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Abstract
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IFS, and by modifying a setup of Mauldin and Williams [R.D. Mauldin, S.C. Williams, Hausdorff di-
mension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988) 811–829], we can compute
the Hausdorff dimension of the attractor in terms of the spectral radius of certain weighted incidence ma-
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1. Introduction

A central problem in the theory of iterated function systems is to compute the Hausdorff
dimension of the attractor. Let {Si}Ni=1 be an iterated function system of contractive similitudes
on R

d defined as

Si(x) = ρiRix + bi, i = 1, . . . ,N, (1.1)

where 0 < ρi < 1 is the contraction ratio, Ri is an orthogonal transformation, and bi ∈ R
d . Let

F denote the self-similar set (or attractor) defined by the IFS, i.e., F is the unique nonempty
compact set satisfying

F =
N⋃

i=1

Si(F ).

It is a classical result (see Moran [19], Hutchinson [7], Falconer [5]) that if the IFS satis-
fies the open set condition, i.e., there exists a nonempty bounded open set O ⊆ R

d such that⋃N
i=1 Si(O) ⊆ O and Si(O)∩Sj (O) = ∅ for all i �= j , then the Hausdorff dimension of F is the

unique solution α of the equation

N∑
i=1

ρα
i = 1. (1.2)

In the absence of the open set condition, much less is known. In [12], the authors introduced
a weaker separation condition, known as the weak separation property (WSP) (see definition
in Section 3) and studied the multifractal formalism for the associated self-similar measures
under such a condition (see [12,23]). The WSP is strictly weaker than the open set condition.
It is satisfied by the IFSs defining the classical Bernoulli convolutions associated with Pisot
numbers (see [11–14]), and by the IFSs defining the well-known two-scale dilation equations in
wavelet theory [3,12]). It is also satisfied by IFSs of the form Si(x) = A−1(x +di), i = 1, . . . ,N ,
where di ∈ Z

d and A ∈ Md(Z) is an expanding (i.e., all eigenvalues are in modulus >1) integral
similarity matrix (see [6,9,17]).

It is not clear how the Hausdorff dimension of the attractor can be computed by assuming
the WSP alone. He et al. [6] considered IFSs with overlaps of the form Si(x) = A−1(x + di),
i = 1, . . . ,N , where A is an integral expanding similarity matrix and di ∈ Z

d . By using an aux-
iliary tiling IFS, together with a graph-directed system, they obtained an algorithm to calculate
the Hausdorff dimension of the attractor F . If F has a nonempty interior, the algorithm yields
the Hausdorff dimension of the boundary of F . In another direction, by extending a method of
Lalley [10] and Rao and Wen [22], Ngai and Wang [20] formulated the finite type condition and
described a method for computing the Hausdorff dimension of the attractor in terms of the spec-
tral radius of certain weighted incidence matrix. The finite type condition is satisfied by the three
classes of IFSs satisfying the WSP that are mentioned in the previous paragraph. Nguyen [21]
proved that the finite type condition implies the WSP. The finite type condition has also been
extended to graph-directed IFSs by Das and Ngai [2], and has been extended by the authors to
compute the Hausdorff dimension of the boundary of the attractor [15].
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Although the finite type condition enlarges the class of self-similar sets for which the Haus-
dorff dimension can be computed, it has two shortcomings. First, it is only satisfied by IFSs of
contractive similitudes with exponentially commensurable contraction ratios (see Remark 2.7).
Second, it does not extend the open set condition. Recently, Lau and Wang [16] studied the fol-
lowing family of IFSs with overlaps. They showed that each IFS in this family has the WSP and
computed the Hausdorff dimension of the attractor:

S1(x) = ρx, S2(x) = rx + ρ(1 − r), S3(x) = rx + (1 − r), (1.3)

where 0 < ρ < 1, 0 < r < 1, and ρ + 2r − ρr � 1. This is the first example in which the WSP
holds but the similitudes do not have exponentially commensurable contraction ratios and thus
does not satisfy the finite type condition in [20]. In [16] the Hausdorff dimension of the at-
tractor F is computed by expressing F as the attractor of a countably infinite IFS without
overlaps. This approach requires a detailed analysis of the overlaps when the similitudes are
iterated. Similar technical analysis is needed in showing that the IFS has the WSP. This inter-
esting family is another main motivation for our study. We will show that both the WSP and
the Hausdorff dimension of the attractor come quite easily as consequences of more general
results.

Our goal in this paper is to formulate a more general finite type condition that extends both
the open set condition and the finite type condition. Moreover, it does not require the similitudes
in the IFS to have exponentially commensurable contraction ratios as in the original finite type
condition, and thus it can include IFSs such as those in (1.3). Under such a generalized finite type
condition, we can compute the Hausdorff dimension of the attractor by using a matrix method
that can be easily applied to any of such IFSs.

The exact definition of the generalized finite type condition will be given in Section 2. The
main idea is to define a suitable equivalence relation on the set of all iterates of the similitudes in
the IFS and partition the iterates into equivalence classes. The generalized finite type condition
holds if the number of equivalence classes is finite. In the original finite type condition, two
iterates can be equivalent only if they have exponentially commensurable contraction ratios.
This requirement is relaxed in the generalized finite type condition, by the introduction of more
general sequences of nested index sets (see definition in Section 2). Our first main result is

Theorem 1.1. Let {Si}Ni=1 be an iterated function system of contractive similitudes on R
d . If

{Si}Ni=1 is of generalized finite type, then it has the weak separation property.

We will use the following notation throughout this paper. For any subset E ⊆ R
d , dimB(E)

and dimH(E) denote the box dimension and Hausdorff dimension of E, respectively. For α � 0,
Hα(E) denotes the α-dimensional Hausdorff measure of E. The reader is referred to [5] for these
definitions. We denote the diameter of E by |E|. If A is any finite or countable set, we denote by
#A the cardinality of A. For any real number r , [r] denotes the largest integer not exceeding r .

The next objective of this paper is to describe a method for computing the Hausdorff dimen-
sion of the attractor F , under the generalized finite type condition. In Section 4, we define, for
each α � 0, a finite weighted incidence matrix Aα . We show that the Hausdorff dimension of F

is given by the unique α such that the spectral radius of Aα is equal to 1. The following is the
main theorem.
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Theorem 1.2. Assume that an IFS {Si}Ni=1 of contractive similitudes on R
d with attractor F is

of generalized finite type, and let λα be the spectral radius of the associated weighted incidence
matrix Aα . Then

dimB(F ) = dimH(F ) = α,

where α is the unique number such that λα = 1. Moreover, 0 < Hα(F ) < ∞.

The weighted incidence matrix Aα differs from the one in the original finite type condition
in that its entries are, in general, functions of α instead of constants. Thus the proof for the
analogous formula in [20] cannot be directly applied. Since the matrix Aα is analogous to the
weighted incidence matrix in a graph-directed construction of Mauldin and Williams, we can use
some ideas in [18] to obtain the upper and lower bound estimations for the Hausdorff dimension
of F . In obtaining the lower bound for the Hausdorff dimension, we use a similar method as
in [20] to construct a measure supported on F and then apply the mass distribution principle (see
Section 4).

After this work was completed, we learned that Jin and Yau [8] have recently formulated, in-
dependently, a general finite type condition similar to our generalized finite type condition. They
obtained some interesting results including an analogue of Theorem 1.2. The relation between
the generalized finite type condition and the WSP is not studied in their paper.

This paper is organized as follows. In Section 2, we define the generalized finite type condition
and give some examples. We describe two infinite graphs G and GR , which play important roles
both in the definition of the generalized finite type condition and in computing the dimension of
the attractor. In Section 3 we prove that the generalized finite type condition implies the weak
separation property. Section 4 is devoted to the proof of Theorem 1.2. Lastly, in Section 5, we
illustrate Theorem 1.2 by some examples.

2. Definition and examples of the generalized finite type condition

Let {Si}Ni=1 be an IFS of contractive similitudes on R
d as defined in (1.1). Define the following

sets of finite indices

Σk := {1, . . . ,N}k, k � 1, and Σ∗ :=
⋃
k�0

Σk

(with Σ0 := {∅}). For i = (i1, . . . , ik) ∈ Σk we use the standard notation

Si := Si1 ◦ · · · ◦ Sik , ρi := ρi1 · · ·ρik , Ri := Ri1 ◦ · · · ◦ Rik ,

with ρ∅ = 1 and S∅ = R∅ := I , the identity map on R
d . For two indices i,j ∈ Σ∗, we write i � j

if i is an initial segment of j (including i = j ), and write i �� j if i is not an initial segment of j .
Let |i| denote the length of i.

Consider a sequence of index sets {Mk}∞k=0, where Mk ⊆ Σ∗ for all k � 0. Let

mk = mk(Mk) := min
{|i|: i ∈Mk

}
and mk = mk(Mk) := max

{|i|: i ∈Mk

}
.

We say that {Mk}∞ is a sequence of nested index sets if it satisfies the following conditions:
k=0
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(1) both {mk} and {mk} are nondecreasing, and limk→∞ mk = limk→∞ mk = ∞;
(2) for each k � 0 and all i,j ∈Mk , if i �= j then i �� j and j �� i;
(3) for each j ∈ Σ∗ with |j | > mk , there exists i ∈ Mk such that i � j ;
(4) for each j ∈ Σ∗ with |j | < mk , there exists i ∈Mk such that j � i;
(5) there exists a positive integer L, independent of k, such that for all i ∈ Mk and j ∈ Mk+1

with i � j , we have |j | − |i| � L.

(We allow Mk ∩ Mk+1 �= ∅. Very often,
⋃∞

k=0 Mk is a proper subset of Σ∗.) Note that
if Ω ⊆ R

d is nonempty, bounded, and invariant under {Si}Ni=1, i.e.,
⋃N

i=1 Si(Ω) ⊆ Ω , then
{⋃i∈Mk

Si(Ω)}∞k=0 is a sequence of nested subsets of R
d . The sequences of nested index sets

generalize the notion of “level of iteration.” We mention two examples below, and construct a
different one in Appendix A. Other sequences of nested index sets can be constructed easily.

Example 2.1. Let Mk = Σk for all k � 0. It is easy to see that conditions (1)–(5) are satisfied.

The sequence of nested index sets in Example 2.1 is the most standard one and is used in
the case the linear parts of the similitudes, ρiRi , i = 1, . . . ,N , are all equal. It is also used to
handle iterations of similitudes whose contractions ratios are not exponentially commensurable
(see Example 2.8).

The following is the sequence of nested index sets used in the original finite type condi-
tion [20].

Example 2.2. For k � 0, let

Mk = Λk := {j = (j1, . . . , jn) ∈ Σ∗: ρj � ρk < ρj1...jn−1

}
.

It is easy to see that conditions (1)–(4) hold. Condition (5) holds by taking L = [lnρ/ lnρmax]+1,
where ρ := min{ρi : 1 � i � N} and ρmax := max{ρi : 1 � i � N}.

Fix a sequence of nested index sets {Mk}∞k=0. For each integer k � 0, let Vk be the set of
vertices (with respect to {Mk}∞k=0) defined as

V0 := {(I,0)
}

and Vk := {(Si, k): i ∈Mk

}
for all k � 1.

We call (I,0) the root vertex and denote it by vroot. Let V :=⋃k�0 Vk .
For v = (Si, k) ∈ Vk , we introduce the convenient notation Sv := Si and ρv := ρi . Note that it

is possible that v = (Si, k) = (Sj , k) with i �= j . The notation Sv allows us to refer to a vertex in
Vk without explicitly specifying the index i.

Fix any nonempty bounded open set Ω which is invariant under {Si}Ni=1. Two vertices v,v′ ∈
Vk (allowing v = v′) are neighbors (with respect to Ω) if Sv(Ω)∩Sv′(Ω) �= ∅. The set of vertices

Ω(v) := {v′: v′ is a neighbor of v}

is called the neighborhood of v (with respect to Ω). Note that v ∈ Ω(v) by definition.
We define an equivalence relation on V to identify neighborhoods that are isomorphic in the

sense that they behave the same upon iteration.
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Definition 2.1. Two vertices v ∈ Vk and v′ ∈ Vk′ are equivalent, denoted by v ∼Ω v′ (or simply
v ∼ v′), if, for τ := Sv′ ◦ S−1

v : Rd → R
d , the following conditions are satisfied:

(i) {Su′ : u′ ∈ Ω(v′)} = {τ ◦ Su: u ∈ Ω(v)};
(ii) for u ∈ Ω(v) and u′ ∈ Ω(v′) such that Su′ = τ ◦ Su, and for any positive integer 	 � 1, an

index i ∈ Σ∗ satisfies (Su ◦ Si, k + 	) ∈ Vk+	 if and only if it satisfies (Su′ ◦ Si, k
′ + 	) ∈

Vk′+	.

It is easy to see that ∼ is an equivalence relation. We denote the equivalence class containing
v by [v] (or [v]Ω ) and call it the neighborhood type of v (with respect to Ω). We remark that
(ii) says roughly that two vertices of the same neighborhood type have equivalent offspring. We
will prove this rigorously in Proposition 2.4.

We define two important infinite directed graphs G and GR . The graph G has vertex set V
and directed edges defined as follows. Let v ∈ Vk and u ∈ Vk+1. Suppose there exist i ∈ Mk ,
j ∈Mk+1, and l ∈ Σ∗ such that

v = (Si, k), u = (Sj , k + 1), and j = (i, l).

Then we connect a directed edge l from v to u and denote this by v l−→ u. We call v a parent of
u in G and u an offspring (or descendant) of v in G. We write G = (V,E), where E is the set of
all directed edges defined above.

The reduced graph GR is obtained from G by first removing all but the smallest (in the lex-

icographical order) directed edge going to a vertex. More precisely, let vk
lk−→ u, k = 1, . . . ,m,

be all the directed edges going to the vertex u ∈ Vk+1, where vk ∈ Vk are distinct and thus the lk
are also distinct. Suppose l1 < · · · < lm in the lexicographical order (or any fixed order). Then
we keep only l1 in the reduced graph and remove all the edges lk , 2 � k � m (see Example 2.8).

Next, we notice that if Mk = Σk for all k � 0, then each vertex in V has an offspring in
GR which is connected by the edge l = 1. However, this is not necessarily the case for other
sequences of nested index sets. It is possible that a vertex in V does not have any offspring in GR .
We will provide a concrete example in Appendix A.

To finish the construction of the reduced graph, we remove all vertices that do not have
offspring in GR , together with all the vertices and edges leading only to them. We denote the
resulting graph by the same symbol GR and write GR = (VR,ER), where VR is the set of all
vertices and ER is the set of all edges.

Remark 2.3. It follows from the invariance of Ω under {Si}Ni=1 that only vertices in Ω(v) can be
parents of any offspring of v in G. In fact, if u = (Sv ◦ Sl, k + 1) ∈ Vk+1 is an offspring of v in G
and if w ∈ Vk \ Ω(v), then for any index i ∈ Σ∗,

Sw ◦ Si(Ω) ∩ Su(Ω) ⊆ Sw(Ω) ∩ Sv(Ω) = ∅.

Hence w cannot be a parent of u.

Proposition 2.4. Let v ∈ Vk and v′ ∈ Vk′ be two vertices with offspring u1, . . . ,um and
u′

1, . . . ,u
′
	 in GR , respectively. Suppose [v] = [v′] and let

Ω(v) = {v0 = v,v1, . . . ,vn} and Ω(v′) = {v′
0 = v′,v′

1, . . . ,v
′
n

}
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such that Sv′
j
= τ ◦ Svj

for 0 � j � n, where τ = Sv′ ◦ S−1
v . Then the following statements hold.

(a) Let 0 � i, j � n and suppose, by the definition of ∼, that i1, i2 ∈ E such that

vi
i1−→ u, vj

i2−→ w,

v′
i

i1−→ u′, v′
j

i2−→ w′.

Then u = w if and only if u′ = w′, and u,w are neighbors if and only if u′,w′ are.
(b) The following equality holds (counting multiplicity):{[ui]: 1 � i � m

}= {[u′
i

]
: 1 � i � 	

}
. (2.1)

In particular, m = 	.

Proof. (a) We notice that

Su′ = Sv′
i
◦ Si1 = τ ◦ Svi

◦ Si1 = τ ◦ Su. (2.2)

Similarly, Sw′ = τ ◦ Sw . Hence Su = Sw if and only if Su′ = Sw′ . That is, u = w if and only if
u′ = w′. The second part follows from the following equivalences:

Su(Ω) ∩ Sw(Ω) �= ∅ ⇔ τ ◦ Su(Ω) ∩ τ ◦ Sw(Ω) �= ∅ ⇔ Su′(Ω) ∩ Sw′(Ω) �= ∅.

This proves (a).
(b) We let U and U ′ be the sets of offspring of the vertices in Ω(v) and Ω(v′), respectively.

Define a map τ̃ :U → U ′ as follows. Suppose u is an offspring of vj in G by an edge i. Then we
let τ̃ (u) be the offspring of v′

j by the edge i. The definition of ∼ and part (a) above imply that τ̃

is well defined and bijective. Moreover, by (2.2) we have

Sτ̃(u) = τ ◦ Su. (2.3)

By (a), u is an offspring of v in GR if and only if τ̃ (u) is an offspring of v′ in GR . There-
fore m = 	. Now, combining Remark 2.3, equality (2.3) and part (a) yields [τ̃ (ui )] = [ui] for
1 � i � m, and thus (2.1) follows. This completes the proof. �
Definition 2.2. We say that an IFS of contractive similitudes on R

d defined as in (1.1) is of
generalized finite type, or that it satisfies the generalized finite type condition, if there exists a
nonempty bounded invariant open set Ω such that, with respect to some sequence of nested
index sets {Mk}∞k=0, V/∼ = {[v]Ω : v ∈ V} is a finite set. We call such an Ω a basic set for the
generalized finite type condition, or just a basic set.

Suppose there exists some k � 1 such that none of the vertices in Vk are of a new neighborhood
type. Then Proposition 2.4 implies that the IFS is of generalized finite type. We illustrate this by
some examples.

Example 2.5. If {Si}Ni=1 satisfies the open set condition (see [5,7]), then it is of generalized finite
type.
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Proof. Let Ω be an open set condition set and for each k � 0 let Mk = Σk . For each v ∈ V1 =
{(Si,1): 1 � i � N}, the open set condition implies that Ω(v) = {v}. Let τ = I ◦ S−1

v . Then
τ ◦Sv = I and it follows that v ∼ (I,0) = vroot. Proposition 2.4 now implies that V/∼ = {[vroot]}
and the result follows. �
Example 2.6. If {Si}Ni=1 is of finite type [20] then it is of generalized finite type.

Proof. Let Ω be a nonempty bounded invariant open set. Let ρ := min{ρi : 1 � i � N} and for
k � 0 define

Mk = Λk = {j = (j1, . . . , jn) ∈ Σ∗: ρj � ρk < ρj1...jn−1

}
.

The definitions of Vk,V and Ω(v) now coincide with their original definitions in [20]. We recall
that in the original definition, two vertices v,v′ are equivalent if there exists a similitude of the
form τ(x) = ρk′−kUx + c, where U is orthogonal and c ∈ R

d such that Sv′ = τ ◦ Sv and {Su′ :
u′ ∈ Ω(v′)} = {τ ◦Su: u ∈ Ω(v)}. Thus, the original equivalence relation ∼ satisfies condition (i)
in the present definition. Recall also that the IFS is said to be of finite type if there exists a
nonempty bounded invariant open set Ω (called a finite type condition set) with respect to which
V/∼ is a finite set.

We need to check that the original definition of ∼ also satisfies condition (ii) in the present
definition. Let i = (i1, . . . , it ) and assume (Su ◦ Si, k + 	) ∈ Vk+	 for some 	 � 1. Then

ρuρi � ρk+	 < ρuρi1...it−1 .

Since Su′ ◦ Si = τ ◦ Su ◦ Si , we have

ρu′ρi = ρk′−kρuρi � ρk′−kρk+	 = ρk′+	.

On the other hand,

ρu′ρi1...it−1 = ρk′−kρuρi1...it−1 > ρk′−kρk+	 = ρk′+	.

Thus, (Su′ ◦Si, k
′ +	) ∈ Vk′+	. The same proof shows that if i ∈ Σ∗ and (Su′ ◦Si, k

′ +	) ∈ Vk′+	

for some 	 > 0, then (Su ◦ Si, k + 	) ∈ Vk+	. Thus condition (ii) holds.
Now let Ω be a finite type condition set. By the finite type condition V/∼ is finite and thus

the IFS is of generalized finite type. �
Remark 2.7. The condition τ(x) = ρk′−kUx + c in the definition of the finite type condition
in [20] forces {ρi}Ni=1 to be exponentially commensurable.

Proof. Let v ∈ Vk and v′ ∈ Vk′ . Then

v′ ∈ [v] ⇒ Sv′ = τ ◦ Sv ⇒ ρ−k′
ρv′ = ρ−kρv.
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Thus, {ρ−kρj : j ∈ Λk, k � 0} is finite. Fix i = 1, . . . ,N . For each k, there exists 	k such that
(1, . . . ,1︸ ︷︷ ︸

	k

) ∈ Λk . Then by finiteness, there exist k, k′ with k′ �= k such that

ρ−kρ
	k

i = ρ−k′
ρ

	k′
i , i.e., ρ

	k−	k′
i = ρk−k′

.

Hence, the ρi are exponentially commensurable. �
The following example from [16] is an IFS of contractive similitudes whose contraction ratios

are not exponentially commensurable.

Example 2.8. Let {Si}3
i=1 be an IFS on R as defined in (1.3):

S1(x) = ρx, S2(x) = rx + ρ(1 − r), S3(x) = rx + (1 − r),

where 0 < ρ < 1, 0 < r < 1, and ρ + 2r − ρr � 1. Then {Si}3
i=1 is of generalized finite type.

Proof. Let Ω = (0,1). For each k � 0 let Mk = Σk . Upon iterating the IFS once, the root vertex
generates three vertices:

vroot = (I,0) −→ v1 = (S1,1), v2 = (S2,1), v3 = (S3,1).

Since Ω(v3) = {v3}, it follows that v3 ∼ vroot with τ = I ◦ S−1
v3

= S−1
v3

. It is easy to check that
[vroot], [v1] and [v2], denoted respectively by T1,T2 and T3, are distinct neighborhood types.
Moreover, it follows from definitions that T1, T2 and T3 can be expressed explicitly as

T1 = {v ∈ G: v ∼ vroot} = {v ∈ G: Ω(v) = {v}},
T2 = {v ∈ G: v ∼ v1} = {v ∈ G: Ω(v) = {v,v′} and Sv1 ◦ S−1

v ◦ Sv′ = Sv2

}
,

T3 = {v ∈ G: v ∼ v2} = {v ∈ G: Ω(v) = {v,v′} and Sv2 ◦ S−1
v ◦ Sv′ = Sv1

}
.

Upon one more iteration, v1 generates three offspring in G,

v1 −→ v4 = (S1S1,2), v5 = (S1S2,2), v6 = (S1S3,2),

and v2 also generates three offspring in G,

v2 −→ v7 = (S2S1,2), v8 = (S2S2,2), v9 = (S2S3,2).

By using the above explicit expressions of T1, T2 and T3, it is straightforward to verify that

[v4] = [v6] = [v7] = T2, [v5] = [v8] = T3 and [v9] = T1.

Since no new neighborhood types are generated, Proposition 2.4 now implies that V/∼ =
{[vroot], [v1], [v2]} and thus the generalized finite type condition holds. �
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k = 0 �

T1 = [vroot]
0 1

k = 1 �

T2 = [v1]
�

T3 = [v2]

�

T1

k = 2 �

�

�

�

�

�

offspring of v1

offspring of v2

Fig. 1. Vertices in Vk for k = 0,1,2 in Example 2.8, drawn for ρ = 1/3 and r = 1/4.

To construct the reduced graph GR for Example 2.8, we notice that (S1S3)(x) = (S2S1)(x) =
ρrx +ρ(1 − r). That is, the offspring v6 of v1 is identical with the offspring v7 of v2. Moreover,

v1
(3)−−→ v6 and v2

(1)−−→ v7.

Since 1 < 3 in the lexicographical order, according to the construction GR , the edge (3) connect-
ing v1 to v6 is removed. We will use this result in Example 5.1.

Figure 1 illustrates how the distinct neighborhood types are generated. It is drawn for the case
ρ = 1/3 and r = 1/4. Overlapping vertices are separated vertically to show distinction. Iterates
of the point 0 under the similitudes are represented by dots (or circles). For k = 2, only offspring
of v1 = (S1,1) and v2 = (S2,1) are shown. The edge connecting v2 to the offspring indicated by
a circle is to be removed when constructing GR .

The following example shows that it is possible for an IFS to be of generalized finite type with
respect to one sequence of nested index sets but V/∼ is not finite if we choose another sequence
of nested index sets.

Example 2.9. Consider the IFS

S1(x) = 1

2
x, S2(x) = 1

2
x + 1

2
, S3(x) = 1

4
x.

If we let Mk = Λk for k � 0, then with respect to any nonempty bounded invariant open set Ω ,
V/∼ is finite and thus the IFS is of generalized finite type. However, if we take Mk = Σk for
k � 0, then with respect to any nonempty bounded invariant open set Ω , V/∼ is infinite.

Proof. The IFS is of finite type with respect to any nonempty bounded invariant open set (see
[20, Theorem 2.9]) and thus V/∼ is finite if we take Mk = Λk , k � 0 (see Example 2.6).
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To show that V/∼ is always infinite if we take Mk = Σk for k � 0, we first let Ω = (0,1).
Let 1k := (1, . . . ,1) ∈ Σk and 3k := (3, . . . ,3) ∈ Σk . Then for all k � 1, (S1k

, k) and (S3k
, k) are

neighbors with

|S1k
(0,1)|

|S3k
(0,1)| = 1/2k

1/4k
= 2k,

which tends to ∞ as k → ∞. Hence for all m > k, [S1m
] �= [S1k

], which implies that V/∼ is
infinite.

Since any nonempty bounded invariant open set must be of the form Ω = ⋃n(an, an+1)

and satisfy Ω ⊇ [0,1], the same proof above shows that V/∼ is infinite with respect to any
such Ω . �
3. Relationship with the weak separation property

The weak separation property was introduced by the authors to study the multifractal for-
malism of self-similar measures defined by IFSs with overlaps (see [12,16,23]). It is proved
by Nguyen [21] that the finite type condition implies the weak separation property. In this
section we strengthen this result by showing that the generalized finite type condition also im-
plies the weak separation property. For an IFS {Si}Ni=1 of contractive similitudes on R

d , where
Si(x) = ρiRix + bi , recall that ρ := min{ρi : 1 � i � N} and ρmax := max{ρi : 1 � i � N}. For
k � 0 and 0 < b < 1, define

Ib := {j = (j1, . . . , jn) ∈ Σ∗: ρj � b < ρj1...jn−1

}
,

Ab := {Sj : j ∈ Ib}.
For convenience, let us recall the definition of the weak separation property (see [12,16,23]).

Definition 3.1. An IFS {Si}Ni=1 of contractive similitudes on R
d has the weak separation property

(WSP) if there exists some x0 ∈ R
d and 	 ∈ N such that for any i ∈ Σ∗ and 0 < b < 1, any closed

ball with radius b contains no more than 	 distinct points of the form S(Si(x0)), S ∈ Ab .

The following proposition can be derived by using the proof of [23, Theorem 1]. We include
a proof for completeness. Let L denote the d-dimensional Lebesgue measure.

Lemma 3.1. Let {Si}Ni=1 be an IFS of contractive similitudes on R
d . Suppose there exists γ ∈ N

and a bounded invariant subset Ω ⊆ R
d with L(Ω) > 0 such that for any x ∈ R

d and 0 < b < 1,
#{S ∈ Ab: x ∈ S(Ω)} � γ . Then {Si}Ni=1 has the WSP.

Proof. Let x0 ∈ Ω , i ∈ Σ∗, 0 < b < 1, and B be a closed ball of radius b. Let S ∈ Ab such
that S(Si(x0)) ∈ B . Since Si(x0) ⊆ Si(Ω) ⊆ Ω , it follows that S(Ω) ∩ B �= ∅. Thus S(Ω) ⊆ B̃ ,
where B̃ is concentric with B and has radius b(1 + |Ω|). By assumption, each point in B̃ is
covered by no more than γ of the sets S(Ω), S ∈Ab . Hence

(bρ)dL(Ω)#
{
S ∈ Ab: S

(
Si(x0)

) ∈ B
}

�
∑{

L
(
S(Ω)

)
: S ∈Ab, S

(
Si(x0)

) ∈ B
}

� γL(B̃).
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It follows that

#
{
S ∈ Ab: S

(
Si(x0)

) ∈ B
}

� γ cd(1 + |Ω|)d
ρdL(Ω)

:= C,

where cd is the volume of the unit ball in R
d . Notice that for any S1, S2 ∈ Ab , S1(Si(x0)) �=

S2(Si(x0)) implies that S1 �= S2. Consequently,

#
{
S
(
Si(x0)

) ∈ B: S ∈ Ab

}
� #
{
S ∈Ab: S

(
Si(x0)

) ∈ B
}= C,

completing the proof. �
We remark that in Lemma 3.1 the assumption that Ω is invariant under {Si}Ni=1 can be dropped.

The same conclusion can be derived from the proof of [23, Theorem 1.1] but the derivation is
more complicated. For simplicity and for our purposes, it is sufficient to include this assumption
in the lemma.

Proof of Theorem 1.1. Fix a sequence of nested index sets {Mk}∞k=0 and fix a basic set Ω so that
the generalized finite type condition holds. Let x ∈ R

d , 0 < b < 1, and S := {S ∈Ab: x ∈ S(Ω)}.
By Lemma 3.1, it suffices to show that there exists γ ∈ N (independent of x and b) such that

#S � γ. (3.1)

List all elements of S as Si1, . . . , Sim . (The choice of the particular ij does not affect the
following proof.) For each ij there exists a unique i′

j ∈ Mkj
such that i′

j � ij . We assume that
i′
j is chosen such that kj is maximum, i.e., if i∗

j � ij and i∗
j ∈ M	 for some 	, then 	 � kj and

i∗
j � i′

j . Assume without loss of generality that

k1 = min{ki : 1 � i � m}.

Then for each j ∈ {2, . . . ,m}, there exists i′′
j ∈ Mk1 such that i′′

j � i′
j � ij . Hence, by letting

i′′
1 := i ′

1, we can write

ij = (i′
j , l

′
j

)= (i′′
j , l

′′
j

)
, j = 1, . . . ,m,

with i′′
j ∈ Mk1 and i′

j ∈ Mkj
.

Since each Sij
belongs to Ab , we have

ρb|Ω| < ∣∣Sij (Ω)
∣∣� b|Ω|, 1 � j � m.

Also, by the definition of {Mk}∞k=0, there exists a constant L, independent of x and b, such that
|ij | − |i ′

j | � L for all j ∈ {1, . . . ,m}. Hence,

ρb|Ω| < ∣∣Si′ (Ω)
∣∣� bρ−L|Ω|, 1 � j � m.
j
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Combining the above estimations yields, in particular,

ρ �
|Si′

1
(Ω)|

|Sij
(Ω)| � ρ−(L+1), 1 � j � m. (3.2)

Since x ∈ S(Ω) for all S ∈ S , it follows that v2 = (Si′′
2
, k1), . . . ,vm = (Si′′

m
, k1) are neighbors

of v1 = (Si′
1
, k1). The generalized finite type condition implies that the number of members

in each neighborhood type is bounded by some constant M independent of x and b, and thus
#{v1, . . . ,vm} � M , i.e.,

#{Si′′j : j = 1, . . . ,m} � M. (3.3)

It also implies that there exists a constant C1 > 0, independent of x and b, such that

C−1
1 �

|Si′′
j
(Ω)|

|Si′1(Ω)| � C1, 1 � j � m. (3.4)

Combining (3.2) and (3.4) yields

C−1
2 �

|Si′′
j
(Ω)|

|Sij
(Ω)| � C2, 1 � j � m, (3.5)

where C2 := ρ−(L+1)C1.
For each j ∈ {1, . . . ,m}, (3.5) implies, in particular, that

ρi′′j � ρij
C2 = ρi′′

j
ρl′′j C2, 1 � j � m.

Hence for j ∈ {1, . . . ,m}, ρ
|l′′j |
max � ρl′′j � C−1

2 and thus |l′′j | � − ln(C2)/ lnρmax. Now, if we let

	 = [− ln(C2)/ lnρmax] + 1, then for each i′′ ∈ {i′′
1, . . . , i

′′
m},

#{Sij : i′′ � ij , j = 1, . . . ,m} � N	.

But (3.3) says that there are no more than M distinct Si′′ . Thus, (3.1) follows by taking
γ = MN	. �

In general, the WSP does not imply the generalized finite type condition. The following ex-
ample in [23] serves as a counterexample: fi(x) = ρRix, i = 1,2, where 0 < ρ < 1 and R1,R2
are incommensurable rotations. Since the attractor is the point {0}, by letting x0 = 0 in Defini-
tion 3.1, we see that the IFS has the WSP. However, the generalized finite type condition fails.
In fact, for any sequence of nested index sets {Mk}∞k=0 and any invariant open set Ω chosen,
there is always a sequence of neighborhoods whose number of members tends to infinity. We do
not know if the WSP and the generalized finite type condition are equivalent if we assume that
the attractor does not lie in a hyperplane.
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4. Proof of the dimension formula

In this section we assume that {Si}Ni=1 is of generalized finite type and fix a sequence of nested
index sets {Mk}∞k=1 and a basic set Ω . Let T1, . . . ,Tq denote all the distinct neighborhood types,
with T1 = [vroot]. For each α � 0 we define a weighted incidence matrix Aα = (Aα(i, j))

q

i,j=1 as
follows. Fix i (1 � i � q) and a vertex v ∈ VR such that [v] = Ti . Let u1, . . . ,um be the offspring
of v in GR and let ik , 1 � k � m, be the unique edge in GR connecting v to uk . Then we define

Aα(i, j) :=
∑{

ρα
ik

:v
ik−→ uk, [uk] = Tj

}
. (4.1)

According to Proposition 2.4, the definition of Aα is independent of the choice of v above.
The rest of this section is devoted to the proof of Theorem 1.2. We denote by v →R u if

v,u ∈ VR and u is an offspring of v in the reduced graph GR . We define a path in GR to be an
infinite sequence (v0,v1, . . .) such that vk ∈ Vk and vk →R vk+1 for all k � 0, with v0 = vroot.

Let P be the set of all paths in GR . If the vertices v0 = vroot,v1, . . . ,vk are such that vj →R

vj+1 for 1 � j � k − 1, we call the set

Iv0,v1,...,vk
:= {(u0,u1, . . .) ∈P: uj = vj for all 0 � j � k

}
a cylinder. Since the path from v0 to vk in GR is unique, we denote

Ivk
:= Iv0,v1,...,vk

.

We define a measure μ̂ on P . For each cylinder Ivk
, where vk ∈ Vk and [vk] = Ti , we let

μ̂(vroot) = a1 = 1 and μ̂(Ivk
) = ρα

vk
ai .

where [a1, . . . , aq ]T is a 1-eigenvector of Aα , normalized so that a1 = 1 (this is possible because
all neighborhood types are descendants of T1).

To show that μ̂ is indeed a measure on P , we notice that two cylinders Iv and Iv′ with v ∈ Vk ,
v′ ∈ V	 and k � 	, intersect if and only if either v′ = v in the case k = 	 or v′ is a descendant of v
in the case k < 	. In both cases, Iv′ ⊆ Iv . Now let v ∈ VR and let D denote the set of all offspring
of v in GR . Then

∑
u∈D

μ̂(Iu) =
q∑

j=1

∑{
μ̂(Iu): u ∈D, [u] = Tj

}

=
q∑

j=1

∑{
ρα

uaj : u ∈D, [u] = Tj

}

= ρα
v

q∑
j=1

∑{
ρα

ik
aj :v

ik−→ Ru, u ∈D, [u] = Tj

}

= ρα
v

q∑
j=1

Aα(i, j)aj

= ρα
v ai = μ̂(Iv).
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It follows now from μ̂(P) = μ̂(vroot) = 1 that μ̂ is indeed a measure on P .
For any bounded Borel set E ⊆ R

d , let B = B(E) be defined as

B(E) := {Ivk
= Iv0,...,vk

:
∣∣Svk

(Ω)
∣∣� |E| < ∣∣Svk−1(Ω)

∣∣ and E ∩ Svk
(Ω) �= ∅}. (4.2)

Lemma 4.1. Let Ω be a basic set as above. Then there exists a constant C0 > 0, independent
of k, such that for any bounded Borel set E ⊆ R

d , #B(E) � C0.

Proof. Since there is a one-to-one correspondence between Ivk
and vk , we have #B = #B̃, where

B̃ := {vk ∈ Vk:
∣∣Svk

(Ω)
∣∣� |E| < ∣∣Svk−1(Ω)

∣∣ and E ∩ Svk
(Ω) �= ∅}

= {
vk ∈ Vk: ρvk

� |E|/|Ω| < ρvk−1 and E ∩ Svk
(Ω) �= ∅}.

Let b := |E|/|Ω| and let vk ∈ B̃. Then there exists a unique i ∈ Mk such that vk = (Si, k).
The index i is unique because we are considering vk to be in the reduced graph GR . Let i′ � i

such that Si′ ∈ Ab . Condition (5) of the definition of {Mk}∞k=0 and the inequalities ρi′ � b <

ρvk−1 together imply that |i| − |i′| � L.
Fix any x0 ∈ E. Then the assumption E ∩Svk

(Ω) �= ∅ implies that E ∩Si′(Ω) �= ∅. Moreover,
|Si′(Ω)| � b|Ω| since Si′ ∈ Ab . Thus, Si′(Ω) ⊆ Bδ(x0), where δ := 2b|Ω|. The generalized
finite type condition implies that there exists a constant γ > 0, independent of b, such that for all
x ∈ R

d ,

#
{
S ∈Ab: x ∈ S(Ω)

}
� γ

(see the proof of Theorem 1.1). Hence, as in the proof of Lemma 3.1, we have

(bρ)dL(Ω)#
{
Si′ : E ∩ Si′(Ω) �= ∅}�

∑{
L
(
Si′(Ω)

)
: E ∩ Si′(Ω) �= ∅}� γL

(
Bδ(x0)

)
and thus

#
{
Si′ : E ∩ Si′(Ω) �= ∅}� (2|Ω|)dγ cd

ρdL(Ω)
:= C1,

where cd is the volume of the unit ball in R
d . Consequently,

#B = #B̃ � NL#
{
Si′ : E ∩ Si′(Ω) �= ∅}� C1N

L,

proving the lemma. �
Proof of Theorem 1.2. Since F is a self-similar set, dimB(F ) = dimH(F ) (see [4]). We will
prove that Hα(F ) > 0 and dimH(F ) = α. They imply that Hα(F ) < ∞ since F is self-similar
(see [5] or [7]). Note that they are true if F does not lie in a hyperplane (see Remark 4.2 following
the proof), but we are not able to use these facts in the general case here. The proof makes use of
some ideas in [18,20].
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Lower bound. To prove the lower bound, we will transfer the measure μ̂ constructed above to
a measure on F . Observe that by assumptions (3) and (4) in the definition of {Mk}∞k=0, for all
k � 0,

F =
⋃

v∈Vk∩VR

Sv(F ).

Define f :P → R
d by letting f (v0,v1, . . .) be the unique point in

⋂∞
k=0 Svk

(F ). It is clear that
f (P) = F . Now define μ := μ̂ ◦ f −1, where μ is the measure on P defined at the beginning of
this section.

Let E be a bounded Borel subset of R
d and let B = B(E) be defined as in (4.2). Note that

μ(E) �
∑

Ivk
∈B

μ̂(Ivk
).

Also, if we assume that [vk] = Tik . Then

μ̂(Ivk
)

|Svk
(Ω)|α = ρα

vk
aik

ρα
vk

|Ω|α = aik

|Ω|α .

Hence,

μ(E) �
∑

Ivk
∈B

aik |Svk
(Ω)|α

|Ω|α � |E|α
∑

Ivk
∈B

aik

|Ω|α � |E|α max
1�i�q

{
ai

|Ω|α
}

#B.

By Lemma 4.1, #B is bounded by a constant independent of E. Hence μ(E) � C|E|α for some
constant C > 0. Thus, Hα(F ) > 0 and dimH(F ) � α (see [5]), which is the required lower bound.

Upper bound. To obtain the upper bound dimH(F ) � α, we first assume that Aα is irreducible
and thus all the ai ’s are positive. Since F ⊆ Ω , for each k � 0,

F ⊆
⋃

vk∈Vk∩VR

Svk
(Ω).

Moreover, ∑
vk∈Vk∩VR

∣∣Svk
(Ω)
∣∣α =

∑
vk∈Vk∩VR

ρα
vk

|Ω|α

=
q∑

i=1

∑{
ρα

vk
ai

|Ω|α
ai

: vk ∈ Vk ∩ VR, [vk] = Ti

}

�
(

max
1�i�q

|Ω|α
ai

) ∑
vk∈Vk∩VR

μ̂(Ivk
)

� max
|Ω|α

< ∞.

1�i�q ai
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Since {Svk
(Ω): vk ∈ Vk ∩ VR} is a cover of F and lim supk→∞{|Svk

(Ω)|: vk ∈ Vk} = 0 by con-
tractivity, the definition of Hausdorff measure implies that Hα(F ) < ∞, and thus dimH(F ) � α.

Now assume Aα is not irreducible. After a suitable permutation of the neighborhood types,
we can assume that Aα has the form

Aα =

⎡⎢⎢⎣
A1 ∗ . . . ∗
0 ∗ . . . ∗
...

. . . ∗
0 . . . . . . Am

⎤⎥⎥⎦ ,

where each Ai is either an irreducible square matrix or a 1 × 1 zero matrix (see, e.g., [1]). Let

E := {Ai : 1 � i � m}, counting multiplicity,

E∗ := {Ai ∈ E : Ai is nonzero}, counting multiplicity.

For Ai ∈ E , let TAi
be the collection of neighborhood types corresponding to Ai . Note that for

i �= j , TAi
�= TAj

(even though it is possible that Ai = Aj as matrices). This is the reason to count
multiplicity when defining E and E∗.

Each Ai ∈ E∗ clearly corresponds to a subset FAi
⊆ F defined as follows

FAi
:=

∞⋂
k=1

⋃{
Su1 ◦ · · · ◦ Suk

(F ): [u1], . . . , [uk] ∈ TAi
, uj →R uj+1, j = 1, . . . , k − 1

}
.

Obviously, the proof of the irreducible case above yields Hα(FAi
) < ∞.

For each Ai ∈ E∗ and k � 0 define

PAi
(k) := {(v0,v1, . . .) ∈P: [vk−1] /∈ TAi

and [v	] ∈ TAi
∀	 � k

}
.

In view of the decomposition of Aα , for each path (v0,v1, . . .) ∈ P , if k � 0 is such that [vk] ∈
TAi

, then for 	 � k, either [v	] belongs to TAi
for all 	 � k, or there exists some 	0 > k such

that [v	0] ∈⋃j>i TAj
. Repeating this argument, we see that each path in P must belong to some

PAi
(k) for some Ai ∈ E∗ and k � 0. Hence we can partition the set of all paths P as

P =
⋃

Ai∈E∗

∞⋃
k=0

PAi
(k).

Consequently,

F = f (P) =
⋃

Ai∈E∗

∞⋃
k=0

f
(
PAi

(k)
)
.

For each Ai ∈ E∗ and k � 0, the definitions of f and FAi
imply that

f
(
PAi

(k)
)⊆ ⋃

v ,...,v

Sv0 ◦ · · · ◦ Svk−1(FAi
),
0 k−1
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where the union is over all vertices v0, . . . ,vk−1 ∈ VR such that vj →R vj+1 for j = 0, . . . , k−2.
It follows that

Hα
(
f
(
PAi

(k)
))

�
∑

v0,...,vk−1

Hα
(
Sv0 ◦ · · · ◦ Svk−1(FAi

)
)

�
∑

v0,...,vk−1

ρα
v0

· · ·ρα
vk−1

Hα(FAi
) < ∞.

Hence, dimH(f (PAi
(k))) � α for all A ∈ E∗ and k � 0. Finally, it follows from the countable

stability of the Hausdorff dimension (see [5]) that dimH(F ) � α. This completes the proof of the
theorem. �
Remark 4.2. Let F be the attractor of an IFS of generalized finite type and α be the Hausdorff
dimension of F . Suppose F does not lie in a hyperplane. Then it follows immediately from
Theorem 1.1 and [23, Corollary] that 0 < Hα(F ) < ∞. Theorem 1.2 sharpens this result by
removing the assumption that F does not lie in a hyperplane.

5. Examples on computing dimension

In this section we illustrate Theorem 1.2 by some examples. We first introduce a way to denote
symbolically how the neighborhood types are generated.

As in the previous section we assume that {Si}Ni=1 is of generalized finite type and let
T1, . . . ,Tq denote all the distinct neighborhood types, with T1 = [vroot]. Fix i (1 � i � q) and a
vertex v ∈ VR such that [v] = Ti . Let u1, . . . ,um be the offspring of v in GR , let ik , 1 � k � m,
be the unique edge in GR connecting v to uk , and let Cij := {uk: 1 � k � m, [uk] = Tj }. Note
that for two edges ik and ik′ connecting v to two distinct uk and uk′ with [uk] = [uk′ ] = Tj ,
it is possible that the contractions ρik

and ρik′ are different. (We can see such a possibility
easily by taking an IFS satisfying the open set condition and with contraction ratios that are
not all equal. See the illustration below.) By partitioning Cij according to ρik

, we can write
Cij := Cij (1) ∪ · · · ∪ Cij (nij ) such that

Cij (	) := {uk ∈ Cij : ρik
= ρij	},

where ρij	, 	 = 1, . . . , nij , are distinct. Thus, we can express the matrix entry Aα(i, j) defined
in (4.1) as

Aα(i, j) =
nij∑
	=1

#Cij (	)ρ
α
ij	.

We can also write symbolically

Ti −→
q∑

j=1

nij∑
	=1

#Cij (	)Tj (ρij	), (5.1)

where the Tj (ρij	) are defined in an obvious way. We say that Ti generates #Cij (	) neighbor-
hoods of type Tj with contraction ρij	. We will illustrate this in the examples in this section.
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We begin with an IFS {Si}Ni=1 satisfying the open set condition. Let ρi be the contraction ratio
of Si . According to Example 2.5 all vertices are of the same neighborhood type T1 = [vroot].
Moreover, vroot generates N vertices vi , connected by the edge i ∈ Σ1 = {1, . . . ,N}. Each vi is
of neighborhood type T1. By (5.1)

T1 −→ T1(ρ1) + · · · + T1(ρN).

Hence the matrix defined by (4.1) becomes

Aα = [ρα
1 + · · · + ρα

N

]
and thus dimH(F ) is the solution of the equation

∑N
i=1 ρα

i = 1, agreeing with the classical for-
mula (1.2). Moreover, 0 < Hα(F ) < ∞.

To illustrate the symbolic notation in (5.1) above, we take any IFS {Si}3
i=1 on R

d satisfying
the open set condition and has ρ1 = ρ2 = r and ρ3 = s. Then from the above discussions we have

T1 −→ 2T1(r) + T1(s).

For an IFS satisfying the finite type condition, by taking Mk to be the Λk defined in Exam-
ple 2.2, one can see that Theorem 1.2 implies [20, Theorem 1.1].

We now consider the example in [16] again.

Example 5.1. Let F be the attractor of the IFS {Si}3
i=1 on R defined in (1.3). Example 2.8 shows

that it is of generalized finite type. Using Theorem 1.2, we claim that dimB(F ) = dimH(F ) = α,
where α is the unique solution of the equation

ρα + 2rα − (ρr)α = 1.

Moreover, 0 < Hα(F ) < ∞.

We remark that the results of this example have been obtained in [16]. The dimension formula
was obtained there by a more complicated argument.

Proof. We adopt the same setup and notation of Example 2.8, with T1 = [vroot], T2 = [(S1,1)]
and T3 = [(S2,1)]. By using the proof and the construction of the reduced graph there, we have
(see Fig. 1)

T1 −→ T1(r) + T2(ρ) + T3(r),

T2 −→ T2(ρ) + T3(r),

T3 −→ T1(r) + T2(ρ) + T3(r).

It follows that

Aα =
⎡⎣ rα ρα rα

0 ρα rα

α α α

⎤⎦ :=
[

b a b

0 a b

b a b

]
,

r ρ r
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where a := ρα and b = rα . Setting the spectral radius of Aα equal to 1 yields

1

2

(
a + 2b +

√
a2 + 4b2

)= 1 ⇔ a + 2b − ab = 1 ⇔ ρα + 2rα − (ρr)α = 1.

The assertions now follow from Theorem 1.2. �
Example 5.1 has various higher-dimensional generalizations. The following example is a sim-

ple two-dimensional extension.

Example 5.2. Let {Si}4
i=1 be an IFS on R

2 defined as

S1(x) = ρx, S2(x) = rx + (ρ − ρr,0),

S3(x) = rx + (1 − r,0), S4(x) = rx + (0,1 − r),

where 0 < ρ < 1, 0 < r < 1, and ρ + 2r − ρr � 1. Then {Si}4
i=1 is of generalized finite type

and it does not satisfy the open set condition. Let F be the attractor of the IFS. Then dimB(F ) =
dimH(F ) = α, where α is the unique solution of the equation

ρα + 3rα − (ρr)α = 1.

Moreover, 0 < Hα(F ) < ∞.

Proof. Let Mk = Σk for k � 0 and let Ω = (0,1) × (0,1). Then Ω is invariant under {Si}4
i=1.

The following proof will show that Ω is a basic set (see Fig. 2(a), (b)).
Let v0 := vroot and T1 := [vroot]. Then v0 has four offspring, namely, vi = (Si,1), 1 � i � 4,

with [v3] = [v4] = T1. Let T2 := [v1] and T3 := [v2]. Then we have

T1 −→ 2T1(r) + T2(ρ) + T3(r).

v1 generates three offspring in the reduced graph GR , namely, v5 = (S1S1,2), v6 = (S1S2,2)

and v7 = (S1S4,2), with [v5] = T2, [v6] = T3 and [v7] = T1. (The offspring (S1S3,2) in G is
removed when constructing GR since (S1S3,2) = (S2S1,2).) Hence,

T2 −→ T1(r) + T2(ρ) + T3(r).

v2 generates four offspring in GR : v8 = (S2S1,2), v9 = (S2S2,2), v10 = (S2S3,2) and v11 =
(S2S4,2), with [v8] = T2, [v9] = T3, and [v10] = [v11] = T1. Hence,

T3 −→ 2T1(r) + T2(ρ) + T3(r).

Since no new neighborhood types are generated, we conclude that the IFS is of generalized finite
type. Moreover,

Aα =
⎡⎣2rα ρα rα

rα ρα rα

α α α

⎤⎦ :=
[2b a b

b a b

2b a b

]
,

2r ρ r



K.-S. Lau, S.-M. Ngai / Advances in Mathematics 208 (2007) 647–671 667
(a) k = 1 (b) k = 2

(c) Attractor F

Fig. 2. Vertices in Vk for (a) k = 1 and (b) k = 2 in Example 5.2, represented by squares. The attractor is shown in (c).
The figures are drawn with ρ = 1/4 and r = 7/20.

with a := ρα and b := rα . The spectral radius of Aα is (a + 3b + √
a2 + 2ab + 9b2 )/2. Setting

this equal to 1 yields a + 3b − ab = 1. The stated results now follow from Theorem 1.2.
Lastly, {Si}4

i=1 does not satisfy the open set condition, since S1S3 = S2S1. �
Figure 2 shows the vertices Vk for k = 1,2. The box in dotted lines is the set Ω = (0,1) ×

(0,1), representing the root vertex vroot. In Fig. 2(b), the third square from the left on the bottom
row corresponds to two overlapping vertices. Fig. 2(c) shows the attractor F for the case ρ = 1/4
and r = 7/20 in Example 5.2. In this case, dimH(F ) is the unique solution of

(
1

4

)α

+ 3

(
7

20

)α

−
(

7

80

)α

= 1,

which gives dimH(F ) = 1.1872563364 . . . .
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Lastly, we remark that in the above examples, we have only used the two different sequences
of nested index sets, namely, Mk = Σk or Mk = Λk . We do not have examples that cannot be
handled by either of them.
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Appendix A. Example of a vertex that does not have any offspring in the reduced
graph GR

Consider the IFS

S1(x) = ρx, S2(x) = ρx + ρ2,

S3(x) = ρx + ρ, (A.1)

where ρ ≈ 0.54368899 . . . , the reciprocal of the Pisot number with minimal polynomial x3 −
x2 − x − 1. Let Ω = (0, ρ/(1 − ρ)) ≈ (0,1.191487 . . .), the interior of the attractor of the
IFS. With a sequence of nested index sets {Mk} defined as follows, it can be shown that some
vertex in V , denoted by v0 below, does not have any offspring in GR . The vertex v0 is found
with the assistance of a computer search. Let i = (23322), j = (32111), and k = (31231). De-
fine

Mk := Σk for k � 4, M5 := (Σ5 \ {(23322)
})∪N1,

M6 := (Σ6 \N1) ∪N2, (A.2)

where

N1 := {(i1), (i2), (i3)
}
,

N2 := {(i11), (i12), (i13), (i21), (i22), (i23), (i31), (i32), (i33),

(j11), (j12), (j13), (j21), (j22), (j23), (k11), (k12), (k13)
}
.

Mk , k � 7, can be easily defined so that Mk , k � 0, is a sequence of nested index
sets.

The vertex v0 := (j ,5) ∈ V5 has 13 neighbors (see Fig. 3):

v1 = ((31212),5), v2 = ((22321),5), v3 = ((23211),5), v4 = ((23123),5),

v5 = ((i1),5), v6 = ((i2),5), v7 = ((i3),5), v8 = ((22323),5),

v9 = (k,5), v10 = ((23221),5), v11 = ((32112),5), v12 = ((31232),5),

v = ((23311),5).
13
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v1 �

v2 �

v3 �

v4 �

v5 �

v6 �
�

�
�

v7 �

v0 �
�

�
�
�

�
�

�

v8 �
�

�
�

v9 �
�

�
�

v10 �

v11 �
�

v12 �

v13 �

Fig. 3. The vertex v0, all its neighbors, and all the offspring of the neighbors of v0 that overlap with those of v0.

v0 generates the following six offspring in G that belong to V6:

v0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)−−→ u01 = ((j11),6),

(12)−−→ u02 = ((j12),6),

(13), (21)−−−−−→ u03 = ((j13),6) = ((j21),6),

(21)−−→ u04 = ((j22),6),

(23)−−→ u05 = ((j23),6),

(3)−−→ u06 = ((j3),6).

Some of the neighbors of v0 generate offspring that coincide with each of the offspring
u01, . . . ,u06 of v0, and have edges that are smaller in the lexicographical order. In fact,

v5
(1)−−→ u51 = ((i11),6

)= u01,



670 K.-S. Lau, S.-M. Ngai / Advances in Mathematics 208 (2007) 647–671
v8
(11)−−→ u81 = ((2232311),6

)= u02,

v9

⎧⎪⎨⎪⎩
(11)−−→ u91 = ((k11),6) = u03,
(12)−−→ u92 = ((k12),6) = u04,
(13)−−→ u93 = ((k13),6) = u05,

v11
(1)−−→ u11,1 = ((321121),6

)= u06.

Hence, all offspring of v0 are removed when constructing GR . Consequently, v0 does not have
any offspring in GR .

The line segments in Fig. 3 are the intervals obtained by the actual iteration of the interval
Ω under the IFS in (A.1), with each interval representing a vertex. (For clarity, the intervals are
separated vertically.) v0,v1, . . . ,v13 are the neighbors of v0 = (j ,5) in V5; they are drawn using
solid line segments. Offspring of these vertices are represented by the dashed line segments. All
the offspring of v0 in V6 are shown. Offspring of the other neighbors of v0 that overlap with the
those of v0 are also shown. If two or more offspring are identical, the one connected by an edge
which is smallest in the lexicographical order is indicated by a solid dot (at the left end-point)
and the other(s) are indicated by a circle (also at the left end-point). Those offspring indicated by
a circle are to be removed when constructing the reduced graph. Note that all the offspring of v0
are to be removed. Thus v0 does not generate any offspring in the reduced graph GR .

Finally, we remark that this cubic Pisot number is used because similar constructions cannot
be obtained by using the more familiar golden ratio.
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