Open set condition and post-critically finite self-similar sets

Qi-Rong Deng ${ }^{1}$ and Ka-Sing Lau ${ }^{2}$
${ }^{1}$ Department of Mathematics, Fujian Normal University, Fuzhou, 350007, People's Republic of China
${ }^{2}$ Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
E-mail: dengfractal@126.com and kslau@math.cuhk.edu.hk

Received 10 November 2007, in final form 1 April 2008
Published 24 April 2008
Online at stacks.iop.org/Non/21/1227
Recommended by M Tsujii

Abstract

We prove that for a contractive self-similar iterated function systems, if the matrices are commensurable, then the post-critically finite property implies the open set condition.

Mathematics Subject Classification: 28A80, 37F20

1. Introduction

Throughout this note we assume that $\left\{S_{j}\right\}_{j=1}^{m}$ is an iterated function system (IFS) consisting of m contractive similitudes on \mathbb{R}^{d} :

$$
\begin{equation*}
S_{j}(x)=A_{j}\left(x+d_{j}\right), \quad j=1, \ldots, m \tag{1.1}
\end{equation*}
$$

where $A_{j}=\rho_{j} R_{j}, 0<\rho_{j}<1,\left\{R_{j}\right\}_{j=1}^{m}$ are orthonormal $d \times d$ matrices and $d_{j} \in \mathbb{R}^{d}$. It is well known that there exists a unique compact subset $K \subset \mathbb{R}^{d}$ such that [H]

$$
K=\bigcup_{j=1}^{m} S_{j}(K)
$$

The compact set K is called a self-similar set. The IFS $\left\{S_{j}\right\}_{j=1}^{m}$ is said to have the open set condition (OSC) if there exists a bounded nonempty open set V such that

$$
\bigcup_{j=1}^{m} S_{j}(V) \subseteq V \quad \text { and } \quad S_{i}(V) \cap S_{j}(V)=\emptyset \quad \text { if } i \neq j
$$

The OSC asserts a separation property in the iteration, it is one of the most fundamental conditions in the study of the IFS and the attractors. However, other than the obvious cases, it
is usually difficult to verify such a condition [SSW,BR]. Indeed, the following conjecture has not been answered.

Conjecture. Suppose $\#\left(S_{i}(K) \cap S_{j}(K)\right)<\infty, i \neq j$, then $\left\{S_{i}\right\}_{i=1}^{m}$ has the OSC.
We refer to the above condition on K as finitely ramifiable, that is, K becomes disconnected if we remove the finite set of points in the intersection. A simple example of this is the Sierpinski gasket. This property has been used by Lindstrøm [L] in the consideration of Brownian motion on the nested fractals. The more general class is the celebrated post-critically finite (p.c.f) selfsimilar sets introduced by Kigami [K1,K2], which has been used extensively in the study of the Laplacian on fractals. The question whether such IFS satisfies the OSC has also been raised.

The above conjecture for the finite ramifiable self-similar sets has been proved by Bandt and Rao in $\mathbb{R}^{2}[\mathrm{BR}]$ for the special case that K is connected. Our goal in this note is to consider the problem on \mathbb{R}^{d}, but on the more restrictive p.c.f. self-similar sets. We will define the notion of p.c.f. in the following section after setting up some of the notation. To say that $\left\{A_{i}\right\}_{i=1}^{m}$ is commensurable, we mean the existence of a matrix A such that $A_{i}=A^{n_{i}}$ for some positive integers $n_{i}, 1 \leqslant i \leqslant m$. We prove the following theorem.

Theorem 1.1. Suppose the $\operatorname{IFS}\left\{S_{j}\right\}_{j=1}^{m}$ in (1.1) is p.c.f. and the associated $\left\{A_{i}\right\}_{i=1}^{m}$ is commensurable, then the IFS satisfies the OSC.

2. Preliminaries and lemmas

Let $\Sigma=\{1, \ldots, m\}, \Sigma^{*}=\bigcup_{n \geqslant 0} \Sigma^{n}$ and $\Sigma^{\mathbb{N}}=\left\{i=i_{1} i_{2} \ldots i_{n} \ldots: i_{j} \in \Sigma\right\}$. For any $\boldsymbol{i}=i_{1} i_{2} \ldots i_{n} \in \Sigma^{n}, \boldsymbol{j}=j_{1} j_{2} \ldots j_{k} \in \Sigma^{k}$, we let $\boldsymbol{i} \boldsymbol{j}=i_{1} i_{2} \ldots i_{n} j_{1} j_{2} \ldots j_{k}$ be the concatenation; we also denote $\boldsymbol{j}_{1} \boldsymbol{j}_{2} \cdots \boldsymbol{j}_{k}$ by \boldsymbol{j}^{k} if $\boldsymbol{j}_{\boldsymbol{i}}=\boldsymbol{j}$ for all i. For any $n \geqslant 1$ and $\boldsymbol{i}=i_{1} i_{2} \ldots i_{n} \ldots \in \Sigma^{\mathbb{N}}$ (or $\boldsymbol{i}=i_{1} i_{2} \ldots i_{k} \in \Sigma^{k}, k \geqslant n$), we let $\left.\boldsymbol{i}\right|_{n}=i_{1} \ldots i_{n}$. Also, we let σ denote the (left) shift on $\Sigma^{\mathbb{N}}$, i.e. $\sigma\left(i_{1} i_{2} \ldots\right)=\left(i_{2} i_{3} \ldots\right)$.

For the family $\left\{S_{j}\right\}_{j=1}^{m}$ of similitudes, we let $S_{i}=S_{i_{1}} \circ \cdots \circ S_{i_{n}}, A_{i}=A_{i_{1}} \cdots A_{i_{n}}$. Also we let $\pi(\boldsymbol{i})$ be the unique point in $\bigcap_{n=1}^{+\infty} S_{i_{1} \ldots i_{n}}(K)$. It is clear that the following lemma holds:

Lemma 2.1. Let $\boldsymbol{i}=i_{1} i_{2} \ldots \in \Sigma^{\mathbb{N}}$ and let $\boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}, \ldots \in \Sigma^{*}$ be any sequence of finite words. Then for any $x \in \mathbb{R}^{n}$, the sequence $\left\{S_{i_{1} i_{2} \ldots i_{n} \tau_{n}}(x)\right\}_{n=1}^{\infty}$ converges to $\pi(i)$.

The following characterization of OSC is due to Bandt and Graf [BG] together with a result of Schief [Sch], where $S_{j}^{-1} \circ S_{i}$ describe the differences between the two maps S_{j} and S_{i}.

Theorem 2.2. Let $\left\{S_{j}\right\}_{j=1}^{m}$ be contractive similitudes and let

$$
\mathfrak{S}=\left\{S_{\boldsymbol{j}}^{-1} \circ S_{i}: \boldsymbol{i}, \boldsymbol{j} \in \Sigma^{*}, \boldsymbol{i} \neq \boldsymbol{j}\right\}
$$

Then $\left\{S_{j}\right\}_{j=1}^{m}$ satisfies the OSC if and only if the identity map I is not in the closure of \mathfrak{S}.
We will use the contraposition form of this theorem to prove theorem 1.1. First we prove the following lemma.

Lemma 2.3. For any $\left\{S_{j}\right\}_{j=1}^{m}$ of contractive similitudes, if I is in the closure of \mathfrak{S}, then there exist $\boldsymbol{i}=i_{1} i_{2} \ldots \in \Sigma^{\mathbb{N}}, \boldsymbol{j}=j_{1} j_{2} \ldots \in \Sigma^{\mathbb{N}}$ and $\boldsymbol{u}_{n}, \boldsymbol{v}_{n} \in \Sigma^{*}$ such that $\left|\boldsymbol{u}_{n}\right|,\left|\boldsymbol{v}_{n}\right| \geqslant n$, $\left.\boldsymbol{u}_{n}\right|_{n}=i_{1} \ldots i_{n},\left.\boldsymbol{v}_{n}\right|_{n}=j_{1} \ldots j_{n}, i_{1} \neq j_{1}$ and

$$
\lim _{n \rightarrow \infty} S_{v_{n}}^{-1} \circ S_{u_{n}}=I
$$

Remark. In the above case, the finite words \boldsymbol{u}_{n} and \boldsymbol{v}_{n} can be written in the forms $\boldsymbol{u}_{n}=i_{1} \ldots i_{n} \tau_{n+1}^{(n)} \ldots \tau_{k_{n}}^{(n)}$ and $\boldsymbol{v}_{n}=j_{1} \ldots j_{n} \sigma_{n+1}^{(n)} \ldots \sigma_{l_{n}}^{(n)}$, respectively.

Proof. By assumption, there exist two sequences $\left\{\boldsymbol{u}_{n}\right\},\left\{\boldsymbol{v}_{n}\right\} \subset \Sigma^{*}$ such that $\left|\boldsymbol{u}_{n}\right|,\left|\boldsymbol{v}_{n}\right| \rightarrow \infty$ and $S_{v_{n}}^{-1} \circ S_{u_{n}} \rightarrow I$ as $n \rightarrow \infty$. Also by cancellation, we can assume that $\left.\boldsymbol{u}_{n}\right|_{1} \neq\left.\boldsymbol{v}_{n}\right|_{1}$ for each n.

We use the diagonal method to select two subsequences from \boldsymbol{u}_{n} and \boldsymbol{v}_{n} to satisfy the requirement in the lemma: there exist $i_{1}, j_{1} \in \Sigma, i_{1} \neq j_{1}$ such that the set $E_{1}=\left\{n>0:\left.\boldsymbol{u}_{n}\right|_{1}=i_{1},\left.\boldsymbol{v}_{n}\right|_{1}=j_{1}\right\}$ is an infinite set. Inductively, we can find $i_{1}, \ldots, i_{k}, \ldots \in \Sigma, j_{1}, \ldots, j_{k}, \ldots \in \Sigma$ such that for each k, the set $E_{k}=\left\{n \in E_{k-1}\right.$: $\left.\left.\boldsymbol{u}_{n}\right|_{k}=i_{1} i_{2} \ldots i_{k},\left.\boldsymbol{v}_{n}\right|_{k}=j_{1} j_{2} \ldots j_{k}\right\}$ is an infinite set. Hence we can choose an increasing sequence $n_{k} \in E_{k}$ such that the sequences $\left\{\boldsymbol{u}_{n_{k}}\right\}$ and $\left\{\boldsymbol{v}_{n_{k}}\right\}$ satisfy the lemma.

For an IFS $\left\{S_{j}\right\}_{j=1}^{m}$ of contractive similitudes, we define

$$
\mathcal{C}_{K}=\bigcup_{i, j \in \Sigma, i \neq j}\left(S_{i}(K) \cap S_{j}(K)\right), \quad \mathcal{C}=\pi^{-1}\left(\mathcal{C}_{K}\right)
$$

Following [K2], we say that $\left\{S_{j}\right\}_{j=1}^{m}$ has the p.c.f. property if the set $\mathcal{P}=\bigcup_{n=1}^{\infty} \sigma^{n}(\mathcal{C})$ is a finite set, where σ is the shift operator such that $\sigma\left(i_{1} i_{2} \ldots i_{k} \ldots\right)=i_{2} i_{3} \ldots i_{k} \ldots$. This condition implies that each $\boldsymbol{i} \in \mathcal{C}$ is eventually periodic in the following sense:

Proposition 2.4. If $\left\{S_{j}\right\}_{j=1}^{m}$ has the p.c.f. property, then there exist integers $N, \ell>0$ such that for any $\boldsymbol{i}=i_{1} i_{2} \ldots \in \mathcal{C}$, the sequence $\sigma^{N}(\boldsymbol{i})$ has period ℓ.

Proof. Let N denote the number of elements in \mathcal{P}. For any $\boldsymbol{i}=i_{1} i_{2} \ldots \in \mathcal{C}$, the sequence $\left\{\sigma^{n}(\boldsymbol{i})\right\}_{n=1}^{\infty}$ has at most N elements; this means that for $n \geqslant N, \sigma^{n}(\boldsymbol{i})=i_{n+1} i_{n+2} \ldots$ must repeat its predecessors. Let k and p be the smallest integers such that $\sigma^{k}(\boldsymbol{i})=\sigma^{k+p}(\boldsymbol{i})$. It is easy to see that $k \leqslant N$ and $\sigma^{k}(\boldsymbol{i})$ is a periodic sequence with period p. Hence \boldsymbol{i} is periodic starting from the index N. The lemma follows by letting ℓ be the least common divisor of the periods for all $i \in \mathcal{P}$.

Lemma 2.5. Let $\boldsymbol{i}, \boldsymbol{j} \in \Sigma^{\mathbb{N}}$ be defined as in lemma 2.3, then we have

$$
\boldsymbol{i}, \boldsymbol{j} \in \mathcal{C} \quad \text { and } \quad \pi(\boldsymbol{i})=\pi(\boldsymbol{j})
$$

If in addition $\left\{S_{j}\right\}_{j=1}^{m}$ has the p.c.f. property and the matrices $\left\{A_{i}\right\}_{i=1}^{m}$ are commensurable (i.e. $A_{i}=A^{n_{i}}$), then (using the notation in proposition 2.4), there exist $\boldsymbol{\alpha} \in \Sigma^{p}$ and $\boldsymbol{\beta} \in \Sigma^{q}$ where p, q are multiples of ℓ, such that

$$
i_{N+1} i_{N+2} \cdots=\boldsymbol{\alpha} \cdots \boldsymbol{\alpha} \cdots, \quad j_{N+1} j_{N+2} \cdots=\boldsymbol{\beta} \cdots \boldsymbol{\beta} \cdots
$$

and $A_{\alpha}=A_{\beta}$.
Proof. It is easy to see that $\lim _{n \rightarrow \infty} S_{\boldsymbol{v}_{n}}^{-1} \circ S_{\boldsymbol{u}_{n}}=I$ implies $\lim _{n \rightarrow \infty}\left(S_{v_{n}}(x)-S_{\boldsymbol{u}_{n}}(x)\right)=0$, $x \in K$. Using the expressions in the remark of lemma 2.3, we have

$$
\lim _{n \rightarrow \infty}\left(S_{j_{1} \ldots j_{n}} \circ S_{\sigma_{n+1}^{(n)} \ldots \sigma_{h_{n}}^{(n)}}(x)-S_{i_{1} \ldots i_{n}} \circ S_{\tau_{n+1}^{(n)} \ldots \tau_{k_{n}}^{(n)}}(x)\right)=0 \quad \forall x \in K
$$

On the other hand, lemma 2.1 ensures that
$\lim _{n \rightarrow \infty} S_{i_{1} \ldots i_{n} \tau_{n+1}^{(n)} \ldots \tau_{k_{n}}^{(n)}}(x)=\pi(\boldsymbol{i}) \quad$ and $\quad \lim _{n \rightarrow \infty} S_{j_{1} \ldots j_{n} \sigma_{n+1}^{(n)} \ldots \sigma_{h_{n}}^{(n)}}(x)=\pi(\boldsymbol{j})$.
Hence $\pi(\boldsymbol{i})=\pi(\boldsymbol{j})$, and this common point is in $S_{i_{1}}(K) \cap S_{j_{1}}(K)$. By the definition of \mathcal{C}, the first part of the lemma follows.

To prove the second statement, we observe that $\boldsymbol{i}, \boldsymbol{j} \in \mathcal{C}$ imply that $i_{N+1} \cdots i_{N+n} \cdots$ and $j_{N+1} \cdots j_{N+n} \cdots$ have period ℓ (proposition 2.4). By the commensurability of the $A_{i} \mathrm{~s}$, we can write

$$
A_{i_{N+1} \cdots i_{N+\ell}}=A^{s} \quad \text { and } \quad A_{j_{N+1} \cdots j_{N+\ell}}=A^{t}
$$

for some integers $s, t>0$. Hence $A_{i_{N+1} \cdots i_{N+l}}=A^{s t}=A_{j_{N+1} \cdots j_{N+s}}$. The assertion follows by letting $p=t \ell, q=s \ell$ and

$$
\boldsymbol{\alpha}=i_{N+1} \ldots i_{N+p}, \quad \boldsymbol{\beta}=j_{N+1} \ldots j_{N+q} .
$$

3. Proof of the theorem

Proof of theorem 1.1. Suppose on the contrary, $\left\{S_{j}\right\}_{j=1}^{m}$ does not satisfy the OSC. Then by theorem 2.2 and lemma 2.3-2.5, there exist $\boldsymbol{i}=i_{1} i_{2} \ldots, \boldsymbol{j}=j_{1} j_{2} \ldots \in \mathcal{C}$ with $i_{1} \neq j_{1}$, and finite words $\boldsymbol{u}_{n}, \boldsymbol{v}_{n} \in \Sigma^{*}$ such that $\pi(\boldsymbol{i})=\pi(\boldsymbol{j})$,

$$
\left.\boldsymbol{u}_{n}\right|_{n}=i_{1} \ldots i_{n},\left.\quad \boldsymbol{v}_{n}\right|_{n}=j_{1} \ldots j_{n}, \quad\left|\boldsymbol{u}_{n}\right| \geqslant n, \quad\left|\boldsymbol{v}_{n}\right| \geqslant n,
$$

and

$$
\lim _{n \rightarrow \infty} S_{v_{n}}^{-1} \circ S_{u_{n}}=I
$$

We let $\boldsymbol{\alpha}=i_{N+1} \ldots i_{N+p}$ and $\boldsymbol{\beta}=j_{N+1} \ldots j_{N+q}$ be the periodic segments of \boldsymbol{i} and \boldsymbol{j} as in lemma 2.5. Also we let

$$
\boldsymbol{a}=i_{1} \ldots i_{N} \boldsymbol{\alpha}, \quad \boldsymbol{b}=j_{1} \ldots j_{N} \boldsymbol{\beta}
$$

and
$h_{n}=\max \left\{k>0:\left.\boldsymbol{u}_{n}\right|_{(N+p)+k p}=\boldsymbol{a} \boldsymbol{\alpha}^{k}\right\}, \quad k_{n}=\max \left\{k>0:\left.\boldsymbol{v}_{n}\right|_{(N+q)+k q}=\boldsymbol{b} \boldsymbol{\beta}^{k}\right\}$.
Since $\left.\boldsymbol{u}_{n}\right|_{n}=i_{1} \ldots i_{n},\left.\boldsymbol{v}_{n}\right|_{n}=j_{1} \ldots j_{n}$, we know that h_{n} and k_{n} are well defined and finite for n large (as \boldsymbol{u}_{n} is a finite word). Furthermore, $k_{n}, h_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Note that either $h_{n} \leqslant k_{n}$ for infinitely many n or the other way around. By passing to subsequence, we assume that $1 \leqslant h_{n} \leqslant k_{n}$ for all $n \geqslant 1$. Hence we can write

$$
\begin{equation*}
\boldsymbol{u}_{n}=i_{1} \ldots i_{n} \boldsymbol{\tau}_{n}=\boldsymbol{a} \boldsymbol{\alpha}^{h_{n}} \boldsymbol{\alpha}_{n}, \quad \boldsymbol{v}_{n}=j_{1} \ldots j_{n} \boldsymbol{\tau}_{n}^{\prime}=\boldsymbol{b} \boldsymbol{\beta}^{h_{n}} \boldsymbol{\beta}_{n} \tag{3.1}
\end{equation*}
$$

where $\boldsymbol{\alpha}_{n}, \boldsymbol{\beta}_{n} \in \Sigma^{*}$ are finite words. This means that for $\left|\boldsymbol{\alpha}_{n}\right|>p$, then $\left.\boldsymbol{\alpha}_{n}\right|_{p} \neq \boldsymbol{\alpha}$.
Next we let $x_{1}, x_{2} \in K$ be the fixed point of S_{α} and S_{β}, respectively, i.e.

$$
x_{1}=S_{\alpha}\left(x_{1}\right), \quad x_{2}=S_{\beta}\left(x_{2}\right)
$$

We claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{\alpha_{n}}(x)=x_{1}, \quad \lim _{n \rightarrow \infty} S_{\beta_{n}}(x)=x_{2}, \quad \forall x \in K \tag{3.2}
\end{equation*}
$$

Indeed by lemma 2.5 and the proof there, we have

$$
\begin{equation*}
S_{a \alpha^{h_{n}}}\left(x_{1}\right)=S_{b \beta^{h_{n}}}\left(x_{2}\right)=\pi(\boldsymbol{i})=\pi(\boldsymbol{j}), \quad \forall n>0, \tag{3.3}
\end{equation*}
$$

which also equals $S_{\boldsymbol{a}}\left(x_{1}\right)=S_{b}\left(x_{2}\right)$. Since $\lim _{n \rightarrow \infty} S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}} \boldsymbol{\beta}_{n}}^{-1} \circ S_{a \alpha^{h_{n}} \boldsymbol{\alpha}_{n}}=I$ and $S_{\beta_{n}}$ is contractive, using the notations defined in (3.1), we have, for any $x \in K$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}^{-1} \circ S_{a \alpha^{h_{n}} \boldsymbol{\alpha}_{n}}(x)-S_{\beta_{n}}(x)\right)=0 . \tag{3.4}
\end{equation*}
$$

Note that $A_{\alpha}=A_{\boldsymbol{\beta}}$ (lemma 2.5). Since $\left\{A_{i}\right\}_{i=1}^{m}$ is commensurable, we let $A_{\boldsymbol{a}}=A^{r_{1}}, A_{\boldsymbol{b}}=A^{r_{2}}$ and $A_{\alpha}=A^{r}$. Then by using

$$
S_{a \alpha^{h_{n}}}(x)-S_{a \alpha^{h_{n}}}\left(x_{1}\right)=A^{r_{1}+r h_{n}}\left(x-x_{1}\right)
$$

and

$$
S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}^{-1}(y)-S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}^{-1}\left(y^{\prime}\right)=A^{-r_{2}-r h_{n}}\left(y-y^{\prime}\right),
$$

we have

$$
\begin{align*}
S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}^{-1} \circ S_{\boldsymbol{a} \boldsymbol{\alpha}^{h_{n}} \boldsymbol{\alpha}_{n}} & (x)-x_{2} \\
& =S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}^{-1} \circ S_{\boldsymbol{a} \alpha^{h_{n}} \boldsymbol{\alpha}_{n}}(x)-S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}^{-1} \circ S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}\left(x_{2}\right) \\
& =A^{-r_{2}-r h_{n}}\left(S_{\boldsymbol{a} \boldsymbol{\alpha}^{h_{n}} \boldsymbol{\alpha}_{n}}(x)-S_{\boldsymbol{b} \boldsymbol{\beta}^{h_{n}}}\left(x_{2}\right)\right) \\
& =A^{-r_{2}-r h_{n}}\left(S_{\boldsymbol{a} \alpha^{h_{n}} \boldsymbol{\alpha}_{n}}(x)-S_{\boldsymbol{a} \alpha^{h_{n}}}\left(x_{1}\right)\right) \tag{3.3}\\
& =A^{r_{1}-r_{2}}\left(S_{\alpha_{n}}(x)-x_{1}\right) .
\end{align*}
$$

This together with (3.4) yields

$$
\lim _{n \rightarrow \infty}\left(A^{r_{1}-r_{2}}\left(S_{\alpha_{n}}(x)-x_{1}\right)-\left(S_{\beta_{n}}(x)-x_{2}\right)\right)=0, \quad x \in K
$$

For each $x \in K$, the sequences $\left\{S_{\alpha_{n}}(x)\right\}$ and $\left\{S_{\beta_{n}}(x)\right\}$ have converging subsequences. Without loss of generality, assume that $\lim _{n \rightarrow \infty} S_{\alpha_{n}}(x)=y_{1}$ and $\lim _{n \rightarrow \infty} S_{\beta_{n}}(x)=y_{2}$. Then the above relation implies that

$$
\begin{equation*}
A^{r_{1}-r_{2}}\left(y_{1}-x_{1}\right)=y_{2}-x_{2} . \tag{3.5}
\end{equation*}
$$

Using (3.3), (3.5), and noting that $A_{a}=A^{r_{1}}$ and $A_{b}=A^{r_{2}}$, we see that

$$
S_{a}\left(y_{1}\right)-S_{b}\left(y_{2}\right)=S_{a}\left(x_{1}\right)+A^{r_{1}}\left(y_{1}-x_{1}\right)-S_{b}\left(x_{2}\right)-A^{r_{2}}\left(y_{2}-x_{2}\right)=0 .
$$

This implies $S_{a}\left(y_{1}\right)=S_{b}\left(y_{2}\right) \in S_{i_{1}}(K) \cap S_{j_{1}}(K)$. By the p.c.f. assumption, there exists $\boldsymbol{\omega}=\omega_{1} \omega_{2} \cdots \in \Sigma^{\mathbb{N}}$ such that $y_{1}=\pi(\boldsymbol{\omega})$ and $\boldsymbol{a} \boldsymbol{\omega} \in \mathcal{C}$. Note that $\boldsymbol{a} \boldsymbol{\omega}=i_{1} \cdots i_{N} \boldsymbol{\alpha} \boldsymbol{\omega}$, proposition 2.4 and lemma 2.5 imply that $\boldsymbol{\alpha} \boldsymbol{\omega}$ has period ℓ, hence, $\boldsymbol{\omega}=\boldsymbol{\alpha} \boldsymbol{\alpha} \ldots$ by the definition of $\boldsymbol{\alpha}$. Therefore $y_{1}=x_{1}$, and also $y_{2}=x_{2}$ by (3.5). Since x_{1} and x_{2} are independent of $x \in K$. Hence the claim follows.

The claim also shows that $\boldsymbol{\alpha}_{n}$ and $\boldsymbol{\beta}_{n}$ are nonempty words for n large and that $\left|\boldsymbol{\alpha}_{n}\right| \rightarrow \infty$. To arrive at a contradiction, we can apply a similar proof of lemma 2.3 to the sequence $\left\{\boldsymbol{\alpha}_{n}\right\}$, to obtain a $\boldsymbol{u}=u_{1} u_{2} \ldots u_{n} \ldots \in \Sigma^{\mathbb{N}}$ and a subsequence $\left\{\boldsymbol{\alpha}_{q_{n}}\right\}$ such that $\left.\boldsymbol{\alpha}_{q_{n}}\right|_{n}=u_{1} \ldots u_{n}$ for all n. Hence by the above claim and lemma 2.1 we have

$$
x_{1}=\lim _{n \rightarrow \infty} S_{\alpha_{n}}(x)=\lim _{n \rightarrow \infty} S_{\alpha_{q_{n}}}(x)=\pi(\boldsymbol{u}) .
$$

Therefore by (3.3),

$$
\pi(\boldsymbol{a} \boldsymbol{u})=S_{a}(\pi(\boldsymbol{u}))=S_{a}\left(x_{1}\right)=\pi(\boldsymbol{i})=\pi(\boldsymbol{j})
$$

We conclude that $\boldsymbol{a} \boldsymbol{u} \in \mathcal{C}$. Note that $\boldsymbol{a}=i_{1} \ldots i_{N} \boldsymbol{\alpha}$, so proposition 2.4 implies that $\boldsymbol{\alpha} u_{1} u_{2} \ldots u_{n} \cdots$ has period ℓ. Hence $\left.\boldsymbol{\alpha}_{n}\right|_{p}=\boldsymbol{\alpha}$ for infinite many $n>0$, which contradicts the construction in (3.1) that $\left.\boldsymbol{\alpha}_{n}\right|_{p} \neq \boldsymbol{\alpha}$ for all n. Hence $\left\{S_{j}\right\}_{j=1}^{m}$ has the OSC.

Acknowledgment

The research is partially supported by an HKRGC grant.

References

[BG] Bandt C and Graf S 1992 Self-similar sets 7: a characterization of self-similar fractals with positive Hausdorff measure Proc. Am. Math. Soc. 114 995-1001
[BHH] Bandt C, Hung N V and Rao H 2005 On the open set condition for self-similar fractals Proc. Am. Math. Soc. 134 1369-74
[BR] Bandt C and Rao H 2007 Topology and separation of self-similar fractals in the plane Nonlinearity 20 1463-74
[H] Hutchinson J 1981 Fractal and self similarity Indian Univ. Math. J. 30 713-47
[K1] Kigami J 1993 Harmonic calculus on p.c.f. self-similar sets Trans. Am. Math. Soc. 335 721-55
[K2] Kigami J 2001 Analysis on Fractals (Cambridge: Cambridge University Press)
[L] Linstrøm T 1990 Brownian Motion on Nested Fractals (Memoirs of the American Mathematical Society no 420)
[Sch] Schief A 1994 Separation properties for self-similar sets Proc. Am. Math. Soc. 122 111-5
[SSW] Satterfield W, Strichartz R and Walsh K Mysteries of the open set condition, unpublished notes

