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Abstract We extend both the weak separation condition and the finite type condition
to include finite iterated function systems (IFSs) of injective C1 conformal contrac-
tions on compact subsets of R

d . For conformal IFSs satisfying the bounded distortion
property, we prove that the finite type condition implies the weak separation condi-
tion. By assuming the weak separation condition, we prove that the Hausdorff and box
dimensions of the attractor are equal and, if the dimension of the attractor is α, then
its α-dimensional Hausdorff measure is positive and finite. We obtain a necessary and
sufficient condition for the associated self-conformal measure µ to be singular. By
using these we give a first example of a singular invariant measure µ that is associated
with a non-linear IFS with overlaps.
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1 Introduction

Let X be a nonempty compact subset of R
d and Si : X → X, i = 1, . . . , N , be

mappings. We call {Si }N
i=1 an iterated function system (IFS) on X . It is well known

that if the Si are contractions, then there exists a unique non-empty compact subset
K of X such that

K =
N⋃

i=1

Si (K ) (1.1)

(see [5,9]). We call K the invariant set or attractor of the IFS. If we associate the IFS
with a set of probability weights {pi }N

i=1, then there is a unique probability measure
µ with supp(µ) = K satisfying

µ(A) =
N∑

i=1

piµ ◦ S−1
i (A), (1.2)

for all Borel sets A ⊆ X . We call µ the invariant measure of the IFS associated with
the weights {pi }N

i=1. It is well known that the invariant measure is either absolutely
continuous or singular continuous with respect to Lebesgue measure.

Recall that an IFS {Si }N
i=1 satisfies the well-known open set condition (OSC) if

there exists a nonempty bounded open set U ⊆ R
d , called an OSC set, such that⋃N

i=1 Si (U ) ⊆ U and Si (U ) ∩ S j (U ) = ∅ for all i �= j . In this case, we can lift the
measureµ in (1.2) to a symbolic space, and many properties can be derived from there.
Conformal finite and infinite IFSs and conformal graph directed Markov systems that
satisfy the OSC have been studied extensively by Mauldin and Urbański (see [17–
19] and the references therein). Conformal IFSs consisting of finitely many mappings
and satisfying the OSC have been studied by Patzschke [21], Fan and Lau [6], Lau
et al. [14], Peres et al. [22], and Ye [24,25]. We remark that in this paper, we only
study IFSs that consist of finitely many mappings.

IFSs that do not satisfy the OSC are said to have overlaps. In this case, it is in
general much harder to understand the structure of the corresponding invariant set K
and the invariant measures µ. A well-known family of examples is provided by

S1(x) = ρx, S2(x) = ρx + (1 − ρ), (1.3)

with 1/2 < ρ < 1 andµρ = 1
2 (µρ ◦ S−1

1 +µρ ◦ S−1
2 ). This class ofµρ is known as the

infinite Bernoulli convolutions, because it is the distribution of the random variable
(1 − ρ)

∑∞
n=0 ρ

n Xn , where the Xn are i.i.d. Bernoulli random variables taking the
values 0 and 1 with probability 1/2 on each. We refer the reader to the excellent survey
article by Peres, Schlag and Solomyak [23] and the references therein.
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Conformal iterated function systems 327

One of the most important cases in (1.3) is when ρ−1 is the golden ratio (or more
generally a Pisot number), in which µρ is singular. This and the other examples
motivated subsequent studies of two classes of IFSs with overlaps that are governed
by two separation conditions: the weak separation condition (WSC) and the finite type
condition (FTC). The WSC was introduced by Lau and Ngai [11] to extend the open
set condition while allowing overlaps on the iteration. It has been studied extensively
by Zerner [26], Lau et al. [13], and Lau and Wang [15]. The FTC strengthens the
weak separation condition (in the generic cases) to allow tractable calculations. It was
formulated by Ngai and Wang in [20] to yield graph directed systems to calculate the
Hausdorff dimension of self-similar sets with overlaps. If ρ−1 is a Pisot number, the
IFS in (1.3) satisfies the WSC [11] and is in fact of finite type [20]. In the same vein,
the FTC was also used by Feng [7,8] and Deng et al. [3] to study self-similar measures.
Recently it has been generalized by Jin and Yau [10] and Ngai and Lau [12] to include
a larger family of contractive similitudes on R

d .
So far in both considerations, the IFSs are either similitudes or affine maps. We

note that for the Bernoulli convolution associated with the golden ratio and other
examples that have been studied, the singularity of the invariant measures is very
much dependent on the number theoretic properties and the affinity of the IFS. It
is not clear that there exists a non-linear IFS with overlaps such that the associated
invariant measure µ is singular and is supported by a set with a non-void interior.
Our original goal is to construct such an example. In the process, we extend the WSC
and the FTC to include conformal IFSs and give a necessary and sufficient condition
for the absolute continuity of the invariant measures associated with such IFSs. This
is the main theme of the paper.

Unless otherwise stated we assume that each Si in an IFS {Si }N
i=1 extends to a C1

contraction Si : V → V , where V is a fixed open connected neighborhood of X . We
use the following sets of indices

�k := {1, . . . , N }k, �∗ :=
⋃

k≥0

�k, and � = �N
1

(with �0 := {∅}). For I = (i1, . . . , ik) ∈ �k , we denote by |I | = k the length of I
and let SI := Si1 ◦ · · · ◦ Sik . Also let

rI = inf
x∈V

| det S′
I (x)|1/d , r = min

1≤i≤N
ri , RI = sup

x∈V
| det S′

I (x)|1/d , R = max
1≤i≤N

Ri .

(1.4)

If S = SI for some I ∈ �∗, we let RS := RI . Let L denote the Lebesgue measure
on R

d . For any E ⊆ R
d , we let dimH E , dimB E , and dimP E denote the Hausdorff,

box, and packing dimensions of E , respectively; moreover, we let Hs(E) and Ps(E)
denote the s-dimensional Hausdorff and packing measures of E , respectively.

For 0 < b ≤ 1, we let

Ib = {
I = (i1, . . . , in) : RI ≤ b < Ri1···in−1

}
and Ab = {SI : I ∈ Ib}.
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328 K.-S. Lau et al.

Note that it is possible that SI = SI ′ for distinct I, I ′ ∈ Ib, and we identify such
SI and SI ′ in Ab. Note also that each Ib is an antichain in �∗, with the partial order
I � J if I is an initial segment of J or I = J .

Definition 1.1 We say that {Si }N
i=1 satisfies the weak separation condition (WSC) if

there exists a constant γ ∈ N and a subset D ⊆ X , with D◦ �= ∅, such that for any
0 < b ≤ 1 and x ∈ X ,

#{S ∈ Ab : x ∈ S(D)} ≤ γ.

We remark that if the OSC holds, we can take D to be an OSC set and let γ = 1 to
show that the WSC also holds.

Recall that a map S : V → V is conformal on V if for each x ∈ V , S′(x) is a
similarity matrix, i.e., a scalar multiple of an orthogonal matrix. Under this assumption,
we have

| det S′(x)| = ‖S′(x)‖d , (1.5)

where ‖S′(x)‖ := sup
{|S′(x)y| : |y| = 1

}
is the operator norm of the matrix S′(x).

For the purposes of this paper, we will restrict the conformal maps in our IFS to be
injective C1 contractions, as stated in the following definition.

Definition 1.2 We say that {Si }N
i=1 is an IFS of injective C1 conformal contractions

on a compact subset X ⊆ R
d if the Si can be extended to C1 injective conformal

contractions on some open connected neighborhood V of X and furthermore,

0 < inf
x∈V

‖S′
i (x)‖ ≤ sup

x∈V
‖S′

i (x)‖ < 1, for 1 ≤ i ≤ N . (1.6)

For such an IFS, we call the associated invariant set in (1.1) a self-conformal set,
and a measure µ in (1.2) a self-conformal measure.

Recall that an IFS {Si }N
i=1 has the bounded distortion property (BDP) if there exists

a constant c1 > 0 such that for any index I ∈ �∗,

| det S′
I (x)|

| det S′
I (y)|

≤ cd
1 for all x, y ∈ V . (1.7)

It is easy to see that if each log | det S′
i | is Hölder continuous, then {Si }N

i=1 has the
BDP. Moreover, by adopting a proof in [6, Lemma 2.3], it can be shown that the Dini
condition on log | det S′

i | implies the BDP.

Theorem 1.1 Let K be the attractor of an IFS {Si }N
i=1 of injective C1 conformal

contractions on a compact subset X ⊆ R
d that has the BDP and satisfies the WSC.

Then α := dimH K = dimB K = dimP K and 0 < Hα(K ) ≤ Pα(K ) < ∞.

Let {pi }N
i=1 be probability weights associated with {Si }N

i=1 and letµ be the invariant
measure. For S ∈ Ab, let pS = ∑{pI : SI = S, I ∈ Ib}. The following are two
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Conformal iterated function systems 329

useful theorems concerning the singularity and absolute continuity of a self-conformal
measure.

Theorem 1.2 With the same hypotheses and notation as Theorem 1.1, an associated
self-conformal measure µ is singular with respect to Hα|K if and only if there exist
0 < b ≤ 1 and S ∈ Ab such that pS > RαS .

Theorem 1.3 Let {Si }N
i=1 be as in Theorem 1.1. If the invariant measureµ is absolutely

continuous with respect to Hα|K , then the Radon-Nikodym derivative ofµ is bounded.

Theorems 1.2 and 1.3 generalize the results in [13, Theorems 1.1 and 1.2] and
[15, Theorems 1.1 and 1.2], where the IFS {Si }N

i=1 consists of contractive similitudes.
The finite type condition was first introduced in [20] for IFSs of similitudes that

have exponentially commensurable contraction ratios. In [10] and [12], this artificial
condition on the contraction ratios is removed. The more general definition in this
paper is formally the same as that in [12] for similitudes. It is given in Definition 5.3.

Theorem 1.4 Assume that {Si }N
i=1 is an IFS of injective C1 conformal contractions

on a compact subset X ⊆ R
d that has the BDP. Then the finite type condition implies

the weak separation condition.

Theorem 1.4 allows us to construct a family of conformal IFSs that do not satisfy
the OSC but are of finite type and thus satisfy the WSC. For example we can take

S1(x) = ax, S2(x) = bx2 + cx + ad, S3(x) = abx2 + cx + d, (1.8)

where 0 < a, b, c, d < 1, ab + c + d = 1, b + c +ad ≤ d and 2b + c < 1. By using
Theorem 1.2 and by choosing the parameters and the probability weights suitably, we
can control the singularity and absolute continuity of the invariant measure. In Sect. 6
we give a detailed study of such an example and provide additional examples obtained
by suitably choosing the four parameter values. To the best of our knowledge these
are the first known examples of singular invariant measures which are associated with
non-linear IFSs and are supported on some interval.

It is not clear to us whether some of the self-conformal measures in the above
family are absolutely continuous. Nevertheless, we show in Sect. 7 that by allowing
the probability weights to be place-dependent, we can construct absolutely continuous
self-conformal measures defined by non-linear IFSs with overlaps.

This paper is organized as follows. Section 2 develops some basic properties of
conformal IFSs with the BDP. In Sect. 3, we prove several equivalent conditions
for the WSC and use them to prove Theorem 1.1. In Sect. 4 we study the absolute
continuity of self-conformal measures and prove Theorems 1.2 and 1.3. In Sect. 5,
we study the finite type condition and prove that, for conformal IFSs with the BDP,
it implies the WSC (i.e., Theorem 1.4). In Sect. 6, we give a class of examples of
conformal IFSs that satisfy the finite type condition, and use this to illustrate the main
theorems. Finally, in Sect. 7, we construct another class of self-conformal IFSs with the
finite type conditions. Using these IFSs we construct a class of absolutely continuous
self-conformal measures associated with place-dependent probabilities.
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2 Conformal iterated function systems

In this section we establish some basic properties of conformal IFSs with the BDP,
which we will need later in the paper. Some of them are known and we include simple
proofs here for completeness.

Lemma 2.1 Let {Si }N
i=1 be an IFS of injective C1 conformal contractions on a com-

pact subset X ⊆ R
d , let r, R be defined as in (1.4), and let c1 be the constant in the

definition of the BDP (see (1.7)). Suppose {Si }N
i=1 has the BDP. Then the following

hold.

(a) For any I ∈ Ib, 0 < b ≤ 1, and any measurable set A ⊆ V ,

(
br

c1

)d

L(A) ≤ L(SI (A)) ≤ bdL(A).

(b) For any I, J ∈ Ib, 0 < b ≤ 1, and any measurable set A ⊆ V ,

(
r

c1

)d

L(SJ (A)) ≤ L(SI (A)) ≤
(c1

r

)d
L(SJ (A)).

Proof (a) Let I = (i1, . . . , in) ∈ Ib and V be as in Definition 1.2. Then by the
definition of Ib,

sup
x∈V

| det S′
I (x)| ≤ bd < sup

x∈V
| det S′

i1···in−1
(x)|.

These inequalities together with the BDP imply that for all x ∈ V ,

bd ≥ | det S′
I (x)| = | det S′

i1···in−1
(Sin (x))| · | det S′

in
(x)|

≥ rd inf
x∈V

| det S′
i1···in−1

(x)| ≥
(

r

c1

)d

sup
x∈V

| det S′
i1···in−1

(x)| ≥
(

br

c1

)d

.

The result in (a) now follows by integrating over A.
(b) Using part (a) and the hypotheses, we have

L(SI (A)) ≤ bdL(A) ≤
(c1

r

)d
L(SJ (A)).

The other inequality can be proved similarly. ��
For all i ∈ �1 = {1, . . . , N } and x ∈ Si (V ), by using | det(S−1

i )′(x)| =
| det S′

i (S
−1
i (x))|−1

, we have

R−d ≤ | det(S−1
i )′(x)| ≤ r−d . (2.1)
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Let

F := {SJ S−1
I : I, J ∈ �∗}.

For I, J ∈ �∗, it is possible that τ = SJ S−1
I can be simplified to SJ ′ S−1

I ′ and hence
the domain of τ is SI ′(V ) (containing SI (V )). Let Dom(τ ) denote the domain of τ .

We have an analog of the BDP for the maps in F .

Lemma 2.2 Assume the same hypotheses of Lemma 2.1. Then for any I, J ∈ �∗ and
x, y ∈ Dom(SJ S−1

I ), we have

| det(SJ S−1
I )′(x)|

| det(SJ S−1
I )′(y)| ≤ c2d

1 .

Proof Let τ = SJ S−1
I = SJ ′ S−1

I ′ with Dom(τ ) = SI ′(V ). Then

| det(SJ S−1
I )′(x)|

| det(SJ S−1
I )′(y)| = | det(SJ ′ S−1

I ′ )′(x)|
| det(SJ ′ S−1

I ′ )′(y)|
= | det S′

J ′(S
−1
I ′ (x)) det(S−1

I ′ )′(x)|
| det S′

J ′(S
−1
I ′ (y)) det(S−1

I ′ )′(y)|
≤ c2d

1 .

��
We now establish an analog of Lemma 2.1 for the maps in F .

Lemma 2.3 Assume the same hypotheses of Lemma 2.1. Let τ = SJ S−1
I = SJ ′ S−1

I ′ ∈
F with Dom(τ ) = SI ′(V ).

(a) For any measurable subset A ⊆ Dom(τ ),

(
rJ ′

RI ′

)d

L(A) ≤ L(τ (A)) ≤
(

RJ ′

rI ′

)d

L(A).

(b) Suppose C > 0 is a constant such that

C−1L(B) ≤ L(A) ≤ CL(B)

for all A, B belonging to some collection C of measurable subsets of V . Then for
any A, B ∈ C such that A, B ⊆ Dom(τ ),

C−1c1
−2dL(τ (B)) ≤ L(τ (A)) ≤ Cc2d

1 L(τ (B)).

Proof (a) For x ∈ Dom(τ ), let w = S−1
I ′ (x) ∈ V . Then

| det τ ′(x)| = | det S′
J ′(S−1

I ′ (x))| · | det(S−1
I ′ )′(x)| = | det S′

J ′(w)|
| det S′

I ′(w)| .
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332 K.-S. Lau et al.

Thus,

(
rJ ′

RI ′

)d

≤ | det τ ′(x)| ≤
(

RJ ′

rI ′

)d

.

The result follows by integrating over A.
(b) Using part (a), the given hypotheses, and the BDP, we have

L(τ (A)) ≤
(

RJ ′

rI ′

)d

L(A) ≤
(

RJ ′

rI ′

)d

CL(B)

≤
(

RJ ′

rI ′

)d

C

(
RI ′

rJ ′

)d

L(τ (B)) ≤ Cc2d
1 L(τ (B)).

The lower bound can be obtained similarly. ��

3 The weak separation condition

In this section we first establish several equivalent conditions for the WSC and then
use them to study the properties of the attractor K . Let X be a compact subset of R

d

and let S : X → R
d be any injective C1 conformal contraction that can be extended

to an open connected neighborhood V of X . Then there exists some constant c2 > 0
such that for all x, y ∈ V ,

|S(x)− S(y)| ≤ c2 RS|x − y|, (3.1)

where RS := supx∈V | det S′(x)|1/d (see, e.g., the proof in [21]).
For any a > 0 and any bounded subsets D ⊆ X and U ⊆ R

d , we let

Aa,U,D = {S ∈ Aa|U | : S(D) ∩ U �= ∅}, γa,D = sup
U

#Aa,U,D,

where |U | denotes the diameter of U . We denote by Br (x) the closed ball with radius
r and center x.

Proposition 3.1 Let {Si }N
i=1 be an IFS of injective C1 conformal contractions on a

compact subset X ⊆ R
d with X◦ �= ∅. The following are equivalent:

(a) {Si }N
i=1 satisfies the WSC ;

(b) there exist a > 0 and a nonempty subset D ⊆ X such that γa,D < ∞;
(c) for any a > 0 and any nonempty subset D ⊆ X, γa,D < ∞;
(d) for any subset D ⊆ X, there exists γ = γ (D) (depending only on D) such that

for any 0 < b ≤ 1 and x ∈ X, #{S ∈ Ab : x ∈ S(D)} ≤ γ .

Proof (a) ⇒ (b): It suffices to prove that there exists γ ′ ∈ N and D ⊆ X , with D◦ �= ∅,
such that for any x ∈ X and 0 < b ≤ 1,

# {S ∈ Ab : S(D) ∩ Bb(x) �= ∅} ≤ γ ′.
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To obtain this inequality, let D be as in the definition of the WSC, let S ∈ Ab such
that S(D)∩ Bb(x) �= ∅, and let x′ ∈ D such that S(x′) ∈ Bb(x). Then for any y ∈ D,
by (3.1), we have

|S(y)− x| ≤ |S(y)− S(x′)| + |S(x′)− x| ≤ (1 + c2|D|)b.

Let η := (1+c2|D|)b. We can rewrite the above as S(D) ⊆ Bη(x). By (a), each point
in X is covered by at most γ of the S(D), where S ∈ Ab. It follows that

∑
{L (S(D)) : S ∈ Ab, S(D) ∩ Bb(x) �= ∅} ≤ γL

(
Bη(x)

)
.

Making use of Lemma 2.1(a), we have

(br/c1)
dL(D) # {S ∈ Ab : S(D) ∩ Bb(x) �= ∅} ≤ γCbd

for some constant C > 0. The desired inequality follows.
(b) ⇒ (c): We prove the contrapositive. Assume (c) is false. Then there exist a0 > 0

and a nonempty subset D0 ⊆ X such that γa0,D0 = ∞. Hence there exists a sequence
{Un}∞n=1 of nonempty bounded subsets of R

d such that

#
{

S ∈ Aa0|Un | : S(D0) ∩ Un �= ∅} ≥ n. (3.2)

To prove that (b) must fail, we fix an arbitrary a > 0 and an arbitrary nonempty
subset D ⊆ X . We will show that γa,D = ∞. Let

σ := sup {|x − y| : x ∈ D0, y ∈ D} < ∞.

We first claim that for any S ∈ Aa0|Un | and δn := c2a0σ |Un|,

S(D0) ∩ Un �= ∅ ⇒ S(D) ∩ (Un)δn �= ∅,

where (Un)δn = {x ∈ R
d : dist(x,Un) ≤ δn} is the closed δn-neighborhood of Un .

To prove the claim, we let y ∈ S(D0) ∩ Un . Then there exists x ∈ D0 such that
y = S(x) ∈ S(D0). Now let x̃ ∈ D and ỹ := S(x̃) ∈ S(D). Then

|ỹ − y| = |S(x̃)− S(x)| ≤ c2 RS|x̃ − x| ≤ c2 RSσ ≤ c2a0σ |Un| = δn .

(The first inequality follows from (3.1) and the third inequality is because S ∈ Aa0|Un |).
This proves the claim.

Note that (Un)δn is a set of diameter 2δn + |Un| = (2c2a0σ + 1)|Un|. Let κ be
the minimum number of sets of diameter a0/a required to cover any set of diameter
2c2a0σ+1. We can cover (Un)δn by no more than κ sets of diameter (a0/a)|Un|. Notice
that Aa0|Un | = Aa|(a0/a)Un |. Hence, by (3.2) and the claim, there exists U∗

n ⊆ R
d with
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|U∗
n | = (a0/a)|Un| such that

#
{

S ∈ Aa|U∗
n | : S(D) ∩ U∗

n �= ∅} ≥ n

κ
.

Since κ is independent of n, we conclude that γa,D = ∞.
(c) ⇒ (d): Let D ⊆ X . Then for any x ∈ X and 0 < b ≤ 1,

# {S ∈ Ab : x ∈ S(D)} ≤ #
{

S ∈ Ab : S(D) ∩ Bb/2(x) �= ∅}
= #A1,Bb/2(x),D ≤ γ1,D < ∞.

Since (d) ⇒ (a) is trivial, the proof is complete. ��
We remark that in [11], the original weak separation condition is defined pointwise:

there exist x0 ∈ X and γ ∈ N such that for any J ∈ �∗, any ball of radius b contains
at most γ points of {S(SJ (x0)) : S ∈ Ab}. It is equivalent to Definition 1.1 if the
IFS mappings are contractive similitudes and the attractor does not lie in a hyperplane
(see [26]). For the conformal case, Definition1.1 implies the pointwise definition. To
see this, we let x0 ∈ X and D := {SJ (x0) : J ∈ �∗}. Then D ⊆ X is a nonempty
bounded subset, and for any J ∈ �∗ and any ball Bb of radius b,

# ({S(SJ (x0)) : S ∈ Ab} ∩ Bb) ≤ # {S ∈ Ab : S(SJ (x0)) ∩ Bb �= ∅}
≤ #

{
S ∈ A 1

2 |Bb| : S(D) ∩ Bb �= ∅
}

≤ γ1/2,D < ∞.

which yields the pointwise statement. However, we do not know whether the converse
is true for conformal IFSs. We state this as an open question: For a conformal IFS whose
attractor does not lie in a hyperplane, does the pointwise weak separation condition,
stated above, imply the WSC in Definition 1.1?

Throughout the rest of this section we assume that {Si }N
i=1 is an injective conformal

IFS on X that has the BDP. It is known (see, for e.g., [21,22,24]) that there exists
some positive constant, which will also be denoted by c2, such that for all J ∈ �∗ and
x, y ∈ X ,

c−1
2 RJ |x − y| ≤ |SJ (x)− SJ (y)| ≤ c2 RJ |x − y|. (3.3)

Note that for I, J ∈ �∗, we have

‖S′
I J (x)‖ = ‖S′

I (SJ (x))S
′
J (x)‖ = ‖S′

I (SJ (x))‖ · ‖S′
J (x)‖.

It follows that RI J ≤ RI RJ and rI J ≥ rI rJ . In particular, for S = SI ∈ Ab,
I = (i1, . . . , in) ∈ Ib, by the BDP, we have br < Ri1···in−1rin ≤ c1ri1···in−1rin ≤
c1rI ≤ c1 RI , i.e.,

b <
c1

r
RS, for all S ∈ Ab. (3.4)
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Let π be the projection of � to X defined by

π(I ) = lim
n→∞ Si1···in (x), I = (i1, i2, . . . ). (3.5)

The above limit is independent of x ∈ X .

Theorem 3.2 Let {Si }N
i=1 be an IFS of injective conformal contractions on X that

has the BDP and satisfies the WSC. Let K be the associated attractor. Then α :=
dimH K = dimB K = dimP K and 0 < Hα(K ) ≤ Pα(K ) < ∞.

Proof To prove 0 < Hα(K ) < ∞, we make use of [4, Theorems 2 and 4]. We first
prove Hα(K ) > 0. Note that for any E ⊆ K , we have

E ⊆
⋃{

S(K ) : S ∈ A|E |, S(K ) ∩ E �= ∅} .

By Proposition 3.1(c), we have #{S ∈ A|E | : S(K ) ∩ E �= ∅} ≤ γ1,K < ∞. For
each S ∈ A|E | with S(K ) ∩ E �= ∅, consider the map S−1 : S(K ) → K . For any
x, y ∈ S(K ), let x′, y′ ∈ K such that x = S(x′) and y = S(y′). By (3.3) and by
noting that S ∈ A|E | implies that RS ≤ |E |, we have

|x − y| = ∣∣S(x′)− S(y′)
∣∣ ≤ c2 RS|x′ − y′| ≤ c2|E | ·

∣∣∣S−1(x)− S−1(y)
∣∣∣ .

Hence [4, Theorem 2] implies that Hα(K ) > 0.
To prove dimB(K ) = α and Hα(K ) ≤ Pα(K ) < ∞, let Bδ(x), x ∈ K , be a ball

such that K �⊆ Bδ(x). Then there exists (i1, i2, . . . ) ∈ � such that π(i1, i2, . . . ) = x.
There exists n ∈ N such that

Si1···in (K ) ⊆ Bδ(x) and Si1···in−1(K ) �⊆ Bδ(x).

Hence there exists y ∈ K such that

δ ≤ ∣∣Si1···in−1(y)− x
∣∣ = ∣∣Si1···in−1(y)− Si1···in−1 (π(in, in+1, . . . ))

∣∣

≤ c2 Ri1···in−1 |y − π(in, in+1, . . . )| ≤ c2|K |Ri1···in−1 .

Making use of the BDP, we have

Ri1···in−1 ≤ c1ri1···in−1 ≤ c1

r
ri1···in−1rn ≤ c1

r
ri1···in ≤ c1

r
Ri1···in .

Combining the above estimations yields Ri1···in ≥ rδ/(c2c1|K |). Consider the map
ψ = Si1···in : K → Bδ(x). For any x1,x2 ∈ K , using (3.3), we have

|ψ(x1)−ψ(x2)|=
∣∣Si1···in (x1)−Si1···in (x2)

∣∣≥c−1
2 Ri1···in |x1−x2| ≥ rδ

c2
2c1|K | |x1−x2|.

Now, [4, Theorem 4] and [5, Exercise 3.2] imply that dimB(K ) = α and Pα(K ) < ∞.
It is well known that Hα(K ) ≤ Pα(K ). This completes the proof. ��
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As an important consequence of Theorem 3.2, we obtain the following estimate for
#A and a formula for the Hausdorff dimension of K .

Corollary 3.3 Let {Si }N
i=1 and α be as in Theorem 3.2. Then there exists a constant

c3 > 0 such that for any 0 < b ≤ 1,

c−1
3 b−α ≤ #Ab ≤ c3b−α. (3.6)

Consequently,

α = dimH K = dimB K = dimP K = − lim
b→0+

log #Ab

log b
.

Proof Note that for any 0 < b ≤ 1, K = ⋃{S(K ) : S ∈ Ab}. By Proposition 3.1(d),
each x ∈ K is covered by at most γ of the S(K ) with S ∈ Ab. Hence

Hα(K ) ≤
∑

S∈Ab

Hα(S(K )) ≤ γHα(K ). (3.7)

For each S ∈ Ab, by making use of (3.3) and (3.4), we get

Hα(S(K )) ≥ c−α
2 RαS Hα(K ) ≥

(
r

c1c2

)α
bαHα(K ),

and

Hα(S(K )) ≤ cα2 RαS Hα(K ) ≤ cα2 bαHα(K ).

It follows by summing each inequality over S ∈ Ab and using (3.7) that

(
r

c1c2

)α
bαHα(K )#Ab ≤ γHα(K ),

and

Hα(K ) ≤ cα2 bαHα(K )#Ab.

Since 0 < Hα(K ) < ∞, (3.6) and the dimension formula follows immediately. ��

4 Absolute continuity of self-conformal measures

In this section we give a necessary and sufficient condition for the absolute continuity
(equivalently, singularity) of self-conformal measures by assuming the WSC and the
BDP.

Proposition 4.1 Suppose {Si }N
i=1 satisfies the WSC. Then for any finite subset � ⊆

�∗, the family {SJ : J ∈ �} also satisfies the WSC.
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Proof We will first prove the proposition for the family {S12, S1, S2, . . . , SN }. For
convenience, we write S0 = S12. For 0 < b ≤ 1 let I ′

b and A′
b be the analogs of Ib

and Ab, respectively, that are defined with respect to the index set {0, 1, . . . , N }.
Let I = (i1, . . . , in) ∈ I ′

b and let S = SI . Then RI ≤ b < Ri1···in−1 . Note that
I = ( j1, . . . , jm) ∈ Ib for some m ≥ n. If in �= 0, then it is clear that S ∈ Ab . If
in = 0, then

either RI ≤ b < Ri1···in−11 or Ri1···in−11 ≤ b < Ri1···in−1 ,

i.e., either S ∈ Ab or S = S̃S2 with S̃ ∈ Ab. Thus

A′
b ⊆ Ab

⋃
(Ab S2).

Let D be given as in the definition of the WSC (Definition 1.1). It follows from above
and Proposition 3.1(d) that for any x ∈ X ,

#
{

S ∈ A′
b : x ∈ S(D)

} ≤ # {S ∈ Ab : x ∈ S(D)} + # {S ∈ Ab : x ∈ SS2(D)}
≤ γ (D)+ γ (S2(D)) .

Hence the proposition is true for � = {12, 1, 2, . . . , N }. By repeating this argument,
we see that it is also true for � = ⋃n

k=1{1, . . . , N }k for all n ≥ 1. The general
statement follows by observing the trivial fact that if an IFS satisfies the WSC, then
so does any of its subfamilies. ��

We need to introduce more notations. For I ∈ �∗, let [I ] = {I ′ ∈ �∗ : SI = SI ′ }
and let CI be the cylinder set in � with initial segment I . For � ⊆ �∗, let C� =⋃{CI : I ∈ �}. Let P be the product probability measure on � induced by the
probability weights {pi }N

i=1. For � ⊆ �∗, we will use the abbreviated notation P(�)
to denote P(C�). Recall that π is the projection of� to X defined by (3.5). Note that
π(CI ) = SI (K ) for all I ∈ �∗, and µ = Pπ−1. Hence if S = SI , then

µ(S(K )) = P
(
π−1S(K )

)
≥ P ({CI ′ : SI ′ = S}) =

∑

I ′∈[I ]
pI ′ .

We also recall that pS = ∑{pI : SI = S, I ∈ �∗}.
Lemma 4.2 Let {Si }N

i=1 be an IFS of injective C1 conformal contractions on a com-
pact subset X ⊆ R

d and assume that it has the BDP and satisfies the WSC. Let {pi }N
i=1

be the associated probability weights, and let K be the attractor with dimH(K ) = α.
For 0 < b ≤ 1 and � ⊆ Ib, let

�̃ =
⎧
⎨

⎩I ∈ � :
∑

I ′∈[I ]∩�
pI ′ >

bα

4c3

⎫
⎬

⎭,

where c3 is as in Corollary 3.3. Then P(�) > 1
2 implies that P(�̃) > 1

4 .
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Proof By Corollary 3.3, we have #Ab ≤ c3b−α . It follows that

P(�\�̃)=
∑

{pI : I ∈�\�̃}=
∑

[I ]

∑
{pI ′ : I ′ ∈ [I ] ∩ (�\�̃)}≤#Ab · bα

4c3
≤ 1

4

and P(�̃) = P(�)− P(�\�̃) > 1/2 − 1/4 = 1/4. ��

We now prove Theorems 1.2 and 1.3.

Theorem 4.3 Assume the same hypotheses as in Lemma 4.2. Then a self-conformal
measure µ is singular with respect to Hα|K if and only if there exist 0 < b ≤ 1 and
S ∈ Ab such that pS > RαS .

Proof To prove the necessity, we suppose that µ is singular with respect to Hα|K .
Then there exists K0 ⊆ K such that µ(K0) = 1 but Hα(K0) = 0. Thus for any
ε > 0, there exists a δ-cover {Ui } of K0 such that

∑
i |Ui |α < ε. Let bi = |Ui |. Then

Ui ⊆ Bbi (xi ) =: Bi , where xi is any fixed element in Ui . Note that

µ(Bi ) =
∑{

pSµ ◦ S−1(Bi ) : S ∈ Abi , S(K ) ∩ Bi �= ∅
}

≤
∑{

pS : S ∈ Abi , S(K ) ∩ Bi �= ∅} .

If the necessity is not true, then pS ≤ RαS ≤ bα for all S ∈ Ab and all 0 < b ≤ 1.
Hence the above inequality and Proposition 3.1(c) imply that µ(Bi ) ≤ γ1/2,K bαi and
thus

1 = µ(K0) ≤
∑

i

µ(Bi ) ≤ γ1/2,K

∑

i

bαi < εγ1/2,K .

This is a contradiction because ε > 0 is arbitrary.
The proof of the sufficiency follows by using Lemma 4.2 and modifying the tech-

nique in the proof of [13, Theorem 3.1] and [15, Theorem 1.1]; we omit the details.
��

Theorem 4.4 Let {Si }N
i=1 be as in Theorem 4.3. If the self-conformal measure µ is

absolutely continuous with respect to Hα|K , then the Radon-Nikodym derivative of µ
is bounded.

Proof Let ν = Hα|K and let f be the Radon-Nikodym derivative of µ with respect
to ν. Suppose f is unbounded. Then a density theorem [16, Sect. 2.14] implies that
for any M, δ > 0, there exist x ∈ K and b > 0 such that

ν ({t ∈ K : f (t) > M} ∩ Bbδ(x)) >
1

2
ν (Bbδ(x)) .
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Hence

µ (Bbδ(x)) =
∫

Bbδ(x)

f (t)dν(t)

≥ Mν ({t ∈ K : f (t) > M} ∩ Bbδ(x))

>
1

2
Mν (Bbδ(x)) .

Let δ = c2|K | in the above inequality (where c2 is as in (3.3)). Note that x ∈ K =⋃{S(K ) : S ∈ Ab}, and hence there exists S ∈ Ab such that x ∈ S(K ). Making
use of (3.3), we have |S(K )| ≤ c2 RS|K | ≤ bδ, which implies that S(K ) ⊆ Bbδ(x).
(3.3) and (3.4) also imply that

ν (S(K )) ≥ c−α
2 RαSν(K ) > c−α

2

(
rb

c1

)α
ν(K ) =

(
r

c1c2

)α
bαν(K ).

Hence

µ (Bbδ(x)) >
1

2
Mν (S(K )) ≥ 1

2
M

(
r

c1c2

)α
bαν(K ). (4.1)

On the other hand,

µ (Bbδ(x)) =
∑{

pSµ ◦ S−1 (Bbδ(x)) : S ∈ Ab, S(K ) ∩ Bbδ(x) �= ∅
}

≤
∑

{pS : S ∈ Ab, S(K ) ∩ Bbδ(x) �= ∅} .

By Proposition 3.1(c), there are at most γ1/(2δ),K terms in the last summation. We
choose M such that (r/c1c2)

αMν(K )/2 > γ1/(2δ),K . Then (4.1) and the above
inequality imply that there exists S ∈ Ab such that pS > bα ≥ RαS . It follows
from Theorem 1.2 that µ is singular with respect to ν, a contradiction. ��

5 The finite type condition

In this section we generalize the finite type condition in [12] and use it to study con-
formal IFSs with the BDP and investigate its relationship with the weak separation
condition. Since contractivity is not required, we will formulate the finite type con-
dition for IFSs of injections. The setup is the same as for similitudes (see [12]); we
summarize it here and refer the reader to [12] for details.

The definition of the finite type condition consists of two parts. The first part is the
definition of a sequence of nested index sets (Definition 5.1), which generalizes the
notion of “level of iteration". It is defined in [12]; we include it here for completeness.
The second part is the concept of neighborhood types (Definition 5.2), which is slightly
modified from that for IFSs of contractive similitudes. The finite type condition is
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formulated to generalize the open set condition to compute the Hausdorff dimension
of self-similar sets defined by certain IFSs with overlaps.

Fix an IFS {Si }N
i=1 of injections (not assuming the C1 property) on a subset X ⊆ R

d

(not necessarily compact). Recall the partial order � on �∗ defined for I, J ∈ �∗ by
I � J if I is an initial segment of J or I = J . We denote by I �� J if I � J does not
hold. Consider a sequence of index sets {Mk}∞k=0, where for all k ≥ 0, Mk is a finite
subset of �∗. Let

mk = mk(Mk) := min{|I | : I ∈ Mk} and mk = mk(Mk) := max{|I | : I ∈Mk}.

Definition 5.1 We say that {Mk}∞k=0 is a sequence of nested index sets if it satisfies
the following conditions:

(1) both {mk} and {mk} are nondecreasing, and limk→∞ mk = limk→∞ mk = ∞;
(2) for each k ≥ 0, Mk is an antichain in �∗;
(3) for each J ∈ �∗ with |J | > mk , there exists I ∈ Mk such that I � J ;
(4) for each J ∈ �∗ with |J | < mk , there exists I ∈ Mk such that J � I ;
(5) there exists a positive integer L , independent of k, such that for all I ∈ Mk and

J ∈ Mk+1 with I � J , we have |J | − |I | ≤ L .

(We allow Mk ∩ Mk+1 �= ∅.)

Condition (2) means that the indices in Mk are incomparable, and (3) means that
Mk covers �. We also remark that (4) actually follows from (3).

Clearly, by letting Mk = �k for all k ≥ 0, we obtain an example of a sequence of
nested index sets.

To define neighborhood types, we fix a sequence of nested index sets {Mk}∞k=0.
For each integer k ≥ 0, let Vk be the set of kth level vertices (with respect to {Mk})
defined as

V0 := {(I, 0)} and Vk := {(SI , k) : I ∈ Mk} for all k ≥ 1.

We call (I, 0) the root vertex and denote it by vroot . Let V := ⋃
k≥0 Vk be the set of

all vertices. For v = (SI , k) ∈ Vk , we use the convenient notation Sv := SI .
Assume that there exists a nonempty open set � ⊆ X which is invariant under

{Si }N
i=1, i.e.,

⋃N
i=1 Si (�) ⊆ �. Such an� exists if the Si are contractions on R

d . Two
kth level vertices v, v′ ∈ Vk (allowing v = v′) are said to be neighbors (with respect
to � and {Mk}) if Sv(�) ∩ Sv′(�) �= ∅. The set of vertices

�(v) := {v′ : v′ ∈ Vk is a neighbor of v}

is called the neighborhood of v (with respect to� and {Mk}). Note that v ∈ �(v) by
definition. Recall that F := {SJ S−1

I : I, J ∈ �∗}.
We define an equivalence relation on V .

Definition 5.2 Under the above assumptions, two vertices v ∈ Vk and v′ ∈ Vk′ are
equivalent, denoted by v ∼� v′ (or simply v ∼ v′) if, for τ := Sv′ S−1

v (∈ F) :⋃
u∈�(v) Su(X) → X , the following conditions hold:
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(1)
{

Su′ : u′ ∈ �(v′)
} = {τ Su : u ∈ �(v)}; in particular, τ Su is defined for all

u ∈ �(v).
(2) For u ∈ �(v) and u′ ∈ �(v′) such that Su′ = τ Su, and for any positive integer

� ≥ 1, an index I ∈ �∗ satisfies (SuSI , k + �) ∈ Vk+� if and only if it satisfies
(Su′ SI , k′ + �) ∈ Vk′+�.

It can be verified directly that ∼ is an equivalence relation. We denote the equiv-
alence class containing v by [v] and call it the neighborhood type of v (with respect
to � and {Mk}). Condition (2) is essential in establishing the important property that
equivalent vertices generate the same number of offspring of each neighborhood type
(see Proposition 5.3).

Definition 5.3 Let {Si }N
i=1 be an IFS of injections on a subset X ⊆ R

d . We say that
{Si }N

i=1 is of finite type (or that it satisfies the finite type condition) if there exists a
sequence of nested index sets {Mk}∞k=0 and a nonempty invariant open set� ⊆ X such
that, with respect to� and {Mk}, the set of equivalence classes V/∼ := {[v] : v ∈ V}
is finite. We call such an � a finite type condition set (or FTC set).

Remark 5.1 Suppose {Si }N
i=1 satisfies the OSC, i.e., there exists a nonempty bounded

open set � ⊆ R
d such that

⋃N
i=1 Si (�) ⊆ � and Si (�) ∩ S j (�) = ∅ for all i �= j .

Let Mk = �k for all k ≥ 0. Then V/∼ consists of just one element. In fact, for each
vertex v,�(v) = {v} and thus each vertex is equivalent to the root vertex vroot. Hence
{Si }N

i=1 is of finite type.

Remark 5.2 We remark that the generalized finite type condition for IFSs of simili-
tudes defined in [12], and extended above, is essentially equivalent to the general finite
type condition defined by Jin and Yau [10] using the notions of sections, flags, and
recurrentable flags. Each section is equal to some Mk in Definition 5.1. A recurrentable
flag corresponds to a nested index set that satisfies the conditions in Definition 5.2.

Let {Si }N
i=1 be an IFS of injections on X as defined above, � ⊆ X be an invariant

open set, {Mk}∞k=0 be a fixed sequence of nested index sets, and ∼ be the equivalence
relation on the set of vertices as defined above. We need two infinite graphs G and GR .
The graph G has vertex set V and directed edges defined as follows. Let v ∈ Vk and
u ∈ Vk+1. Suppose there exists I ∈ Mk , J ∈ Mk+1 and L ∈ �∗ such that

v = (SI , k), u = (SJ , k + 1), and J = (I, L).

Then we connect a directed edge L : v → u. We call v a parent of u and u an offspring
of v. We write G = (V, E) where E is the set of all directed edges defined above.

The reduced graph GR is constructed from G = (V, E) as follows. We first remove
all but the smallest (in the lexicographic order) directed edges going to a vertex, and
denote the resulting graph by G′

R . It is possible that a vertex in V does not have
any offspring in G′

R (an example is given in [12]). To finish the construction, we
remove all vertices that do not have any offspring in GR′ , together with all vertices
and edges leading only to them. The resulting graph is the reduced graph, denoted
by GR = (VR, ER), where VR is the set of all vertices and ER is the set of all edges.
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We will illustrate the construction of the reduced graph in Example 6.2; other examples
can be found in [12] and [20].

Proposition 5.3 Let v and v′ be two vertices in V with offspring u1, . . . ,um and
u′

1, . . . ,u
′
� in GR, respectively. Suppose [v] = [v′]. Then

{[ui ] : 1 ≤ i ≤ m} = {[u′
i ] : 1 ≤ i ≤ �

}
(5.1)

counting multiplicity. In particular, m = �.

The proof of this proposition is the same as that of [12, Proposition 2.4]; we omit
the details.

We remark that the definition of the finite type condition and the properties proved
above only require that the Si are injective. For the rest of this section we assume that
{Si }N

i=1 is conformal.

Lemma 5.4 Let {Si }N
i=1 be an IFS of injective C1 conformal contractions on a com-

pact subset X ⊆ R
d as defined in Definition 1.2. Assume that {Si }N

i=1 has the BDP
and is of finite type with respect to some � ⊆ X. Then there exists a constant c4 > 0
such that for any two neighboring vertices u1,u2, we have

c−1
4 ≤ L(Su1(�))

L(Su2(�))
≤ c4.

Proof Fix a neighborhood type T and a vertex v such that [v] = T . Let

�(v) = {v0 = v, v1, . . . , vm}.

Then there exists a constant C > 0, depending only on v0, v1, . . . , vm and �, such
that

C−1L(Sv0(�)) ≤ L(Svi (�)) ≤ CL(Sv0(�)), i = 0, 1, . . . ,m. (5.2)

Now let v ∼� v′, τ = Sv′ S−1
v ∈ F , and

�(v′) = {v′
0 = v′, v′

1, . . . , v
′
m}.

Then, upon rearranging the v′
i if necessary, we can assume that

Sv′
i
= τ Svi , i = 0, 1, . . . ,m.

Note that condition (1) in Definition 5.2 implies that Svi (�) ⊆ Dom(τ ) for all i =
0, 1, . . . ,m. Hence, using (5.2) and substituting Svi (�) = A, Sv0(�) = B and τ =
Sv′ S−1

v in Lemma 2.3(b), we have, for all i ∈ {0, 1, . . . ,m},

L(Sv′
i
(�)) = L(τ Svi (�)) ≤ Cc2d

1 L(τ Sv0(�)) = Cc2d
1 L(Sv′

0
(�)). (5.3)
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Similarly,

L(Sv′
i
(�)) = L(τ Svi (�)) ≥ C−1c1

−2dL(τ Sv0(�)) = C−1c1
−2dL(Sv′

0
(�)). (5.4)

Combining (5.3) and (5.4) yields the conclusion of the lemma for any two
neighboring vertices u1, u2 with one of them being of type T . Since there are only
finitely many distinct neighborhood types, the result follows. ��

We now prove Theorem 1.4.

Theorem 5.5 Let {Si }N
i=1 be an IFS of injective C1 conformal contractions on a

compact subset X ⊆ R
d and assume that it has the BDP. Then the finite type condition

implies the weak separation condition.

Proof Assume that {Si }N
i=1 is a finite type conformal IFS on X and let {Mk}∞k=0 and

� be as in the definition of the finite type condition. We will show that there exists an
integer γ > 0 such that for all 0 < b ≤ 1 and x ∈ X ,

#{S ∈ Ab : x ∈ S(�)} ≤ γ.

Let S = {S ∈ Ab : x ∈ S(�)}. List all elements of S as SI1 , . . . , SIm . (The choice
of I j does not affect the following proof.) For each j ∈ {1, . . . ,m}, let I j = ( Ĩ j , J̃ j ),
where Ĩ j ∈ Mk j is the longest initial segment of I j that belongs to some Mk . We
assume without loss of generality that

k1 = min{k j : 1 ≤ j ≤ m} = k and Ĩ1 ∈ Mk .

For each j ∈ {1, . . . ,m}, let I ′
j be the initial segment of I j such that I ′

j ∈ Mk . In

particular, I ′
1 = Ĩ1. Since x ∈ S(�) for all S ∈ S, it follows that

v2 = (SI ′
2
, k), . . . , vm = (SI ′

m
, k),

not necessarily distinct, are neighbors of v1 = (SI ′
1
, k). The finite type condition

implies that the number of vertices in each neighborhood is uniformly bounded by
some constant M independent of x, b, and the choice of I j . That is,

#{v1, . . . , vm} ≤ M.

By Lemma 5.4, for j = 2, . . . ,m,

c−1
4 ≤ L(SI ′

1
(�))

L(SI ′
j
(�))

≤ c4,

while from Lemma 2.1(b) we get

(r/c1)
d ≤ L(SI j (�))

L(SI1(�))
≤ (c1/r)d .
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Combining these inequalities gives

c−1
4 (r/c1)

d ≤ L(SI j (�))

L(SI ′
j
(�))

· L(SI ′
1
(�))

L(SI1(�))
≤ c4(c1/r)d . (5.5)

For j ∈ {1, . . . ,m}, we can write uniquely I j = I ′
j J j . By putting S−1

I = S−1
I ′ equal

to the identity and SJ = SJ ′ = SI ′
j

in Lemma 2.3(a), and then using the BDP, we have

L(SI j (�))

L(SI ′
j
(�))

=
L(SI ′

j J j
(�))

L(SI ′
j
(�))

≤
Rd

I ′
j
L(SJj (�))

rd
I ′

j
L(�)

≤ cd
1

L(SJj (�))

L(�) . (5.6)

Since each Si is contractive, i.e., there exists some 0 < ρ < 1 such that for all
i ∈ {1, . . . , N } and x, y ∈ X , |Si (x)− Si (y)| ≤ ρ|x − y|, it follows that

L(SJj (�)) ≤ ρ|J j |dL(�). (5.7)

Combining (5.5), (5.6) and (5.7) yields

L(SI1(�))

L(SI ′
1
(�))

≤ (c2
1/r)dc4ρ

|J j |d , for all j = 1, . . . ,m. (5.8)

A similar argument as that in (5.6) shows that

L(SI1(�))

L(SI ′
1
(�))

≥ c−d
1

L(SJ1(�))

L(�) ≥ c−d
1 rd

J1
≥ c−d

1 r |J1|d . (5.9)

Recall that I ′
1 is the longest initial segment of I1 = I ′

1 J1 that belongs to some Mk . In
view of Definition 5.1(3), there exists some J ′

1 ∈ �∗ such that I1 J ′
1 = I ′

1 J1 J ′
1 ∈ Mk+1,

and condition (5) of the same definition says |J1| ≤ |J1| + |J ′
1| ≤ L . It follows by

combining this with (5.8) and (5.9) that there exists some constant c̄ > 0 (which can
be taken to be, say, r L+1/(c1/d

4 c3
2)) such that

c̄ ≤ ρ|J j | for all j = 1, . . . ,m.

If we let � := �log c̄
/

log ρ� + 1, then |J j | ≤ � (where �x� is the integer part of x). It
follows that

# {S ∈ Ab : x ∈ S(�)} ≤ M N �,

which completes the proof of the theorem. ��
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6 Examples

In this section, we first illustrate the main results in this paper by an example. Then
we provide a family of examples with similar properties.

Consider the following IFS on [0, 1]:

S1(x) = 1

2
x, S2(x) = 1

16
x2 + 9

32
x + 11

32
, S3(x) = 1

32
x2 + 9

32
x + 11

16
.

(6.1)

We first observe that S1(0, 1) ∩ S2(0, 1) �= ∅ and S2(1) = S3(0) so that the attractor
is [0, 1] and the IFS does not satisfy the OSC. Note also the crucial property that
S13 = S21. We establish other properties of the IFS below.

Lemma 6.1 {Si }3
i=1 defined in (6.1) is an IFS of C1 injective conformal contractions

on [0, 1] that has the BDP.

Proof First it is direct to check that S2 and S3 are increasing on some neighborhood
of [0, 1], and they are contractive on this neighborhood. {Si }3

i=1 also has the BDP,
because each Si is a C∞ function (see, e.g., [17, Remark 2.3]). This completes the
proof. ��
Example 6.2 The IFS {Si }3

i=1 in (6.1) is of finite type.

Proof By Lemma 6.1, the Si are injections on [0, 1]. Let � = (0, 1), Mk = �k for
all k ≥ 0, and T0 = [vroot]. vroot has three offspring vi = (Si , 1), i = 1, 2, 3. [v3] =
[vroot] = T0. Let [vi ] = Ti , i = 1, 2. Upon one more iteration, we see that no new
neighborhood types are generated. In fact, since S13 = S21 and S2(�) ∩ S3(�) = ∅,
v1 has two offspring of neighborhood type T1 and one of neighborhood type T2, and
v2 has three offspring of distinct neighborhood types Ti , i = 0, 1, 2 (see Fig. 1). Thus
by Proposition 5.3, V/∼ = {T0, T1, T2}. ��

k = 0
T0

T0

T1 T2

0

k = 1

k = 2 offspring of v1

offspring of v2

1

Fig. 1 Vertices in Vk for k = 0, 1, 2 in Example 6.3
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Figure 1 shows how all the neighborhood types are generated. Overlapping vertices
are separated vertically to show distinction and multiplicity. Iterates of the point 0 under
the maps are represented by dots (or circles). For k = 2, only offspring of v1 = (S1, 1)
and v2 = (S2, 1) are shown, and the one indicated by a circle is to be removed when
constructing GR .

We illustrate Theorem 1.2 by using the above example.

Example 6.3 Consider the IFS {Si }3
i=1 in (6.1). Let {pi }3

i=1 be any associated probabil-
ity weights. Then the corresponding self-conformal measure is singular (with respect
to the Lebesgue measure on R).

Proof It is direct to check that the self-conformal set is K = [0, 1]. By Example 6.2,
{Si }3

i=1 is of finite type and thus by Theorem 1.4, it satisfies the WSC. Note that for
each ε > 0 sufficiently small, each Si can be extended to a C1 injective conformal
mapping on the interval Vε = (−ε, 1 + ε). Moreover, with respect to Vε , we have

RS1 = 1

2
, RS2 = 13

32
+ ε

8
, RS3 = 11

32
+ ε

16
.

Let b = 1. Then S1, S2, S3 ∈ Ab. If p1 > 1/2 = RS1 , then the singularity of µ
follows from Theorem 1.2. Similarly, if p1 < 1 − RS2 − RS3 = 1/4 − 3ε/16, then at
least one of the inequalities p2 > RS2 or p3 > RS3 must hold, and again µ is singular.

Now consider the case p1 ∈ [1/4 − 3ε/16, 1/2]. Note that S13 = S21 =: S and
RS = 11/64 + ε/32. Thus, for all ε > 0 sufficiently small,

pS = p1 p3 + p2 p1 = p1(1 − p1) ≥ 3

16
− 3ε

32
−

(
3ε

16

)2

> RS .

Hence µ is also singular in this case. ��
The IFS in (6.1) can be generalized as follows.

Example 6.4 Let 0 < a < 1 and define

S1(x) = ax, S2(x) = bx2 + cx + ad, S3(x) = abx2 + cx + d. (6.2)

Assume either of the following conditions holds:

(C1) ab + c + d = 1, b + c + ad ≤ d and either
(a) b ≥ 0, c > 0, 2b + c < 1 or
(b) b < 0, 2b + c > 0, 2ab + c < 1.

(C2) d = 1, ab + c + 1 > a, b + c + a ≥ 0 and either
(a) b ≥ 0, 2b + c < 0, 2ab + c > −1 or
(b) b < 0, c < 0, 2b + c > −1.

(Note that for each case the set of parameters is nonempty.) Then {Si }3
i=1 is a finite

type conformal IFS on [0, 1] that has the BDP and hence it satisfies the WSC.
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To understand the family, we note that S13 = S21 and therefore the OSC is not
satisfied. Both conditions (C1) and (C2) imply that the convex hull of the self-
conformal set K is the interval [0, 1], S1[0, 1]∩S2[0, 1] �= ∅, and S2(0, 1)∩S3(0, 1) =
∅. Conditions (a) and (b) in (C1) guarantee that both S2 and S3 are increasing and have
derivatives bounded between 0 and 1 on some neighborhood of [0, 1], while conditions
(a) and (b) in (C2) guarantee that both S2 and S3 are decreasing and have derivatives
bounded between −1 and 0 on some neighborhood of [0, 1]. We also remark that
under either condition (C1) or (C2), three of the parameters a, b, c, d are free, and the
special case for b = 0 (self-similar) is studied in detail in [15].

Example 6.4 can be proved by modifying the arguments in Lemma 6.1 and Exam-
ple 6.2 slightly.

By extending the argument in Example 6.3 and using Theorem 1.2, we can show
that for values of the parameters belonging to a quite large region that satisfies either
of the conditions (C1) or (C2) in Example 6.4, all associated self-conformal measures
are singular. However, we do not know whether singularity holds for all associated
self-conformal measures for all possible parameter values satisfying condition (C1)
or (C2). Nevertheless, we show in the next section that if we allow the probability
weights to be place-dependent, then absolutely continuous self-conformal measures
can be constructed. The method illustrated in Example 6.3 may fail for some of the
IFSs in (6.2); a simple example of such an IFS is given by the parameter values
a = 1/2, b = 1/4, c = 1/8, d = 3/4.

7 Absolutely continuous measures

We will show that if the probability weights are allowed to be place-dependent, then
the corresponding self-conformal measure can be absolutely continuous, and can even
have a continuous density function. The following family of examples are modified
from those in [2] and [25].

Then S be C1 on an open interval containing [0, 1] and assume that S satisfies

S(0) = 0, S(1) = 1

2
, S′(0) = S′(1), and

0 <C1 ≤ S′(x) ≤ C2 < 1 on [0, 1],
(7.1)

where C1,C2 are constants. S(x) = x/2 and S(x) = (−2x3 + 3x2 + 2x)/6 are
examples of such a function. Define S0 : R → R by extending S as follows

S0(x) = S(x − k)+ k/2, if x ∈ [k, k + 1) and k ∈ Z.

Equivalently,

S0(x) = S(x − �x�)+ �x�/2. (7.2)

(Recall that �x� is the integer part of x.) It follows from (7.1) that S0 is C1 on R.

123



348 K.-S. Lau et al.

Now fix a positive integer N ≥ 2 and define mappings Si : R → R, i = 1, . . . , N ,
by

Si (x) = S0(x)+ i/2, x ∈ R. (7.3)

The following identities are useful and can be derived directly from (7.2):

Si (x + k) = Si (x)+ k/2 and S−1
i (x + k/2) = S−1

i (x)+ k,

i = 0, 1, . . . , N , k ∈ Z. (7.4)

By combining (7.3) and (7.4) we also have

S−1
i (x) = S−1

0 (x − i/2) = S−1
0 (x)− i, x ∈ R. (7.5)

Note that {Si }N
i=0 is a conformal IFS on [0, N ].

Proposition 7.1 {Si }N
i=0 is a finite type conformal IFS on [0, N ].

Proof We first illustrate the proof by using the case N = 2. Let � = (0, 2) and let
T0, T1, T2, T3 denote the neighborhood types of (I, 0), (S0, 1), (S1, 1), and (S2, 1),
respectively. The following observations can be proved easily:

(a) S0S2 = S1S0 and S1S2 = S2S0.
(b) (i) S0S0(2) = S0S2(0)(= S1S0(0)) = 1/2.

(ii) S0S2(2)(= S1S0(2)) = S1S2(0)(= S2S0(0)) = 1.
(iii) S1S2(2)(= S2S0(2)) = S2S2(0) = 3/2.
(iv) S0S1(2) = S1S1(0) = S0(1/2)+ 1/2.
(v) S1S1(2) = S2S1(0) = S0(1/2)+ 1.

It follows from these observations that

[(S0S0, 2)] = T1, [(S0S1, 2)] = [(S1S1, 2)] = [(S2S1, 2)] = T2, [(S2S2, 2)]=T3.

It remains to show that

[(S1S0, 2)] = [(S1S2, 2)] = T2.

Let τ = S1S0S−1
1 . Then τ S1 = S1S0. To show that [(S1S0, 2)] = [(S1, 1)], it suffices

to show that

τ S0 = S0S1 and τ S2 = S1S1.

We will prove the first equality; the second one can be established similarly. Note that
for all x ∈ R,
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τ S0(x) = S0S2S−1
1 S0(x) (by (a))

= S0S2S−1
0 (S0(x)− 1/2) (by (7.5))

= S0(S0S−1
0 (S0(x)− 1/2)+ 1) (by (7.3))

= S0(S0(x)+ 1/2)

= S0S1(x).

The proof for [(S1S2, 2)] is the same. This completes the proof that {Si }2
i=0 is of finite

type.
For N > 2, we let� = (0, N ) and let Ti, j denote the neighborhood type of a vertex

with i left neighbors and j right neighbors, in the reduced graph. Thus, T0,0 denotes
the neighborhood type of the root vertex. Upon one iteration, the following N +1 new
neighborhood types are generated:

T0,N−1, T1,N−1, TN−1,1, TN−1,0, and {Ti,N−i }N−2
i=2 .

Upon one more iteration, the following 2N −5 new neighborhood types are generated:

{Ti,N−1}N−1
i=2 and {TN−1,N−i }N−2

i=2 .

No more new neighborhood types are generated upon another iteration. Thus, the total
number of neighborhood types is 3N − 3. We leave the details for the reader. ��

To study self-conformal measures associated to the IFS {Si }N
i=0, we let {pi (x)}N

i=0
be strictly positive weight functions so that each pi is continuous and log pi satisfies
the Dini condition. It is known [6] that under these assumptions, there exists a unique
probability measure µ satisfying

ρµ =
N∑

i=0

piµ ◦ S−1
i , (7.6)

where ρ ≥ 1 is the spectral radius of the Ruelle operator T : C[0, N ] → C[0, N ]
(the space of continuous functions on [0, N ]) defined by

T f (x) =
N∑

i=0

pi (Si (x)) f (Si (x)).

We assume that

N∑

i=0

N∫

0

pi (x) dµ(x) = 1 (7.7)
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so that ρ = 1 and (7.6) becomes

µ =
N∑

i=0

piµ ◦ S−1
i , (7.8)

which means

µ(A) =
N∑

i=0

∫

S−1
i (A)

pi dµ,

for any µ measurable set A, and for any integrable f ,

∫

A

f dµ =
N∑

i=0

∫

S−1
i (A)

( f ◦ Si )pi dµ.

As in [25], we can express the measure µ in a vector form. To see this, note that
for any Borel subset D ⊆ R and i = 1, . . . , N , we can use (7.4) and (7.5) repeatedly
to write

µ(D ∩ [0, 1] + i − 1) =
min{2i−1,N }∑

j=max{2i−N−1,1}
p2i− j−1µ(S

−1
0 (D) ∩ [0, 1] + j − 1)

+
min{2i,N }∑

j=max{2i−N ,1}
p2i− jµ(S

−1
1 (D) ∩ [0, 1] + j − 1).

Define N × N matrices P0 = P0(x) and P1 = P1(x) by

(P0)i j = p2i− j−1, (P1)i j = p2i− j , 1 ≤ i, j ≤ N .

Equivalently,

P0 =

⎡

⎢⎢⎢⎢⎣

p0 0 0 0 . . . 0 0

p2 p1 p0 0 . . . 0 0
...

...
...

...

0 0 0 0 . . . pN pN−1

⎤

⎥⎥⎥⎥⎦
,

P1 =

⎡

⎢⎢⎢⎢⎣

p1 p0 0 0 . . . 0 0

p3 p2 p1 p0 . . . 0 0
...

...
...

...

0 0 0 0 . . . 0 pN

⎤

⎥⎥⎥⎥⎦
.
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Then

⎡

⎢⎢⎢⎢⎢⎣

µ(D ∩ [0, 1])
µ(D ∩ [0, 1] + 1)

...

µ(D ∩ [0, 1] + N − 1)

⎤

⎥⎥⎥⎥⎥⎦
= P0

⎡

⎢⎢⎢⎢⎢⎣

µ(S−1
0 (D) ∩ [0, 1])

µ(S−1
0 (D) ∩ [0, 1] + 1)

...

µ(S−1
0 (D) ∩ [0, 1] + N − 1)

⎤

⎥⎥⎥⎥⎥⎦

+P1

⎡

⎢⎢⎢⎢⎢⎣

µ(S−1
1 (D) ∩ [0, 1])

µ(S−1
1 (D) ∩ [0, 1] + 1)

...

µ(S−1
1 (D) ∩ [0, 1] + N − 1)

⎤

⎥⎥⎥⎥⎥⎦
.

We will show that if the weight functions {pi }N
i=1 are suitably chosen, then the

corresponding self-conformal measure µ is absolutely continuous and may even have
a continuous density function f . We start by considering the dilation equation corre-
sponding to (7.8):

f (x) =
N∑

i=0

(S−1
i )′(x)pi (S

−1
i (x)) f (S−1

i (x)). (7.9)

Note that µ is absolutely continuous if and only if there exists an L1-solution f to
(7.9) and in this case, dµ/dx = f .

Define the linear operator L on the space of functions g on [0, N ] as

Lg(x) =
N∑

i=0

(S−1
i )′(x)pi (S

−1
i (x))g(S−1

i (x)).

We can also write (7.9) in a vector form, in a similar fashion as for the corresponding
measure. Define

g(x) =

⎡

⎢⎢⎢⎣

g(x)
g(x + 1)

...

g(x + N − 1)

⎤

⎥⎥⎥⎦ and Lg(x) =

⎡

⎢⎢⎢⎣

Lg(x)
Lg(x + 1)

...

Lg(x + N − 1)

⎤

⎥⎥⎥⎦ , x ∈ [0, 1].

Let T0 = T0(x) and T1 = T1(x) be N × N matrices defined as

(T0(x))i, j = p2i− j−1(x + j − 1)

S′
2i− j−1(x + j − 1)

, (T1(x))i, j = p2i− j (x + j − 1)

S′
2i− j (x + j − 1)

, 1≤ i, j ≤ N .
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Then it can be derived as above that

Lg(x) =
{

T0(S
−1
0 (x))g(S−1

0 (x)), if 0 ≤ x ≤ 1/2

T1(S
−1
1 (x))g(S−1

1 (x)), if 1/2 ≤ x ≤ 1.

Define

σx =
{

S−1
0 (x), if 0 ≤ x ≤ 1/2

S−1
1 (x), if 1/2 ≤ x ≤ 1

and d(x) =
{

0, if 0 ≤ x ≤ 1/2

1, if 1/2 ≤ x ≤ 1.

Then

Lg(x) =
{

T0(σx)g(σx), if 0 ≤ x ≤ 1/2

T1(σx)g(σx), if 1/2 ≤ x ≤ 1,

and for all k ≥ 1,

Lg(x) = Td(x)(σx)Td(σx)(σ
2x) · · · Td(σ k−1x)(σ

kx)g(σ kx). (7.10)

To obtain examples of L1 and continuous solutions f to the dilation equation (7.9),
we choose each weight function pi , i = 0, 1, . . . , N , to be proportional to S′

i , i.e.,

pi (x) = ci S′
i (x), x ∈ R, (7.11)

for some constant ci . In this case, (7.9) becomes

f (x) =
N∑

i=0

ci f (S−1
i (x)), (7.12)

and T0 and T1 reduce to constant matrices:

T0 =

⎡

⎢⎢⎢⎣

c0 0 0 0 . . . 0 0
c2 c1 c0 0 . . . 0 0
...

...
...

...

0 0 0 0 . . . cN cN−1

⎤

⎥⎥⎥⎦ ,

T1 =

⎡

⎢⎢⎢⎣

c1 c0 0 0 . . . 0 0
c3 c2 c1 c0 . . . 0 0
...

...
...

...

0 0 0 0 . . . 0 cN

⎤

⎥⎥⎥⎦ .

Let M be the (N − 1)× (N − 1)matrix obtained by deleting the first row and first
column of T0, or equivalently, the last row and last column of T1.
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Suppose now that 1 is an eigenvalue of M with an associated eigenvector a =
(a1, . . . , aN−1) that can be normalized so that

∑N−1
i=1 ai = 1 (a sufficient condition

for this is given in the theorem below). Let

f (i) =
{

ai , i = 1, . . . , N − 1

0, i ≤ 0 or i ≥ N .

Let f0(x) be the function which is linear on every interval [i, i + 1] and satisfies
f0(i) = f (i) for all i , and let

fk(x) = Lk f0(x), k ∈ N. (7.13)

Let a0 = aN = 0 and define

v0 =

⎡

⎢⎢⎢⎢⎢⎣

a0(1 − x)+ a1x

a2(1 − x)+ a3x

...

aN−1(1 − x)+ aN x

⎤

⎥⎥⎥⎥⎥⎦
and vk(x) =

⎡

⎢⎢⎢⎢⎢⎣

fk(x)

fk(x + 1)

...

fk(x + N − 1)

⎤

⎥⎥⎥⎥⎥⎦
, k ≥ 1

(7.14)

Then vk(x) = Lkv0(x).
The following theorem can be easily proved by modifying [2, Theorem 2.5]; we

omit the details.

Theorem 7.2 Let {Si }N
i=0 be defined as in (7.2) and (7.3). Assume that

∑
c2i =

∑
c2i+1 = 1. (7.15)

Let E1 be the (N − 1)-dimensional subspace orthogonal to e1 = (1, . . . , 1), the
left eigenvector of T0 and T1 for the eigenvalue 1. Assume that there exist λ < 1 and
C > 0 such that for all m ∈ N,

max{‖Td1 · · · Tdm |E1‖ : d j = 0 or 1, j = 1, . . . ,m} ≤ Cλm . (7.16)

Then the following hold:

(a) 1 is a simple eigenvalue of M and there exists an associated eigenvector a =
(a1, . . . , aN−1) that can be normalized so that

∑N−1
i=1 ai = 1.

(b) The functions vk(x) defined in (7.14) satisfy e1 · vk(x) = 1 for all k ∈ N and all
x ∈ [0, 1].

(c) The corresponding functions fk in (7.13) converge uniformly to a continuous
function f and

‖ fk − f ‖∞ ≤ C2−k| ln λ|/ ln 2.

Moreover, f is an L1-solution of (7.9) and satisfies
∫ N

0 f (x) dx = 1.
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It is shown in [2] that the condition in (7.16) can be expressed in more convenient
forms. For m ∈ N, define

λm = max{‖Td1 · · · Tdm |E1‖1/m : d j = 0 or 1, j = 1, . . . ,m}.

Also, given two matrices A0, A1, define the joint spectral radius of A0, A1 by

ρ̂(A0, A1) = lim sup
m→∞

max{‖Ad1 · · · Adm ‖1/m : d j = 0 or 1, j = 1, . . . ,m}.

Under the assumptions of Theorem 7.2, it follows from [2] that each of the following
conditions is equivalent to (7.16):

λm < 1 for some m ∈ N (7.17)

or

ρ̂(T0|E1, T |E1) < 1. (7.18)

There are many known examples of positive constants {ci }N
i=0 that satisfy these con-

ditions (see, e.g., [1]). They provide us with examples of continuous solutions to (7.9)
and thus absolutely continuous self-conformal measures defined by (7.8).

Finally, we remark that if (7.15) and (7.16) are satisfied so that a continuous scaling
function f exists, then for pi (x) satisfying (7.11), the corresponding self-conformal
measure satisfies (7.7) automatically. In fact, by Theorem 7.2(c) and (7.12),

1 =
N∫

0

f (x) dx =
N∑

i=0

ci

N∫

0

f (S−1
i (x)) dx

=
N∑

i=0

ci

N∫

0

f (x)S′
i (x) dx =

N∑

i=0

N∫

0

pi (x) dµ(x).
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