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Abstract

We show that a near-diagonal lower bound of the heat kernel of a Dirichlet form

on a metric measure space with a regular measure implies an on-diagonal upper

bound. If in addition the Dirichlet form is local and regular, then we obtain

a full off-diagonal upper bound of the heat kernel provided the Dirichlet heat

kernel on any ball satisfies a near-diagonal lower estimate. This reveals a new

phenomenon in the relationship between the lower and upper bounds of the heat

kernel. c� 2007 Wiley Periodicals, Inc.

1 Introduction

There has been a vast literature on two-sided estimates of heat kernels on Rie-

mannian manifolds, infinite graphs, fractals, and, more generally, metric measure

spaces. The reader may consult [8, 10, 14, 29, 30] for Riemannian manifolds,

[5, 9, 19, 20] for infinite graphs, [2, 3, 25] for fractals or metric spaces, and the

references therein.

A majority of the proofs of two-sided estimates for the heat kernel normally

obtain the upper bound and then use it in order to prove the lower bound. This

method goes back to the pioneering work by Aronson [1] and since that time has

become standard in the heat kernel literature (see, for example, [2, 11, 22, 28, 31]).

Our purpose in this paper is to show that, conversely, certain heat kernel lower

bounds imply the upper bounds! As far as we know, this is the first result of this

kind.

Let .M; d; �/ be a metric measure space endowed with a Dirichlet form .E ; F /

in L2.M; �/. The main examples of such a space are as follows:
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(1) M is a Riemannian manifold, d is the geodesic distance, � is the Riemann-

ian measure, and E is the classical Dirichlet form

E .f / D
Z
M

jrf j2 d�

with domain F D W 1
0 .M /.

(2) M is a fractal subset of R
N such as the Sierpinski gasket or the Sierpinski

carpet. In this case, d is usually the extrinsic distance from R
N , and � is

the Hausdorff measure of a proper dimension. The definition of a Dirichlet

form is highly nontrivial. For a certain class of fractals, one first defines

a discrete Dirichlet form on a graph approximation of M and then takes a

properly scaled limit.

Assume that the heat semigroup associated with .E ; F / has an integral kernel,

which is then called the heat kernel of .E ; F / and is denoted by pt .x; y/. In

general, this function is measurable with respect to x; y for any t > 0. For the sake

of introduction, assume in addition that pt .x; y/ is continuous in x; y. Note that

if M is a Riemannian manifold, then pt .x; y/ is the minimal positive fundamental

solution to the heat equation on M .

Let measure � be ˛-regular, that is, for any metric ball B.x; r/,

�.B.x; r// � r˛:

Our first result (Theorem 3.3) says that if the heat kernel satisfies the near-diagonal

lower estimate

(1.1) pt .x; y/ � ct�˛=ˇ for all x; y 2 M such that d.x; y/ � ıt1=ˇ

where ˇ; c; ı are positive constants, then it satisfies also the on-diagonal upper

estimate

(1.2) pt .x; x/ � C t�˛=ˇ for all x 2 M; t > 0:

The proof of this result is based on the following two components:

(1) We introduce a family W ˇ=2;2 of Besov function spaces on the metric

measure space .M; d; �/ and prove the Nash-type inequality for the norm

in these spaces (see Proposition 2.1 below). This component requires only

the regularity of the measure.

(2) Using (1.1), we obtain the embedding estimate (3.6), which implies the

Nash inequality for the Dirichlet form E . Then (1.2) follows by the Nash

argument [27].

The hypothesis that � is ˛-regular is essential. We give an example showing

that if this hypothesis fails, then the near-diagonal lower estimate (1.1) does not

imply (1.2) (see Example 3.7).

A natural question arises whether one can also obtain in the same setting an

off-diagonal upper bound for pt .x; y/ showing the decay as d.x; y/ ! 1. For
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that, assume in addition that the Dirichlet form .E ; F / is regular and local. Our

conjecture is that, under the above hypotheses, (1.1) implies the following full

upper bound:

(1.3) pt .x; y/ � C

t˛=ˇ
exp

�
�

�
d.x; y/ˇ

C 0t

� 1
ˇ�1

�
:

Note that (1.3) and a matching lower bound for pt .x; y/ are known to be true for

a large class of fractal sets, which are then characterized by the two parameters

˛ and ˇ (in fact, ˛ is the Hausdorff dimension of M and ˇ is a so-called walk

dimension).

In the case when M is a Riemannian manifold and ˇ D 2, this conjecture is

true because (1.3) follows from (1.2) alone (Corollary 3.5). In the general case, we

have been able to prove the following two weaker versions of this conjecture:

(1) A somewhat stronger condition than (1.1), called the local lower estimate

of the heat kernel (see (LLE) in Section 4), does imply (1.3) (Theorem 4.2).

(2) If a near-diagonal lower bound (1.1) holds together with the following

time-independent upper bound

pt .x; y/ � Cd.x; y/�˛;

then (1.3) is true (Theorem 4.6).

The locality of the form .E ; F / is necessary for (1.3), which is shown in Ex-

ample 4.7.

Our results are new even for the case of Riemannian manifolds with ˇ D 2. For

example, Theorem 4.2 provides the following new proof of the fact that Moser’s

parabolic Harnack inequality (see [26]) for the heat equation on a manifold with

˛-regular measure implies the heat kernel two-sided Gaussian estimates (see [22]

for another proof of this result). Indeed, the condition (LLE) mentioned above is

an analogue of (1.1) for the heat kernel pB
t in a ball B � M with the Dirichlet

boundary condition, which is somewhat stronger than (1.1). By the classical Aron-

son argument [1], the parabolic Harnack inequality implies (LLE) with ˇ D 2. By

Theorem 4.2, we obtain the upper bound (1.3). The matching lower bound follows

from (1.1) again by Aronson’s chain argument.

Notation. Letters c, c0, c0, C , etc., denote positive constants whose values may

change at each occurrence. If f and g are two nonnegative functions, then we

write f � g if, for some C > 0,

C �1g � f � Cg

in the common domain of f and g.
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2 Preliminaries

Let .M; d/ be a locally compact, separable metric space, and let � be a Radon

measure supported on M . For 1 � p � 1, denote by Lp WD Lp.M; �/ the usual

space of all p-integrable, real-valued functions on M with the norm

kf kp D
�Z

M

jf .x/jp d�.x/

�1=p

(with the obvious modification if p D 1).

Let .E ; F / be a Dirichlet form on L2.M; �/. In what follows we use the

convenient abbreviation E .f / WD E .f; f / for f 2 F . Let H be the generator

of .E ; F /; that is, H is a nonnegative, definite, self-adjoint operator in L2 with

domain dom.H/ � F and

.Hf; g/ D E .f; g/ .f 2 dom.H/; g 2 F /;

where . � ; � / is the inner product on L2. The generator H gives rise to the semi-

group

(2.1) Tt D e�tH .t � 0/;

which is a family of bounded self-adjoint operators in L2. In addition, the semi-

group fTtg is Markovian, that is, if 0 � f � 1 a.e., then

(2.2) 0 � Ttf � 1

a.e. for all t � 0; see [12, theorem 1.4.1, p. 23]. A family fpt .x; y/gt>0 of measur-

able functions on M � M is termed the heat kernel of the form .E ; F / if pt .x; y/

is an integral kernel of Tt , that is,

(2.3) Ttf .x/ D
Z
M

pt .x; y/f .y/d�.y/ for a.e. x 2 M

for all t > 0 and f 2 L2.

For x 2 M and r > 0, let B.x; r/ D fy 2 M W d.y; x/ < rg be the open ball

in M . Fix some r0 2 .0; 1� throughout this paper. For ˛ > 0, we say that � is

lower ˛-regular if there exists a constant c1 > 0 such that

(2.4) �.B.x; r// � c1r˛

for �-almost all x 2 X and 0 < r < r0, and � is upper ˛-regular if there exists a

constant c2 > 0 such that

(2.5) �.B.x; r// � c2r˛

for �-almost all x 2 X and 0 < r < r0. We say that � is ˛-regular if � is both

upper and lower ˛-regular.
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For any � > 0, define a nonnegative functional W� .f / on L2 by

(2.6) W� .f / WD

sup
0<r<r0

r�2�

Z
M

�
1

�.B.x; r//

Z
B.x;r/

jf .y/ � f .x/j2 d�.y/

�
d�.x/:

In particular, if � is ˛-regular, then for any ˇ > 0,

(2.7) Wˇ=2.f / � sup
0<r<r0

r�˛�ˇ

Z
M

� Z
B.x;r/

jf .y/ � f .x/j2 d�.y/

�
d�.x/:

Define the Banach space W �;2 by

W �;2 D W �;2.M; d; �/ WD ff 2 L2 W W� .f / < 1g
with the norm

.kf k2
2 C W� .f //1=2:

The space W �;2 admits the following Nash inequality:

PROPOSITION 2.1 Assume that � is ˛-regular and ˇ > 0. Then, for all f 2
W ˇ=2;2,

(2.8) kf k2.1Cˇ=˛/
2 � c.r0

�ˇ kf k2
2 C Wˇ=2.f //kf k2ˇ=˛

1 ;

where c > 0 depends only on ˛, ˇ, c1, and c2.

PROOF: We can assume that f 2 L1 \ W ˇ=2;2. For any such f and r > 0, set

fr.x/ WD 1

�.B.x; r//

Z
B.x;r/

f .y/d�.y/:

Note that

(2.9) kfrk1 � ckf k1:

By (2.4), we see that

(2.10) kfrk1 � c�1
1 r�˛kf k1

for 0 < r < r0. Combining (2.10) and (2.9), we obtain that

(2.11) kfrk2
2 � kfrk1 kfrk1 � cr�˛kf k2

1:

On the other hand, using the Cauchy-Schwarz inequality, we have that

kfr � f k2
2 D

Z
M

�
1

�.B.x; r//

Z
B.x;r/

.f .y/ � f .x//d�.y/

�2

d�.x/

�
Z
M

�
1

�.B.x; r//

Z
B.x;r/

.f .y/ � f .x//2d�.y/

�
d�.x/
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D rˇ

�
r�ˇ

Z
M

�
1

�.B.x; r//

Z
B.x;r/

.f .y/ � f .x//2d�.y/

�
d�.x/

�
� rˇ Wˇ=2.f /:(2.12)

Therefore, it follows from (2.11) and (2.12) that

kf k2
2 � 2.kfrk2

2 C kfr � f k2
2/ � c.r�˛kf k2

1 C rˇ Wˇ=2.f //(2.13)

for 0 < r < r0. Clearly, if r � r0 (and r0 < 1), then we have that

kf k2
2 �

�
r

r0

�ˇ

kf k2
2;

which together with (2.13) yields that

(2.14) kf k2
2 � c

�
r�˛kf k2

1 C rˇ .r0
�ˇ kf k2

2 C Wˇ=2.f //
�

for all r > 0. If f 	 0, then (2.8) is trivial. Otherwise

r0
�ˇ kf k2

2 C Wˇ=2.f / ¤ 0:

Indeed, if this expression vanishes, then we would have that r0 D 1 and f D
const ¤ 0. Since � is ˛-regular, it follows from r0 D 1 that �.M / D 1, and so

f D const … L2. This is a contradiction. Hence, letting

r D
� kf k2

1

r0
�ˇ kf k2

2 C Wˇ=2.f /

� 1
˛Cˇ

in (2.14), we obtain (2.8). �

The proof of Proposition 2.1 is motivated by [23, theorem 3.1].

3 Near-Diagonal Lower Estimates

Imply On-Diagonal Upper Bounds

Assume that the Dirichlet form .E ; F / possesses a heat kernel pt .x; y/. We

say that pt .x; y/ satisfies a near-diagonal lower estimate if, for some ı; c0 > 0,

ˇ > 1,

(NLE) pt .x; y/ � c0 t�˛=ˇ

for all 0 < t < ır
ˇ
0 and �-almost all x; y 2 M satisfying

d.x; y/ < ıt1=ˇ ;

where ˛ is the same as in (2.4). Under a certain additional assumption on the

metric d , for example the chain condition, (NLE) allows us to obtain a full lower

estimate for pt .x; y/ for all 0 < t < r
ˇ
0 and �-almost all x; y 2 M . We say that

.M; d/ satisfies the chain condition if, for any distinct points x; y 2 X and any
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integer n � 1, there exist a constant c > 0 and a sequence of points fxkgn
kD0

in X

such that x0 D x, xn D y, and

(3.1) d.xi ; xiC1/ � cn�1d.x; y/ .0 � i � n � 1/:

For instance, the chain condition is satisfied if .M; d/ is a geodesic space.

PROPOSITION 3.1 Let .M; d/ be a metric space satisfying the chain condition,

and let � be lower ˛-regular. Assume that the heat kernel pt .x; y/ of the Dirichlet

form .E ; F / exists and satisfies (NLE). Then pt .x; y/ satisfies the off-diagonal

lower bound

(LE) pt .x; y/ � ct�˛=ˇ exp

�
�c0

�
d.x; y/

t1=ˇ

� ˇ
ˇ�1

�
for all 0 < t < r

ˇ
0 and �-almost all x; y 2 M , for some c; c0 > 0.

See [2] or [17, cor. 3.5] for the proof.

The following is the key result in this paper, showing that (NLE) implies the

Nash inequality for .E ; F /:

THEOREM 3.2 Let .M; d/ be a metric space with a lower ˛-regular measure �.

Assume that the heat kernel of the Dirichlet form .E ; F / exists and satisfies (NLE).

Then, for all f 2 F , we have that E .f / � cWˇ=2.f /, and

(3.2) kf k2.1Cˇ=˛/
2 � c.r0

�ˇ kf k2
2 C E .f //kf k2ˇ=˛

1

where c (independent of r0/ depends only on the constants from the hypothesis.

PROOF: First note that (NLE) implies that the measure � is upper ˛-regular;

see [17, (3.3), p. 2071] for the case r0 D 1. For r0 < 1, the proof is the same.

Indeed, fix a ball B.x0; r/ with 0 < r � "r0 where

" D 1

2
ı1C1=ˇ

with the same ı as in (NLE). Let f D 1B.x0;r/. Then, for any t > 0 and almost all

x 2 B.x0; r/,

1 � Ttf .x/ D
Z

B.x0;r/

pt .x; y/d�.y/ � �.B.x0; r// essinf
y2B.x0;r/

pt .x; y/;

whence

(3.3) �.B.x0; r// � �
essinf

x;y2B.x0;r/
pt .x; y/

��1
:

Choosing t such that

ıt1=ˇ D 2r;

we see that, for all x; y 2 B.x0; r/,

d.x; y/ < 2r D ıt1=ˇ ;
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and

t D
�

2r

ı

�ˇ

�
�

2"r0

ı

�ˇ

D ır
ˇ
0 :

Therefore, (NLE) implies that

essinf
x;y2B.x0;r/

pt .x; y/ � c0t�˛=ˇ D cr�˛;

whence � is upper ˛-regular for 0 < r � "r0 by virtue of (3.3). Now, if r0 < 1
and "r0 < r < r0, then

�.B.x0; r// � �.B.x0; "r0// � c."r0/˛ D c0r˛;

and so � is upper ˛-regular for all 0 < r < r0 by adjusting the constant.

For any f 2 L2, set

Et .f / D 1

t

Z
M

.f � Ttf /f d�:

By [12, lemma 1.3.4, p. 22], the family fEt .f /g increases as t # 0 and tends to

E .f / for any f 2 F . Using this and (2.2), we obtain that, for any t > 0 and

r > 0,

E .f / � 1

t

Z
M

.f .x/ � Ttf .x//f .x/d�.x/

D 1

2t

� Z
M

Z
M

.f .x/ � f .y//2pt .x; y/d�.y/d�.x/

C 2

Z
M

f .x/2.1 � Tt1.x//d�.x/
o

� 1

2t

Z
M

Z
B.x;r/

.f .x/ � f .y//2pt .x; y/d�.y/d�.x/:(3.4)

For any r < ı1C1=ˇ r0, let t D .r=ı/ˇ so that t < ır
ˇ
0 . For such r and t , since

d.x; y/ < r D ıt1=ˇ ;

for almost all x 2 M and y 2 B.x; r/, we can apply (NLE) in (3.4) to obtain that

E .f / � c0

2
t�.1C˛=ˇ/

Z
M

Z
B.x;r/

.f .x/ � f .y//2 d�.y/d�.x/

D cr�.˛Cˇ/

Z
M

Z
B.x;r/

.f .x/ � f .y//2 d�.y/d�.x/:(3.5)

Let us verify that (3.5) also holds for ı1C1=ˇ r0 � r < r0 (assuming r0 < 1).

Since � satisfies the doubling condition, any ball of center x0 and radius r can
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be covered by a finite number (independent of x0 and r; r0) of balls of radius

ı1C1=ˇ r0. Applying (3.5) for each of these balls and adding up, we see that (3.5)

holds for any 0 < r < r0. Finally, taking the supremum in r , we obtain from (3.5)

that

(3.6) E .f / � cWˇ=2.f /:

Combining (3.5) and (2.8), we arrive at (3.2). �

THEOREM 3.3 Let .M; d/ be a metric space with a lower ˛-regular measure �.

Assume that the heat kernel pt .x; y/ of the Dirichlet form .E ; F / exists and satis-

fies (NLE). Then the following upper estimate holds:

(DUE) pt .x; y/ � c

min.t˛=ˇ ; r˛
0 /

for all t > 0 and �-almost all x; y 2 M .

PROOF: The conclusion immediately follows from Theorem 3.2 by a result in

[7, theorem 2.1, p. 251], which extends the classical argument by Nash [27] to the

present setting. �

The estimate (DUE) is called a on-diagonal upper estimate because, at least in

the setting when pt .x; y/ is continuous in x; y, it is equivalent to the same estimate

on the diagonal x D y,

pt .x; x/ � c

min.t˛=ˇ ; r˛
0 /

by noting that, using the semigroup property and the Cauchy-Schwarz inequality,

pt .x; y/ D
Z
M

pt=2.x; ´/pt=2.´; y/d�.´/

�
�Z

M

pt=2.x; ´/2 d�.´/

�1=2�Z
M

pt=2.´; y/2 d�.´/

�1=2

D .pt .x; x/pt .y; y//1=2:

Remark 3.4. If M is unbounded, we can take r0 D diam.M / D 1. Then (DUE)

is reduced to

(3.7) pt .x; y/ � ct�˛=ˇ :

COROLLARY 3.5 Let M be a Riemannian manifold, d be the geodesic distance,

� be the Riemannian measure, and .E ; F / be the classical Dirichlet form on M ,

that is,

(3.8) E .f / D
Z
M

jrf j2 d�:
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K

E1

E2

ball B 0

x
y

FIGURE 3.1. M D E1 [ E2 [ K.

Assume that � is lower ˛-regular and set ˇ D 2. Then .NLE/ H) .UE/ (formula

.UE/ is indicated at the beginning of Section 4).

PROOF: Indeed, by Theorem 3.2, we have .NLE/ H) .DUE/, that is,

(3.9) pt .x; x/ � ct�˛=2

for all t < r2
0 and x 2 M . By [13], the on-diagonal estimate (3.9) on a manifold

implies the off-diagonal upper bound:

pt .x; y/ � c

t˛=2
exp

�
�d.x; y/2

c0t

�
for all x; y 2 M and t < r2

0 , for some c; c0 > 0. �

We make the following conjecture:

Conjecture 3.6. Let .M; d; �/ be a separable metric measure space with a lower

˛-regular measure �, and .E ; F / a local regular Dirichlet form in L2.M; �/. Then

(NLE) H) (UE).

In the next section, we will prove a version of this conjecture when a somewhat

stronger version of (NLE) holds.

We finish this section with an example showing that the condition of the lower

regularity of measure � in Theorem 3.3 cannot be dropped.

Example 3.7. Let M be a manifold obtained by gluing together R
3 and RC � S

2,

where S
2 is the unit sphere in R

3. More precisely, assume that M is a complete

three-dimensional manifold such that M is a disjoint union of a compact set K and

open sets E1 and E2, where E1 is isometric to RC � S
2, and E2 is isometric to

R
3 n B0 where B0 is a ball in R

3; see Figure 3.1.

Let � be the Riemannian measure on M , d be the geodesic distance, and E be

defined as in (3.8), which is local and regular. Set r0 D 1. Obviously, � is not
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lower ˛-regular for any ˛ (indeed, for small r , �.B.x; r// � r3, whereas for large

r there are balls with �.B.x; r// � r). It follows from [18, example 3] that the

heat kernel pt on M satisfies the lower estimate

(3.10) pt .x; y/ � c

t3=2
exp

�
�d.x; y/2

c0t

�
for all t > 0 and x; y 2 M , where c; c0 > 0. Thus, (NLE) is true with ˛ D 3 and

ˇ D 2 (and no other choice of ˛ and ˇ will do). On the other hand, if x D y 2 E1

with d.x; K/ D p
t for large t , then it follows from [18, example 3] that

pt .x; x/ � c

t1=2

 c

t3=2
:

Hence, the diagonal upper bound of pt

pt .x; x/ � c

t3=2

fails for such x and t .

4 Local Lower Estimates Imply Full Upper Bounds

We say that condition (UE) holds if

The heat kernel pt .x; y/ exists and satisfies the upper estimate

(UE) pt .x; y/ � ct�˛=ˇ exp

�
�c0

�
d.x; y/

t1=ˇ

� ˇ
ˇ�1

�
for all 0 < t < r

ˇ
0 and �-almost all x; y 2 M , where c; c0 > 0.

From now on we assume that the form .E ; F / is local and regular. For any

regular Dirichlet form .E ; F /, there exists an associated Hunt process .fXtgt�0;

fPxgx2M /; see [12, theorem 7.2.1]. If in addition .E ; F / is local, then Xt is a dif-

fusion, that is, the path t ! Xt is continuous almost surely [12, theorem 7.2.2]. By

the transition density of the process Xt , we mean a measurable function ep t .x; y/

defined pointwise on .0; 1/ � M � M such that

(4.1) Exf .Xt / D
Z
M

ep t .x; y/f .y/d�.y/

for all x 2 M , t > 0, and any bounded Borel function f . For any such function

f , set

(4.2) Ptf .x/ WD Exf .Xt / .x 2 M; t > 0/:

Then fPtgt�0 is a semigroup on bounded Borel functions. It is well-known [12]

that

Ttf .x/ D Ptf .x/ a.e.
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for all t > 0 and all bounded Borel functions f . This implies that if the heat kernel

pt .x; y/ and the transition density ep t .x; y/ exist, then

pt .x; y/ D ep t .x; y/

for all t > 0 and �-almost all x; y 2 M . Let us emphasize that unlike the heat

kernel, the transition density is defined for all x; y 2 M .

We say that N � M is the negligible set if �.N / D 0 and

Px.Xt 2 N or Xt� 2 N for some t � 0/ D 0 for all x 2 M n N:

It follows from [2, prop. 4.14, cor. 4.15] or [16] that if the heat kernel exists and

satisfies (DUE), then the transition density ep t .x; y/ satisfies (DUE) for all x; y 2
M n N and t > 0, where N is a negligible set.

Let � be an open subset of M , and define

F� D ff 2 F W f jMn� D 0g:
If .E ; F / is a regular Dirichlet form on L2.M; �/, then the form .E ; F�/ is also

a regular Dirichlet form on L2.�; �/ [12, theorem 4.4.3, p. 154]. Let .fXtgt�0;

fP�
x gx2M / be a (killed) Hunt process associated with .E ; F�/. Then, for any

bounded Borel function f and for all x 2 M; t > 0,

(4.3) P �
t f .x/ WD E

�
x .f .Xt // D Ex.1ft<��gf .Xt //

where

�� D infft > 0 W Xt … �g;
the first exit time from �; see [12, (4.1.2), p. 135]. Assume that the transition

density for the killed process on � exists for any open subset �, and denote it byep�
t .x; y/. Clearly ep�

t .x; y/ D 0 for all t > 0 if x … � or y … �. It follows from

(4.3) that, for all x 2 M and all t > 0,

(4.4) ep�
t .x; y/ � ep t .x; y/

for �-almost all y 2 M .

Taking f D 1 in (4.3) and integrating in e��t dt over .0; 1/, we obtain that

�

Z 1

0

e��tP �
t 1.x/dt D �

Z 1

0

e��t
Ex.1ft<��g/dt

D Ex

�
�

Z ��

0

e��tdt

�
D 1 � Ex.e����/:

Therefore,

(4.5) Ex.e����/ D 1 � �

Z 1

0

e��tP �
t 1.x/dt
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x0

x

y
r

δ 1 βt

FIGURE 4.1. Balls B.x0; r/ and B.x0; ıt1=ˇ /.

for all x 2 M and � � 0, and for any open subset � of M . In the remainder of

this section, we always set

r0 WD diam.M /:

In order to obtain off-diagonal upper estimates of the heat kernel pt .x; y/, we

assume the following local lower estimate of the heat kernel:

(LLE): For any ball B , the local heat kernel pB
t .x; y/ exists. Moreover,

there exist some c0 > 0, ˇ > 1, and ı 2 .0; 1/ such that, for all x0 2 M ,

0 < r < r0, and all t � ırˇ ,

p
B.x0;r/
t .x; y/ � c0t�˛=ˇ ;

for �-almost all x; y 2 B.x0; ıt1=ˇ /, where ˛ is the same as in (2.4).

Roughly speaking, condition (LLE) says the Dirichlet heat kernel p
B.x0;r/
t .x; y/

of the form .E ; FB.x0;r// satisfies the near-diagonal lower bound for x; y close to

the center of the ball; see Figure 4.1.

If p
B.x0;r/
t .x; y/ is continuous in x; y for any ball B.x0; r/, then we can re-

phrase the local lower estimate in a simpler way: there exist some c0 > 0, ˇ > 1,

and ı 2 .0; 1/ such that, for all x 2 M , 0 < r < r0, and all t � ırˇ ,

(4.6) p
B.x;r/
t .x; y/ � c0 t�˛=ˇ

for all y 2 B.x; ıt1=ˇ /.

LEMMA 4.1 Let .E ; F / be a Dirichlet form on a separable metric space M . If

(LLE) holds, then the (global) heat kernel pt .x; y/ of .E ; F / exists and satisfies

(NLE) with r0 D diam.M /.

PROOF: Observe that the heat kernel pt of .E ; F / exists under the hypothesis

(LLE). Indeed, if r0 < 1, then M is a metric ball B and hence pt D pB
t . If

r0 D 1, then, for a fixed x0 2 M , the sequence fpB.x0;n/
t g1

nD1 is increasing in
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n, and its limit is finite almost everywhere and is the heat kernel pt of .E ; F /; see

[16, lemma 4.1].

It remains to show pt .x; y/ satisfies (NLE). Fix t < ır
ˇ
0 , and let r be such that

t D ırˇ . By (LLE), we have that, for any ´ 2 M , there is a set N´ � M such that

�.N´/ D 0 and

(4.7) p
B.´;r/
t .x; y/ � c0t�˛=ˇ

for all x; y 2 B.´; ıt1=ˇ / n N´. By adjusting N´, we can assume that

pt .x; y/ � p
B.´;r/
t .x; y/

also for all x; y 2 B.´; ıt1=ˇ / n N´. Hence, for all x; y 2 B.´; ıt1=ˇ / n N´,

(4.8) pt .x; y/ � c0t�˛=ˇ :

Consider the subsets of M � M

A D f.x; y/ 2 M � M W d.x; y/ < ıt1=ˇ g
and

A´ D f.x; y/ 2 M � M W x; y 2 B.´; ıt1=ˇ /g:
Clearly we have

A �
[

´2M

A´

because, for any .x; y/ 2 A, we see that x; y 2 B.x; ıt1=ˇ / and hence .x; y/ 2
Ax . Now, since each set A´ is open in M � M and M � M has a countable base,

there is a countable family fA´k
g1
kD1

such that

A �
1[

kD1

A´k
:

Since (4.8) holds for all .x; y/ 2 A´k
n N´k

for any k, we obtain that the same is

true for any .x; y/ 2 S
k�1 A´k

n N , where

N WD
1[

kD1

N´k

has zero measure, and that (4.8) holds for all .x; y/ 2 A n N . Therefore (NLE)

follows. �

The next theorem is our main result in this paper.

THEOREM 4.2 Let .M; d; �/ be a separable metric measure space and measure

� be lower ˛-regular. Let .E ; F / be a local regular Dirichlet form in L2.M; �/.

Then the following equivalence holds:

.LLE/ ” (UE) C (NLE):
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PROOF: We first prove the implication .LLE/ ) .UE/ C (NLE). By Lem-

ma 4.1, (LLE) implies that the heat kernel pt .x; y/ of .E ; F / exists and satisfies

(NLE). Thus we only need to prove .UE/ assuming that (LLE) holds. Observe

that (LLE) implies that there exists a negligible set N such that, for all x0 2 M ,

0 < r < r0, and all t � ırˇ ,

(4.9) epB.x0;r/
t .x; y/ � c0 t�˛=ˇ

for all x; y 2 B.x0; ıt1=ˇ / n N ; see [16]. Let us show that, for all x 2 M n N ,

0 < r < r0, and all t > 0,

(4.10) Px.�B.x;r/ � t / � c exp

�
�c0

�
r

t1=ˇ

� ˇ
ˇ�1

�
:

The proof of (4.10) given here is motivated by [16, theorem 9.1] or [2]. We prove

that there exists some " 2 .0; 1/ such that, for all x 2 M n N , 0 < r < r0, and

� � r�ˇ ,

(4.11) Ex.e���B.x;r// � ":

To see this, fix x 2 M n N and 0 < r < r0, and set � D �B.x;r/. For 0 < t < ırˇ ,

we see from (4.9) with x0 D x that

P
B.x;r/
t 1.x/ D

Z
M

epB.x;r/
t .x; y/d�.y/

�
Z

B.x;ıt1=ˇ/nN

epB.x;r/
t .x; y/d�.y/

� c0 t�˛=ˇ �.B.x; ıt1=ˇ // � c > 0:

It follows that, for � � r�ˇ ,

�

Z 1

0

e��tP
B.x;r/
t 1.x/dt � �

Z ırˇ

0

e��tP
B.x;r/
t 1.x/dt

� c�

Z ırˇ

0

e��tdt D c.1 � e�ı�rˇ

/ � c0 > 0:

Therefore, by (4.5),

Ex.e��� / D 1 � �

Z 1

0

e��tP
B.x;r/
t 1.x/dt � 1 � c0;

proving (4.11).

Now we show that (4.11) implies (4.10). For r0 D 1, this was proved in

[2, 16]. For r0 < 1, the proof is the same. To see this, we show that, for x 2 M nN

and 0 < r < r0,

(4.12) Ex.e��� / � c exp.�c0�1=ˇ r/
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for � > 0, where c; c0 > 0 are independent of x, r , and �. Indeed, let � D r=n

where n � 1 will be chosen below. Set �k D �.x; k�/, the first exit time from the

ball Bk WD B.x; k�/ for k D 1; : : : ; n. By the strong Markov property, we have

that

(4.13) Ex.e���kC1/ D Ex.e���k e��.�kC1��k// D Ex.e���k EX�k
e���kC1/:

Note that X�k
2 @Bk n N with Px-probability 1, and �kC1 � �B.y;�/ for any

y 2 @Bk . We have from (4.13) and (4.11) that, for � � ��ˇ ,

Ex.e���kC1/ � Ex.e���k / sup
y2@BknN

Ey.e���B.y;�//

� " Ex.e���k / .1 � k � n � 1/:(4.14)

Now choose the largest integer n such that � � ��ˇ D .n=r/ˇ , that is,

nˇ � �rˇ :

(We assume that �rˇ is large enough; otherwise (4.12) automatically holds.)

Therefore,

Ex.e��� / � "n D e�n log 1=" � e�.�1=ˇr�1/ log 1=";

proving (4.12). By (4.12), we have that

Px.� � t / D Px.e��� � e��t / � e�t
Ex.e��� /

� c exp.�t � c0�1=ˇ r/

� c exp.�c00.rˇ t�1/1=.ˇ�1//(4.15)

by taking � such that �t D 1
2
c0�1=ˇ r . Thus (4.10) holds.

Finally, fix x0; y0 2 M .x0 ¤ y0/ and let r D 1
2
d.x0; y0/. Then, for almost

all x 2 B.x0; r/ and y 2 B.y0; r/,

(4.16)

pt .x; y/ � Px

�
�B.x0;r/ � t

2

�
sup

t=2�s�t

esssup
u2B.x0;2r/

ps.u; y/

C Py

�
�B.y0;r/ � t

2

�
sup

t=2�s�t

esssup
v2B.y0;2r/

ps.v; x/I

see [16]. By (4.10), we see that, for any x 2 B.x0; r=2/ n N ,

Px

�
�B.x0;r/ � t

2

�
� Px

�
�B.x;r=2/ � t

2

�
� c exp

�
�c0

�
r

t1=ˇ

�ˇ=.ˇ�1/�
:

(4.17)

Similarly, for any y 2 B.y0; r=2/ n N ,

(4.18) Py

�
�B.y0;r/ � t

2

�
� c exp

�
�c0

�
r

t1=ˇ

�ˇ=.ˇ�1/�
:
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Noting that, for �-almost all u; y 2 M and t=2 � s � t , we have from (DUE) that

ps.u; y/ � ct�˛=ˇ if t < r
ˇ
0 :

Therefore, we combine (4.16), (4.17), and (4.18) to obtain (UE).

For the opposite implication, we prove a stronger claim. For this, we introduce

a condition .ˆUE/ as follows:

(ˆUE): There exists a bounded positive function ˆ on Œ0; 1/ satisfying

(4.19) sup
s�0

s˛ˆ.s/ < 1

such that the heat kernel pt .x; y/ of .E ; F / satisfies the estimate

pt .x; y/ � t�˛=ˇ ˆ

�
d.x; y/

t1=ˇ

�
for all t < r

ˇ
0 and �-almost all x; y 2 M .

Obviously, .UE/ H) .ˆUE/ since one can take ˆ.s/ D c exp.�c0sˇ=.ˇ�1//.

We claim that if .E ; F / is a regular Dirichlet form (not necessarily local) then

.NLE/ C .ˆUE/ H) .LLE/:

Note that .ˆUE/ H) .DUE/ and .DUE/ implies the Nash inequality (3.2) for

all f 2 F . In particular, this inequality also holds for all f 2 F�, which implies

that p�
t .x; y/ exists by the results of [7] and [16].

Next, let us apply the following inequality:

(4.20) pt .x; y/ � p�
t .x; y/ C sup

0<s�t

esssup
´2�c

ps.y; ´/;

which is true for any open � � M , for all t > 0 and �-almost all x; y 2 �, see [16,

lemma 8.1]. Fix some 0 < ı0 � ı=2 to be specified below where ı is the constant

from (NLE). Also, fix some x0 2 M , r 2 .0; r0/, s > 0, and 0 < t � ı0rˇ . For all

´ 2 B.x0; r/c and y 2 B.x0; ı0t1=ˇ /, we have

d.y; ´/ � d.´; x0/ � d.x0; y/ � r � ı0t1=ˇ � .1 � .ı0/1C1=ˇ /r � const � r:

Then by .ˆUE/, we have, for �-almost all ´ 2 B.x0; r/c and y 2 B.x0; ı0t1=ˇ /,

ps.y; ´/ � s�˛=ˇ ˆ

�
d.y; ´/

s1=ˇ

�
D d.y; ´/�˛

�
d.y; ´/

s1=ˇ

�˛

ˆ

�
d.y; ´/

s1=ˇ

�
� d.y; ´/�˛ sup

��0

�˛ˆ.�/ � cr�˛ � c.ı0/˛=ˇ t�˛=ˇ :

Choosing ı0 to be small enough, we obtain that for �-almost all y 2 B.x0; ı0t1=ˇ /,

esssup
´2B.x0;r/c

ps.y; ´/ � c0

2
t�˛=ˇ ;
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where c0 is the constant from .NLE/. Applying (4.20) with � D B.x0; r/ and

using .NLE/, we obtain that for �-almost all x; y 2 B.x0; ı0t1=ˇ /

c0 t�˛=ˇ � pt .x; y/ � p
B.x0;r/
t .x; y/ C c0

2
t�˛=ˇ ;

which implies that

p
B.x0;r/
t .x; y/ � c0

2
t�˛=ˇ :

Hence, we have proved .LLE/ with the parameter ı0. �

Remark 4.3. Assume that the hypotheses in Theorem 4.2 hold. If in addition

.M; d/ satisfies the chain condition, then we obtain from Proposition 3.1 the fol-

lowing result: the local lower estimate (LLE) is equivalent to the two-sided esti-

mate

pt .x; y/ � t�˛=ˇ exp

�
�c0

�
d.x; y/

t1=ˇ

� ˇ
ˇ�1

�
for all 0 < t < r

ˇ
0 and �-almost all x; y 2 M . Here the values of the constant c0

may be different for the upper and lower estimates.

Remark 4.4. In Theorem 4.2, we do not assume the diffusion .fXtgt�0; fPxgx2M /

is stochastically complete, that is,

Px.Xt 2 M / D 1 for all x 2 M; t > 0:

This condition is usually assumed in most literature on the heat kernel estimates.

Remark 4.5. Theorem 4.2 provides a new way of obtaining two-sided estimates

of the heat kernel pt .x; y/ from the parabolic Harnack inequality. Indeed, by

the standard argument (see [1, 28, 31]), the parabolic Harnack inequality implies

(LLE), whence (UE) and (NLE) follow.

For the next statement, we need the following condition, which is referred to as

the time-independent upper estimate:

(TIUE) pt .x; y/ � cd.x; y/�˛ for all t < r
ˇ
0 and �-a.a. x; y 2 M:

It is easy to see that .ˆUE/ H) .TIUE/.

THEOREM 4.6 Let .M; d; �/ be a separable metric measure space and let .E ; F /

be a local regular Dirichlet form in L2.M; �/. If measure � is lower ˛-regular,

then

(TIUE) C (NLE) ” (UE) C (NLE):

PROOF: The direction ( is obvious because (TIUE) coincides with .ˆUE/

with function ˆ.s/ D cs�˛ that satisfies (4.19) (despite this function being un-

bounded).

To prove the opposite implication, observe that, by Theorem 3.3, (NLE) implies

(DUE), which together with (TIUE) yields

(4.21) pt .x; y/ � c minft�˛=ˇ ; d.x; y/�˛g;
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for all t < r
ˇ
0 and �-a.a. x; y 2 M . Obviously, (4.21) is equivalent to .ˆUE/ with

the function

(4.22) ˆ.s/ D c

(
s�˛; s > 1;

1; s � 1;

which is clearly bounded and satisfies (4.19). By the second part of the proof of

Theorem 4.2, .ˆUE/C (NLE) imply (LLE). Then, by Theorem 4.2, (LLE) implies

(UE). �

The next example shows that if .E ; F / is not local (while the other conditions

in Theorem 4.2 are still true), then (LLE) does not imply (UE).

Example 4.7. Let .M; d; �/ be a metric measure space with a Dirichlet form

.E ; F / whose heat kernel pt .x; y/ is stochastically complete and satisfies the es-

timates

(4.23) t�˛=ˇ ˆ1.t�1=ˇ d.x; y// � pt .x; y/ � t�˛=ˇ ˆ2.t�1=ˇ d.x; y//

for all 0 < t < r
ˇ
0 and �-almost all x; y 2 M , where r0 D diam.M /, and ˛ > 0,

ˇ > 1, and ˆ1 and ˆ2 are positive decreasing functions on Œ0; 1/. For example,

for some basic fractals such as the Sierpinski gaskets or the Sierpinski carpets, it is

known that (4.23) holds with

ˆi .s/ D ci exp.�c0
is

�i / .i D 1; 2/

for some ci ; c0
i ; 	i > 0; see, for example, [4, 6, 21]. Under certain mild conditions

on ˆ1 and ˆ2, (4.23) implies that the measure � is ˛-regular; see [17].

Let H be the associated infinitesimal generator of the heat kernel pt defined by

(2.3) and (2.1). Then, for any 0 < � < 1, the heat kernel p
.�/
t corresponding to

the fractional power H � satisfies the estimate

(4.24) p
.�/
t � t�˛=ˇ 0

�
1 C d.x; y/

t1=ˇ 0

��.˛Cˇ 0/

for all 0 < t < r
ˇ 0

0 and �-almost all x; y 2 M , where ˇ0 D �ˇ (see, for example,

[15, 24]). The Dirichlet form .E .�/; F / corresponding to p
.�/
t .x; y/ is given by

E
.�/.u/ D .H �u; u/ D 1

2

Z
M

Z
M

.u.x/ � u.y//2k.x; y/d�.y/d�.x/

where

k.x; y/ D �


.1 � �/

Z 1

0

pt .x; y/
dt

t�C1
� d.x; y/�.˛Cˇ 0/:

One can see that E .�/ is regular but not local. By (4.24), we see that p
.�/
t .x; y/

does not satisfy (UE). However, it satisfies (ˆUE) and (NLE), which implies (LLE)

by the second part of the proof of Theorem 4.2. Therefore, (LLE) does not imply

(UE) if .E ; F / is not local.
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To be more specific, let us consider M D R
n with the Lebesgue measure � and

the classical Dirichlet form .E ; F / given by (3.8). Then the Dirichlet form E .1=2/

is given by

E
.1=2/.f / D Cn

2

Z
Rn

Z
Rn

.f .x/ � f .y//2

jx � yjnC1
dy dx;

where Cn D 
.nC1
2

/=�.nC1/=2, and its heat kernel admits the explicit formula

(4.25) p
.1=2/
t .x; y/ D Cn

tn

�
1 C jx � yj2

t2

�� nC1
2

;

that is, p
.1=2/
t is the Cauchy-Poisson kernel. In this case, we have ˛ D n and

ˇ0 D 1. Note that the form E .1=2/ is regular but not local, and p
.1=2/
t .x; y/ does

not satisfy (UE) although it satisfies (LLE).
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