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Abstract

We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet
form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat
semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an
example of application, we present a new method of deducing sub-Gaussian upper bounds of the heat kernel
from on-diagonal bounds and tail estimates.
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1. Introduction

In this paper, we are concerned with certain inequalities involving heat kernels on arbitrary
metric measure spaces. The motivation comes from the following three results.

1. Let M be a Riemannian manifold and pt(x, y) be the heat kernel on M associated with
the Laplace–Beltrami operator �. Let {Xt }t�0 be the diffusion process generated by �. For any
open set Ω , denote by ψΩ(t, x) the probability that Xt exits from Ω before the time t , provided
X0 = x. It was proved in [8] that, for any two disjoint open subsets U and V of M and for all
x ∈ U , y ∈ V , t, s > 0,

pt+s(x, y) � ψU(t, x) sup
s�t ′�t+s

u∈∂U

pt ′(u, y) + ψV (s, y) sup
t�t ′�t+s

v∈∂V

pt ′(v, x) (1.1)

(see Fig. 1).
Similarly, if U ⊂ V then, for all x ∈ U and y ∈ V ,

pt+s(x, y) � pV
t+s(x, y) + ψU(t, x) sup

s�t ′�t+s
u∈∂U

pt ′(u, y) + ψV (s, y) sup
t�t ′�t+s

v∈∂V

pt ′(v, x), (1.2)

where pV
t (x, y) is the heat kernel in V with the Dirichlet boundary condition in ∂V (see Fig. 2).

The estimates (1.1) and (1.2) were used in [8] to obtain heat kernel bounds on manifolds with
ends.

2. Let now {Xt }t�0 be a diffusion process on a metric measure space (M,d,μ), and assume
that {Xt } possesses a continuous transition density pt (x, y) that will be called the heat kernel. It
was proved in [11] that, for any open set V ⊂ M and for all x ∈ V , t > 0,

p2t (x, x) � pV
2t (x, x) + 2ψV (t, x) sup

v∈V

pt (v, v). (1.3)

Fig. 1. Any sample path, connecting x and y, either exits from the set U before time t when starting at x, or exits from
the set V before time s when starting at y.
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Fig. 2. Any sample path, connecting x and y, either stays in V , or exits from the set U before time t when starting at x,
or exits from the set V before time s when starting at y.

In the setting of manifolds, one sees that (1.3) is a particular case of (1.2) where U = V and
x = y since

sup
t�t ′�2t
v∈∂V

pt ′(v, v) � sup
v∈V

pt (v, v).

Kigami used (1.3) in [11] to develop a technique for obtaining an upper bound of pt (x, x), given
a certain estimate of the Dirichlet heat kernel pV

t (x, x). He then applied this technique to obtain
heat kernel estimates on post-critically finite self-similar fractals.

3. In the previous setting, but without the continuity of the heat kernel, the authors proved
in [6] the following inequality:

esup
y∈V

pt+s(x, y) � esup
y∈V

pV
t (x, y) + ψV (t, x) esup

y,z∈V

ps(y, z) (1.4)

for all t, s > 0 and almost all x ∈ V , where esup stands for the essential supremum.
We refer to the estimates of types (1.1)–(1.4) as comparison inequalities for heat kernels.

The purpose of this paper is to prove such inequalities in the most general setting, where the
heat semigroups are determined by regular Dirichlet forms, under minimal a priori assumptions
about the underlying space and the Dirichlet form. Our method applies to local as well as to non-
local regular Dirichlet forms, that is, the associated Hunt process can be a diffusion or not. We
prove the comparison inequalities for the heat semigroups without assuming the existence of the
heat kernels. If the heat kernels do exist, then we obtain the comparison inequalities for the heat
kernels without assuming their continuity. We hope that this level of generality for comparison
inequalities will find applications in diverse settings of both diffusion and jump processes on
abstract metric measure spaces.

Despite the probabilistic motivation, all the proofs in this paper are entirely analytic and are
based on the version of the parabolic maximum principle, developed by the authors [5,7] in the
abstract setting. Our basic result is the inequality (3.3) of Theorem 3.1, which holds true for a
weak subsolution of the heat equation associated with any regular Dirichlet form. A refinement of
Theorem 3.1 for quasi-local Dirichlet forms is given in Theorem 4.3. It turns out that this basic
inequality (3.3) (and its version (4.4) for quasi-local forms) is a source of various interesting
comparison inequalities for heat semigroups and heat kernels.

For example, the inequality (5.13) of Theorem 5.1 contains (1.1), and the inequality (5.12)
contains (1.2) and (1.3). General comparison estimates for heat semigroups are given by Propo-
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sition 4.1 for arbitrary regular Dirichlet forms and by Corollary 4.8 for quasi-local Dirichlet
forms.

The structure of this paper is as follows. In Section 2 we give some preliminaries on Dirich-
let forms and weak solutions of the associated heat equation. In Section 3, we prove the basic
Theorem 3.1. The consequences of Theorem 3.1 – various comparison inequalities, are proved in
Section 4 for the heat semigroups and in Section 5 for the heat kernels. Finally, in Section 6, we
give an example of application of the comparison inequalities, that is, deducing the off-diagonal
sub-Gaussian upper bound of the heat kernel from the on-diagonal bound and the tail estimate.

2. Preliminaries on Dirichlet forms

In this section, we first recall some terminology from the theory of Dirichlet form (cf. [4]) and
prove some further properties of Dirichlet forms, which are of independent interest for their own
right.

Let (M,d,μ) be a metric measure space, that is, the pair (M,d) is a locally compact separable
metric space and μ is a Radon measure on M with a full support, that is, μ(Ω) > 0 for any non-
empty open subset Ω of M . Let (E , F ) be a Dirichlet form in L2 := L2(M,μ), that is, F is
a dense subspace of L2 and E (f, g) is a bilinear, symmetric, non-negative definite, closed, and
Markovian functional on F × F . The closedness of (E , F ) means that F is a Hilbert space with
the norm (‖f ‖2

2 + E (f ))1/2, where ‖ · ‖2 is the norm of L2(M,μ) and E (f ) := E (f,f ). The
Markovian property means that f ∈ F implies f̃ := (f ∨ 0) ∧ 1 ∈ F and E (f̃ ) � E (f ).

Let � be the generator of (E , F ), that is, an operator in L2 with the maximal domain
dom(�) ⊂ F such that

E (f, g) = −(�f,g) for all f ∈ dom(�), g ∈ F .

Then � is a non-positive definite self-adjoint operator in L2. Let {Pt }{t�0} be the heat semigroup
associated with the form (E , F ), that is, Pt = exp(t�). It follows that, for any t � 0, Pt is a
bounded self-adjoint operator in L2. The relation between Pt and � is given also by the identity

�f = L2 − lim
t→0

1

t
(Ptf − f ),

where the limit exists if and only if f ∈ dom(�). A similar relation takes place between Pt

and E :

E (f, g) = lim
t→0

1

t
(f − Ptf, g),

for all f,g ∈ F . The heat semigroup {Pt } of a Dirichlet form is always Markovian, that is, for
any 0 � f � 1 a.e. in M , we have that 0 � Ptf � 1 a.e. in M for any t > 0.

A family {pt }t>0 of μ × μ-measurable functions on M × M is called the heat kernel of the
Dirichlet form (E , F ) if pt is the integral kernel of the operator Pt , that is, for any t > 0 and for
any f ∈ L2(M,μ),

Ptf (x) =
∫
M

pt(x, y)f (y) dμ(y) (2.1)

for μ-almost all x ∈ M .
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The form (E , F ) is regular if the space F ∩ C0(M) is dense both in F and in C0(M), where
C0(M) is the space of all real-valued continuous functions in M with compact support. For
any two subsets U,Ω (U � Ω) of M , a cut-off function φ for the pair (U,Ω) is a function in
F ∩ C0(M) such that 0 � φ � 1 in M , φ = 1 in an open neighborhood of U , and supp(φ) ⊂ Ω .
If (E , F ) is a regular Dirichlet form, then a cut-off function exists for any pair (U,Ω) provided
that Ω is open and U is a non-empty compact subset of Ω (cf. [4, p. 27]).

Let Ω be a non-empty open subset of M . We identify the space L2(Ω) as a subspace of
L2(M) by extending any function f ∈ L2(Ω) to M by setting f = 0 outside Ω . Denote by
F (Ω) the closure of F ∩C0(Ω) in F -norm. It is known that if (E , F ) is regular, then (E , F (Ω))

is a regular Dirichlet form in L2(Ω) (cf. [4]). We refer to (E , F (Ω)) as a restricted Dirichlet
form. Denote by {P Ω

t }t�0 the heat semigroup of (E , F (Ω)). It is known that, for any two open
subsets Ω1 ⊂ Ω2 of M , for any 0 � f ∈ L2, and for any t > 0,

P
Ω1
t f � P

Ω2
t f a.e. in M.

Also, if {Ωk}∞k=1 is an increasing sequence of open sets and Ω = ⋃∞
k=1 Ωk then, for any t > 0,

P
Ωk
t f → P Ω

t f a.e. in M as k → ∞
(see [5, Lemma 4.17]).

The form (E , F ) is called local if E (f, g) = 0 for any f,g ∈ F with disjoint compact supports
in M .

For 0 � ρ < ∞, the form (E , F ) is said to be ρ-local if E (f, g) = 0 for any f,g ∈ F with
compact supports in M and such that

dist
(
supp(f ), supp(g)

)
> ρ.

In particular, if ρ = 0 then the ρ-local is the same as the local. We say that the form (E , F ) is
quasi-local if it is ρ-local for some ρ � 0.

Let Ω be an open subset of M and I be an open interval in R. A path u : I → L2(Ω) is said
to be weakly differentiable at t ∈ I if, for any ϕ ∈ L2(Ω), the function (u(·), ϕ) is differentiable
at t , that is, the limit

lim
ε→0

(
u(t + ε) − u(t)

ε
,ϕ

)

exists. If this is the case then it follows from the principle of uniform boundedness that there is a
(unique) function w ∈ L2(Ω) such that

lim
ε→0

(
u(t + ε) − u(t)

ε
,ϕ

)
= (w,ϕ),

for all ϕ ∈ L2(Ω). We refer to the function w as the weak derivative of u at t and write w = ∂u
∂t

.
A path u : I → F is called a weak subsolution of the heat equation in I × Ω , if the following

two conditions are fulfilled:

• the path t �→ u(t)|Ω is weakly differentiable in L2(Ω) at any t ∈ I ;
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• for any non-negative ϕ ∈ F (Ω), we have

(
∂u

∂t
, ϕ

)
+ E (u,ϕ) � 0. (2.2)

Similarly one can define the notions of weak supersolution and weak solution of the heat
equation.

Remark 2.1. Note that, for any f ∈ L2(Ω), the function P Ω
t f is a weak solution in (0,∞)×Ω

(cf. [5, Example 4.10]), and hence, in (0,+∞) × U for any open subset U ⊂ Ω .

We use the following notation:

f+ := f ∨ 0 and f− = −(f ∧ 0).

Denote by the sign
H
⇀ a weak convergence in a Hilbert space H and by

H→ the strong (norm)
convergence in H. The following statements will be used in this paper.

Proposition 2.2. (See [6, Proposition 4.9].) Let {uk} be a sequence of functions in F such that

uk
L2

⇀ u ∈ F as k → ∞. If in addition the sequence {E (uk)} is bounded, then uk
F
⇀ u as k → ∞.

Proposition 2.3. (See [4, Theorem 1.4.2].) Any Dirichlet form (E , F ) possesses the following
properties:

• If u,v ∈ F , then all the functions u ∧ v, u ∨ v, u ∧ 1, u+, u−, |u| also belong to F .
• If u,v ∈ F ∩ L∞(M), then uv ∈ F .

• If 0 � u ∈ F , then u ∧ n
F→ u as n → ∞.

• Let φ(s) be a Lipschitz function on R such that φ(0) = 0. Then, for any u ∈ F , φ(u) ∈ F
also. Moreover, if {un}∞n=1 is a sequence of functions from F and un

F→ u ∈ F as n → ∞,

then φ(un)
F
⇀ φ(u). Furthermore, if φ(u) = u then φ(un)

F→ φ(u).

Proposition 2.4. (See [5, Lemma 4.4].) Let (E , F ) be a regular Dirichlet form, and let u ∈ F
and Ω be an open subset of M . Then the following are equivalent:

(1) u+ ∈ F (Ω).
(2) u � v in M for some function v ∈ F (Ω).

Proposition 2.5 (Parabolic maximum principle). (See [7, Proposition 5.2].) Assume that (E , F )

is a regular Dirichlet form in L2. For T ∈ (0,+∞] and for an open subset Ω of M , let u be a
weak subsolution of the heat equation in (0, T )×Ω satisfying the following boundary and initial
conditions:

• u+(t, ·) ∈ F (Ω) for any t ∈ (0, T );

• u+(t, ·) L2(Ω)−→ 0 as t → 0.
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Then u(t, x) � 0 for any t ∈ (0, T ) and μ-almost all x ∈ Ω .

Next we prove further some general results on Dirichlet forms that will be used later on and
are of independent interest.

Proposition 2.6. Let Ω be a non-empty open subset of M . Then, for any non-negative f ∈
L2(Ω), the path u(t) = P Ω

t f is a weak subsolution of the heat equation in (0,∞) × M .

Proof. We know that u(t) is weakly differentiable in t in L2(Ω). Let us show that u(t) is weakly
differentiable also in L2(M). Indeed, for any function ϕ ∈ L2(M), we have

(
u(t + s) − u(t)

s
, ϕ

)
=

(
u(t + s) − u(t)

s
, ϕ1Ω

)
+

(
u(t + s) − u(t)

s
, ϕ1Ωc

)
. (2.3)

Since ϕ1Ω ∈ L2(Ω), the first term in the right-hand side of (2.3) converges to ( ∂u
∂t

, ϕ1Ω) where
∂u
∂t

is the weak derivative in L2(Ω). The second term is obviously 0, whence the convergence of
the whole sum to ( ∂u

∂t
, ϕ) follows.

Next, let us show that, for any non-negative ψ ∈ F ,

(
∂u

∂t
,ψ

)
+ E (u,ψ) � 0 for any t > 0. (2.4)

Indeed, noting that Psu(t) � P Ω
s u(t) = u(t + s), we obtain as s → 0+ that

Es(u,ψ) = 1

s
(u − Psu,ψ) � 1

s

(
u − P Ω

s u,ψ
) = 1

s

(
u(t) − u(t + s),ψ

) →
(

−∂u

∂t
,ψ

)
.

Since Es(u,ψ) → E (u,ψ) as s → 0, the desired inequality (2.4) follows. �
The following proposition will be used to prove Proposition 2.9.

Proposition 2.7. Let Ω1, Ω2 be two non-empty open subsets of M . Then

F (Ω1) ∩ F (Ω2) = F (Ω1 ∩ Ω2). (2.5)

Proof. Since F (Ω1 ∩ Ω2) ⊂ F (Ωi) for i = 1,2, we see that

F (Ω1 ∩ Ω2) ⊂ F (Ω1) ∩ F (Ω2).

To prove the opposite inclusion, we need to verify that f ∈ F (Ω1)∩ F (Ω2) implies f ∈ F (Ω1 ∩
Ω2). Assume first that f � 0. Let {fk}∞k=1 and {gk}∞k=1 be two sequences from F ∩ C0(Ω1) and
F ∩ C0(Ω2), respectively, that both converge to f in F -norm. As f � 0 and, hence, f+ = f , it
follows from Proposition 2.3 that

(fk)+
F→ f and (gk)+

F→ f as k → ∞. (2.6)
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Since (fk)+ ∈ F ∩ C0(Ω1) and (gk)+ ∈ F ∩ C0(Ω2), we see that

hk := (fk)+ ∧ (gk)+ ∈ F ∩ C0(Ω1 ∩ Ω2) ⊂ F (Ω1 ∩ Ω2).

Setting uk = (fk)+ − (gk)+ and noticing that uk
F→ 0 as k → ∞, we obtain by Proposition 2.3

that |uk| F
⇀ 0 as k → ∞. It follows that

hk = 1

2

[
(fk)+ + (gk)+ − ∣∣(fk)+ − (gk)+

∣∣] F
⇀ f as k → ∞.

Since F (Ω1 ∩ Ω2) is a closed and, hence, weakly closed subspace of F , we conclude that f ∈
F (Ω1 ∩ Ω2).

For a signed function f ∈ F (Ω1) ∩ F (Ω2), we have f+, f− ∈ F (Ω1) ∩ F (Ω2), whence, by
the first part of the proof, f+, f− ∈ F (Ω1 ∩Ω2) and f = f+ −f− ∈ F (Ω1 ∩Ω2), which finishes
the proof. �
Proposition 2.8. Let U be a non-empty open subset of M , and let u ∈ F such that supp(u) ⊂ U

and is compact. Then u ∈ F (U).

Proof. We can assume that u � 0 because a signed u follows from the decomposition u = u+ −
u−. Next, we can assume that u is bounded because otherwise consider a sequence uk := u ∧ k

that tends to u in F -norm as k → ∞ by Proposition 2.3; if we already know that uk ∈ F (U) then
we can conclude that also u ∈ F (U). Hence, we can assume in the sequel that u is non-negative
and bounded in M , say 0 � u � 1.

Let ϕ be a cut-off function for the pair (supp(u),U). Let {uk}∞k=1 be a sequence from F ∩
C0(M) such that uk

F→ u as k → ∞. As u � 0, we have by the last results in Proposition 2.3 that

(uk)+
F→ u as k → ∞ and |(uk)+ − ϕ| F

⇀ |u − ϕ| as k → ∞. It follows that

(uk)+ ∧ ϕ = 1

2

[
(uk)+ + ϕ − ∣∣(uk)+ − ϕ

∣∣] F
⇀

1

2

[
u + ϕ − |u − ϕ|] = u ∧ ϕ = u as k → ∞.

Since (uk)+ ∧ ϕ ∈ F ∩ C0(U), we conclude that u ∈ F (U). �
Proposition 2.9. Let Ω be a precompact open subset of M and U be an open subset of M , and
let K be a closed subset of M such that K ⊂ U (see Fig. 3). Let u ∈ F be a function such that
u+ ∈ F (Ω) and u � ψ in Ω \ K for some 0 � ψ ∈ F . Then

(u − ψ)+ ∈ F (Ω ∩ U). (2.7)

Proof. Since u − ψ � u+ ∈ F (Ω), it follows by Proposition 2.4 that (u − ψ)+ ∈ F (Ω). Let us
verify that

(u − ψ)+ ∈ F (U), (2.8)

which will then imply (2.7) by Proposition 2.7. Indeed, noticing that (u−ψ)+ = 0 in Ω \K and
in Ωc, we see that
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Fig. 3. Domains Ω,U and K .

supp
(
(u − ψ)+

) ⊂ K ∩ Ω ⊂ K ∩ Ω.

On the other hand, the set K ∩ Ω is compact and is contained in U , so that (2.8) follows from
Proposition 2.8. �
Remark 2.10. The statement of Proposition 2.9 was proved in [6, Proposition 4.10] under ad-
ditional condition that u ∈ L∞(M) ∩ F (Ω) and supp(ψ) is compact. The present proof is also
shorter than the one from [6].

3. Basic comparison theorem

The next theorem is the basic technical result of this paper.

Theorem 3.1. Let (M,d,μ) be a metric measure space and let (E , F ) be a regular Dirichlet form
in L2(M,μ). Let Ω ⊂ M be a precompact open set and U ⊂ M be an open such that μ(U) < ∞.
Let u be a weak subsolution of the heat equation in (0, T0)× (Ω ∩U) where T0 ∈ (0,+∞], such
that

u+(t, ·) ∈ F (Ω) for any t ∈ (0, T0), (3.1)

u+(t, ·) L2(Ω∩U)−→ 0 as t → 0. (3.2)

Let K be a closed subset of M such that K ⊂ U . Then, for any t ∈ (0, T0) and for almost all
x ∈ M ,

u(t, x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥u+(s, ·)∥∥
L∞(Ω\K)

, (3.3)

provided that sup0<s�t ‖u+(s, ·)‖L∞(Ω\K) < ∞.

Remark 3.2. If Ω ⊂ U , then all the conditions of Proposition 2.5 are satisfied, so that we con-
clude u � 0 in (0, T0) × Ω . Hence, in this case the inequality (3.3) is trivially satisfied.

Remark 3.3. If U,Ω are open domains in Rn with smooth boundaries, then one can rephrase
the statement of Theorem 3.1 for strong solutions as follows: if u solves the heat equation in
(0, T0) × (Ω ∩ U) and satisfies the initial and boundary conditions
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Fig. 4. Illustration to Theorem 3.1 in the classical case.

u � 0 on ∂Ω ∩ U
(
instead of u+ ∈ F (Ω)

)
,

u � m on ∂U ∩ Ω for some m � 0 (instead of u � m on Ω \ K),

u(t, ·) → 0 as t → 0 in Ω ∩ U,

then u � (1 − P U
t 1U)m in (0, T0) × (Ω ∩ U) (see Fig. 4). Indeed, the function v = (1 − P U

t 1)m

satisfies the heat equation in (0,∞) × U , the boundary conditions v � 0 on ∂Ω , v = m on ∂U ,
and the initial condition v(t, ·) → 0 as t → 0 in U . Applying the classical parabolic maximum
principle in Ω ∩ U , we obtain u � v.

Proof of Theorem 3.1. Outside Ω the inequality (3.3) is trivial because u � 0 by (3.1). In Ω \U

(3.3) is also obvious because P U
t 1U = 0 and K ⊂ U . It remains to prove (3.3) in Ω ∩ U . Fix a

number T ∈ (0, T0) and define m by

m = sup
0<t�T

∥∥u+(t, ·)∥∥
L∞(Ω\K)

. (3.4)

Let us first prove that, for any t ∈ (0, T ) and for μ-almost all x ∈ Ω ∩ U ,

u(t, x) � m. (3.5)

Let φ be a cut-off function for the pair (Ω,M) and consider the function

w = u − mφ. (3.6)

Then (3.5) will follow if we show that w � 0 in (0, T ) × (Ω ∩ U). The latter will be proved by
using the maximum principle of Proposition 2.5. We need to verify the following conditions.

• The function w is a weak subsolution of the heat equation in (0, T ) × (Ω ∩ U). Indeed, the
function φ, considered as a function of (t, x), is a weak supersolution of the heat equation in
(0,∞) × Ω , since for any non-negative function ψ ∈ F (Ω),

E (φ,ψ) = lim
t→0

t−1(φ − Ptφ,ψ) = lim
t→0

t−1(1 − Ptφ,ψ) � 0.

Since u is a weak subsolution in (0, T ) × (Ω ∩ U), we see from (3.6) that so is w.
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Fig. 5. Illustration to the proof of (3.7) in the case U ⊂ Ω .

• For any t ∈ (0, T ), we have w+(t, ·) ∈ F (Ω ∩ U). Indeed, using the facts that u+(t, ·) ∈
F (Ω) and u � m = mφ in Ω \ K (which is true by (3.4)), we obtain from Proposition 2.9
that

w+(t, ·) = (
u(t, ·) − mφ

)
+ ∈ F (Ω ∩ U).

• The initial condition w+(t, ·) L2(Ω∩U)−→ 0 as t → 0 follows from w+(t, ·) � u+(t, ·) and (3.2).

Therefore, by the parabolic maximum principle of Proposition 2.5, we conclude that w � 0 in
(0, T ) × (Ω ∩ U), thus proving (3.5).

We are now in a position to prove the following improvement of (3.5):

u �
(
1 − P U

t 1U

)
m in (0, T ) × (Ω ∩ U) (3.7)

(see Fig. 5 where the case U ⊂ Ω is shown). The path t �→ u(t, ·) is weakly differentiable in
L2(Ω ∩ U) and, hence, is strongly continuous in L2(Ω ∩ U) (see [7, Lemma 5.1]). The same
applies to the path t → P U

t 1U so that the inequality (3.7) extends to t = T by continuity. Hence,
(3.7) implies (3.3). Consider the function

v = u − mφ
(
1 − P U

t 1U

)
, (3.8)

where m and φ are the same as above. As μ(U) < ∞, we have 1U ∈ L2(U,μ) and, hence,
P U

t 1U ∈ F (U). We claim that v is a weak subsolution of the heat equation in (0, T ) × (Ω ∩ U).
Since u is a weak subsolution, it suffices to show that the function

f := φ
(
1 − P U

t 1U

)

is a weak supersolution in (0, T ) × (Ω ∩ U). Since the both functions φ and P U
t 1U belong to

L∞(M) ∩ F , so does the product φP U 1U , whence
t
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f = φ − φP U
t 1U ∈ L∞(M) ∩ F .

For any t, s ∈ (0, T ), we have that in Ω ∩ U ,

f − Psf = φ
(
1 − P U

t 1U

) − Ps

(
φ
(
1 − P U

t 1U

))
�

(
1 − P U

t 1U

) − Ps

(
1 − P U

t 1U

)
= (1 − Ps1) − P U

t 1U + Ps

(
P U

t 1U

)
� P U

t+s1U − P U
t 1U ,

which yields that, for any 0 � ψ ∈ F (Ω ∩ U),

E (f,ψ) = lim
s→0

1

s
(f − Psf,ψ) � lim

s→0

1

s

(
P U

t+s1U − P U
t 1U ,ψ

) =
(

∂

∂t
P U

t 1U ,ψ

)
.

On the other hand,

(
∂f

∂t
,ψ

)
=

(
−φ

∂

∂t
P U

t 1U ,ψ

)
= −

(
∂

∂t
P U

t 1U ,ψ

)
.

Therefore,

(
∂f

∂t
,ψ

)
+ E (f,ψ) � 0,

showing that f is a weak supersolution. Hence, we have proved that v is a weak subsolution.
Since v � u, it follows from (3.2) that

v+(t, ·) L2(U∩Ω)−→ 0 as t → 0.

It remains to verify the boundary condition: v+(t, ·) ∈ F (Ω ∩U) for any t ∈ (0, T ). Observe that

u − mφ � 0 in M (3.9)

because we have

• u − mφ � 0 in M \ Ω by (3.1),
• u − mφ = u − m � 0 in Ω \ U by (3.4),
• u − mφ = u − m � 0 in Ω ∩ U by (3.5).

Using (3.9), we obtain that in M

v = u − mφ
(
1 − P U

t 1U

)
� mφP U

t 1U � mP U
t 1U .

Since the function P U
t 1U belongs to F (U), we conclude by using Proposition 2.4 that also

v+ ∈ F (U). On the other hand, we have

v = u − mφ
(
1 − P U

t 1U

)
� u � u+ ∈ F (Ω),
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whence it follows that v+ ∈ F (Ω). Therefore, by Proposition 2.7 we obtain that v+ ∈ F (U ∩
Ω), thus proving the boundary condition. Finally, we conclude by the maximum principle of
Proposition 2.5 that v � 0 in (0, T ) × (Ω ∩ U), whence (3.7) follows. �
Remark 3.4. The boundary condition (3.1) in Theorem 3.1 can be relaxed as follows:

u+(t, ·) ∈ F (Ω) for any t ∈ (0, T0) ∩ Q, (3.10)

provided one assumes in addition that

t �→ u(t, ·) is weakly continuous in L2(Ω), (3.11)

t �→ E
(
u(t, ·)) is locally bounded, (3.12)

for t ∈ (0, T0). Under the hypotheses (3.10)–(3.12), the inequality (3.3) can be replaced by a
stronger one:

u(t, x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t
s∈Q

∥∥u+(s, ·)∥∥
L∞(Ω\K)

. (3.13)

The proof goes exactly as the above except that the supremum for defining the constant m in (3.4)
is taken only over rational t ∈ (0, T ]. (The reason for taking the supremum over the rational, in-
stead of over the real, is that such a function is measurable, see Appendix A.) Then we need
to verify that the functions w and v, defined by (3.6), (3.8), respectively, satisfy the boundary
condition (3.1) for all real t ∈ (0, T ) in order to be able to use the maximum principle of Propo-
sition 2.5. Indeed, for any t ∈ (0, T ), let {tk}∞k=1 be a sequence of rationals such that tk → t as
k → ∞. By (3.6) and (3.11), we have

w(tk, ·) − w(t, ·) = u(tk, ·) − u(t, ·) L2(Ω)
⇀ 0,

and thus

w+(tk, ·) L2(Ω)
⇀ w+(t, ·).

By (3.12), E (w(tk, ·)) is bounded as k → ∞. Hence, we obtain by Proposition 2.2 that

w+(tk, ·) F
⇀ w+(t, ·).

Since w+(tk, ·) ∈ F (Ω) by (3.10), we conclude that w+(t, ·) ∈ F (Ω). Similarly, one has
v+(t, ·) ∈ F (Ω) for all real t ∈ (0, T ).

The inequality (3.3) gives a rise to various interesting comparison inequalities for heat semi-
groups and heat kernels that will be presented in the next sections. Before that, let us state a
useful particular case of Theorem 3.1 when U ⊂ Ω (cf. Fig. 5).
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Corollary 3.5. Let (M,d,μ) be a metric measure space and let (E , F ) be a regular Dirichlet
form in L2(M,μ). Let Ω ⊂ M be a precompact open set and U be an open subset of Ω . Let u

be a weak subsolution of the heat equation in (0, T0) × U where T0 ∈ (0,+∞], such that

u+(t, ·) ∈ F (Ω) for any t ∈ (0, T0),

u+(t, ·) L2(U)−→ 0 as t → 0. (3.14)

Then the conclusion of Theorem 3.1 holds for any compact subset K of U , any t ∈ (0, T0) and
almost all x ∈ M .

4. Comparison results for the heat semigroups

In this section, we give various applications of Theorem 3.1 to the semigroup solutions, in-
cluding a specific case of quasi-local Dirichlet form.

4.1. General regular Dirichlet forms

Proposition 4.1. Let (E , F ) be a regular Dirichlet form in L2(M,μ), and let Ω , U be two non-
empty open subsets of M such that μ(U) < ∞. Let K be any closed subset of M such that
K ⊂ U . Then, for any 0 � f ∈ L2(Ω),

P Ω
t f (x) − P U

t f (x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥P Ω
s f

∥∥
L∞(Ω\K)

, (4.1)

for all t > 0 and almost all x ∈ M .

Proof. Without loss of generality, assume that 0 � f ∈ L∞(Ω) (otherwise, apply (4.1) to the
function fk = f ∧ k and then pass to the limit as k → ∞). Let {Ωi} be a sequence of precompact
open subsets exhausting Ω . Consider the function

u(t, ·) := P
Ωi
t f − P

Ωi∩U
t f

and we shall verify that u satisfies all the hypothesis of Theorem 3.1 with the sets Ωi and U .
Indeed, u is a weak subsolution of the heat equation in (0,∞) × (Ωi ∩ U) because so are P

Ωi
t f

and P
Ωi∩U
t f (cf. Remark 2.1). Next, u(t, ·) ∈ F (Ωi) because both P

Ωi
t f and P

Ωi∩U
t f belong

to F (Ωi). Since both P
Ωi
t f and P

Ωi∩U
t f converge to f as t → 0 in L2(Ωi ∩ U), it follows that

u(t, ·) L2(Ωi∩U)−→ 0 as t → 0. By Theorem 3.1, we obtain that

P
Ωi
t f − P

Ωi∩U
t f �

(
1 − P U

t 1U

)
sup

0<s�t

∥∥P Ωi
s f − P Ωi∩U

s f
∥∥

L∞(Ωi\K)

�
(
1 − P U

t 1U

)
sup

0<s�t

∥∥P Ω
s f

∥∥
L∞(Ω\K)

.

Noticing that P
Ωi∩U
t f � P U

t f and then passing to the limit as i → ∞, we obtain (4.1), as
desired. �
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Remark 4.2. Let us mention for comparison that the following inequality was proved in [6,
Proposition 4.7]:

P Ω
t f (x) − P U

t f (x) � sup
0<s�t

∥∥P Ω
s f

∥∥
L∞(Ω\K)

. (4.2)

Obviously, (4.1) is an improvement of (4.2). On the other hand, the estimate (4.2) was proved
in [6] for arbitrary open set U without the hypotheses of the finiteness of its measure. For appli-
cations of (4.2) see [6, Theorem 5.12].

4.2. Quasi-local Dirichlet forms

Given an open set U ⊂ M and non-negative number ρ, define the ρ-neighborhood Uρ of U

as follows:

Uρ = {
x ∈ M: d(x,U) < ρ

}
if ρ > 0,

Uρ = U if ρ = 0,

where d(x,U) = infy∈U d(x, y).

Theorem 4.3. Assume that (E , F ) is a ρ-local regular Dirichlet form in L2(M,μ) where ρ � 0.
Let U be an open subset of M such that Uρ is precompact, and let u be a weak subsolution of
the heat equation in (0, T0) × U where T0 ∈ (0,+∞]. Assume that, for any t ∈ (0, T0), u(t, ·) ∈
L∞(M) and

u+(t, ·) L2(U)−→ 0 as t → 0. (4.3)

Then for any compact subset K of U , for all t ∈ (0, T0), and almost all x ∈ Uρ ,

u(t, x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥u+(s, ·)∥∥
L∞(Uρ\K)

, (4.4)

provided sup0<s�t ‖u+(s, ·)‖L∞(Uρ\K) < ∞.

Proof. Since P U
t 1U = 0 outside U , the inequality (4.4) is trivially satisfied if x ∈ Uρ \U . Hence,

it suffices to prove (4.4) for x ∈ U . Fix an open subset W of U such that W ⊂ U . Then Wρ ⊂ Uρ

so that Wρ is precompact. Let φ be a cut-off function for the pair (Wρ,Uρ). Let us show that
the function w = uφ satisfies all the hypothesis of Corollary 3.5 where the domains Ω,U are
replaced by Uρ,W respectively. Note that the function u may not satisfy the condition (3.14) so
that we have to use w instead.

Let us first show that w is a weak subsolution of the heat equation in (0, T0) × W . Indeed,
since u(t, ·),φ ∈ F ∩ L∞(M) for any t ∈ (0, T0) × W , it follows that w(t, ·) ∈ F . Since u is a
subsolution in (0, T0) × W and φ ≡ 1 in W , we have, for any non-negative function ψ ∈ F (W),

(
∂w

∂t
,ψ

)
=

(
φ

∂u

∂t
,ψ

)
=

(
∂u

∂t
,ψ

)
� −E (u,ψ)

= −E (w,ψ) + E
(
(φ − 1)u,ψ

) = −E (w,ψ), (4.5)
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where we have used the fact that E ((φ − 1)u,ψ) = 0 by the ρ-locality of E , because supp(ψ) ⊂
W , and the function (φ − 1)u is compactly supported outside Wρ , so that the distance between
the supports of ψ and (φ − 1)u is larger than ρ.

Since suppϕ ⊂ Uρ , we see that suppw(t, ·) ⊂ Uρ , and hence, w(t.·) ∈ F (Uρ) and, w+(t, ·) ∈
F (Uρ). Moreover, it follows from (4.3) that

w+(t, ·) = φu+(t, ·) L2(W)−→ 0 as t → 0.

Hence, w satisfied the required boundary and initial conditions, and by Corollary 3.5 we obtain
that in (0, T0) × W ,

u(t, x) = w(t, x) �
(
1 − P W

t 1W(x)
)

sup
0<s�t

∥∥w+(s, ·)∥∥
L∞(Uρ\K)

�
(
1 − P W

t 1W(x)
)

sup
0<s�t

∥∥u+(s, ·)∥∥
L∞(Uρ\K)

.

Taking an exhaustion of U by sets like W and then passing to the limit as W → U , we obtain
(4.4). �
Remark 4.4. If function u in Theorem 4.3 further satisfies (3.11) and (3.12) with Ω = Uρ , then
we conclude from Remark 3.4 that the inequality (4.4) can be replaced by a stronger one:

u(t, x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t
s∈Q

∥∥u+(s, ·)∥∥
L∞(Uρ\K)

. (4.6)

For the case of local Dirichlet forms, we obtain the following improvement of Theorem 4.3
where the condition of the compactness of Uρ is dropped.

Corollary 4.5. Assume that (E , F ) is a local regular Dirichlet form in L2(M,μ). Let U be an
open subset of M and let u be a weak subsolution of the heat equation in (0, T0) × U where
T0 ∈ (0,+∞]. Assume that, for any t ∈ (0, T0), the function u(t, ·) ∈ L∞(M) and

u+(t, ·) L2(U)−→ 0 as t → 0.

Then, for any compact subset K of U , for all t ∈ (0, T0), and almost all x ∈ U ,

u(t, x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥u+(s, ·)∥∥
L∞(U\K)

, (4.7)

provided sup0<s�t ‖u+(s, ·)‖L∞(U\K) < ∞.

Proof. Let {Ui}∞i=1 be an exhaustion of U , each Ui being precompact and K ⊂ Ui for all i.
By Theorem 4.3, we obtain the estimate (4.7) for Ui instead of U , and then pass to the limit as
i → ∞. �
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Remark 4.6. A particular case of the estimate (4.7) with K = ∅ was proved in [6, Lemma 4.3].
However, having an arbitrary compact K can be an advantage in certain situations. For example,
if U is precompact and u(t, ·) is continuous in U , then taking exhaustion of U by compact sets
K ⊂ U , one can replace the L∞-norm in (4.7) by sup∂U u+.

Remark 4.7. If (E , F ) is ρ-local with ρ > 0 and in addition all metric balls in M are precompact
then the hypothesis of the compactness of Uρ in Theorem 4.3 can also be dropped. Indeed,
firstly, it suffices to assume that U is precompact, since it implies that Uρ is precompact. Then
one extends the result to all open sets U as in the proof of Corollary 4.5.

As an another consequence of Theorem 4.3, we obtain the following useful comparison in-
equality for heat semigroups.

Corollary 4.8. Assume that (E , F ) is a ρ-local regular Dirichlet form in L2(M,μ) where ρ � 0.
Let U,Ω be two open subsets of M such that Uρ is precompact and Uρ ⊂ Ω . Then for any
0 � f ∈ L∞(M), for all t > 0 and almost all x ∈ Uρ ,

P Ω
t f (x) − P U

t f (x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥P Ω
s f

∥∥
L∞(Uρ\K)

(4.8)

for any compact subset K of U .
Moreover, if ρ = 0, that is, (E , F ) is local then the same is true without assuming that Uρ is

precompact. In this case, (4.8) becomes

P Ω
t f (x) − P U

t f (x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥P Ω
s f

∥∥
L∞(U\K)

. (4.9)

Proof. Consider the function

u(t, ·) = P Ω
t f (·) − P U

t f (·),

that is bounded on M for any t > 0, is a weak subsolution of the heat equation in (0,∞) × U ,
and satisfies the initial condition (4.3). Hence, it follows from (4.4) that, for all t > 0 and almost
all x ∈ Uρ ,

P Ω
t f (x) − P U

t f (x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥P Ω
s f − P U

s f
∥∥

L∞(Uρ\K)
,

whence (4.8) follows.
In the case of a local form, one passes from precompact U to arbitrary U as in the proof of

Corollary 4.5. �
Remark 4.9. In fact, the inequality (4.8) can be improved as follows:

P Ω
t f (x) − P U

t f (x) �
(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥P Ω
s f

∥∥
L∞(Uρ\K)

, (4.10)
s∈Q
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because the function u = P Ω
t f −P U

t f automatically satisfies conditions (3.11) and (3.12). Since
U ⊂ Ω , it suffices to verify that the function u = P Ω

t f satisfies (3.11) and (3.12). Indeed, (3.11)
follows from the strong continuity of the semigroup {P Ω

t } in L2(Ω) whilst (3.12) follows from
the fact that E (P Ω

t f ) is a decreasing function of t , the latter being a consequence of the identity

E
(
P Ω

t f
) =

∞∫
0

λe−2λt d(Eλf,f ),

where {Eλ} is the spectral resolution of the operator �Ω , the generator of (E , F (Ω)).
Hence, (4.10) follows from (4.6).

Remark 4.10. The estimate (4.9) with K = ∅ was proved also in [6, (4.10) in Corollary 4.4].
A useful particular case of (4.9) is when the function f vanishes in U . In this case, (4.8) becomes

P Ω
t f (x) �

(
1 − P U

t 1U(x)
)

sup
0<s�t

∥∥P Ω
s f

∥∥
L∞(Uρ\K)

. (4.11)

5. Comparison results for heat kernels

In this section we will prove a symmetric comparison inequality for the heat kernel of a ρ-
local Dirichlet form. The motivation is as follows. Let (E , F ) be an arbitrary regular Dirichlet
form and let U,V ⊂ Ω be three open subsets of M such that U ∩ V = ∅. We claim that, for all
t, s > 0 and μ-almost all x ∈ U , y ∈ V ,

pΩ
t+s(x, y) �

[
1 − P U

t 1U(x)
]∥∥pΩ

s (·, y)
∥∥

L∞(Ω\U)

+ [
1 − P V

s 1V (y)
]∥∥pΩ

t (·, x)
∥∥

L∞(Ω\V )
. (5.1)

Indeed, noticing that

∫
Ω\U

pΩ
t (x, z) dμ(z) � 1 − P Ω

t 1U(x) � 1 − P U
t 1U(x),

we obtain that

∫
Ω\U

pΩ
t (x, z)pΩ

s (z, y) dμ(z) �
∥∥pΩ

s (·, y)
∥∥

L∞(Ω\U)

∫
Ω\U

pΩ
t (x, z) dμ(z)

�
[
1 − P U

t 1U(x)
]∥∥pΩ

s (·, y)
∥∥

L∞(Ω\U)
. (5.2)

In a similar way, we have

∫
pΩ

t (x, z)pΩ
s (z, y) dμ(z) �

[
1 − P V

s 1V (y)
]∥∥pΩ

t (·, x)
∥∥

L∞(Ω\V )
. (5.3)
Ω\V
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Therefore, by the semigroup property,

pΩ
t+s(x, y) =

∫
Ω

pΩ
t (x, z)pΩ

s (z, y) dμ(z)

�
∫

Ω\U
pΩ

t (x, z)pΩ
s (z, y) dμ(z) +

∫
Ω\V

pΩ
t (x, z)pΩ

s (z, y) dμ(z),

which together with (5.2) and (5.3) yields (5.1).
The purpose of the next theorem is to use the ρ-locality in order to replace in (5.1) the L∞-

norms in Ω \ U , Ω \ V by those in smaller sets, which is frequently critical for applications.

Theorem 5.1. Let (E , F ) be a ρ-local regular Dirichlet form in L2(M,μ) where ρ � 0, and let
U,V,Ω be three open subsets of M such that Uρ , Vρ are precompact and Uρ,Vρ ⊂ Ω . Assume
that all the Dirichlet heat kernels pU

t , pV
t , pΩ

t exist and that pΩ
t (x, y) is locally bounded in

R+ × Ω × Ω . Then, for all t, s > 0 and μ-almost all x ∈ U , y ∈ V ,

pΩ
t+s(x, y) �

∫
Ω

pU
t (x, z)pV

s (z, y) dμ(z) + [
1 − P U

t 1U(x)
]

sup
s<t ′�t+s

∥∥pΩ
t ′ (·, y)

∥∥
L∞(Uρ\K1)

+ [
1 − P V

s 1V (y)
]

sup
t<t ′�t+s

∥∥pΩ
t ′ (·, x)

∥∥
L∞(Vρ\K2)

, (5.4)

where K1,K2 are any compact subsets of U and V respectively.
In the case ρ = 0, that is, when (E , F ) is local, the assumption of the compactness of Uρ,Vρ

can be dropped.

Proof. Let v be a non-negative function from L∞ ∩ L1(V ). Setting f = P Ω
s v and noticing that

all the hypotheses of Corollary 4.8 are satisfied, we obtain by (4.10) that the following inequality
is true in U for all t > 0:

P Ω
t+sv � P U

t

(
P Ω

s v
) + [

1 − P U
t 1U

]
sup

0<t ′�t
t ′∈Q

∥∥P Ω
t ′+sv

∥∥
L∞(Uρ\K1)

= P U
t

(
P Ω

s v
) + [

1 − P U
t 1U

]
sup

s<t ′�t+s
t ′∈Q

∥∥P Ω
t ′ v

∥∥
L∞(Uρ\K1)

, (5.5)

where we have used that P Ω
t f = P Ω

t+sv. Consider the function

F(y) := sup
s<t ′�t+s

t ′∈Q

esup
z∈Uρ\K1

pΩ
t ′ (z, y),

which is bounded in V . Note that F(y) is measurable as the supremum of a countable family of
measurable functions of y since



2632 A. Grigor’yan et al. / Journal of Functional Analysis 259 (2010) 2613–2641
y �→ esup
z∈Uρ\K1

pΩ
t ′ (z, y)

is measurable by Proposition A.1, and t ′ varies in Q. We have then

sup
s<t ′�t+s

t ′∈Q

∥∥P Ω
t ′ v

∥∥
L∞(Uρ\K1)

= sup
s<t ′�t+s

t ′∈Q

esup
z∈Uρ\K1

∫
V

pΩ
t ′ (z, y)v(y) dμ(y)

�
∫
V

F (y)v(y) dμ(y). (5.6)

Multiplying (5.5) by a non-negative function u ∈ L∞ ∩L1(U) and integrating over U , we obtain

(
P Ω

t+sv, u
)
�

(
P U

t

(
P Ω

s v
)
, u

) +
∫ ∫

U×V

[
1 − P U

t 1U(x)
]
F(y)u(x)v(y) dμ(x)dμ(y). (5.7)

On the other hand, observe that

(
P U

t

(
P Ω

s v
)
, u

) = (
P Ω

s v,P U
t u

) = (
v,P Ω

s P U
t u

)
. (5.8)

Using (4.10) again, now with f = P U
t u and with V in place of U , we obtain the following

inequality in V :

P Ω
s P U

t u = P Ω
s f � P V

s f + [
1 − P V

s 1V

]
sup

0<t ′�s
t ′∈Q

∥∥P Ω
t ′ f

∥∥
L∞(Vρ\K2)

. (5.9)

Observing that P U
t u � P Ω

t u, we obtain that

P Ω
t ′ f = P Ω

t ′ P U
t u � P Ω

t ′ P Ω
t u = P Ω

t ′+t u.

Similarly to (5.6), we have

sup
t<t ′�t+s

t ′∈Q

∥∥P Ω
t ′ u

∥∥
L∞(Vρ\K2)

�
∫
U

G(x)u(x) dμ(x)

where

G(x) := sup
t<t ′�t+s

t ′∈Q

esup
z∈Vρ\K2

pΩ
t ′ (z, x)

is a bounded measurable function on U . Substituting into (5.9), we obtain in V

P Ω
s P U

t u � P V
s

(
P U

t u
) + [

1 − P V
s 1V

] ∫
G(x)u(x) dμ(x). (5.10)
U
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Multiplying (5.10) by v and integrating over V , we obtain

(
v,P Ω

s P U
t u

)
�

(
v,P V

s

(
P U

t u
)) +

∫ ∫
U×V

[
1 − P V

s 1V (y)
]
G(x)u(x)v(y) dμ(x)dμ(y).

Combining this with (5.7) and (5.8), we obtain

(
P Ω

t+sv, u
)
�

(
v,P V

s

(
P U

t u
))

+
∫ ∫

U×V

[
1 − P U

t 1U(x)
]
F(y)u(x)v(y) dμ(x)dμ(y)

+
∫ ∫

U×V

[
1 − P V

s 1V (y)
]
G(x)u(x)v(y) dμ(x)dμ(y).

Since

(
v,P V

s

(
P U

t u
)) =

∫ ∫
U×V

( ∫
Ω

pU
t (x, z)pV

s (z, y) dμ(z)

)
u(x)v(y) dμ(x)dμ(y),

we can rewrite the previous inequality in the form

∫ ∫
U×V

pΩ
t+s(x, y)u(x)v(y) dμ(x)dμ(y) �

∫ ∫
U×V

Φ(x, y)u(x)v(y) dμ(x)dμ(y), (5.11)

where

Φ(x,y) =
∫

U∩V

pU
t (x, z)pV

s (z, y) dμ(z) + [
1 − P U

t 1U(x)
]
F(y) + [

1 − P V
s 1V (y)

]
G(x).

Obviously, Φ(x,y) is a bounded measurable function on U × V . By [6, Lemma 3.4], the in-
equality (5.11) implies

pΩ
t+s(x, y) � Φ(x,y)

for almost all x ∈ U and y ∈ V , which proves (5.4).
In the case of a local form (E , F ), one obtains the claim for arbitrary open sets U,V by

passing to the limit when exhausting U and V by precompact open sets. �
Remark 5.2. If U ⊂ V , it follows that

∫
M

pU
t (x, z)pV

s (z, y) dμ(z) �
∫
M

pV
t (x, z)pV

s (z, y) dμ(z) = pV
s+t (x, y).

Therefore, we obtain from (5.4) that
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pΩ
t+s(x, y) � pV

s+t (x, y) + [
1 − P U

t 1U(x)
]

sup
s<t ′�t+s

∥∥pΩ
t ′ (·, y)

∥∥
L∞(Uρ\K1)

+ [
1 − P V

s 1V (y)
]

sup
t<t ′�t+s

∥∥pΩ
t ′ (·, x)

∥∥
L∞(Vρ\K2)

. (5.12)

On the other hand, if U ∩ V = ∅, then using the fact that pV
s (z, y) = 0 for μ-almost all z ∈ U ,

we obtain that
∫
M

pU
t (x, z)pV

s (z, y) dμ(z) =
∫
U

pU
t (x, z)pV

s (z, y) dμ(z) = 0,

so that (5.4) becomes

pΩ
t+s(x, y) �

[
1 − P U

t 1U(x)
]

sup
s<t ′�t+s

∥∥pΩ
t ′ (·, y)

∥∥
L∞(Uρ\K1)

+ [
1 − P V

s 1V (y)
]

sup
t<t ′�t+s

∥∥pΩ
t ′ (·, x)

∥∥
L∞(Vρ\K2)

. (5.13)

6. Pointwise off-diagonal estimates of heat kernels

In this section we introduce a technique for self-improvement of pointwise upper estimates
of the heat kernel of a local, conservative, regular Dirichlet form. This issue was addressed in
[10,11,5,6] on abstract metric measure spaces, and in [1,2,9] on some fractal sets. Motivated by
the application of symmetric comparison inequalities for the heat kernels in [8], we here present
an alternative approach to such results, which is based on Theorem 5.1.

Let {Pt }t�0, {P Ω
t }t�0 be the semigroups of the Dirichlet forms (E , F ), (E , F (Ω)) respec-

tively as before. For any x ∈ M and r > 0, define the metric ball

B(x, r) = {
y ∈ M: d(x, y) < r

}
.

For any ball B = B(x, r) and any positive constant λ, denote by λB the ball B(x,λr).
Recall that a Dirichlet form (E , F ) in L2(M,μ) is called conservative if the heat semigroup

{Pt }t�0 of (E , F ) satisfies the following property:

Pt1 = 1 in M for any t > 0.

Lemma 6.1. Assume that (E , F ) is a conservative, regular Dirichlet form in L2(M,μ), and
let {Pt }t�0 be the heat semigroup of (E , F ). Assume that φ(r, t) is a non-negative function on
(0,∞) × (0,∞) such that φ(r, ·) is increasing in (0,∞) for every r > 0. If, for any t > 0 and
any ball B in M of radius r ,

Pt1Bc � φ(r, t) in
1

4
B, (6.1)

then

1 − P B
t 1B � 2φ

(
r

4
, t

)
in

1

4
B. (6.2)
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Fig. 6. Illustration to the proof of Lemma 6.1.

Remark 6.2. A version of this statement appeared in [1, proof of Lemma 3.9] where a proba-
bilistic proof was given. We follow the argument of [5, Theorem 3.1], [6, Theorem 5.13] where
this statement was proved with some additional restrictions.

Proof of Lemma 6.1. Applying the estimate (4.2) with Ω = M , U = B , K = 3
4B and f = 1 1

2 B
,

we obtain that, for any t > 0 and almost everywhere in M ,

P B
t 1 1

2 B
� Pt1 1

2 B
− sup

0<s�t

‖Ps1 1
2 B

‖
L∞(( 3

4 B)c)
. (6.3)

For any x ∈ 1
4B , we have that B(x, r/4) ⊂ 1

2B (see Fig. 6). Using the identity Pt1 = 1, we have
that, for any x ∈ 1

4B ,

Pt1 1
2 B

= 1 − Pt1( 1
2 B)c

� 1 − Pt1B(x,r/4)c .

Applying (6.1) for the ball B(x, r/4), we see that

Pt1B(x,r/4)c � φ(r/4, t) in B(x, r/16).

It follows that, for any x ∈ 1B ,
4
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Pt1 1
2 B

� 1 − φ(r/4, t) in B(x, r/16).

Covering 1
4B by a countable family of balls B(xk, r/16) where xk ∈ 1

4B , we obtain that

Pt1 1
2 B

� 1 − φ(r/4, t) in
1

4
B. (6.4)

On the other hand, for any y ∈ ( 3
4B)c , we have that 1

2B ⊂ B(y, r/4)c , and so

Ps1 1
2 B

� Ps1B(y,r/4)c .

Applying (6.1) for the ball B(y, r/4) at time s and using the monotonicity of φ(r, s) in s, we
obtain that, for any 0 < s � t ,

Ps1B(y,r/4)c � φ(r/4, s) � φ(r/4, t) in B(y, r/16).

It follows that, for any y ∈ ( 3
4B)cand any 0 < s � t ,

Ps1 1
2 B

� φ(r/4, t) in B(y, r/16),

which implies that

Ps1 1
2 B

� φ(r/4, t) in

(
3

4
B

)c

. (6.5)

Combining (6.3), (6.4) and (6.5), we obtain that, for any t > 0,

P B
t 1B � P B

t 1 1
2 B

� 1 − 2φ(r/4, t) in
1

4
B, (6.6)

which was to be proved. �
In the next statement, we use a function F : M × M × (0,∞) → (0,∞) with the following

properties:

(F1) F(x, y, s) = F(y, x, s) for all x, y ∈ M and s > 0;
(F2) F(x, y, s) is decreasing in s for any x, y ∈ M ;
(F3) there exist α,C > 0 such that

F(z, y, s)

F (x, y, s)
� C

(
1 + d(x, z)

s

)α

(6.7)

for all x, y, z ∈ M and s > 0.

Theorem 6.3. Let (E , F ) be a conservative, local, regular Dirichlet form in L2(M,μ). Let h be
a positive increasing function on (0,+∞). Assume in addition that the following two conditions
hold:
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(1) The heat kernel pt of (E , F ) exists and satisfies the inequality

pt(x, y) � F
(
x, y,h(t)

)
, (6.8)

for all t > 0, μ-almost all x, y ∈ M , where F is a function that satisfies the conditions
(F1)–(F3) above.

(2) There exist ε ∈ (0, 1
2 ) and δ > 0 such that, for any ball B of radius r > 0 and for any t > 0,

we have

Pt1Bc � ε in
1

4
B (6.9)

whenever h(t) � δr .

Then, for all λ, t > 0 and μ-almost all x, y ∈ M ,

pt (x, y) � CF

(
x, y,h

(
t

2

))
exp

(
−c′tΨ

(
cr

t

))
(6.10)

where r = d(x, y), the constant C > 0, and Ψ is defined by

Ψ (s) = sup
λ>0

{
s

h(1/λ)
− λ

}
. (6.11)

Proof. Fix t > 0, two distinct points x0, y0 ∈ M and set r = 1
2d(x0, y0). Applying (5.13) with

U = B(x0, r), V = B(y0, r), Ω = M and ρ = 0, we obtain that, for μ-almost all x ∈ B(x0, r)

and y ∈ B(y0, r),

pt (x, y) �
[
1 − P U

t/21U(x)
]

sup
t/2<s�t

esup
z∈B(x0,r)

ps(z, y) (6.12)

+ [
1 − P V

t/21V (y)
]

sup
t/2<s�t

esup
z∈B(y0,r)

ps(z, x). (6.13)

In what follows, we estimate the term on the right-hand side of (6.12), while the term in (6.13)
can be treated similarly. We claim that, for all λ > 0,

1 − P U
t/21U � C exp

(
c′λt − cr

h(1/λ)

)
in

1

4
U. (6.14)

Indeed, we see from (6.9) that the hypothesis (6.1) of Lemma 6.1 is satisfied with

φ(r, t) =
{

ε, if h(t) � δr,

1, otherwise.

Therefore, by Lemma 6.1, we obtain that, for all balls B of radius r ,

1 − P B
t 1B � 2φ

(
r
, t

)
� 2ε in

1
B,
4 4
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provided that h(t) � δr/4. It follows from [5, Theorem 3.4] (see also [6, Theorem 5.7]) that, for
any ball B of radius r and for any λ > 0,

Pt1Bc � C exp

(
c′λt − cr

h(1/λ)

)
in

1

2
B.

Using Lemma 6.1 again, this time with the function

φ(r, t) = C exp

(
c′λt − cr

h(1/λ)

)
,

we obtain

1 − P B
t 1B � 2C exp

(
c′λt − cr/4

h(1/λ)

)
in

1

4
B,

which proves (6.14).
On the other hand, for all z ∈ B(x0, r) and x ∈ B(x0, r), we have that z ∈ B(x,2r), whence

by condition (F3)

F(z, y,h(t/2))

F (x, y,h(t/2))
� C

(
1 + 2r

h(t/2)

)α

� 2αC

(
1 + r

h(t/2)

)α

.

Noting that h is increasing and F(x, y, ·) is decreasing, we have from (6.8) that, for all t
2 � s � t

and for μ-almost all z ∈ B(x0, r) and y ∈ B(y0, r),

ps(z, y) � F
(
z, y,h(s)

)
� F

(
z, y,h(t/2)

)

= F
(
x, y,h(t/2)

) F(z, y,h(t/2))

F (x, y,h(t/2))
� 2αCF

(
x, y,h(t/2)

)(
1 + r

h(t/2)

)α

.

Therefore, we have, for almost all y ∈ B(y0, r),

sup
t/2<s�t

esup
z∈B(x0,r)

ps(z, y) � CF
(
x, y,h(t/2)

)(
1 + r

h(t/2)

)α

. (6.15)

Combining (6.14) and (6.15) and a similar estimate for the term in (6.13), we obtain from (6.12)
and (6.13) that, for μ-almost all x ∈ B(x0,

1
4 r), y ∈ B(y0,

1
4 r),

pt(x, y) � CF
(
x, y,h(t/2)

)(
1 + r

h(t/2)

)α

exp

(
c′λt − cr

h(1/λ)

)
. (6.16)

In order to absorb the middle term to the exponential on the right-hand side in (6.16), fix r, t

and consider the function

G(λ) := cr

h(1/λ)
− c′λt,

where c, c′ are the same as in (6.16). Using this with λ = 2/t and the elementary inequality
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α log(1 + s) � c

2
s + c′′, s � 0,

where c is as above and c′′ = c′′(c,α) is large enough, we obtain that

α log

(
1 + r

h(t/2)

)
� 1

2

cr

h(t/2)
+ c′′

= 1

2
G(2/t) + c′ + c′′ � 1

2
sup
λ>0

G(λ) + c′ + c′′.

Therefore,

(
1 + r

h(t/2)

)α

exp
(
− sup

λ>0
G(λ)

)
� exp

(
−1

2
sup
λ>0

G(λ) + c′ + c′′
)

� C exp

(
−1

2
sup
λ>0

G(λ)

)

� C exp

(
−1

2
G(λ)

)
.

Therefore, we obtain from (6.16) that, for any λ > 0 and μ-almost all x ∈ B(x0,
1
4 r), y ∈

B(y0,
1
4 r),

pt(x, y) � CF
(
x, y,h(t/2)

)
exp

(
−1

2
G(λ)

)
. (6.17)

Since M ×M \diag can be covered by a countable family of sets B(x0,
1
4 r)×B(y0,

1
4 r) as above,

it follows that (6.17) holds for μ-almost all x, y ∈ M . Taking sup in λ > 0, we obtain (6.10). �
Let us give an example to illustrate Theorem 6.3. Set

V (x, r) := μ
(
B(x, r)

)

and assume in the sequel that the following volume doubling condition (VD) is satisfied: there is
a constant CD � 1 such that

V (x,2r) � CDV (x, r) (6.18)

for all x ∈ M and r > 0. It is known that (VD) implies the existence of a constant α > 0 such that

V (x,R)

V (y, r)
� CD

(
d(x, y) + R

r

)α

(6.19)

for all x, y ∈ M and 0 < r � R (see, for example, [6]).
Define functions h and F as follows:

h(t) = t1/β
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and

F(x, y, s) = C√
V (x,h(s))V (y,h(s))

,

for all t, s > 0 and x, y ∈ M , where β > 1 is some constant. It follows from (6.19) that F satisfies

conditions (F1)–(F3). It is easy to see that the supremum in (6.11) is attained at λ = cs
β

β−1 so that

Ψ (s) = cs
β

β−1 .

The estimate (6.10) becomes

pt(x, y) � C√
V (x, t1/β)V (y, t1/β)

exp

(
−c

(
d(x, y)

t1/β

) β
β−1

)
,

for all t > 0 and almost all x, y ∈ M . Using (6.19) again and applying the same argument as in
the proof of Theorem 6.3, we obtain that

pt(x, y) � C

V (x, t1/β)
exp

(
−c

(
d(x, y)

t1/β

) β
β−1

)
. (6.20)

In particular, if V (x, r) � rα for some α > 0, then (6.20) becomes

pt (x, y) � C

tα/β
exp

(
−c

(
d(x, y)

t1/β

) β
β−1

)
. (6.21)

Remark 6.4. The estimate of type (6.21) was obtained in [3] for the Sierpinski gasket, and in [2]
for the Sierpinski carpet, and in [9] for a certain class of post-critically finite self-similar sets.
The estimate (6.20) with β = 2 was obtained by Li and Yau [13] for Riemannian manifolds of
non-negative curvature, and with any β > 1 by Kigami [12] for some general class of self-similar
sets.

Appendix A

Proposition A.1. Let F(x, y) be a non-negative μ-measurable function of x, y ∈ M . Then the
function

f (x) = esup
y

F (x, y)

is measurable.

Proof. Fix a pointwise realization of F . Assume first that F is bounded. For any x ∈ M , consider
the mapping
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L1 � ϕ �→ T ϕ(x) :=
∫
M

F(x, y)ϕ(y) dμ(y)

which is a bounded linear functional on L1. We have

f (x) = sup
‖ϕ‖1�1

T ϕ(x).

Since T is continuous in ϕ, the supremum can be replaced by the one over a dense subset S ⊂ L1,
that is,

f (x) = sup
‖ϕ‖1�1, ϕ∈S

T ϕ(x).

Since T ϕ is a measurable function, the supremum over a countable family is also measurable,
and hence, the function f is measurable.

For an arbitrary F , consider Fk = F ∧ k, we have from above that fk(x) := esupy Fk(x, y) is
measurable. Note that the sequence {fk}∞k=1 increases and converges to f pointwise as k → ∞.
Hence, the function f is measurable. �
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