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ABSTRACT. We show that, for an iterated function system
{Sj}Nj=1 of similitudes that satisfies the open set condition, there
is a natural graph structure in the representing symbolic space
to make it a hyperbolic graph, and the hyperbolic boundary is
homeomorphic to the self-similar set generated by {Sj}Nj=1.

1. INTRODUCTION

The theory of random walks on graphs has generated a lot of interest in probabil-
ity, geometry, potential theory and harmonic analysis. Recently Denker and Sato
[6–8] carried out an interesting study of this on the Sierpinski gasket K. They
introduced a certain transition probability on the representing symbolic space and
showed that the Martin boundary associated with this random walk is homeomor-
phic to the gasket K. Furthermore, in [8] they identified a subclass of harmonic
functions from such a Markov chain with Kigami’s harmonic functions on the
Sierpinski gasket [15, 16]. This provides a close link of the boundary theory with
the current development of analysis on fractals.

In regard to the consideration in [6], Kaimanovich [14] introduced a hyper-
bolic structure (“augmented” tree) on the symbolic space of the Sierpinski gasket,
and showed that the gasket can be identified naturally as the boundary of a hy-
perbolic graph. He further suggested that the Martin boundary in [6] can be
obtained using the random walk technique in hyperbolic graphs ([1], [24]), and
that this approach might also work for more general self-similar sets. As a first step
to this investigation, we show in this paper that indeed certain self-similar sets can
be given the hyperbolic structure through the augmented tree, and the set can be
identified with the hyperbolic boundary of the tree.

Recall that for an iterated function system (IFS) of contractive maps {Sj}Nj=1

on Rd, there exists a unique non-empty compact subset such that K = ⋃Nj=1 Sj(K)
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([9], [12]). We call such K an invariant set or attractor of the IFS. If in addition
the contractive maps are similitudes, then K is called a self-similar set. The IFS is
said to satisfy the open set condition if there exists an bounded nonempty open set
V such that Sj(V) ⊂ V and Si(V)∩ Sj(V) ,∅ for i , j.

For each integer n ≥ 0, we let Σn = {1, . . . , N}n (convention Σ0 = ∅).Σ = ⋃∞
n=0 Σn be the set of all finite indices, and let Σ∞ be the set of all infinite

indices. For i = i1 . . . in, j = j1 . . . jk ∈ Σ, denote ij = i1 . . . inj1 . . . jk be the
concatenation; we also denote v1v2 . . .vk by vk if vi = v for all i. To deal with
the different contraction ratios of Si’s, usually we group together the maps that
have approximately equal contraction ratios: let rj be the contraction ratio of Sj
and let r = min{rj | 1 ≤ j ≤ N},

(1.1) Jn = {j = j1 . . . jk ∈ Σ | rj1 . . . rjk ≤ rn < rj1 . . . rjk−1}.

Note that for m , n, Jm ∩ Jn = ∅, let X = ⋃∞n=0 Jn, where J0 = {∅}. In the
case all ri, i = 1, . . . , n are equal, then Jn = Σn and X = Σ. In general X is a
proper subset of Σ. For example, if we let {Sj}2

j=1 and r1 = r 2
2 , then

u = 22 . . .2︸      ︷︷      ︸
2k+1

∉ Jn, for any n.

Note that for each i ∈ Jn, n ≥ 1, there is a unique j ∈ Jn−1 and k ∈ Σ such
that i = jk. This defines a natural rooted tree structure on X: i, j are said to be
connected by a vertical edge and is denoted by i ∼ j if i ∈ Jn, j ∈ Jn−1 (or j ∈ Jn,
i ∈ Jn−1) are related as the above. Let Ev be the set of all vertical edges, then
(X,Ev) is a rooted tree with o = ∅ as the root. We also define a set of horizontal
edges Eh as follow: for each n and for i, j ∈ Jn, i ∼ j if Si(K) ∩ Sj(K) , ∅
(Sj means Sj1 ◦ · · · ◦ Sjk). We use E = Ev ∪ Eh to denote the vertical and
horizontal edges and (X,E) the graph. This sets up an augmented rooted tree as in
Kaimanovich [14].

We use the standard notation on hyperbolic graph X introduced by Gromov
([10], [3], [24]). The hyperbolic boundary is defined as ∂X = X̂ \ X where X̂ is
the compactification of X under an ultra-metric ρa(·, ·) on X (see Section 2). We
prove the following results.

Theorem 1.1. Let {Sj}Nj=1 be an IFS of contractive similitudes that satisfies the
open set condition. Then (X,E) is a hyperbolic graph.

Theorem 1.2. With the above assumptions, then the self-similar set K is homeo-
morphic to the hyperbolic boundary of (X,E). Furthermore, the Hölder equivalence
holds if we assume some additional conditions on {Sj}Nj=1 (condition (H) in Section
4).

The open set condition in Theorem 1.1 is used to show that the lengths of
horizontal geodesics are uniformly bounded (Lemma 3.1), which implies that the
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graph (X,E) is hyperbolic (Theorem 2.3). For Theorem 1.2, we let Π : Σ∞ → K
be the map Π(i) = limn→∞ Si1...in(x0). It is well known that the above limit exists
and is independent of x0 ∈ Rd. Let Σ∞/Π denote the quotient space over the
equivalent relation Π(i) = Π(j). We show that K and the hyperbolic boundary of
(X,E) are both homeomorphic to Σ∞/Π and the theorem follows (Theorem 4.3,
Proposition 4.4).

We remark that the horizontal edges can be defined more generally so that
the hyperbolicity still holds (Definition 2.3, Proposition 3.4). The above consid-
eration for self-similar sets can also be extended to the class of self-affine sets that
are generated by the IFS of self-affine maps with equal contractive matrix A. This
makes use of a special technique in [11] where the Euclidean distance in the key
lemma (Lemma 3.1) is replaced by a pseudo-metric induced by A (see Section 5).

In [1] (see also [24, p. 288]), Ancona proved that if X is a hyperbolic graph
and if there is a “reversible” transition probability on X, then by using a Harnack-
type inequality, the associated Martin boundary is homeomorphic to the hyper-
bolic boundary of X. The transition probability in [6] is, however, not reversible
and it is not direct to adopt the technique. We will consider this in a fore coming
paper [13] with the setup on some post critically finite self-similar sets, which also
satisfy the open set condition [5].

We organize the paper as following. In Section 2 we introduce some basic
notation of the hyperbolic boundary, we also prove a criterion for an augmented
rooted tree to be a hyperbolic graph. We prove Theorem 1.1 in Section 3 and
Theorem 1.2 in Section 4. A consideration on the self-affine sets and some remarks
on the case without the open set conditions are provided in Section 5.

2. HYPERBOLIC GRAPHS

Let X be a countable infinite set, we say that X is a graph if it is equipped with
an adjacency relation (neighborhood) which is symmetrical, but non-reflexive; we
use x ∼ y , x, y ∈ X to denote such relation. The degree of x is the number
of neighbors. In our consideration we will assume that X is locally finite, i.e., the
degree at each x is finite. To visualize X with the relation ∼, we draw a segment
[x,y] between the related vertices x, y ∈ X and call it an edge; let E denote the
set of edges on X (note that [x,x] ∉ E by the assumption on ∼). A (finite) path
p(x,y) from x to y is a sequence [x1, x2, . . . , xn] with xi ∼ xi+1 and x = x1,
xn = y , we use |p(x,y)| (= n− 1) to denote the length of the path. We assume
that every two points x, y ∈ X are connected by a path. If such a path (with
xi , xj for all i, j) is unique, then we call it a tree.

A graph X carries an integer-valued metric d(x,y), which is the minimum
among the lengths of all paths from x to y . We denote the corresponding geodesic
path byπ(x,y); note that such a path is not unique in general. Under this metric,
(X,d) is a proper metric space (every closed ball in X is compact) and every two
points can be connected by a geodesic.
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We choose an o ∈ X as the origin and call it a root of the graph. We use |x|
to denote d(o,x). For x, y ∈ X, we define the Gromov product ([3], [24]) of any
two points x, y ∈ X by

|x ∧y| = 1
2
(|x| + |y| − d(x,y)).

Definition 2.1. We say that (X,E) is δ-hyperbolic (with respect to o) if there
exists δ ≥ 0 such that

|x ∧y| ≥ min
{
|x∧z|, |z∧y|

}
− δ, ∀x, y, z ∈ X.

It is known that X is δ-hyperbolic with respect to a particular o ∈ X if and
only if it is 2δ-hyperbolic for any fixed root o′ ∈ X [3]. Hence hyperbolicity is
independent of the choice of the root. In general |x ∧ y| is roughly the distance
from o to π(x,y) in the following sense:

(2.1) d(o,π(x,y))− 2δ ≤ |x ∧y| ≤ d(o,π(x,y)).

A geodesic triangle is a triangle consistsing of three points x, y , z as vertices,
together with the three geodesic arcs π(x,y), π(y, z), π(z,x) as sides; the
triangle is called δ-thin if every point on any one of the sides is at distance at most
δ to one of the other two sides. There is a more geometric characterization of the
δ-hyperbolicity.

Proposition 2.1. A graph (X,E) is δ-hyperbolic for some δ > 0 if and only if
there exists δ′ > 0 such that every geodesic triangle in X is δ′-thin.

As in [24], we choose a > 0 such that

a′ = e3δa − 1 <
√

2− 1

and define for x, y ∈ X,

(2.2) ρa(x,y) =


exp(−a|x ∧y|), x , y,

0, x = y.

Then

(2.3) ρa(x,y) ≤ (1+ a′)max{ρa(x, z), ρa(y, z)}, ∀x,y, z ∈ X.

This means ρa(·, ·) is an ultra-metric. It is not a metric, but is equivalent to the
following metric:

θa(x,y) = inf
{ n∑
i=1

ρa(xi−1, xi) | n ≥ 1, x = x0, x1, . . . , xn = y, xi ∈ X
}
.
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Since ρa and θa define the same topology, in our consideration we will use ρa
instead of θa for simplicity. It is known that for any sequence {xn}∞n=1 such that
limn→∞ |xn| = ∞,

{xn} is Cauchy in the ultra-metric ρa(x,y) if and only if
limm,n→∞ |xm ∧ xn| = ∞.

Definition 2.2. Let X̂ denote the completion of the graph X under ρa; we
call ∂X = X̂ \X the hyperbolic boundary of X.

The hyperbolic boundary ∂X is a compact set. It is often useful to identify
ξ ∈ ∂X with the geodesic rays in X that converge to ξ. (By a geodesic ray, we
mean an infinite path π[x1, x2, . . . ] such that xi ∼ xi+1 and any finite segment
of the path is a geodesic.) Note that two geodesic rays ξ = [x1, x2, . . . ] and
η = [y1, y2, . . . ] with |x1| = |y1| are equivalent as Cauchy sequence if and only
if

(2.4) d(xn,yn) ≤ cδ

for all but finitely many n, where c > 0 is independent of the rays [24].
In order to consider the self-similar sets, we need some further notation of a

graph. Let X be a tree with a root o, we denote its edges by Ev and refer them
as the vertical edges. We say that x belongs to the n-th level if d(o,x) = n; we
use x[−k] to denote the k-th ancestor of x, the unique point in (n − k)-th level
such that d(x−[k], x) = k. Note that each x can have multiple descendants but a
unique ancestor on each level.

Definition 2.3 (Kaimanovich [14]). Let X be a tree with a root o. We in-
troduce a set of horizontal edges Eh in X as follows: Eh is symmetrical but non-
reflexive, and

[x,y] ∈ Eh ⇒ |x| = |y|, and either x[−1] = y[−1] or [x[−1], y[−1]] ∈ Eh.

Let E = Ev ∪Eh and call (X,E) an augmented rooted tree.

It is obvious that d(x[−1], y[−1]) ≤ d(x,y) for all x, y ∈ X. For any x,
y ∈ X, we say that the geodesic π(x,y) is an h-geodesic if the path consists of
horizontal edges only, and a v-geodesic if the path consists of vertical edges only;
it is called a canonical geodesic if there exist u, v ∈ π(x,y) such that

(i) π(x,y) = π(x,u) ∪ π(u,v) ∪ π(v,y) with π(u,v) a horizontal path
and π(x,u), π(v,y) vertical paths;

(ii) for any geodesic path π ′(x,y), dist(o,π(x,y)) ≤ dist(o,π ′(x,y)).
Since a geodesic path may not be unique, condition (ii) is to require the hor-

izontal part of the canonical geodesic to be on the highest level (see Figure 2.1).
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FIGURE 2.1. Canonical geodesic

Following [14], we can use the following moves repeatedly to change the geodesic
without increasing the length: for u, v ∈ π(x,y), |u| = |v|,

[u,v, v[−1]]→ [u,u[−1], v[−1]] and [u[−1], u, v]→ [u[−1], v[−1], v].

By using this, it is straightforward to check the following result.

Proposition 2.2. Any two points x, y in an augmented rooted tree can be joined
by a canonical geodesic π(x,y). In this case |x ∧ y| = ` − h/2 where ` and h are
respectively the level and length of the horizontal part of the geodesic.

Our main theorem in this section is the following.

Theorem 2.3. An augmented rooted tree X is hyperbolic if and only if there exists
k > 0 such that any h-geodesic is bounded by k.

Proof. We use the characterization of δ-hyperbolicity in Proposition 2.1 to
prove the necessity. Suppose all the geodesic triangles are δ-thin, we show that
any h-geodesic is bounded by 5δ. If otherwise, let x, y be such that |x| = |y|
and let π(x,y) be an h-geodesic of length > 5δ. Consider the geodesic triangle
oxy . Let u be a point in π(x,y) such that π(x,u), π(u,y) > 2δ (e.g., the
“mid-point”). By the δ-hyperbolicity, there exists v ∈ π(o,x) (or v ∈ π(o,y))
such that d(u,v) ≤ δ. Since x, u are on the same horizontal level, we have
d(x,v) = |x| − |v| = |u| − |v| ≤ δ also. This implies that

2δ < d(x,u) ≤ d(x,v)+ d(v,u) ≤ 2δ,

a contradiction.
To prove the sufficiency, let k be the bound of the length of the h-geodesics.

If X is not δ-hyperbolic for any δ > 0, by the contraposition of Definition 2.1,
we can find x, y , z such that

(2.5) |x ∧y| ≤ min
{
|x∧z|, |y∧z|

}
− k.
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By Proposition 2.2, we can assume the geodesics joining the pairs of x, y , z
are canonical. Let `i, i = 1, 2, 3 denote the lengths of the horizonal paths in
π(x,y), π(x, z) and π(y, z) respectively. Also we let hi, i = 1, 2, 3 denote
the corresponding levels of the horizontal paths. Using the notation above, we can
rewrite (2.5) as

(2.6) h1 − `1/2+ k ≤min
{
h2−`2/2, h3−`3/2

}
.

Noting that `i ≤ k, (i = 1, 2, 3), we have h1 ≤ min{h2, h3}. Without loss
of generality, we assume that h2 ≤ h3.

FIGURE 2.2. Geodesic segments

We now construct a new path p(x,y) from x to y (see Figure 2.2): start
form x, move along ox, change to the horizontal path of π(x, z), then move
on oz and reach the horizontal path of π(z,y), then follow this path to reach
y . Since π(x,y) is a geodesic, we have |π(x,y)| ≤ |p(x,y)|. By comparing
the difference in length of the two paths and making use of the property that a
geodesic has minimum length, we have

(h2 − h1)+ `1 + (h3 − h1) ≤ `2 + (h3 − h2)+ `3.

i.e.,
2(h2 − h1)+ `1 ≤ `2 + `3.

On the other hand, (2.6) implies that

h1 − `1/2+ k ≤ h2 − `2/2.

It follows that
2k+ `2 ≤ 2(h2 − h1)+ `1 ≤ `2 + `3.

We see that `3 ≥ 2k. It contradicts that all h-geodesics in X are bounded by k. ❐
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3. SELF-SIMILAR SETS

In the rest of the paper we assume that {Sj}Nj=1 is an iterated function system (IFS)
consisting of N contractive similitudes on Rd:

(3.1) Sj(x) = rjRj(x + dj), j = 1, . . . , N,

where 0 < rj < 1 is the contraction ratio of Sj , Rj is an orthonormal d×dmatrix
and dj ∈ Rd. We use the notation defined in Section 1.

We assume that the family {Sj}Nj=1 satisfies the open set condition, and denote
the self-similar set by K. For each n, the family {Su | u ∈ Jn} has the OSC with
the same open set V as the original family {Sj}Nj=1, and

K =
⋃ {

Su(K) | u ∈ Jn
}
,

where Jn is defined in (1.1).

Lemma 3.1. Suppose the IFS {Sj}Nj=1 of similitudes satisfies the OSC. Then for
any a > 0, there exists k′ > 0 (depending on a) such that for any n and D ⊂ Rd

with diam(D) ≤ arn (r = min{r1, . . . , rN}),

#
{
u ∈ Jn | Su(K)∩D ,∅

}
≤ k′.

This is a consequence of [21, Proposition 2.1], for the IFS to satisfy the weak
separation condition and hence the OSC. On the other hand, a straightforward
proof is not difficult and we omit the details.

We now construct a graph on X = ⋃∞
n=0 Jn. It is easy to see that for any

integer k < n, and u ∈ Jn, there exists a unique v ∈ Jk and v′ ∈ Σ, such that
u = vv′. We denote this unique v by u[−(n−k)] and call it (n−k)-th ancestor of
u. The natural tree structure on X is to take∅ as the root o, and let Ev be the set
of vertical edges defined by

Ev =
{
(u[−1],u) | u ∈ X \ {∅}

}
.

We define another set of horizontal edges by

(3.2) Eh =
{
(u,v) | ∃n > 0 such that u , v ∈ Jn and Ku ∩Kv ,∅

}
,

where Ku B Su(K). Let E = Ev ∪Eh.

Theorem 3.2. Suppose the IFS {Sj}Nj=1 of similitudes satisfies the OSC. Then
the augmented rooted tree (X,E) is hyperbolic.
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Proof. First we see that E is locally finite. It follows from Lemma 3.1 that
there exists k′ > 0 such that for any integer n > 0 and v ∈ Jn,

#
{
u ∈ Jn | Ku ∩ Kv ,∅

}
≤ k′.

Therefore v has at most k′ neighbors in the same level, also it has one ancestor.
On the other hand, let u be a descendant of v, i.e., u[−1] = v, then Ku ⊂ Kv ,
hence Ku ∩Kv ,∅. Let D = Kv ; by using Lemma 3.1 again, we have

#
{
u ∈ X | u[−1] = v

}
≤ k′′.

Hence for v ∈ X,

deg(v) = #
{
(u,v) ∈ E : u ∈ X

}
≤ k′ + k′′ + 1,

and E is locally finite.
Next we show that the lengths of the h-geodesics are bounded by some con-

stant, then Theorem 2.3 implies that (X,E) is hyperbolic. Suppose otherwise, for
any integer m > 0, there exists an h-geodesic π(u0,u3m) = [u0,u1, . . . ,u3m]
with ui ∈ Jn. We consider the m-th ancestors vi = u[−m]i and the path
[v0, . . . ,v3m] = [u[−m]0 , . . . ,u[−m]3m ]. Let

p(v0,v3m) = [vi0 , . . . ,vi`], vij ∈ {v0, . . . ,v3m},

be the shortest horizontal path connecting v0 and v3m. By the geodesic property
of π(u0,u3m), it is clear that

` = |p(v0,v3m)| ≥ |π(u0,u3m)| − 2m =m.

Now choose m ≥ k′ such that (3m + 1)rm ≤ 1, where k′ is as in Lemma 3.1.
Let

D =
3m⋃
i=0

Kui .

From diamKui ≤ rn diam(K) (i = 0,1, . . . ,3m), it is straightforward to show
that

(3.3) diam(D) ≤ (3m+ 1)rn diam(K) ≤ rn−m diam(K).

Note that Kui ⊂ Kvi , we see that Kvij ∩D ,∅ for each j = 0,1, . . . , `. It follows
that

#
{
v ∈ Jn−m | Kv ∩D ,∅

}
≥ ` + 1 > m ≥ k′.

It contradicts Lemma 3.1, and the proof is complete. ❐
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It is easy to see that the unit interval [0,1] associated with the IFS S1(x) = x/2,
S2(x) = (x + 1)/2, or the Sierpinski gasket associated with the maps Si(x) =
(x+pi)/2, i = 1, 2, 3, where p1, p2, p3 are the vertices of an equilateral triangle,
the corresponding augmented rooted trees are hyperbolic [14]. We remark that
these examples can be put into another framework of sub-Markovian graphs in-
troduced by Gromov ([10], [4]) also, which is analogous to the augmented rooted
tree. However, that approach seems less straightforward, and it needs to use the
property of subshift of finite type, which cannot cover all the IFS with the OSC
considered here (see the example in Section 4).

Recently there is a class of self-similar sets introduced by Kigami [15,16] that
has received a lot of attention in the analysis of fractals: for the IFS {Sj}Nj=1 of
similitudes, let

CK =
⋃ {

Si(K)∩ Sj(K) | i, j = 1,2, . . . , N, i , j
}
, C = Π−1(CK);

we say that the IFS has the post critically finite (p.c.f ) property, if the set P =⋃∞
n=1 σn(C) is finite, where σ(· ) is the left shift operator on Σ∞, i.e., σ(i1i2 . . . ) =
i2i3 . . . . The self-similar set generated by such IFS is finitely ramifiable, i.e., it be-
comes disconnected by removing a finite set points (for example, the Sierpinski
gasket). In [5] it is proved that if the similitudes satisfies the p.c.f, and the con-
tractions {rjRj}Nj=1 are commensurable (i.e., there exists a matrix A such that for
each j, rjRj = Anj for some positive integers nj), then it has the OSC.

Corollary 3.3. Suppose the IFS {Sj}Nj=1 of similitudes has the p.c.f property
and the contraction ratios are commensurable, then the augmented rooted tree (X,E)
defined in Theorem 3.2 is hyperbolic.

In some cases it is also useful to define the horizontal paths in the augmented
trees by another set of paths. For example, in the Sierpinski carpet, it is more
natural to define the neighbors to be Ku ∩ Kv , u, v ∈ Σn, to have Hausdorff
dimension equals 1.

Proposition 3.4. Suppose the IFS {Sj}Nj=1 of similitudes satisfies the OSC. For
α ≥ 0, define

E(α)h =
∞⋃
n=1

{
(u,v) | u,v ∈ Jn, dimH(Ku ∩Kv) ≥ α

}

and let E(α) = E(α)h ∪Ev . Then (X,E(α)) is a hyperbolic graph.

Proof. The proof is the same as the above with some obvious modification. ❐

4. SELF-SIMILAR SET AS HYPERBOLIC BOUNDARY

We assume that (X,E) is defined as in (3.2). It is easy to show that for any
geodesic ray ξ = π[u1,u2, . . . ], there exists i1, i2, . . . ∈ {1, . . . , N} such that for
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each k ≥ 0, uk = i1 . . . ink for some integer nk. Also each geodesic ray, up to
equivalence, is in one-to-one correspondence with an element in the hyperbolic
boundary ∂X [24]. When there is no confusion, we will identify the points in the
hyperbolic boundary with equivalent classes of geodesic rays.

We define a map Φ from the set of all geodesic rays to the self-similar set K by

Φ(ξ) = lim
n→∞Sun(x0).

It is known that the above limit is independent of x0 ∈ Rd. To justify that Φ is
well defined, we prove the following result.

Lemma 4.1. If ξ and η are equivalent geodesic rays, then Φ(ξ) = Φ(η).
Proof. Let ξ = π[u1,u2, . . . ] and η = π[v1,v2, . . . ]. It follows from (2.4)

that there exists c > 0 such that

d(vn,un) ≤ cδ

for all n ≥ 0, where δ is the constant in the definition of a hyperbolic graph.
Let un = t0, t1, . . . , tk = vn be a canonical geodesic from un to vn, then

k ≤ cδ. The canonical geodesic can be written in three parts, two vertical and
one horizontal parts: t0, . . . , ti; ti, . . . , tj and tj, . . . , tk. For the horizontal part,
we assume that ti, . . . , tj ∈ J`n . Note that

Kt0 ⊂ Kt1 ⊂ · · · ⊂ Kti and Ktj ⊃ Ktj−1 ⊃ · · · ⊃ Ktk .

Taking any x0 ∈ K, then for the initial and the tail part, we have

|St0(x0)− Sti(x0)| ≤ diam(Kti ) = rti diam(K) ≤ r`n diam(K),

where rj1...jm B rj1 . . . rjm for j1 . . . jm ∈ Σ. Similarly

|Stj (x0)− Stk(x0)| ≤ diam(Ktj ) = rtj diam(K) ≤ r`n diam(K).

For the intermediate part [ti, . . . , tj], they are in the same horizontal level `n,
hence rti , . . . , rtj ≤ r`n and j − i ≤ cδ. A simple argument shows that

|Sti (x0)− Stj (x0)| ≤ (j − i+ 1)r`n diam(K) ≤ (cδ+ 1)r`n diam(K).

Putting these together, we get

|Svn(x0)− Sun(x0)| ≤ Cr`n,

for some constant C > 0. Note that `n − cδ ≤ |un ∧ vn| ≤ `n (see (2.1)),
hence limn→∞ `n = limn→∞ |un ∧ vn| = +∞. It follows that limn→∞ Svn(x0) =
limn→∞ Sun(x0) and the lemma follows. ❐
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Corollary 4.2. If ξ = π[u0,u1, . . . ] and η = π[v0,v1, . . . ] are equivalent
geodesic rays starting from the root o, then there exists an integer k, such that

ui = vi, i ≤ k and d(ui,vi) = 1, i > k.

Proof. By Lemma 4.1, Φ(ξ) = Φ(η) = x for some x ∈ K. This im-
plies x ∈ Sun(K) ∩ Svn(K) for all n = 0,1, . . . , hence either un = vn or
d(un,vn) = 1. To complete the proof, we need only see that if d(un,vn) = 1,
then d(un+k,vn+k) = 1 for all k > 0. This is trivial, since if there exists some
k > 0, such that un+k = vn+k, say, it is the first one, then it has two one-step
ancestor and it is impossible. ❐

Theorem 4.3. Let K be the self-similar set of the IFS {Sj}Nj=1 which satisfies the
OSC. Then Φ : ∂X → K is a bijection and satisfies

|Φ(ξ)− Φ(η)| ≤ Cρa(ξ, η)α, ∀ξ, η ∈ ∂X,

where ρa is the ultra-metric on ∂X as in (2.2) and α = − log r/a. In this case ∂X is
homeomorphic to K.

Proof. For x ∈ K, there exists a sequence i1i2 . . . ∈ Σ∞ such that

lim
n→∞Si1i2...in(x0) = x.

Let u0 = ∅, and for each k > 0, there exists a unique nk such that ri1...ink ≤
rk < ri1...ink−1 , we let uk = i1i2 . . . ink and ξ = π[u0,u1, . . . ]. Then Φ(ξ) = x
and Φ is surjective. To show that Φ is injective, we let ξ = π[u0,u1, . . . ], η =
π[v0,v1, . . . ] and assume that

Φ(ξ) = Φ(η) = x ∈ K,
then x ∈ Kun ∩ Kvn for all n ≥ 0. Therefore d(un,vn) ≤ 1 and ξ, η are
equivalent.

Next we show that Φ is Hölder continuous on ∂X. Then being a bijective
continuous map, Φ is a homeomorphism. Let

ξ = π[u0,u1, . . . ] and η = π[v0,v1, . . . ]

be any two non-equivalent geodesic rays in X. Then there exists a bilateral geodesic
γ joining ξ and η [24, p. 246]. By Proposition 2.2, we can assume that it is also
canonical:

(4.1) γ = π[. . . ,un+1,un, t1, t2, . . . , t`,vn,vn+1, . . . ]
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with un, t1, . . . , t`, vn ∈ Jn. Fix an x0 ∈ K, it follows that (see the proof in
Lemma 4.1)

(4.2) |Sun(x0)− Svn(x0)| ≤ (` + 2)rn diam(K),

By Theorem 2.3, ` is uniformly bounded by a constant k′, which depends on the
graph only. Note that Φ(ξ) ∈ Kuk , Φ(η) ∈ Kvk for all k ≥ 0, hence

|Φ(ξ)− Sun(x0)|, |Φ(η)− Svn(x0)| ≤ rn diam(K).

This together with (4.2) implies that

|Φ(ξ)− Φ(η)|(4.3)

≤ |Φ(ξ)− Sun(x0)| + |Sun(x0)− Svn(x0)| + |Svn(x0)− Φ(η)|
≤ C′rn,

for some constant C′ > 0. Since it is a bilateral canonical geodesic, we have
|ξ ∧ η| = n− (` + 1)/2 and ` is uniformly bounded by a constant k′. By using

ρa(ξ, η) = exp(−a|ξ ∧ η|)

and (4.3), the theorem follows. ❐

We can improve the map Φ to be Hölder equivalent under the following con-
dition on the IFS:
(H) There exists C′ > 0 such that for any integer n > 0 and v, u ∈ Jn, either

Sv(K)∩ Su(K) ,∅ or |Sv(x)− Su(y)| ≥ C′rn

for all x, y ∈ K.

Proposition 4.4. Suppose the IFS {Sj}Nj=1 in Theorem 4.3 satisfies in addition
condition (H). Then there exists C > 0 such that for any ξ, η ∈ ∂X,

(4.4) C−1|Φ(ξ)− Φ(η)| ≤ ρa(ξ, η)α ≤ C|Φ(ξ)− Φ(η)|,
where α = − log r/a.

Proof. We use the same notation as in the last theorem. Assume that ξ ,
η. Since γ in (4.1) is a geodesic, it follows that the un+1 � vn+1, and hence
Kvn+1 ∩ Kun+1 = ∅. Note that Φ(ξ) ∈ Kvn+1 and Φ(η) ∈ Kun+1 , condition (H)
implies that

|Φ(ξ)− Φ(η)| ≥ C′rn.
This together with the estimation in Theorem 4.3 yields

C′rn ≤ |Φ(ξ)− Φ(η)| ≤ Crn,
and the theorem follows in view of the definition of hyperbolic metric ρa. ❐
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There are important classes of IFS that satisfiy condition (H). For example, we
have the following result.

Proposition 4.5. Let Si(x) = A−1(x + di), j = 1, . . . , N be contractive simil-
itudes, where A is a d×d integer matrix and {d1, . . . , dN} ⊂ Zd. Then {Si(x)}Ni=1
satisfies condition (H).

Proof. Let

(4.5) α = inf
{
|x| : x ∈

⋃
{K − K + d : d ∈ Zd s.t. 0 ∉ K −K + d}

}
.

Since K is compact, α > 0. For any u ∈ Σn, we can write Su(x) = A−n(x+du) =
rnRn(x + du), where 0 < r < 1, du ∈ Zd and R orthonormal matrix. Suppose
Su(K)∩ Sv(K) = ∅, then for any x, y ∈ K, we have

|Su(x)− Sv(y)| = rn|x −y + du − dv| > 0.

Noting that du, dv ∈ Zd and by making use of the expression α in (4.5), we have

|Su(x)− Sv(y)| ≥ αrn. ❐

Condition (H) is however not satisfied by an arbitrary IFS of similitudes with the
OSC, hence we do not know if Φ in Theorem 4.3 can be improved to Hölder
equivalence in general. We conclude this section by giving an example where
condition (H) fails.

Example 4.6. Let A =
[

3 0
0 3

]
and let D be the digit set consisting of the

following vectors:

d1 =
[
−1

0

]
, d2 =

[
0
0

]
, d3 =

[
1
0

]
, d4 =

[
−1

1

]
, d5 =

[
0
1

]
,

d6 =
[

1
1

]
, d7 =

[
−1+ η
−1

]
, d8 =

[
η
−1

]
, d9 =

[
1+ η
−1

]
,

where η is a real number. The corresponding IFS is Si(x) = A−1(x + di), i =
1, . . . ,9.

The example was used by Kenyon [17] (see also [20]) to demonstrate that
the attractor K is a self-similar tile and the tiling set T fails to be locally finite (in
the sense of [17]). Indeed they showed that the relative position of two adjacent
horizontal tiling sets are irrationally shifted relative to each other, and this shift
can be made arbitrary small for a special choice of η (due tomη (mod1),m ∈ Z).
Hence by using self-similarity in the microscopic scale, we see that condition (H)
is not satisfied. To be more concrete, we prove this and the OSC directly without
recourse to the theory of tiles.
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x0

y0

S1 S2 S3

S4 S5 S6

S7 S8 S9

FIGURE 4.1. An example where condition (H) fails

Let

x0 = lim
n→∞S47n(0) =

(
−1

2
+ η

6
,
1
6

)t
;

y0 = lim
n→∞S6n(0) =

(
1
2
,
1
2

)t
.

(See Figure 4.1 for the location and the corresponding indices for the points; it is
seen from x0 and z0 = limn→∞ S14n(0) = (− 1

2 ,
1
6)
t that the relative shift of S1(K)

and S4(K) is η/6.) We take a special η as follows. Let an ∈ {0,1}, n = 1,2, . . .
be such that a1a2 . . . = 0102103104 . . . . If we let nk to be the index of the an
that the k-th 1 appears, then

(4.6) nk = (1+ 1)+ (2+ 1)+ · · · + (k+ 1) = k(k+ 3)/2.

Let η/6 = ∑∞n=1 an3−n. For each k > 0, choose indexes i1, i2, . . . , ink ∈ {4,5,6}
such that

d(1)ij = aj − 1, j = 1, . . . , nk − 1, and d(1)ink = ank − 2 = −1.

We claim that this Si1...ink (K) do not intersect S47nk−1(K). Indeed we consider the
first coordinate of x0 − Si1...ink (y0); it is straightforward to check that

ρn =
(
−1

2
+ η

6

)
−

d(1)i1
3
+ · · · +

d(1)ink
3nk

+ 1
2 · 3nk


= η

6
−

1+ d(1)i1
3

+ · · · +
1+ d(1)ink−1

3nk−1 +
2+ d(1)ink

3nk

 > 0.
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This implies that horizontally, Si1...ink (K) is on the left side of S47nk−1(K) and
hence they do not intersect. Therefore we have

0 < dist(Si1...ink (K), S47nk−1(K)) ≤ ρnk =
∞∑

i=nk+1

ai3−i < 3−(nk+k).

In view of (4.6), we see that the IFS does not satisfy (H).
Next we show that the example satisfies the following equivalent condition of

OSC [2] (which is of interest in the hyperbolic setup as it has the favor of group
action): {Sj}Nj=1 satisfies the OSC if and only if the identity map I is not in the closure
of

(4.7) S =
{
S−1
u ◦ Sv | u,v ∈ Σn, u ≠ v, n > 0

}
.

For any u = i1 . . . in, v = j1 . . . jn ∈ Σn = Jn, with i1 , j1, a direct
calculation shows that

S−1
u ◦ Sv(x) = x + (djn − din)+A(djn−1 − din−1)+ · · · +An−1(dj1 − di1)

B x + (d(1), d(2))t.

It is straightforward to check that the second coordinate satisfies

d(2) = (d(2)jn − d
(2)
in )+ 3(d(2)jn−1

− d(2)in−1
)+ · · · + 3n−1(d(2)j1

− d(2)i1 ).

Being integers, either (i) d(2) = 0 or (ii) |d(2)| ≥ 1. In (ii), |S−1
u ◦ Sv(0)| ≥ 1

obviously. In (i) it is straightforward to check that d(2)jk − d
(2)
ik = 0 for all k =

1, . . . , n, and hence the indices satisfy jk, ik ∈ r + {1,2,3} for r = 0, 3, 6. It
follows that on the first coordinates, all d(1)jk −d

(1)
ik are integers. By using the above

argument to

d(1) = (d(1)jn − d
(1)
in )+ 3(d(1)jn−1

− d(1)in−1
)+ · · · + 3n−1(d(1)j1

− d(1)i1 ),

with the last term 3n−1(d(1)j1
−d(1)i1 ) , 0 (as i1 , j1) and dominates the sum of the

previous terms. We conclude that d(1) is a non-zero integer, so that |S−1
u ◦Sv(0)| ≥

1 also. Hence the identity map I is not in the closure of S and the IFS satisfies the
OSC.

5. REMARKS

The previous consideration can be extended to certain self-affine sets by using the
technique in [11] of replacing the Euclidean distance with a translational invariant
“ultra-metric” adapted to the self-affine maps.
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Let {Sj}Nj=1 be a set of self-affine maps on Rd,

Sj(x) = A−1(x + dj), j = 1, . . . , N,

where dj ∈ Rd and A is a d × d expanding matrix, i.e., all the eigenvalues have
moduli > 1. For 0 < ε < 1

2 , we choose a positive C∞ function ϕε(x) with

support in the ball B(0, ε) such that ϕε(−x) = ϕε(x) and
∫
ϕε(x)dx = 1. Let

V = AB(0,1) \ B(0,1), then V is an annular region. Let h(x) = χV ∗ϕε(x)
be the convolution of the indicator function χV and ϕε(x). The pseudo-norm is
defined as

(5.1) w(x) =
∞∑

n=−∞
q−n/dh(Anx), x ∈ Rd,

where q = |det(A)| > 1, we list some basic properties of w(x):
(i) w(x) = w(−x), w(x) = 0 if and only if x = 0;

(ii) w(Ax) = q1/dw(x) ≥ w(x) for all x ∈ Rd;
(iii) there exists β > 0 such that

w(x +y) ≤ βmax
{
w(x),w(y)

}
, ∀x, y ∈ Rd.

The details can be found in [11] and the references there. The function w(x)
defines an ultra-metric by dw(x,y) = w(x −y). It follows that

dw(Sj(x), Sj(y)) = q−1/ddw(x,y), ∀x,y ∈ Rd.

Hence these self-affine maps Sj act as similitudes with contraction ratio q−1/d

with respect to this new distance dw(·, ·). On the tree Σ, we define the horizontal
edges on each Σn as in (3.2). By some obvious modifications with the dw(·, ·)
replacing the Euclidean distance, it can be shown that Lemma 3.1 and the other
theorems and propositions in Sections 3 and 4 remain true. We omit the details.

Another possible extension of the previous consideration is to assume the
{Sj}Nj=1 of similitudes to satisfy the weak separation condition ([18], [19]) or the
finite type condition [22] instead of the open set condition. Similar to Lemma 3.1,
we have that, for any D ⊂ Rd with diam(D) ≤ arn,

#
{
Ku | u ∈ Jn, Ku ∩D ,∅

}
is uniformly bounded. However, in this case the u corresponding to each Ku
is not unique, and the counting in the symbolic space need to be adjusted. We
conjecture that the same conclusion should hold as is for the open set condition.
Without any separation condition, we believe the present construction of aug-
mented root tree might also yield a hyperbolic graph.
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Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag,
Berlin, 1990, ISBN 3-540-52977-2. MR 1075994 (92f:57003) (French, with an English sum-
mary)

[4] M. COORNAERT and A. PAPADOPOULOS, Symbolic Dynamics and Hyperbolic Groups, Lec-
ture Notes in Mathematics, vol. 1539, Springer-Verlag, Berlin, 1993, ISBN 3-540-56499-3.
MR 1222644 (94d:58054)

[5] Q.-R. DENG and K.-S. LAU, Open set condition and post-critically finite self-similar sets, Nonlin-
earity 21 (2008), 1227–1232, http://dx.doi.org/10.1088/0951-7715/21/6/004. MR 2422376
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