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Abstract
We prove that for a contractive self-similar iterated function systems, if the
matrices are commensurable, then the post-critically finite property implies the
open set condition.
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1. Introduction

Throughout this note we assume that {Sj }mj=1 is an iterated function system (IFS) consisting
of m contractive similitudes on R

d :

Sj (x) = Aj(x + dj ), j = 1, . . . , m, (1.1)

where Aj = ρjRj , 0 < ρj < 1, {Rj }mj=1 are orthonormal d × d matrices and dj ∈ R
d . It is

well known that there exists a unique compact subset K ⊂ R
d such that [H]

K =
m⋃

j=1

Sj (K).

The compact set K is called a self-similar set. The IFS {Sj }mj=1 is said to have the open set
condition (OSC) if there exists a bounded nonempty open set V such that

m⋃

j=1

Sj (V ) ⊆ V and Si(V ) ∩ Sj (V ) = ∅ if i �= j.

The OSC asserts a separation property in the iteration, it is one of the most fundamental
conditions in the study of the IFS and the attractors. However, other than the obvious cases, it
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is usually difficult to verify such a condition [SSW,BR]. Indeed, the following conjecture has
not been answered.

Conjecture. Suppose #(Si(K) ∩ Sj (K)) < ∞, i �= j , then {Si}mi=1 has the OSC.

We refer to the above condition on K as finitely ramifiable, that is, K becomes disconnected
if we remove the finite set of points in the intersection. A simple example of this is the Sierpinski
gasket. This property has been used by Lindstrøm [L] in the consideration of Brownian motion
on the nested fractals. The more general class is the celebrated post-critically finite (p.c.f) self-
similar sets introduced by Kigami [K1,K2], which has been used extensively in the study of the
Laplacian on fractals. The question whether such IFS satisfies the OSC has also been raised.

The above conjecture for the finite ramifiable self-similar sets has been proved by Bandt
and Rao in R

2 [BR] for the special case that K is connected. Our goal in this note is to consider
the problem on R

d , but on the more restrictive p.c.f. self-similar sets. We will define the notion
of p.c.f. in the following section after setting up some of the notation. To say that {Ai}mi=1 is
commensurable, we mean the existence of a matrix A such that Ai = Ani for some positive
integers ni, 1 � i � m. We prove the following theorem.

Theorem 1.1. Suppose the IFS {Sj }mj=1 in (1.1) is p.c.f. and the associated {Ai}mi=1 is
commensurable, then the IFS satisfies the OSC.

2. Preliminaries and lemmas

Let � = {1, . . . , m}, �∗ = ⋃
n�0 �n and �N = {i = i1i2 . . . in . . . : ij ∈ �}. For any

i = i1i2 . . . in ∈ �n, j = j1j2 . . . jk ∈ �k , we let ij = i1i2 . . . inj1j2 . . . jk be the concatenation;
we also denote j1 j2 · · · jk by jk if ji = j for all i. For any n � 1 and i = i1i2 . . . in . . . ∈ �N

(or i = i1i2 . . . ik ∈ �k, k � n), we let i|n = i1 . . . in. Also, we let σ denote the (left) shift on
�N, i.e. σ(i1i2 . . .) = (i2i3 . . .).

For the family {Sj }mj=1 of similitudes, we let Si = Si1 ◦ · · · ◦ Sin , Ai = Ai1 · · · Ain . Also
we let π(i) be the unique point in

⋂+∞
n=1 Si1...in (K). It is clear that the following lemma holds:

Lemma 2.1. Let i = i1i2 . . . ∈ �N and let τ 1, τ 2, . . . ∈ �∗ be any sequence of finite words.
Then for any x ∈ R

n, the sequence {Si1i2...inτ n
(x)}∞n=1 converges to π(i).

The following characterization of OSC is due to Bandt and Graf [BG] together with a
result of Schief [Sch], where S−1

j ◦Si describe the differences between the two maps Sj and Si.

Theorem 2.2. Let {Sj }mj=1 be contractive similitudes and let

S = {S−1
j ◦ Si : i, j ∈ �∗, i �= j}.

Then {Sj }mj=1 satisfies the OSC if and only if the identity map I is not in the closure of S.

We will use the contraposition form of this theorem to prove theorem 1.1. First we prove
the following lemma.

Lemma 2.3. For any {Sj }mj=1 of contractive similitudes, if I is in the closure of S, then there

exist i = i1i2 . . . ∈ �N, j = j1j2 . . . ∈ �N and un, vn ∈ �∗ such that |un|, |vn| � n,
un|n = i1 . . . in, vn|n = j1 . . . jn, i1 �= j1 and

lim
n→∞ S−1

vn
◦ Sun

= I.



OSC and p.c.f. self-similar sets 1229

Remark. In the above case, the finite words un and vn can be written in the forms
un = i1 . . . inτ

(n)
n+1 . . . τ

(n)
kn

and vn = j1 . . . jnσ
(n)
n+1 . . . σ

(n)
ln

, respectively.

Proof. By assumption, there exist two sequences {un}, {vn} ⊂ �∗ such that |un|, |vn| → ∞
and S−1

vn
◦ Sun

→ I as n → ∞. Also by cancellation, we can assume that un|1 �= vn|1 for
each n.

We use the diagonal method to select two subsequences from un and vn to satisfy
the requirement in the lemma: there exist i1, j1 ∈ �, i1 �= j1 such that the
set E1 = {n > 0 : un|1 = i1, vn|1 = j1} is an infinite set. Inductively, we can find
i1, . . . , ik, . . . ∈ �, j1, . . . , jk, . . . ∈ � such that for each k, the set Ek = {n ∈ Ek−1 :
un|k = i1i2 . . . ik, vn|k = j1j2 . . . jk} is an infinite set. Hence we can choose an increasing
sequence nk ∈ Ek such that the sequences {unk

} and {vnk
} satisfy the lemma. �

For an IFS {Sj }mj=1 of contractive similitudes, we define

CK =
⋃

i,j∈�,i �=j

(Si(K) ∩ Sj (K)), C = π−1(CK).

Following [K2], we say that {Sj }mj=1 has the p.c.f. property if the set P = ⋃∞
n=1 σn(C) is a finite

set, where σ is the shift operator such that σ(i1i2 . . . ik . . .) = i2i3 . . . ik . . .. This condition
implies that each i ∈ C is eventually periodic in the following sense:

Proposition 2.4. If {Sj }mj=1 has the p.c.f. property, then there exist integers N, � > 0 such that
for any i = i1i2 . . . ∈ C, the sequence σN(i) has period �.

Proof. Let N denote the number of elements in P . For any i = i1i2 . . . ∈ C, the sequence
{σn(i)}∞n=1 has at most N elements; this means that for n � N , σn(i) = in+1in+2 . . . must repeat
its predecessors. Let k and p be the smallest integers such that σ k(i) = σ k+p(i). It is easy to
see that k � N and σ k(i) is a periodic sequence with period p. Hence i is periodic starting
from the index N . The lemma follows by letting � be the least common divisor of the periods
for all i ∈ P . �

Lemma 2.5. Let i, j ∈ �N be defined as in lemma 2.3, then we have

i, j ∈ C and π(i) = π( j).

If in addition {Sj }mj=1 has the p.c.f. property and the matrices {Ai}mi=1 are commensurable
(i.e. Ai = Ani ), then (using the notation in proposition 2.4), there exist α ∈ �p and β ∈ �q

where p, q are multiples of �, such that

iN+1iN+2 . . . = α · · · α · · · , jN+1 jN+2 . . . = β · · · β · · ·
and Aα = Aβ.

Proof. It is easy to see that limn→∞ S−1
vn

◦ Sun
= I implies limn→∞(Svn

(x) − Sun
(x)) = 0,

x ∈ K . Using the expressions in the remark of lemma 2.3, we have

lim
n→∞(Sj1...jn

◦ S
σ

(n)
n+1...σ

(n)
hn

(x) − Si1...in ◦ S
τ

(n)
n+1...τ

(n)
kn

(x)) = 0 ∀ x ∈ K.

On the other hand, lemma 2.1 ensures that

lim
n→∞ S

i1...inτ
(n)
n+1...τ

(n)
kn

(x) = π(i) and lim
n→∞ S

j1...jnσ
(n)
n+1...σ

(n)
hn

(x) = π( j).

Hence π(i) = π( j), and this common point is in Si1(K) ∩ Sj1(K). By the definition of C, the
first part of the lemma follows.
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To prove the second statement, we observe that i, j ∈ C imply that iN+1 · · · iN+n · · · and
jN+1 · · · jN+n · · · have period � (proposition 2.4). By the commensurability of the Ais, we
can write

AiN+1···iN+�
= As and AjN+1···jN+�

= At

for some integers s, t > 0. Hence AiN+1···iN+t�
= Ast = AjN+1···jN+s�

. The assertion follows by
letting p = t�, q = s� and

α = iN+1 . . . iN+p, β = jN+1 . . . jN+q . �

3. Proof of the theorem

Proof of theorem 1.1. Suppose on the contrary, {Sj }mj=1 does not satisfy the OSC. Then by
theorem 2.2 and lemma 2.3–2.5, there exist i = i1i2 . . . , j = j1j2 . . . ∈ C with i1 �= j1, and
finite words un, vn ∈ �∗ such that π(i) = π( j),

un|n = i1 . . . in, vn|n = j1 . . . jn, |un| � n, |vn| � n,

and

lim
n→∞ S−1

vn
◦ Sun

= I.

We let α = iN+1 . . . iN+p and β = jN+1 . . . jN+q be the periodic segments of i and j as in
lemma 2.5. Also we let

a = i1 . . . iNα, b = j1 . . . jNβ

and

hn = max{k > 0 : un|(N+p)+kp = aαk}, kn = max{k > 0 : vn|(N+q)+kq = bβk}.
Since un|n = i1 . . . in, vn|n = j1 . . . jn, we know that hn and kn are well defined and finite
for n large (as un is a finite word). Furthermore, kn, hn → ∞ as n → ∞. Note that either
hn � kn for infinitely many n or the other way around. By passing to subsequence, we assume
that 1 � hn � kn for all n � 1. Hence we can write

un = i1 . . . inτ n = aαhnαn, vn = j1 . . . jnτ
′
n = bβhnβn, (3.1)

where αn, βn ∈ �∗ are finite words. This means that for |αn| > p, then αn|p �= α.

Next we let x1, x2 ∈ K be the fixed point of Sα and Sβ, respectively, i.e.

x1 = Sα(x1), x2 = Sβ(x2).

We claim that

lim
n→∞ Sαn

(x) = x1, lim
n→∞ Sβn

(x) = x2, ∀ x ∈ K. (3.2)

Indeed by lemma 2.5 and the proof there, we have

Saαhn (x1) = Sbβhn (x2) = π(i) = π( j), ∀ n > 0, (3.3)

which also equals Sa(x1) = Sb(x2). Since limn→∞ S−1
bβhn βn

◦Saαhn αn
= I and Sβn

is contractive,
using the notations defined in (3.1), we have, for any x ∈ K ,

lim
n→∞(S−1

bβhn
◦ Saαhn αn

(x) − Sβn
(x)) = 0. (3.4)

Note that Aα = Aβ (lemma 2.5). Since {Ai}mi=1 is commensurable, we let Aa = Ar1 , Ab = Ar2

and Aα = Ar . Then by using

Saαhn (x) − Saαhn (x1) = Ar1+rhn(x − x1)
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and

S−1
bβhn

(y) − S−1
bβhn

(y ′) = A−r2−rhn(y − y ′),

we have

S−1
bβhn

◦ Saαhn αn
(x) − x2

= S−1
bβhn

◦ Saαhn αn
(x) − S−1

bβhn
◦ Sbβhn (x2)

= A−r2−rhn(Saαhn αn
(x) − Sbβhn (x2))

= A−r2−rhn(Saαhn αn
(x) − Saαhn (x1)) (by (3.3))

= Ar1−r2(Sαn
(x) − x1).

This together with (3.4) yields

lim
n→∞(Ar1−r2(Sαn

(x) − x1) − (Sβn
(x) − x2)) = 0, x ∈ K.

For each x ∈ K , the sequences {Sαn
(x)} and {Sβn

(x)} have converging subsequences. Without
loss of generality, assume that limn→∞ Sαn

(x) = y1 and limn→∞ Sβn
(x) = y2. Then the above

relation implies that

Ar1−r2(y1 − x1) = y2 − x2. (3.5)

Using (3.3), (3.5), and noting that Aa = Ar1 and Ab = Ar2 , we see that

Sa(y1) − Sb(y2) = Sa(x1) + Ar1(y1 − x1) − Sb(x2) − Ar2(y2 − x2) = 0.

This implies Sa(y1) = Sb(y2) ∈ Si1(K) ∩ Sj1(K). By the p.c.f. assumption, there exists
ω = ω1ω2 · · · ∈ �N such that y1 = π(ω) and aω ∈ C. Note that aω = i1 · · · iNαω,
proposition 2.4 and lemma 2.5 imply that αω has period �, hence, ω = αα . . . by the definition
of α. Therefore y1 = x1, and also y2 = x2 by (3.5). Since x1 and x2 are independent of x ∈ K .
Hence the claim follows.

The claim also shows that αn and βn are nonempty words for n large and that |αn| → ∞.
To arrive at a contradiction, we can apply a similar proof of lemma 2.3 to the sequence {αn},
to obtain a u = u1u2 . . . un . . . ∈ �N and a subsequence {αqn

} such that αqn
|n = u1 . . . un for

all n. Hence by the above claim and lemma 2.1 we have

x1 = lim
n→∞ Sαn

(x) = lim
n→∞ Sαqn

(x) = π(u).

Therefore by (3.3),

π(au) = Sa(π(u)) = Sa(x1) = π(i) = π( j).

We conclude that au ∈ C. Note that a = i1 . . . iNα, so proposition 2.4 implies that
αu1u2 . . . un · · · has period �. Hence αn|p = α for infinite many n > 0, which contradicts
the construction in (3.1) that αn|p �= α for all n. Hence {Sj }mj=1 has the OSC.
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