by Lemma 4.2). Also we see that αk−1 � a � c. In
this case we use

[0, c − αk] ∪ [1 − αk−1,1] ⊃ [0,1].

To conclude we see that each k belongs to one of the above cases, we sum over all the terms
in (4.2) and (4.3) through all k, then resort them according to e−2πik . Therefore from the above
estimate, we have

S(f ) �
∑
k∈Z

1∫
0

dx

∣∣∣∣∣
1∫

0

Zf (x, t)H
(
e−2πit

)
e−2πikt dt

∣∣∣∣∣
2

=
∫
Q

∣∣Zf (x, t)H
(
e−2πit

)∣∣2 � A2‖f ‖2.

Hence A is the lower frame bound, and the sufficiency follows. �
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