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Abstract

For 0 < ρ < 1, let μρ be the Bernoulli convolution associated with ρ. Jorgensen and Pedersen [P. Jor-
gensen, S. Pedersen, Dense analytic subspaces in fractal L2-spaces, J. Anal. Math. 75 (1998) 185–228]
proved that if ρ = 1/q where q is an even integer, then L2(μρ) has an exponential orthonormal basis. We
show that for any 0 < ρ < 1, L2(μρ) contains an infinite orthonormal set of exponential functions if and
only if ρ is the nth root of a fraction p/q where p is an odd integer and q is an even integer.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let μ be a Borel probability measure in Rd . We say that μ is a spectral measure if there
exists a discrete set Λ such that EΛ = {e2πiλ(·): λ ∈ Λ} forms an orthonormal basis for L2(μ).
In this case we call Λ a spectrum of μ, and (μ,Λ) a spectral pair. Since (μ,Λ) is a spectral pair
if and only if for any fixed t ∈ Rd , (μ, t + Λ) is also a spectral pair, for simplicity we assume
that 0 ∈ Λ.

Spectral measure was first studied by Jorgensen and Pedersen [2], they showed that (see
also [8] for a simplified proof):
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Theorem 1.1. Let k > 2 be a positive integer. Then the 1/k-Cantor measure μ on R is a spectral
measure if and only if k is even. Moreover if k is odd, then any orthonormal set EΛ in L2(μ) has
at most two elements.

Recall that the 1/k-Cantor measure is a special case of the Bernoulli convolution μ = μρ

with parameter 0 < ρ < 1 that satisfies

μ(A) = 1

2
μ

(
ρ−1A − 1

) + 1

2
μ

(
ρ−1A + 1

)
(1.1)

for any Borel subset A ⊆ R. This class of measures has been studied in detail in literature for the
case 0 < ρ < 1/2 (Cantor-type measure) and for 1/2 < ρ < 1 (overlapping case in the context
of iterated functions system, see e.g., [5–7]). Theorem 1.1 was investigated by Łaba and Wang
in more detail [3] and for the general Borel measures [4]. In [9,10] Strichartz considered the
“mock” Fourier series and Fourier transforms of such spectral Cantor measures analogous to the
classical case.

In this note we consider the Bernoulli convolution in (1.1) with parameter 0 < ρ < 1. We
prove

Theorem 1.2. Let μ be the ρ-Bernoulli convolution defined by (1.1). Then L2(μ) contains an
infinite orthonormal set EΛ of exponential functions if and only if ρ is the nth root of a fraction
p/q where p is odd and q is even.

The sufficiency of the theorem follows from Theorems 1.1 and 4.4. The main proof is on the
necessity. First we note that the Fourier transform of μ is μ̂(t) = ∏∞

j=1 cos(2πρj t). Let β = ρ−1.

It is easy to check that μ̂(t) = 0 if and only if t = aβj/4 for some positive integer j and some
odd integer a. Let EΛ be an orthogonal set of exponential functions and let 0 ∈ Λ. It follows
easily that μ̂(λ) = 0, λ ∈ Λ, and the orthogonal property is reduced to the algebraic equation

c1β
k − c2β

j = c3, (1.2)

for some k, j and for some odd integers c1, c2, and c3 (Lemma 2.2). This implies that β must
be an algebraic number satisfying some polynomials with odd integral coefficients as in (1.2),
which enables us to reduce them to polynomials of the form

f (x) = xk + xj + 1 where f (x) ∈ Z2[x], (1.3)

and Z2 is the residue class of Z modulo 2.
We prove the following assertion which yields the necessity of Theorem 1.2:

If either (i) ρ = (
p
q
)1/n where n � 1, p,q are co-prime and q is odd, or (ii) ρ is not the nth

root of a fraction, then EΛ is a finite set.

The proof of case (i) depends on the expression (1.2) (Theorem 4.3). The proof of case (ii)
(Theorem 4.2) is more involved, it concerns when β = ρ−1 is a solution of the polynomials
in (1.3) (Lemma 3.5).
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The paper is organized as follows. In Section 2, we introduce some basic properties of or-
thonormal sets of exponential functions and their relation to the algebraic equation (1.2). In Sec-
tion 3, we use a linear algebra technique to give some conditions for polynomials satisfying (1.3)
(Lemma 3.5.) By using this we prove in Section 4 the above assertion (in italics) of finiteness of
the orthonormal EΛ in Theorems 4.2–4.4, which imply Theorem 1.2. The technical proof of the
main lemma (Lemma 3.5) is given in Appendix A.

2. Preliminaries

For 0 < ρ < 1, let μ be the ρ-Bernoulli convolution defined by (1.1) and let μ̂(t) =∫
e2πitx dμ(x) be its Fourier transform. Then

μ̂(t) = μ̂(ρt) cos(2πρt).

By iterating this expression, we have

μ̂(t) = μ̂
(
ρnt

) n∏
j=1

cos
(
2πρj t

) =
∞∏

j=1

cos
(
2πρj t

)
. (2.1)

We let Z = {t ∈ R: μ̂(t) = 0}. Then Z = −Z .
We will use the following notation throughout the paper: let β = ρ−1; O denotes the set of

odd integers; Λ is a discrete set in R that contains 0, and EΛ = {e2πiλ(·): λ ∈ Λ}.
Lemma 2.1. Z = {t ∈ R: t = aβj/4 where j ∈ N and a ∈ O}.
Proof. If t = aβj/4, where j > 0 and a ∈ O, then cos(2πρj t) = 0, so μ̂(t) = 0. Con-
versely suppose that μ̂(t) = 0. Since μ̂(0) = 1, we have μ̂(ρnt) �= 0 for large n. By (2.1),∏n

j=1 cos(2πρj t) = 0, which implies cos(2πρj t) = 0 for some j . Hence t = aβj/4 for
some j > 0, a ∈ O. �
Lemma 2.2. Let Λ be any discrete set containing 0. Then EΛ is an orthonormal set of L2(μ) if
and only if (Λ−Λ)\{0} ⊆ Z . Furthermore, Λ\{0} = {aiβ

ki /4: ki ∈ N, ai ∈ O, i = 1,2, . . . , n}
where n � 2 is a finite integer or infinity. In particular β satisfies equations of the form

aiβ
ki − ajβ

kj = bijβ
kij , (2.2)

where 1 � i, j � n, ai, aj , bij ∈ O, and ki, kj , kij ∈ N are not all equal.

Proof. It is clear that EΛ is an orthonormal set of L2(μ) if and only if μ̂(λ − λ′) = 0 for any
λ,λ′ ∈ Λ and λ �= λ′, which is equivalent to (Λ − Λ) \ {0} ⊆ Z . The second assertion is obvious
in view of the fact that Λ \ {0} ⊆ Z (as 0 ∈ Λ) and Lemma 2.1 applies.

For the last part let λi = aiβ
ki /4 and λj = ajβ

kj /4 be any two nonzero elements in Λ, then
λi −λj = bijβ

kij /4 (by Lemma 2.1) and (2.2) follows. By dividing the lowest power of β in (2.2),
we see that the three powers of β cannot be the same, otherwise, the left-hand side will be an
even integer and the right-hand side will be an odd integer. �

From Lemma 2.2, we conclude that there are two alternatives regarding the three powers of β

in (2.2):
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(A1) the three powers ki, kj , kij are distinct, or
(A2) exactly two of the three powers ki, kj , kij are equal.

In regard to these two alternatives we have the following observation:

Lemma 2.3. Suppose that β > 0 satisfies a1β
i + a2β

j = a3β
r where a1, a2, a3 ∈ O and

i, j, r ∈ N. Then either

(i) i, j and r are distinct, and in this case β is not the nth root of a fraction; or
(ii) exactly two of the i, j or r are equal, and in this case β is the nth root of a fraction p/q ,

where p,q are co-prime, not both being odd.

Proof. (i) We can assume that i > j > r = 0. Then

a1β
i + a2β

j = a3, a1, a2, a3 ∈ O. (2.3)

Suppose to the contrary β = (
q
p
)1/k where p,q are co-prime. First we claim that both i and j

are multiples of k. Let us write i = i1k + s and j = j1k + t with 0 � s, t < k, then i1 � j1.
Multiplying (2.3) by pi1 , we obtain

n1

(
q

p

)s/k

+ n2

(
q

p

)t/k

+ n3 = 0.

Therefore β = (
q
p
)1/k satisfies the equation

n1x
s + n2x

t + n3 = 0.

Since xk − q
p

is the minimal polynomial of β , in view of 0 � s, t < k, a necessary condition for
the equation to have solution is when s = 0 and t = 0. This proves the claim.

Now substitute β = (
q
p
)1/k back in (2.3) and multiply throughout by pi1 to obtain

qj1
(
a1q

i1−j1 + a2p
i1−j1

) = a3p
i1 (2.4)

(where i1 > j1). Since p,q are co-prime, we have q|a3 which implies q is odd. Similarly,
write (2.4) as

a1q
i1 = a3p

i1 − a2p
i1−j1qj1 = (

a3p
j1 − a2q

j1
)
pi1−j1 .

We obtain p|a1, so that p is odd. We therefore conclude that the left-hand side of (2.4) is even
and the right-hand side is odd, which is impossible. Therefore β �= (

q
p
)1/k and (i) follows.

(ii) Assume that exactly two of the i, j and r are equal. If i = j > r , then it is easy to see
from (2.3) that β is the nth root of a fraction with odd numerator and even denominator. Similarly
if i = j < r , then β is the nth root of a fraction with even numerator and odd denominator. �
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3. Some lemmas on polynomials

Let Q[x] and Z[x] be the polynomials with coefficients in Q (the rationals) and Z (the inte-
gers) respectively. A nonzero f (x) ∈ Z[x] is called a primitive polynomial if its coefficients are
relatively prime.

Lemma 3.1. Suppose that f (x) ∈ Z[x] and β > 1 is a real root of f (x). Let g(x) ∈ Q[x] be a
minimal polynomial of β . Then there is h(x) ∈ Z[x] and an integer N such that Ng(x) ∈ Z[x]
and f (x) = Ng(x)h(x).

The proof is simple, we write f (x) = g(x)r(x) for some r(x) ∈ Q[x]. By factoring the scalar
factors, we can write f (x) = M

L
g′(x)r ′(x) where M,L are co-prime, and g′(x), r ′(x) ∈ Z[x]

are primitive. Using f (x) ∈ Z[x] it is not hard to show that L = 1 and the lemma follows.

Corollary 3.2. Suppose that {fi(x)}∞i=1 ⊂ Z[x] is a sequence of primitive polynomials and β > 1
is a real root of fi(x) for all i. Let g(x) ∈ Q[x] be a minimal polynomial of β . Then there is a
sequence of primitive polynomials hi(x) ∈ Z[x] and an integer N with Ng(x) ∈ Z[x] such that
Ng(x) is primitive and fi(x) = Ng(x)hi(x) for every i.

Proof. By Lemma 3.1, we have fi(x) = Nig(x)hi(x). Since fi(x) ∈ Z[x] is primitive, the same
is true for Nig(x) and hi(x), and hence each Ni must be the least common multiple of the
denominators of the coefficients in g(x). Therefore Ni = N for every i. �

Condition (2.2) gives rise to the above sequence of polynomials {fi(x)}∞i=1 which have the
form c1x

m + c2x
n + c3 where the ci ’s are odd integers. Let gβ(x) be the minimal polynomial

of β . If β is a solution of fi(x), then gβ(x) | fi(x), i.e., fi(x) = gβ(x)hi(x) for some hi(x). We
use g̃β(x) to denote the primitive polynomial Ng(x) associated with β in the corollary and call it
the integral minimal polynomial of β . We now study some necessary conditions for g̃β(x) | fi(x),
which count the number of equations of (2.2) and hence the cardinality of EΛ in case (A1) in
Section 2 (Theorem 4.2).

The polynomials with odd integral coefficients mentioned above are more conveniently han-
dled as follows. Let Z2 be the residue class of Z modulo 2, identified with {0,1} and endowed
with the regular binary algebraic operations. Obviously, we can reduce the polynomials in Z[x]
to Z2[x], and the relation f (x) = g(x)h(x) in Z[x] can be reduced to f (x) = g(x)h(x) in Z2[x]
(using similar notation).

Let f (x), g(x),h(x) ∈ Z2[x] with

f (x) =
m+n∑
k=0

ckx
k, g(x) =

n∑
i=0

aix
i and h(x) =

m∑
j=0

bjx
j .

Here a0 = an = b0 = bm = 1 and the other coefficients are either 0 or 1. Obviously f (x) =
g(x)h(x) if and only if

ck =
∑

aibj for k = 0,1, . . . ,m + n. (3.1)

i+j=k
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This relation can be written as a matrices expression: c = Ab where A is an (m+n+1)×(m+1)

matrix defined by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · · 0

a1 1 0 0 0 · · · 0
... a1 1 0 0 · · · 0

an−1
... a1 1 0 · · · 0

1 an−1
... a1 1 0

...

0 1 an−1
... a1

. . . 0

0 0 1 an−1
...

. . . 1

0 0 0 1 an−1
. . . a1

0 0 0 0 1 an−1
...

...
...

...
...

. . .
. . . an−1

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.2)

b = (1, b1, . . . , bm−1,1)t , and c = (1, c1, . . . , cm+n−1,1)t . Note that all the entries are either 0
or 1 and the operations are binary.

Remark 3.3. Given f (x) and g(x), there is an h(x) such that f (x) = g(x)h(x) if and only if
the linear system Ax = c has a solution x = b. From the standard linear equations theory, this is
equivalent to the rank of the (m + n + 1) × (m + 2) augmented matrix (A | c) equaling m + 1,
i.e., the bottom n rows in the reduced row echelon form of (A | c) are zero.

Remark 3.4. To obtain the echelon form, we multiply on the left of (A | c) by a sequence of
(m + n + 1) × (m + n + 1) square binary invertible matrices Ei , i = 1,2, . . . ,m + 1:

Ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . 0

1
E

1

0
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

E =

⎛⎜⎜⎜⎜⎝
1
a1 1
...

. . .

an−1 1

⎞⎟⎟⎟⎟⎠

1 1
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is an (n + 1) × (n + 1) invertible matrix, its position in Ei is starting from the (i, i)-entry of Ei .
We call E the row operation matrix associated with g(x).

With the binary operation, it is clear that E = E−1 and E(1, a1, . . . , an−1,1)t = (1,0, . . . ,0)t .
It follows that E1A reduces the first column of A to (1,0, . . . ,0)t and the other columns remain
unchanged; E2E1A reduces the second column of E1A to (0,1,0, . . . ,0)t and the other columns
remain unchanged. Finally Em+1 · · ·E1A is the matrix with 1 on the diagonal and 0 elsewhere,
which is the desired echelon form. In order for Ax = c to have a solution, it is necessary that
Em+1 · · ·E1c has zeros on the last n entries. This idea leads to the following main lemma.

We define a sequence of (n + 1)-dimensional vectors {vi}∞i=1 generated by E: Let v0 =
(1,0,0, . . . ,0,0)t . Define v1 = Ev0 = (1, a1, . . . , an−1,1)t , and inductively

vi = E(σvi−1)

where σv = (v1, . . . , vn,0) for v = (v0, . . . , vn).
We note that the entries of each vi are either 0 or 1, hence for i large, some of the vi ’s must

be repeated, say, vi = vj . It is easy to prove that (Lemma A.1(iii)) we can reduce this to v1 = vj

(for a different j ). Let � � 1 be the smallest integer such that v�+1 = v1, we say that � is the
period of {vi}∞i=1. From the definition of �, we have vi = vj�+i for any i, j � 1.

The following main lemma gives some restrictions on β being a solution of certain specific
polynomials f (x) ∈ Z2[x], its technical proof is in Appendix A.

Lemma 3.5. Let g̃β(x) ∈ Z2[x] be the reduced (integral) minimal polynomial of β of degree n

and let � be defined as above. Suppose that f (x) ∈ Z2[x] is of the form f (x) = xm+n + xk + 1,
and that g̃β(x) | f (x), then k �≡ 0 (mod �) and m + n �≡ 0 (mod �).

4. The theorems

Lemma 4.1. Let EΛ be an orthonormal set of L2(μ) and let Λi = {t ∈ Λ: t = aβi/4 for some
a ∈ O}, i � 1. If ρn �= p

q
for any positive integer n, where p,q are co-prime, then #Λi � 1 for

all i. If in addition we assume that both p and q are odd, then Λi ∩ Λj = ∅ for i �= j .

Proof. We assume to the contrary #Λi � 2 for some i � 1. Let λ,λ′ ∈ Λi with λ = aβi/4 and
λ′ = a′βi/4, where a, a′ ∈ O, then there exists j ∈ N and b ∈ O such that λ − λ′ = bβj/4. It
follows that βi(a − a′) = bβj . Obviously, i �= j (otherwise, a − a′ = b). Thus βi−j is a fraction
which contradicts the assumption. The first assertion follows.

Note that for i > j , Λi ∩ Λj �= ∅ is equivalent to aβi/4 = bβj/4, for some a, b ∈ O, i.e.,
βi−j is a quotient of two odd integers. So if ρn �= p

q
, where both p and q are odd, then

Λi ∩ Λj = ∅. �
Theorem 4.2. Suppose that ρ is not the nth root of a fraction, and that EΛ is an orthonormal set
of L2(μρ). Then Λ is finite.

Proof. Suppose that Λ is infinite. Write Λ \ {0} = {aiβ
ni /4: ni ∈ N, ai ∈ O, i = 1,2, . . .}

(Lemma 2.2). Since βn �= p
q

for any positive integer n, by Lemma 4.1, we can actually assume
that n1 < n2 < · · · < ni < · · · is a strictly increasing sequence. Let � be the period of {vj }∞j=1
determined by the minimal polynomial of β . Since n1 < n2 < · · · < ni < · · · , there exists 0 �
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r � � − 1 such that ni ≡ r (mod �) for infinitely many i. Without loss of generality, we assume
that ni ≡ r (mod �) for all ni , hence ni − nj ≡ 0 (mod �) for all such ni, nj .

Let λi = aiβ
ni /4 for each i, we have μ̂(λ1 − λi) = 0 for all i > 1, i.e., there are ni, ji ∈ N,

ai, bi ∈ O, such that for i > 1,

a1β
n1 − aiβ

ni = biβ
ji . (4.1)

Obviously, ji �= n1 for all i > 1, otherwise, βni−n1 = p
q

for some integers p and q . Suppose
that there is an index ji > n1. By dividing both sides of (4.1) by βn1 , the equation becomes
a1 − aiβ

ni−n1 = biβ
ji−n1 and the corresponding polynomial in Z2[x] is

f (x) = 1 + xni−n1 + xji−n1 .

Let g̃β(x) be the reduced (integral) minimal polynomial in Z2[x]. Then f (x) = g̃β(x)h(x) for
some h(x) ∈ Z2[x]. Lemma 3.5 implies that ni − n1 �≡ 0 (mod �), a contradiction.

It remains to check the case when ji < n1 for all i > 1. By the pigeonhole principle, there
are infinitely many identical ji ’s. Suppose j2 = j3; using (4.1) we have a1β

n1 − a2β
n2 = b2β

j2

and a1β
n1 − a3β

n3 = b3β
j2 . Subtracting the two identities, noting that μ̂(λ2 −λ3) = 0 and using

(2.2) again, we obtain (b2 −b3)β
j2 = a3β

n3 −a2β
n2 = aβm for some odd integer a. This implies

that βn = p/q for some integers p and q and some positive integer n, a contradiction.
Therefore Λ is finite. �
The above theorem resolves the first alternative (A1) in Section 2 (see also Lemma 2.3). We

now discuss the situation concerning the second alternative (A2).

Theorem 4.3. Let ρ = (
p
q
)1/n where n � 1, p,q are co-primes, and let EΛ be an orthonormal

set of L2(μρ). If q is odd, then Λ is finite.

Proof. We see from Lemma 2.3(ii) that p,q cannot be both odd, so we assume that p is even
and q is odd.

For each i, let Λi = {aβi/4: a ∈ O} be a discrete set such that EΛi
is an orthonormal set

of L2(μρ). We first prove the following claims.

Claim 1. Let λ,λ′ ∈ Λj and λ−λ′ = arβ
r/4 ∈ Z , then r < j : The assumption implies that there

are three odd integers a, b and c such that aβj − bβj − cβr = 0 (Lemma 2.2) and it is clear that
r �= j . If r > j , then we get a − b − cβr−j = 0. This implies that β is an (r − j)th root of a
fraction with an even numerator and an odd denominator, a contradiction. Hence r < j .

Claim 2. Let λ = aβj/4, λ′ = bβi/4, λ − λ′ ∈ Z and i < j , then λ − λ′ = cβj /4, where
a, b, c ∈ O: The assumption implies that λ − λ′ = cβr/4 for some c ∈ O. We will show that
r = j . Since β is the nth root of a fraction, by Lemma 2.3, either r = i or r = j . If r = i, then
aβj−i − b − c = 0 implying that β is the (j − i)th root of a fraction with an even numerator and
an odd denominator, a contradiction. Therefore r = j .

Claim 3. #Λi � 2i for every i � 1: We prove this by induction. Let λ ∈ Λ1, then λ = aβ/4
for some a ∈ O. If there were two distinct members λ and λ′ in Λ1, using Claim 1 we see that
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λ − λ′ /∈ Z , hence #Λ1 = 1. Assume that #Λi � 2i for all i < n. Suppose that #Λn > 2n. Let
λ0, λ1, . . . , λ2n be the distinct elements in Λn. By Claim 1, we have for each i = 1, . . . ,2n,

λ0 − λi = aiβ
ji /4 for some ji < n and ai ∈ O.

Since 1 + 2 + · · · + 2n−1 < 2n, by the pigeonhole principle there exists 1 � j < n and λni
∈ Λn,

for i = 1,2, . . . ,2j + 1, such that

αi := λ0 − λni
= ani

βj /4. (4.2)

Write A = {αi : i = 1,2, . . . ,2j + 1} and let αi,αl ∈ A, then

αi − αl = (λ0 − λni
) − (λ0 − λnl

) = (λnl
− λni

) ∈ Z.

Hence A ⊆ Λj for some orthonormal set EΛj
of L2(μρ). It follows that #Λj � 2j + 1, contra-

dicting the inductive assumption. This proves Claim 3.

Now to complete the proof of the theorem, we assume that #Λ = ∞ and decompose Λ

into
⋃∞

i=1 Λi as in Lemma 4.1. Let r be the smallest index for which Λr �= ∅ and let λ =
a(

q
p
)r/4 ∈ Λr . Since Λ is infinite, Λ = ⋃∞

i=r Λi is a disjoint union (Lemma 4.1) with #Λi � 2i

for each i. Note that 0 < ρ = (
p
q
)1/n < 1 and p is even, so q � 3. Choose i > r such that qi−r > a

and Λi �= ∅. Let λ′ = b(
q
p
)i/4 ∈ Λi . By Claim 2, λ − λ′ = c(

q
p
)i/4, for some odd integer c. This

implies that there is an even integer l such that

a

(
q

p

)r

= l

(
q

p

)i

.

Multiplying both sides by piq−r we have

api−r = lqi−r .

Since p is even and q is odd and they are co-prime, qi−r must be a factor of a. This is impossible
by the choice of i. We conclude that Λ is finite. �

Theorem 1.1 shows that μ = μ1/q , where q is even, is a spectral measure with a spectrum Λ,
where Λ, according to the construction in [2], can be chosen to be

Λ =
{

n∑
i=1

qiεi

4
: εi = 0 or 1, n ∈ N

}
.

Next we show that this EΛ is also an infinite orthonormal set of L2(μρ) for ρ = (
p
q
)1/n where

n � 1, p is odd and q is even.

Theorem 4.4. Let ρ = (
p
q
)1/n where n � 1, p is odd and q is even. Let EΛ be any orthonormal

set of L2(μ1/q). Then EΛ is orthonormal in L2(μρ), but it is not complete if n > 1.
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Proof. Let Z ′ be the set of zeros of μ̂ρ . Let λ,λ′ ∈ Λ with λ �= λ′, by Lemmas 2.1–2.2, there
exist i > 0, b ∈ O such that

λ − λ′ = bqi/4 = bpi
(
(q/p)1/n

)ni
/4 ∈Z ′.

This shows that EΛ is an orthonormal set of L2(μρ).
To prove the final statement we recall that the completeness will imply that∑
λ∈Λ |μ̂(λ − x)|2 ≡ 1, x ∈ R [2] which we show cannot happen.
Let μ̂ρ = ∏∞

i=1 cos(2πρit) be the Fourier transform of μρ . Also let ν be the (
p
q
)-Bernoulli

convolution. Then ν̂(t) = ∏∞
i=1 cos(2πρni t) and

∑
λ∈Λ |̂ν(λ − x)|2 � 1 for all x ∈ R by the

Bessel’s inequality. Moreover μ̂ρ(t) = ∏n−1
j=0 ν̂(ρ−j t).

Now choose a point x ∈ R such that 0 <
∏n−1

j=1 |̂ν(ρ−j (−x))|2 < 1. Then

∑
λ∈Λ

∣∣μ̂ρ(λ − x)
∣∣2 =

∑
λ∈Λ

n−1∏
j=0

∣∣̂ν(
ρ−j (λ − x)

)∣∣2

=
∑

λ∈Λ\{0}

n−1∏
j=0

∣∣̂ν(
ρ−j (λ − x)

)∣∣2 +
n−1∏
j=0

∣∣̂ν(
ρ−j (−x)

)∣∣2

<
∑

λ∈Λ\{0}

∣∣̂ν(λ − x)
∣∣2 + ∣∣̂ν(−x)

∣∣2

=
∑
λ∈Λ

∣∣̂ν(λ − x)
∣∣2 � 1.

Hence EΛ cannot be complete in L2(μρ). �
Proof of Theorem 1.2. The sufficiency follows from Theorem 4.4, and the necessity follows
from Theorems 4.2 and 4.3. �

We have not been able to prove Theorem 4.4 for n = 1, nor to show the existence of exponen-
tial orthonormal basis for L(μρ) when ρ = p/q , p > 1 is odd and q is even.

Bernoulli convolutions can be put into a more general framework of self-similar measures
in Rd [1,6]:

μ =
m∑

j=1

wjμ ◦ ϕ−1
j

where
∑m

j=1 wj = 1, ϕj (x) = A−1(x + bj ), j = 1, . . . ,m, with bj ∈ Rd , A is an d × d matrix

in Rd and is expanding (all eigenvalues has moduli > 1). However it is not clear to what extent
we can conclude that μ is a spectral measure (see [3,8]). Indeed it was conjectured in [3] that for
ϕj (x) = ρ(x + aj ), 1 � j � m, in order that the self-similar measure to be a spectral measure, it
is necessary that ρ = 1/q for some integer q � 2 with the wj all equal. We have the following
conclusion for the Bernoulli convolution in (1.1) if we consider different weights w and 1 − w:
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Proposition 4.5. Let EΛ be any orthonormal set of L2(μρ,w), where w �= 1/2, then EΛ contains
only the constant function.

Proof. Let μ = μρ,w . A direct calculation gives

μ̂(t) =
∞∏

j=1

(
we2πiρj t + (1 − w)e−2πiρj t

) =
∞∏

j=1

(
cos 2πρj t + i(2w − 1) sin 2πρj t

)
.

Hence

∣∣μ̂(t)
∣∣2 =

∞∏
j=1

(
cos2(2πρj t

) + (2w − 1)2 sin2(2πρj t
))

.

Let ηw = (2w − 1)2, then 0 � ηw < 1. Observe that the function

f (x) = cos2 x + ηw sin2 x, x ∈ R,

attains the maximum value 1 when sinx = 0, and attains the minimum value ηw when
cosx = 0. Since ηw = 0 if and only if w = 1/2. It follows that if w �= 1/2, then for all t ∈ R,
cos2 t + ηw sin2 t > 0. This implies μ̂(t) �= 0 and the result follows. �
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Appendix A

In this section we will present a proof of Lemma 3.5. Recall from Section 3 that g̃β(x) =∑n
k=0 akx

k ∈ Z2[x] is the reduced (integral) minimal polynomial of β , v0 = (1,0,0, . . . ,0,0)t ,
v1 = Ev0 = (1, a1, . . . , an−1,1)t , and inductively

vi = E(σvi−1)

where σv = (v1, . . . , vn,0) for v = (v0, . . . , vn).

Lemma A.1. For the sequence {vi}∞i=1, writing vi = (vi0, . . . , vin)
t , we have for each i � 1,

(i) vi0 = vin;
(ii) vi contains at most (n − 1) consecutive zeros, hence vi �= (0,0, . . . ,0)t ;

(iii) for i, j > 1, vi = vj implies that vi−1 = vj−1.

Proof. A direct calculation of vi = E(σvi−1) = E(v(i−1)1, . . . , v(i−1)n,0)t yields vi0 =
v(i−1)1 = vin and (i) follows.
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To prove (ii) we first observe that E is invertible, the construction implies all the vi �= 0. Now
using (i), we see that either vi0 = vin = 1 or 0. The first case clearly implies the statement in (ii);
for the second case, if vi contains more than (n − 1) consecutive zeros, then vi = 0, which is
impossible.

To prove (iii), we observe that

E(v(i−1)1, . . . , v(i−1)n,0)t = vi = vj = E(v(j−1)1, . . . , v(j−1)n,0)t ,

hence

(v(i−1)1, . . . , v(i−1)n,0)t = E−1vi = E−1vj = (v(j−1)1, . . . , v(j−1)n,0)t .

It follows that v(i−1)k = v(j−1)k for k = 1, . . . , n. By (i), we also have v(i−1)0 = v(i−1)n =
v(j−1)n = v(j−1)0. Therefore vi−1 = vj−1. �
Lemma A.2. Let � be the period of {vi}∞i=1. If k = j� + 1 > n, where n is the degree of g̃β(x),
then vk−n = (1,0, . . . ,0,1)t .

Proof. We first show that vk−1 = (0,1,0, . . . ,0)t . Since v1 = Ev0, using the assumption that
vk = v1 we obtain

(v(k−1)1, . . . , v(k−1)n,0)t = E−1v1 = v0 = (1,0, . . . ,0)t .

Also by Lemma A.1(i), we have v(k−1)0 = v(k−1)n = 0, hence vk−1 = (0,1,0, . . . ,0)t .
Similarly since E(σvk−2) = vk−1 = (0,1,0, . . . ,0)t , by E−1 = E we have

(v(k−2)1, . . . , v(k−2)n,0)t = E−1(0,1,0, . . . ,0)t = (0,1,0, . . . ,0)t .

Again by Lemma A.1(i), v(k−2)0 = v(k−2)n = 0, which implies that vk−2 = (0,0,1,0, . . . ,0)t .
Continuing in this fashion we obtain vk−(n−1) = (0,0, . . . ,0,1,0)t . It follows that

(v(k−n)1, . . . , v(k−n)n,0)t = E−1(0,0, . . . ,0,1,0)t = (0,0, . . . ,0,1,0)t .

This together with v(k−n)0 = v(k−n)n = 1 yields vk−n = (1,0, . . . ,0,1)t . �
Proof of Lemma 3.5. Let A be an (m + n + 1) × (m + 1) matrix defined by (3.2) and b =
(1, b1, . . . , bm−1,1)t . Let c be an (m + n + 1) vector defined by c = (1,0, . . . ,0,1,0, . . . ,0,1)t ,
representing the coefficients of f (x). The assumption implies that f (x) = g̃β(x)h(x) for some
h(x) ∈ Z2[x]. Hence by Remarks 3.3–3.4, the last n entries of Em+1 · · ·E1c are zero.
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Write

c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...

0
0
0
...

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
1
0
...

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
0
0
...

0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= c1 + c2 + c3.

Consider the sequence {vi}m+1
i=1 . It follows that v0 is the first (n + 1) entries of c1; v1 is the first

(n + 1) entries of E1c1 and for i � m + 1, vi is the consecutive n + 1 entries of Ei · · ·E1c1,
starting from the ith entry.

(i) We prove k �≡ 0 (mod�). Suppose otherwise, we claim that

Em+1Em · · ·E1(c) = (1, t1, . . . , tk−1,0,0, . . . ,0,1)t

for some t1, . . . , tk−1 ∈ Z2. It follows that the last n entries of Em+1Em · · ·E1(c) are not all zero.
This is a contradiction, and we conclude that k �≡ 0 (mod �).

To prove the claim, note that k ≡ 0 (mod�) and vi ’s has period �, we have vk+1 = v1 =
(1, a1, . . . , an−1,1), hence

Ek+1Ek · · ·E1c1 = (1, t1, . . . , tk−1,1, a1, . . . , an−1,1︸ ︷︷ ︸
vk+1

,0, . . . ,0)t

for some t1, . . . , tk−1 ∈ Z2. Next note that the digit 1 in c2 is at the (k + 1)th entry, hence
Ek · · ·E1c2 = c2 (see Remark 3.4) and

Ek+1Ek · · ·E1c2 = (0,0, . . . ,0,1, a1, . . . , an−1,1,0, . . . ,0)t ,

where the first digit 1 in the column is at the (k + 1)th entry. Finally for c3, it is trivial to check
that Eic3 = c3 for all 1 � i � m + 1. Using binary addition on Z2 and the three observations for
c1, c2, c3, we have

Em+1Em · · ·E1(c1 + c2 + c3) = (1, t1, . . . , tk−1,0,0, . . . ,0,1)t

and the claim is proved.
(ii) To prove m + n �≡ 0 (mod �), we suppose to the contrary that m + n = �j for some j ,

which means m + 1 = (�j + 1) − n. By Lemma A.2, we have vm+1 = (1,0, . . . ,0,1), which
implies, as above,

Em+1 · · ·E1c1 = (1, t1, . . . , tm−1,1,0, . . . ,0,1︸ ︷︷ ︸)t .

vm+1
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Note that Em+1 · · ·E1c3 = c3, hence

Em+1 · · ·E1(c1 + c3) = (1, t1, . . . , tm−1,1,0, . . . ,0,0)t ,

where the last n entries are zero. Also note that the last (n + 1) entries of Em+1 · · ·E1c2 equal
vj for some j depending on the value of k. By Lemma A.1(ii), vj contains at most (n − 1)

consecutive zeros, hence the last n entries in Em+1 · · ·E1(c1 + c2 + c3) contain at least one
nonzero entry, a contradiction. �
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