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Abstract

Given a bounded open subset Ω of R
d (d � 1) and a positive finite Borel measure μ supported on Ω

with μ(Ω) > 0, we study a Laplace-type operator �μ that extends the classical Laplacian. We show that
the properties of this operator depend on the multifractal structure of the measure, especially on its lower
L∞-dimension dim∞(μ). We give a sufficient condition for which the Sobolev space H 1

0 (Ω) is compactly

embedded in L2(Ω,μ), which leads to the existence of an orthonormal basis of L2(Ω,μ) consisting of
eigenfunctions of �μ. We also give a sufficient condition under which the Green’s operator associated with
μ exists, and is the inverse of −�μ. In both cases, the condition dim∞(μ) > d − 2 plays a crucial rôle. By
making use of the multifractal Lq -spectrum of the measure, we investigate the condition dim∞(μ) > d − 2
for self-similar measures defined by iterated function systems satisfying or not satisfying the open set
condition.
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1. Introduction

Let Ω ⊆ R
d (d � 1) be a bounded open set, and let dx be the Lebesgue measure on R

d .
Denote by L2(Ω) := L2(Ω,dx). Let H 1(Ω) be the Sobolev space

〈u,v〉H 1(Ω) :=
∫
Ω

uv dx +
∫
Ω

∇u · ∇v dx.

Let C∞
c (Ω) denote the space of all C∞(Ω) functions with compact support in Ω . Let H 1

0 (Ω)

denote the completion of C∞
c (Ω) in the H 1(Ω) norm. In view of the Poincaré inequality; that

is, there exists a constant C > 0 such that

‖u‖L2(Ω) � C‖∇u‖L2(Ω) for all u ∈ H 1
0 (Ω),

the space H 1
0 (Ω) admits the equivalent inner product defined by

〈u,v〉H 1
0 (Ω) :=

∫
Ω

∇u · ∇v dx.

Note that both H 1(Ω) and H 1
0 (Ω) are Hilbert spaces.

Let μ be a positive finite Borel measure on R
d with supp(μ) ⊆ Ω . Since the case μ(Ω) = 0

is not of interest to our discussions, we will assume throughout this paper that μ(Ω) > 0. In
order to define a Laplace-type operator on L2(Ω,μ), we need the following important condition
(see [28]):

(C1) There exists a constant C > 0 such that, for all u ∈ C∞
c (Ω),∫

Ω

|u|2 dμ � C

∫
Ω

|∇u|2 dx.

This condition implies that each equivalence class u ∈ H 1
0 (Ω) contains a unique (in L2(Ω,μ)

sense) member ū that belongs to L2(Ω,μ) and satisfies both conditions below:

(1) There exists a sequence {un} in C∞
c (Ω) such that un → ū in H 1

0 (Ω) and un → ū in
L2(Ω,μ);

(2) ū satisfies the inequality in (C1).

We call ū the L2(Ω,μ)-representative of u. Assume condition (C1) holds and define a mapping
I :H 1

0 (Ω) → L2(Ω,μ) by

I (u) = ū.

It is straightforward to verify that I is a bounded linear operator. I is not necessarily injective,
because it is possible for a non-zero function u ∈ H 1(Ω) to have an L2(Ω,μ)-representative
0
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that has zero L2(Ω,μ)-norm. To deal with this situation, we consider a subspace N of H 1
0 (Ω)

defined as

N := {
u ∈ H 1

0 (Ω):
∥∥I (u)

∥∥
L2(Ω,μ)

= 0
}
.

Then the continuity of I implies that N is a closed subspace of H 1
0 (Ω). Now let N⊥ be the

orthogonal complement of N in H 1
0 (Ω). It is clear that I :N⊥ → L2(Ω,μ) is injective.

N⊥ is the very space we will work on in this paper. If no confusion is possible, we will denote
ū simply by u. By condition (C1), we see that ‖u‖L2(Ω,μ) � C1/2‖u‖H 1

0 (Ω) for all u ∈ N⊥; that

is, N⊥ is embedded in L2(Ω,μ). If d � 2 and if μ has a point mass in Ω , then condition
(C1) fails, since H 1

0 (Ω) contains unbounded functions. We will study condition (C1) in detail in
Section 3 for general measures and in Section 5 for self-similar measures.

We remark that condition (C1) is similar to a condition in [34, Chapter 1], which is defined
under a different setting, e.g., supp(μ) there is assumed to have zero Lebesgue measure and is
contained in a C∞ domain Ω .

Consider a nonnegative bilinear form E(·,·) on L2(Ω,μ) given by

E(u, v) :=
∫
Ω

∇u · ∇v dx (1.1)

with domain Dom(E) = N⊥. Condition (C1) implies that (E,Dom(E)) is a closed quadratic
form on L2(Ω,μ) (see Proposition 2.1). Hence, there exists a nonnegative self-adjoint operator
H on L2(Ω,μ) such that Dom(E) = Dom(H 1/2) and

E(u, v) = 〈
H 1/2u,H 1/2v

〉
L2(Ω,μ)

for all u,v ∈ Dom(E).

(See, for example, [8].) We write �μ = −H , and call it a (Dirichlet) Laplacian with respect to μ.
We will show that u ∈ Dom(�μ) and −�μu = f if and only if −�u = f dμ (or, more precisely,
−�udx = f dμ) in the sense of distribution (Proposition 2.2).

In this paper, we are interested in the following questions, especially in the case d > 1:

(1) What kinds of measures satisfy condition (C1)?
(2) Under what conditions does there exist an orthonormal basis of L2(Ω,μ) consisting of

(Dirichlet) eigenfunctions of −�μ with discrete spectrum?
(3) Under what conditions is the Green’s operator defined with respect to μ the inverse of −�μ?

It turns out that these problems intertwine one another, and are intimately related to the lower
L∞-dimension dim∞(μ) and upper regularity of the measure μ.

For the one-dimensional case, the answers to the above problems are easier (see, for exam-
ple, [4]). A class of more general Laplace-type operators on R was studied by Freiberg [13], and
Freiberg and Zähle [14]. For the one- or higher-dimensional case, the first two problems above
were investigated by Naimark and M. Solomyak, and M. Solomyak and Verbitsky. They ob-
tained the compactness of the embedding Dom(E) ↪→ L2(Ω,μ) [28,29] and the asymptotics of
the eigenvalues [32] for self-similar measures satisfying the open set condition. Recently, Zähle
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[37] introduced a pseudo-differential operator �μ := −(D1
μ)2 on a metric space (X,ρ) equipped

with a finite Borel measure μ which is upper s-regular (see (3.1)) with s given by

s = sup

{
t :

∫
X

ρ(x, y)−t dμ(y) < ∞
}

for μ-a.e. x ∈ supp(μ). (1.2)

This pseudo-differential operator �μ is termed a Laplacian on X if it is local [37, Section 2].
Recall that the lower and upper L∞-dimensions of μ are defined by

dim∞(μ) = lim inf
δ→0+

ln(supx μ(Bδ(x)))

ln δ
,

dim∞(μ) = lim sup
δ→0+

ln(supx μ(Bδ(x)))

ln δ
, (1.3)

where, in each case, the supremum is taken over all x ∈ supp(μ) (see [33]).

Theorem 1.1. Let d � 1 and let Ω ⊆ R
d be a bounded open set. Let μ be a finite positive

Borel measure on R
d with supp(μ) ⊆ Ω and μ(Ω) > 0. Assume that dim∞(μ) > d − 2. Then

condition (C1) holds. Moreover, the embedding Dom(E) ↪→ L2(Ω,μ) is compact.

In Theorem 1.1, we do not assume that μ is a self-similar measure. However, we will prove
that for a self-similar measure μ determined by an iterated function system (IFS) satisfying the
open set condition, the condition dim∞(μ) > d − 2 is both necessary and sufficient for the com-
pactness of the embedding Dom(E) ↪→ L2(Ω,μ) (see Theorem 1.4).

In view of the second question, we have

Theorem 1.2. Let Ω ⊆ R
d be a bounded open set and let μ be a positive finite Borel mea-

sure on R
d with supp(μ) ⊆ Ω and μ(Ω) > 0. Assume dim∞(μ) > d − 2. Then there exists an

orthonormal basis {un}∞n=1 of L2(Ω,μ) consisting of (Dirichlet) eigenfunctions of −�μ. The
eigenvalues {λn}∞n=1 satisfy 0 < λ1 � λ2 � · · · with limn→∞ λn = ∞. Moreover, the eigenspace
associated with each eigenvalue is finite-dimensional.

For a bounded domain (i.e., an open connected set) Ω in R
d , assume that a classical Green’s

function g(·,·) exists on Ω . For 1 � p � ∞, define the Green’s operator Gμ on Lp(Ω,μ) by

(Gμf )(x) :=
∫
Ω

g(x, y)f (y) dμ(y).

In Section 4, we show that if dim∞(μ) > d − 2, then Gμ(L2(Ω,μ)) ⊆ Dom(−�μ), and Gμ is
the inverse of −�μ.

Theorem 1.3. Let Ω be a bounded domain of R
d for which the classical Green’s function ex-

ists. Let μ be a positive finite Borel measure on R
d with supp(μ) ⊆ Ω and μ(Ω) > 0. Assume

dim∞(μ) > d − 2. Then for any f ∈ L2(Ω,μ), Gμf ∈ Dom(−�μ) and

−�μ(Gμf ) = f.

Consequently, Gμ(L2(Ω,μ)) ⊆ Dom(−�μ) and Gμ = −�−1
μ .
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Theorem 1.3 says that the Green’s function of �μ with respect to μ is the same as the classical
Green’s function, provided that dim∞(μ) > d − 2. This result is natural. In fact, observe that if
μ is the Lebesgue measure, then �μ = �, and so their Green’s functions are the same. Clearly
the Lebesgue measure satisfies the condition dim∞(μ) = d > d − 2.

In Section 5, we investigate in detail the condition dim∞(μ) > d − 2 for invariant measures
determined by iterated function systems. Let {Si}Ni=1 be an IFS of contractions on R

d ; that is, for
each i, there exists ri with 0 < ri < 1 such that∣∣Si(x) − Si(y)

∣∣ � ri |x − y| for all x, y ∈ R
d .

It is well known (see [11,17]) that there exists a unique non-empty compact set K , called the
attractor (or invariant set) satisfying

K =
N⋃

i=1

Si(K).

Moreover, for any set of probability weights {pi}Ni=1 (that is, 0 < pi < 1 and
∑N

i=1 pi = 1), there
corresponds a unique regular Borel probability measure μ, with supp(μ) = K , satisfying the
identity

μ =
N∑

i=1

piμ ◦ S−1
i . (1.4)

We call μ the invariant measure associated to the probability weights {pi}Ni=1. It follows from
our definition that μ must be continuous.

More can be said if the IFS {Si}Ni=1 consists of contractive similitudes; that is

Si(x) = riRix + bi, i = 1, . . . ,N, (1.5)

where for each i, 0 < ri < 1, Ri is a d × d orthogonal matrix, and bi ∈ R
d . In this case, the

attractor K is called a (strictly) self-similar set, an invariant measure μ is called a (strictly) self-
similar measure, and identity (1.4) is called a self-similar identity. It follows from a result of
Peres and B. Solomyak [30] that for such a μ (and, in fact, for the more general class of self-
conformal measures) dim∞(μ) = dim∞(μ) =: dim∞(μ) (see Remark 5.3).

Recall that an IFS {Si}Ni=1 satisfies the open set condition (OSC) if there exists a non-empty

bounded open set U , called a basic open set, such that
⋃N

i=1 Si(U) ⊆ U and Si(U) ∩ Sj (U) = ∅
for any i �= j . In this case, for any associated self-similar measure μ, we have that supp(μ) =
K ⊆ U .

For a self-similar measure associated with an IFS of contractive similitudes satisfying the
OSC, we have

Theorem 1.4. Let {Si}Ni=1 be an IFS of contractive similitudes on R
d (d � 1) satisfying the OSC,

and let μ be an associated self-similar measure. Assume that Ω is a bounded open subset of R
d

with supp(μ) ⊆ Ω and μ(Ω) > 0. Then the following conditions are equivalent:

(a) Condition (C1) holds, and the embedding Dom(E) ↪→ L2(Ω,μ) is compact;
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(b) Ā := max1�i�N {pir
−(d−2)
i } < 1;

(c) dim∞(μ) > d − 2;
(d) μ is upper s-regular for some s > d − 2.

In particular, all the conditions hold on R
2.

From this theorem, we see that for the above class of measures, the condition dim∞(μ) >

d − 2 in Theorem 1.1 is sharp. The equivalence of (a) and (b) has already been established by
Naimark and M. Solomyak (see [28,29]). Our main proof is on (b) implying (c), for which we
make use of the (lower) Lq -spectrum τ(q) of a measure. Recall that

τ(q) := lim inf
δ→0+

ln(sup
∑

i μ(Bδ(xi))
q)

ln δ
, q ∈ R, (1.6)

where {Bδ(xi)}i is a countable family of disjoint closed δ-balls centered at xi ∈ supp(μ), and the
supremum is taken over all such families (see [5,21]).

For iterated function systems with overlaps (that is, the open set condition fails), it is in gen-
eral not easy to verify the condition dim∞(μ) > d − 2. Nevertheless, we show that this condition
holds on R

2 for invariant measures defined by iterated function systems of bi-Lipschitz contrac-
tions (Lemma 5.1), provided that the attractor K is not a singleton.

For d � 3, we will show that the condition dim∞(μ) > d − 2 can be verified, provided the
(lower) Lq -spectrum τ(q) can be computed. The computation of τ(q) in the absence of the
open set condition is an interesting and challenging problem. It has been studied extensively
for iterated function systems satisfying certain weak separation condition (see [12,18,19,22,23,
25]). Using the fact that dim∞(μ) > d − 2 if and only if there exists some q > 0 such that
τ(q)/q > d −2 (Lemma 5.7), we can verify the condition dim∞(μ) > d −2 by computing τ(q).
We show that if the IFS satisfies the weak separation condition∗ (WSC∗) in [25], then τ(q),
q ∈ N, can be computed (Theorem 5.9).

This paper is organized as follows. In Section 2, we define the Laplacian �μ and study some
of its properties. In Section 3, we make use of dim∞(μ) to study the compactness of the embed-
ding Dom(E) ↪→ L2(Ω,μ), and prove Theorems 1.1 and 1.2. In Section 4 we study the Green’s
operator and prove Theorem 1.3. In Section 5, we prove Theorem 1.4, and investigate the con-
dition dim∞(μ) > d − 2, especially for invariant measures defined by various classes of iterated
function systems.

2. Fractal Laplace operators

Throughout this section, we let Ω ⊆ R
d (d � 1) be a bounded open set, and μ be a positive

finite Borel measure on R
d with supp(μ) ⊆ Ω and μ(Ω) > 0. We assume that condition (C1)

holds. Under this condition, we will introduce the fractal Laplacian �μ, and study its basic
properties.

Let Q be a quadratic form with domain Dom(Q) on a Hilbert space H, with inner prod-
uct 〈·,·〉. Define Q∗ by Q∗(u, v) = Q(u,v)+〈u,v〉. Recall that the form (Q,Dom(Q)) is closed
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if the space Dom(Q) is complete under the norm Q∗(u,u)1/2. Define another nonnegative bilin-
ear form E∗(·,·) on L2(Ω,μ) by

E∗(u, v) := E(u, v) + 〈u,v〉L2(Ω,μ) =
∫
Ω

∇u · ∇v dx +
∫
Ω

uv dμ. (2.1)

It is clear that E∗(·,·) is an inner product on Dom(E).

Proposition 2.1. Let Ω ⊆ R
d (d � 1) be a bounded open set, and let μ be a positive finite Borel

measure on R
d with supp(μ) ⊆ Ω and μ(Ω) > 0. Let E and E∗ be the quadratic forms defined

as in (1.1) and (2.1), respectively. Assume (C1) holds. Then we have

(a) Dom(E) is dense in L2(Ω,μ).
(b) (E∗,Dom(E)) is a Hilbert space.

Proof. (a) Note that Cc(Ω), the space of continuous functions with compact support in Ω ,
is dense in L2(Ω,μ). Next, C∞

c (Ω) is dense in Cc(Ω) in the supremum norm, and by us-
ing μ(Ω) < ∞, we see that C∞

c (Ω) is also dense in Cc(Ω) in the L2(Ω,μ)-norm. Now let
u ∈ L2(Ω,μ) and let {un} be a sequence in C∞

c (Ω) converging to u in the L2(Ω,μ)-norm. Write
un = u0

n + u⊥
n , where u0

n ∈ N and u⊥
n ∈ N⊥ = Dom(E). It is clear that u⊥

n → u in L2(Ω,μ).
This proves (a).

(b) Under assumption (C1), the norm induced by E∗ is equivalent to the norm ‖ · ‖H 1
0 (Ω).

Hence (E∗,Dom(E)) is complete. �
It follows from Proposition 2.1 that under condition (C1), the quadratic form (E,Dom(E))

is closed on L2(Ω,μ). Hence, there exists a nonnegative self-adjoint operator H on L2(Ω,μ)

such that Dom(H) ⊆ Dom(H 1/2) = Dom(E) and

E(u, v) = 〈
H 1/2u,H 1/2v

〉
L2(Ω,μ)

for all u,v ∈ Dom(E).

Moreover, u ∈ Dom(H) if and only if u ∈ Dom(E) and there exists f ∈ L2(Ω,μ) such that
E(u, v) = 〈f, v〉L2(Ω,μ) for all v ∈ Dom(E). Note that for all u ∈ Dom(H) and v ∈ Dom(E),∫

Ω

∇u · ∇v dx = E(u, v) = 〈Hu,v〉L2(Ω,μ). (2.2)

Let D(Ω) denote the space of test functions consisting of C∞
c (Ω) equipped with the following

topology: a sequence {un} converges to a function u in D(Ω) if there exists a compact K ⊆ Ω

such that supp(un) ⊆ K for all n, and for any partial derivative Ds of order s, the sequence
{Dsun} converges to Dsu uniformly on K (see [36, p. 29]). Denote by D′(Ω) the space of
distributions, the dual space of D(Ω).

Proposition 2.2. Assume that condition (C1) holds. For u ∈ Dom(E) and f ∈ L2(Ω,μ), the
following conditions are equivalent:

(a) u ∈ Dom(H) and Hu = f ;
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(b) −�u = f dμ in the sense of distribution; that is, for any v ∈ D(Ω),∫
Ω

∇u · ∇v dx =
∫
Ω

vf dμ. (2.3)

Proof. Assume that (a) holds. We have, for any v ∈D(Ω), and for any s � 0,∣∣∣∣ ∫
Ω

Dsvf dμ

∣∣∣∣ � ‖f ‖L1(Ω,μ)

∥∥Dsv
∥∥∞ �

(
μ(Ω)

)1/2‖f ‖L2(Ω,μ)

∥∥Dsv
∥∥∞.

Thus f dμ defines a continuous linear functional on D(Ω), and so it is a distribution.
Moreover, we see from (2.2) that∫

Ω

vf dμ = 〈Hu,v〉L2(Ω,μ) = E(u, v) =
∫
Ω

∇u · ∇v dx,

for any v ∈ D(Ω). Hence (b) holds.
Conversely, assume that (b) holds. Since D(Ω) is dense in Dom(E), one can show, by us-

ing condition (C1), that (2.3) also holds for all v ∈ Dom(E). Hence, we see that E(u, v) =
〈f, v〉L2(Ω,μ) for all v ∈ Dom(E). This implies that u ∈ Dom(H) and Hu = f . Therefore, (a) fol-
lows. �

In the sequel, we denote −H by �μ and call �μ a Laplacian with respect to μ. Proposition 2.2
says that for any u ∈ Dom(�μ), �u = �μudμ in the sense of distribution. We rewrite (2.2) as∫

Ω

∇u · ∇v dx = E(u, v) = 〈−�μu,v〉L2(Ω,μ) (2.4)

for u ∈ Dom(�μ) and v ∈ Dom(E).
The following theorem shows that for any f ∈ L2(Ω,μ), the equation

�μu = f, u|∂Ω = 0,

has a unique solution in L2(Ω,μ).

Theorem 2.3. Assume that condition (C1) holds. Then, for any f ∈ L2(Ω,μ), there exists a
unique u ∈ Dom(�μ) such that �μu = f . The operator

�−1
μ :L2(Ω,μ) → Dom(�μ), f �→ u,

is bounded and has norm at most C, the constant in condition (C1).

Proof. Let f ∈ L2(Ω,μ). Define a linear functional Tf on Dom(E) by

Tf (v) = −
∫

f v dμ, v ∈ Dom(E).
Ω
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Then, by condition (C1),∣∣Tf (v)
∣∣ � ‖f ‖L2(Ω,μ)‖v‖L2(Ω,μ) � C‖f ‖L2(Ω,μ)E(v, v)1/2.

Hence Tf is continuous. By the Riesz representation theorem, there exists a unique u ∈ Dom(E)

such that

‖u‖H 1
0 (Ω) = ‖Tf ‖ � C‖f ‖L2(Ω,μ), (2.5)

and for all v ∈ Dom(E),

−
∫
Ω

f v dμ = Tf (v) = E(u, v).

Therefore �u = f dμ in the sense of distribution. By Proposition 2.2, we have that u ∈
Dom(�μ) and �μu = f . The last assertion follows from (2.5). �
3. The L∞-dimension and compactness of �−1

μ

Let μ be a finite positive Borel measure on R
d with bounded support. In this section we are

concerned with the condition for which assumption (C1) holds. As a result, we will obtain a
sufficient condition for the operator (�μ)−1 to be compact. The case of self-similar measures
will be discussed in Section 5.

We state the relation between the upper (or lower) regularity and lower (or upper) L∞-
dimension of μ. We say that μ is upper s-regular for s > 0, if there exists some c > 0 such
that, for all x ∈ supp(μ) and all 0 � r � diam(supp(μ)),

μ
(
Br(x)

)
� c rs . (3.1)

The lower s-regularity is defined by reversing the inequality.

Lemma 3.1. Assume that μ is a finite positive Borel measure on R
d with bounded support.

(a) If μ is upper (respectively lower) s-regular for some s > 0, then dim∞(μ) � s (respectively
dim∞(μ) � s).

(b) Conversely, if dim∞(μ) � s (respectively dim∞(μ) � s) for some s > 0, then μ is upper
(respectively lower) α-regular for any 0 < α < s (respectively α > s).

Proof. The conclusion (a) directly follows from the definitions in (1.3) and (3.1). To show (b),
let dim∞(μ) � s and 0 < α < s. By the definition in (1.3), there exist r0, ε > 0 such that, for any
0 < r < r0,

ln(supx μ(Br(x)))

ln r
� s − ε � α + ε,

which implies that

μ
(
Br(x)

)
� rα+ε � crα (3.2)
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for all x ∈ supp(μ). Note that (3.2) also holds for r � r0 by adjusting the value of c, since μ

is finite and has compact support. Thus μ is upper α-regular. Similarly, one can show that if
dim∞(μ) � s and α > s, then μ satisfies (3.1) with α replacing s. �

Let Ω be a bounded open subset of R
d . Note that if the unit ball

B0 := {
u ∈ C∞

c (Ω): ‖u‖H 1
0 (Ω) � 1

}
is relatively compact in L2(Ω,μ), then condition (C1) holds and the embedding Dom(E) ↪→
L2(Ω,μ) is compact. The following theorem, based on a result in [27], is crucial in establishing
the relative compactness of B0 in L2(Ω,μ).

Theorem 3.2. Let d � 2 and 2 < q < ∞, and let μ be a finite positive Borel measure on R
d with

bounded support. Let B = {u ∈ C∞
c (Rd): ‖u‖H 1

0 (Rd ) � 1}.

(a) If dim∞(μ) > q(d − 2)/2, then B is relatively compact in Lq(Rd,μ).
(b) If dim∞(μ) < q(d − 2)/2, then B is not relatively compact in Lq(Rd ,μ).

Proof. We will use the following result. For q > 2, the ball B = {u ∈ C∞
c (Rd): ‖u‖H 1

0 (Rd ) � 1}
is relatively compact in Lq(Rd ,μ) if and only if

lim
δ→0+ sup

x∈Rd ; r∈(0,δ)

r1−d/2μ
(
Br(x)

)1/q = 0 for d > 2, and (3.3)

lim
δ→0+ sup

x∈Rd ; r∈(0,δ)

|ln r|1/2μ
(
Br(x)

)1/q = 0 for d = 2 (3.4)

(see Maz’ja [27, p. 386]).
(a) Since dim∞(μ) > q(d − 2)/2, by Lemma 3.1(b), there is α > q(d − 2)/2 such that μ is

upper α-regular; that is, for all r > 0 and all x ∈ supp(μ), μ(Br(x)) < crα.

If d > 2, we obtain

sup
x∈Rd ; r∈(0,δ)

r1−d/2μ
(
Br(x)

)1/q
< c1/qδ(α−q(d−2)/2)/q ,

which implies (3.3). If d = 2, we have

sup
x∈Rd ; r∈(0,δ)

|ln r|1/2μ
(
Br(x)

)1/q
< c1/q |ln δ|1/2δα/q,

and so (3.4) holds.
(b) For d > 2, it is straightforward to show that

lim
δ→0+ sup

x∈Rd ; r∈(0,δ)

r1−d/2μ
(
Br(x)

)1/q = 0 ⇒ dim∞(μ) � q(d − 2)

2
.

Since the inequality dim∞(μ) � 0 always holds, the case d = 2 is trivial. Hence, if
dim∞(μ) < q(d − 2)/2, then B is not relatively compact in Lq(Rd ,μ). �
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We are now in a position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. For the case d = 1, the conclusion of the theorem follows from the fact
that H 1

0 (Ω) is compactly embedded in C(Ω), the space of continuous functions on Ω (cf. [1]).
It remains to consider the case d � 2.

Let s := dim∞(μ) > d − 2. Choose q so that 2 < q < 2s/(d − 2). Since dim∞(μ) =
s > q(d − 2)/2, we see from the above theorem that the unit ball B is relatively compact
in Lq(Rd ,μ). Since μ is a finite measure, the space Lq(Rd,μ) is embedded in L2(Rd,μ).
Consequently, the unit ball B is relatively compact in L2(Rd,μ). Noting that B0 ⊂ B , we ob-
tain that B0 is relatively compact in L2(Ω,μ). Thus, condition (C1) holds, and the embedding
Dom(E) ↪→ L2(Ω,μ) is compact. �
Proof of Theorem 1.2. This theorem is a direct consequence of Theorem 1.1. In fact, since
dim∞(μ) > d − 2, the embedding Dom(E) ↪→ L2(Ω,μ) is compact by Theorem 1.1. A stan-
dard argument implies that the operator −�μ possesses a sequence of eigenfunctions {un}∞n=1
that forms a complete orthonormal basis of L2(Ω,μ), with corresponding positive eigenvalues
λn converging to ∞ as n → ∞. Moreover, each eigenvalue is of finite multiplicity (see, for
example, [8]). �

The domain and spectrum Spec(−�μ) of −�μ can be characterized by the eigenfunctions
{un} and eigenvalues {λn} of −�μ as follows:

(a) Dom(−�μ) = (−�μ)−1(L2(Ω,μ)) = {∑∞
n=1 anun:

∑∞
n=1 a2

nλ
2
n < ∞};

(b) Spec(−�μ) = {λn}.

The proofs of these are standard; we omit the details.

4. Green’s operator

Let Ω ⊆ R
d be a bounded domain (i.e., open and connected). Let μ be a positive finite Borel

measure with supp(μ) ⊆ Ω and μ(Ω) > 0 as before. Throughout this section, we assume that
the Green’s function g(x, y) for the classical Laplacian � exists on Ω . We will prove that this
Green’s function g(x, y) is also the Green’s function for �μ, if condition (C2) holds. We show
that (C2) is true if dim∞(μ) > d − 2 (see Proposition 4.1). Finally, we prove Theorem 1.3.

Note that if u ∈ C2(Ω), we have

u(x) =
∫
Ω

g(x, y)(−�u)(y)dy (x ∈ Ω). (4.1)

For f ∈ C1(Ω), the equation

−�u = f with u|∂Ω = 0 (4.2)

possesses a unique solution in C2(Ω) given by

u(x) =
∫

g(x, y)f (y) dy. (4.3)
Ω
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Note that for d = 1 and Ω = (a, b),

g(x, y) =
{

(x − a)(b − y) if x � y,

(y − a)(b − x) if x > y.

For d � 2,

g(x, y) =
{− 1

2π
ln |x − y| + h(x, y) if d = 2,

− 1
|x−y|d−2 + h(x, y) if d � 3,

(4.4)

where h(x, ·) is harmonic in x ∈ Ω for any fixed y ∈ Ω , and h(x, y) = h(y, x) is continuous on
Ω × Ω . The function g is equal to 0 for x ∈ Ω and y ∈ ∂Ω or for y ∈ Ω and x ∈ ∂Ω (see [10]).

It is known that the Green’s function exists for any domain Ω ⊆ R
2 which can be conformally

mapped onto the closed unit disk (see [6, p. 377]). In R
3, the Green’s function exists for any

domain Ω each of its boundary points is a vertex of a tetrahedron lying outside of Ω (see [7,
pp. 290–292]). In [26], it was proved that the Green’s function for −� exists for any regular
domain Ω ⊆ R

d (d � 2). See also [2].
Recall that g(x, y) � 0 for all x, y ∈ Ω . We introduce the following condition:

(C2) sup
x∈Ω

∫
Ω

g(x, y) dμ(y) � C < ∞ for some constant C > 0.

Note that this condition automatically holds for the case d = 1.

Proposition 4.1. Let Ω be a bounded domain in R
d for which the Green’s function g(·,·) exists,

and let μ be a positive finite Borel measure with supp(μ) ⊆ Ω . Assume dim∞(μ) > d − 2. Then
condition (C2) holds.

Proof. Assume that dim∞(μ) > d − 2. By Lemma 3.1(b), we see that μ is upper α-regular for
some α > d − 2; that is, there exists a constant c > 0 such that for all x ∈ supp(μ) and all r > 0,

μ
(
Br(x)

)
< crα. (4.5)

In order to prove (C2), we divide the proof into the following two cases: d = 2 and d > 2. (The
case d = 1 is clear.)

Case 1. d = 2. By (4.4), it suffices to prove that there exists some constant C > 0 such that∫
Ω

∣∣ln |x − y|∣∣dμ(y) � C (4.6)

for all x ∈ Ω . Indeed, letting r0 := diam(Ω), we have that∫ ∣∣ln |x − y|∣∣dμ(y) =
∫ ∣∣ln |x − y|∣∣dμ(y) +

∫ ∣∣ln |x − y|∣∣dμ(y). (4.7)
Ω |y−x|<1 1�|y−x|�r0
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The second integral on the right-hand side of (4.7) is bounded for all x ∈ Ω , since Ω is bounded
and μ(Ω) < ∞. The first integral is also uniformly bounded in x, by noting that, using (4.5),

∫
|y−x|<1

∣∣ln |x − y|∣∣dμ(y) =
∞∑

k=1

∫
2−k�|y−x|<2−(k−1)

∣∣ln |x − y|∣∣dμ(y)

�
∞∑

k=1

(
ln 2k

)
μ

(
B2−(k−1) (x)

)
� c(ln 2)

∞∑
k=1

k2−α(k−1) < ∞.

This proves (C2) for the case d = 2.

Case 2. d > 2. The proof is similar to that of the case d = 2. By (4.4), it is sufficient to prove
that there exists a constant C > 0 such that∫

Ω

|x − y|−(d−2) dμ(y) � C (4.8)

for all x ∈ Ω . This is true, since∫
Ω

|x − y|−(d−2) dμ(y) =
∫

|x−y|<1

|x − y|−(d−2) dμ(y) +
∫

1�|x−y|�r0

|x − y|−(d−2) dμ(y).

The second integral on the right-hand side is clearly bounded. The first one is estimated as fol-
lows, using (4.5) again:

∫
|x−y|<1

|x − y|−(d−2) dμ(y) =
∞∑

k=1

∫
2−k�|y−x|<2−(k−1)

|x − y|−(d−2) dμ(y)

�
∞∑

k=1

2k(d−2)μ
(
B2−(k−1) (x)

)
� c2α

∞∑
k=1

2−k(α−(d−2)) < ∞.

This proves (C2) for d > 2. �
For 1 � p � ∞, we define the Green’s operator Gμ on Lp(Ω,μ) by

(Gμf )(x) :=
∫

g(x, y)f (y) dμ(y) (x ∈ Ω).
Ω
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We remark that this operator and its generalizations have been studied by many authors (see, e.g.,
[3,15,16,34,35]). Clearly, Gμ is self-adjoint by using the fact that g(·,·) is symmetric. Moreover,
by (C2), we obtain that Gμ is bounded on Lp(Ω,μ) for any 1 � p � ∞; that is, for all f ∈
Lp(Ω,μ),

‖Gμf ‖Lp(Ω,μ) � C‖f ‖Lp(Ω,μ), (4.9)

where C is the same constant as in (C2). Indeed, it is easy to see from (C2) that (4.9) holds for
p = 1 or p = ∞. For 1 < p < ∞, by using Hölder’s inequality and (C2), we obtain

‖Gμf ‖p

Lp(Ω,μ) =
∫
Ω

∣∣∣∣ ∫
Ω

g(x, y)f (y) dμ(y)

∣∣∣∣p dμ(x)

�
∫
Ω

{∫
Ω

g(x, y)
∣∣f (y)

∣∣p dμ(y)

}{ ∫
Ω

g(x, y) dμ(y)

}p−1

dμ(x)

� Cp‖f ‖p

Lp(Ω,μ). (4.10)

Thus (4.9) also holds for 1 < p < ∞. We will show below that the operator Gμ is also bounded
from Lp(Ω,μ) to Lp(Ω,dx) for any 1 � p � ∞, if condition (C2) holds.

Proposition 4.2. Let Ω ⊆ R
d (d � 1) be a bounded domain for which the classical Green’s

function g(·,·) exists. Assume that condition (C2) holds. Then there exists some C > 0 such that,
for all f ∈ Lp(Ω,μ) with 1 � p � ∞,

‖Gμf ‖Lp(Ω,dx) � C‖f ‖Lp(Ω,μ). (4.11)

Proof. Note that the Lebesgue measure L satisfies dim∞(L) = d > d − 2, and so (C2) holds
for L by using Proposition 4.1; that is,

sup
x∈Ω

∫
Ω

g(x, y) dy � C < ∞.

Let 1 < p < ∞. Similar to (4.10), we have that∫
Ω

∣∣Gμf (x)
∣∣p dx =

∫
Ω

∣∣∣∣ ∫
Ω

g(x, y)f (y) dμ(y)

∣∣∣∣p dx

�
∫
Ω

{∫
Ω

g(x, y)
∣∣f (y)

∣∣p dμ(y)

}{∫
Ω

g(x, y) dμ(y)

}p−1

dx

� Cp−1
∫
Ω

{∫
Ω

g(x, y) dx

}∣∣f (y)
∣∣p dμ(y)

� Cp‖f ‖p

Lp(Ω,μ)
,

showing that (4.11) holds for 1 < p < ∞. The cases p = 1 and p = ∞ are clear. �
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Proof of Theorem 1.3. We first claim that Gμf ∈ H 1
0 (Ω) for all f ∈ L2(Ω,μ). The proof

given here is motivated by [3, Proposition 3.1].
For f ∈ L2(Ω,μ), let f + := f ∨ 0 and f − := (−f ) ∨ 0 be the positive and negative parts

of f , respectively. Then f +, f − ∈ L2(Ω,μ), and

Gμf = Gμf + − Gμf −.

We show that Gμf + ∈ H 1
0 (Ω). To do this, it suffices to prove (see [15, Theorem 10] or [16,

Theorem 9]) that ∫
Ω

(
Gμf +)

(x)f +(x) dμ(x) < ∞. (4.12)

But this easily follows by noting that ‖Gμf +‖L2(Ω,μ) � C‖f +‖L2(Ω,μ) (see (4.10)) and∫
Ω

(
Gμf +)

(x)f +(x) dμ(x) �
∥∥Gμf +∥∥

L2(Ω,μ)

∥∥f +∥∥
L2(Ω,μ)

� C
∥∥f +∥∥2

L2(Ω,μ)
.

Thus, Gμf + ∈ H 1
0 (Ω). Similarly, Gμf − ∈ H 1

0 (Ω), and hence the claim follows.
Next, we show that Gμf ∈ Dom(E). Let u ∈ N and let {un} be a sequence in C∞

c (Ω) such
that un → u in H 1

0 (Ω) and un → u in L2(Ω,μ). Then

〈Gμf,u〉H 1
0 (Ω) = lim

n→∞

∫
Ω

(∫
Ω

g(x, y)f (y) dμ(y)

)
�un(x)dx

= lim
n→∞

∫
Ω

(∫
Ω

g(x, y)�un(x) dx

)
f (y)dμ(y) (Fubini)

= lim
n→∞

∫
Ω

un(y)f (y) dμ(y)
(
by (4.1)

)
.

Thus, ∣∣〈Gμf,u〉H 1
0 (Ω)

∣∣ � lim
n→∞‖un‖L2(Ω,μ)‖f ‖L2(Ω,μ) = 0

and hence Gμf ∈N⊥ = Dom(E).
Lastly, we show that for any f in L2(Ω,μ), −�μ(Gμf ) = f . Since Gμf ∈ Dom(E), it

suffices to show, in view of Proposition 2.2, that −�(Gμf ) = f dμ in the sense of distribution.
For any v ∈D(Ω), it can be derived by using Fubini’s theorem and (4.1) as above that∫

Ω

v�(Gμf )dx =
∫
Ω

(�v)Gμf dx = −
∫
Ω

f (y)v(y) dμ(y),

proving that −�(Gμf ) = f dμ in the sense of distribution. The rest of Theorem 1.3 follows
easily from Theorem 2.3. �
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5. Self-similar measures

For an invariant measure μ defined by an iterated function system {Si}Ni=1 of contractions
on R

d , we can strengthen Theorems 1.1 and 1.2 further. For ω = (i1, . . . , in), we let Sω = Si1 ◦
· · · ◦ Sin and for the invariant set K , we let Kω = Sω(K).

We call {Si}Ni=1 an iterated function system of bi-Lipschitz contractions if for each i =
1, . . . ,N , there exist ci, ri with 0 < ci � ri < 1 such that

ci |x − y| � ∣∣Si(x) − Si(y)
∣∣ � ri |x − y| for all x, y ∈ R

d . (5.1)

Lemma 5.1. Let μ be an invariant measure of an IFS {Si}Ni=1 of bi-Lipschitz contractions on R
d .

Suppose the attractor K is not a singleton. Then μ is upper s-regular for some s > 0, and hence
dim∞(μ) > 0.

Proof. Let ci, ri , i = 1, . . . ,N , be given as in (5.1) and let {pi}Ni=1 be the associated proba-
bility weights. Since K is not a singleton, there are indices ω1,ω2 of the same length such
that Kω1 ∩ Kω2 = ∅. Hence, without loss of generality, we assume that K1 ∩ K2 = ∅. There
exists r0 > 0 such that for any x ∈ R

d , the ball Br0(x) intersects at most one of K1, K2. Let
p = min{p1,p2} < 1 and let c = min1�i�N {ci}. Set

φ(r) := sup
x∈Rd

μ
(
Br(x)

)
(r � 0).

For x ∈ R
d and 0 < r � r0, either Br(x) ∩ K1 = ∅ or Br(x) ∩ K2 = ∅. We only consider the

former case (the latter case can be treated in a similar way). By using the fact that S−1
i (Br(x)) ⊆

Br/c(S
−1
i (x)), we obtain

μ
(
Br(x)

) =
N∑

i=1

piμ
(
S−1

i

(
Br(x)

)) =
∑
i �=1

piμ
(
S−1

i

(
Br(x)

))
=

(∑
i �=1

pi

)
sup
x∈Rd

μ
(
Br/c

(
S−1

i (x)
))

� (1 − p1)φ

(
r

c

)

� (1 − p)φ

(
r

c

)
.

It follows that

φ(r) � (1 − p)φ

(
r

c

)
(0 < r � r0).

Therefore, for any n � 0 and any 0 < r � r0,

φ
(
cnr

)
� (1 − p)φ

(
cn−1r

)
� · · · � (1 − p)nφ(r).

This implies that

μ
(
Br0c

n(x)
)
� C

(
r0c

n
)s

,
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where s = ln(1 − p)/ ln c and C = exp(− ln(1 − p) ln r0/ ln c). Hence μ is upper s-regular. The
last assertion follows from Lemma 3.1. �

It follows directly from Lemmas 3.1 and 5.1 that on R
2 the above measure μ satisfies

dim∞(μ) > 0 = d − 2. Hence by Theorem 1.1, we have

Corollary 5.2. Let {Si}Ni=1 be an IFS of bi-Lipschitz contractions on R
2 defined as in (5.1),

let μ be an invariant measure, and let Ω be a bounded open subset of R
2 with supp(μ) ⊆

Ω and μ(Ω) > 0. Then the embedding Dom(E) ↪→ L2(Ω,μ) is compact. Consequently, the
conclusions of Theorems 1.2 and 1.3 hold for such a measure μ.

In order to prove Theorem 1.4, recall that if the IFS {Si}Ni=1 of contractive similitudes satis-
fies the OSC, then for any self-similar measure μ, the corresponding τ(q) is differentiable and
satisfies

N∑
i=1

p
q
i r

−τ(q)
i = 1, q ∈ R, (5.2)

where ri and pi are the contraction ratio and probability weight associated to Si , respectively (see
[5,21]). We show in the following remark that the L∞-dimension of such measures, dim∞(μ),
actually exists.

Remark 5.3. Peres and B. Solomyak [30] proved that for self-conformal measures μ, and thus
for all (strictly) self-similar measures, the limit defining τ(q) in (1.6) actually exists. We will
show that this implies

dim∞(μ) = dim∞(μ) =: dim∞(μ).

To see this let q � 0 and note that there exists a constant c > 0 such that

sup
x

μ
(
Bδ(x)

)q � sup
∑

i

μ
(
Bδ(xi)

)q � cδ−d sup
x

μ
(
Bδ(x)

)q
,

where the first and third suprema are taken over all x ∈ supp(μ), and the second one is taken over
all families of disjoint δ-balls with centers xi ∈ supp(μ). After taking the logarithm, dividing
through by ln δ and q , and then taking lim inf and lim sup as δ → 0+, we have

−d

q
+ lim inf

δ→0+
ln supx μ(Bδ(x))

ln δ
� τ(q)

q
� lim inf

δ→0+
ln supx μ(Bδ(x))

ln δ
,

−d

q
+ lim sup

δ→0+

ln supx μ(Bδ(x))

ln δ
� τ(q)

q
� lim sup

δ→0+

ln supx μ(Bδ(x))

ln δ
.

Note that the limit of τ(q)/q exists since τ(q) is concave. Now letting q → ∞ yields the asser-
tion.

We will also need the following remark.
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Remark 5.4. If μ is a self-similar measure defined by an IFS of contractive similitudes satisfy-
ing the OSC, then μ(Ki ∩ Kj) = 0 for any i �= j . Moreover, μ(Kω) = pω μ(K) = pω for any
word ω.

To see this we recall that if μ0 is the self-similar measure with natural weights pi = rα
i ,

where α is the similarity (or Hausdorff ) dimension of the attractor, then there exists a basic
open set U with μ0(U) = 1 (see [31]). For a self-similar measure μ associated with arbitrary
probability weights pi > 0, either μ(U) = 1 or μ(U) = 0 (see [24]). It follows from μ0(U) = 1
that μ(U) = 1. Now, by observing that Ki ∩ Kj ⊆ Ui ∩ Uj , we have μ(Ki ∩ Kj) = 0.

To see the second assertion in the remark, we notice that μ(Ki ∩ Kj) = 0 for i �= j implies
that

∑
i

μ(Ki) = μ

(⋃
i

Ki

)
= μ(K) = 1. (5.3)

On the other hand, the self-similarity of μ implies that

μ(Ki) = piμ(K) +
∑
j �=i

pjμ
(
S−1

j (Ki)
)
� pi. (5.4)

Combining (5.3) and (5.4) we have μ(Ki) = pi for each i. Repeating the above procedure, we
see that μ(Kω) = pω for any word ω.

Proof of Theorem 1.4. The implication (a) ⇒ (b) was proved in [29, Proposition 2], where the
technical condition μ(∂Ω) = 0 is required. In fact, this condition can be dropped, since we can
always find a point xi ∈ supp(μ) =: K differing from the fixed point of Si for each i, and then
run the same proof as in [29]. (Here we are using the condition μ(Ki ∩ Kj) = 0 for any i �= j ,
so that

∫
Ω

|Un|2 dμ = ∫
Ω

|U0|2 dμ; see [29, p. 283] for the definition for Un.)
The implication (c) ⇒ (a) is shown in Theorem 1.1. The equivalence between (c) and (d) is

stated in Lemma 3.1. Note that the OSC and the self-similarity of μ are not used in establishing
these implications.

It remains to prove the implication (b) ⇒ (c), in which we need the OSC. Assume that (b)
holds; that is, Ā < 1. By (5.2), we have that

τ ′(q) =
∑N

i=1 p
q
i r

−τ(q)
i lnpi∑N

i=1 p
q
i r

−τ(q)
i ln ri

.

By the definition of Ā, we see that lnpi � (d − 2) ln ri + ln Ā for all i = 1, . . . ,N . Consequently,
by noting that

∑N
i=1 p

q
i r

−τ(q)
i ln ri < 0 for 0 < ri < 1 and using (5.2) again, we obtain that

τ ′(q) �
∑N

i=1 p
q
i r

−τ(q)
i [(d − 2) ln ri + ln Ā]∑N
i=1 p

q
i r

−τ(q)
i ln ri

� d − 2 + ln Ā∑N
r
−τ(q)

p
q ln r

� d − 2 + ln Ā

ln r
,

i=1 i i i
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where r = min1�i�N ri . On the other hand, it is known (see, e.g., [21]) that

dim∞(μ) = lim
q→∞ τ ′(q).

Consequently, dim∞(μ) � d − 2 + ln Ā/ ln r > d − 2, and so (c) holds. �
In view of Theorem 1.4, the following proposition is useful in estimating the lower bound of

dim∞(μ).

Proposition 5.5. Let {Si}Ni=1 be an IFS of contractive similitudes on R
d satisfying the OSC, and

let μ be the associated self-similar measure with probability weights {pi}Ni=1. Then

dim∞(μ) � min
1�i�N

{
lnpi

ln ri

}
, (5.5)

where ri is the contraction ratio of Si .

Proof. Under the OSC, we have μ(Ki ∩Kj) = 0 for any i �= j and μ(Kω) = pω for any word ω

(see Remark 5.4). For 0 < r < 1, let

Λ(r) = {
ω = (i1, . . . , in): ri1 · · · rin < r � ri1 · · · rin−1

}
. (5.6)

(Intuitively, for each ω ∈ Λ(r), Kω has diameter approximately r .) It is easy to see that K =⋃
ω∈Λ(r) Kω. Let s = min1�i�N {lnpi/ln ri}. Then

μ(Kω) = pi1 · · ·pin � (ri1 · · · rin)s < rs. (5.7)

On the other hand, the OSC implies that there exists a constant C > 0 such that for each x0 ∈ K ,
the ball Br(x0) intersects at most C sets of the form Kω, ω ∈ Λ(r) (see [11, Section 9.2]).
Therefore, it follows from (5.7) that

μ
(
Br(x0)

)
< Crs. (5.8)

Therefore μ is upper s-regular, and hence dim∞(μ) � s by Lemma 3.1. �
While it is in general difficult to estimate the lower bound of dim∞(μ) for an invariant mea-

sure, it is straightforward to obtain an upper bound for dim∞(μ).

Proposition 5.6. Let {Si}Ni=1 be an IFS of contractions on R
d with contraction ratio ri for each i,

i.e., ∣∣Si(x) − Si(y)
∣∣ � ri |x − y| for all x, y ∈ R

d,

and let μ be the associated invariant measure with probability weights {pi}Ni=1. Then

dim∞(μ) � max
1�i�N

{
lnpi

ln ri

}
. (5.9)
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Proof. Assume without loss of generality that the attractor K satisfies diam(K) � 1. Note that
supp(μ) = K . For 0 < r < 1, let Λ(r) be the index set defined as in (5.6). Let x0 ∈ K . Then
there exists ω ∈ Λ(r) such that x0 ∈ Kω . Observe that such a Kω is contained in the ball Br(x0).
To see this, we write x0 = Sω(z0) for some z0 ∈ K . For any x ∈ Kω , by writing x = Sω(z) with
z ∈ K , we have

|x − x0| =
∣∣Sω(z) − Sω(z0)

∣∣ � rω|z − z0| � rω diam(K) < r,

showing that Kω ⊆ Br(x0). Therefore, for 0 < r < 1 we have

μ
(
Br(x0)

)
� μ(Kω) =

∑
τ∈Λ(r)

pτμ
(
S−1

τ (Kω)
)
� pωμ

(
S−1

ω (Kω)
) = pω � (rω)s > c0r

s,

where s = max1�i�N {lnpi/ln ri} and c0 = (mini{ri})s . (Here we have used the fact that
rω � mini{ri}ri1 · · · rin−1 � mini{ri}r.) Hence μ is lower s-regular, and dim∞(μ) � s by using
Lemma 3.1. �

In order to study some important IFSs of contractive similitudes that do not satisfy the OSC,
Lau and Ngai [21] generalized the OSC by introducing a weaker notion of separation on the
IFSs called the weak separation condition (WSC). The properties of IFSs satisfying the WSC
have been studied extensively in a series of papers [9,19–23,25]. In particular, by making use of
the renewal equation, they have given algorithms to calculate the Lq -spectrum τ(q) for q = 2
as well as for integers q > 2 for self-similar measures defined by several important classes of
IFSs satisfying the WSC [12,25]. For such IFSs, we can make use of the following relationship
to obtain a lower bound for dim∞(μ) through τ(q).

Lemma 5.7. Let μ be any finite positive Borel measure on R
d (d � 1) with compact support.

Then q dim∞(μ) � τ(q) for all q ∈ R; moreover, limq→∞ τ(q)/q = dim∞(μ). In particular,
dim∞(μ) > d − 2 if and only if there exists some q0 > 0 such that τ(q0)/q0 > d − 2.

Proof. The first inequality is hinted in the proof of [21, Proposition 3.4]. Indeed, this inequality
easily follows from (1.6) and the fact that

sup
x

μ
(
Bδ(x)

)q � sup
∑

i

μ
(
Bδ(xi)

)q
,

where {Bδ(xi)} is a collection of disjoint closed δ-balls with centers xi ∈ supp(μ). That
limq→∞ τ(q)/q = dim∞(μ) is proved in [21, Proposition 3.4]. �

It follows from Lemma 5.7 that if we can compute τ(q) for positive integers q , then we may be
able to verify the condition dim∞(μ) > d − 2. This can be done for an interesting class of IFSs.
We note that for q > 0, the function τ(q) has the following equivalent definition (see [20,21]):

τ(q) = sup

{
α: lim sup

h→0+

1

hd+α

∫
d

μ
(
Bh(x)

)q
dx < ∞

}
.

R
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This formula enables us to compute τ(q) in terms of the spectral radius of some finite tran-
sition matrix, if the IFS satisfies a certain weak separation condition to be stated below. We
generalize the method in [25] and refer the reader to [22,25] for details. Let Si : Rd → R

d ,
i = 1, . . . ,N , be an IFS of contractive similitudes on R

d , with the same contraction ratio, de-
fined by

Si(x) = ρRi(x + di) = ρRix + bi, (5.10)

where 0 < ρ < 1, Ri is orthogonal, and bi, di ∈ R
d . Let μ be the self-similar measure associated

with the probability weights {pi}Ni=1. In the following we denote a composition f ◦ g by fg for
simplicity. Fix an integer q � 2, let Σn = {i = (i1, . . . , in): 1 � ij � N} for n � 1, and define

S =
{

s = (
S−1

i1
Sj1, . . . , S

−1
iq−1

Sjq−1

)
: (ik, jk) ∈

∞⋃
n=1

(Σn × Σn) for 1 � k � q − 1

}
.

Define an infinite Markov matrix T with state space S by

T (s) =
∑
s′∈S

Ts,s′s
′, s = (ζ1, . . . , ζq−1) ∈ S,

where

Ts,s′ =
N∑

i,i1,...,iq−1=1

{
pi1 . . . piq−1pi :

(
S−1

i1
ζ1Si, . . . , S

−1
iq−1

ζq−1Si

) = s′}.
For α � 0, h > 0, and s = (ζ1, . . . , ζq−1) ∈ S , define

Φs(h) := 1

hd+α

∫
Rd

μ
(
Bh

(
ζ1(x)

)) · · ·μ(
Bh

(
ζq−1(x)

))
μ

(
Bh(x)

)
dx.

We denote the vector {Φs(h)}s∈S by Φ(h) and let 〈S〉 be the linear space spanned by S . For any
v = ∑

s vs s ∈ 〈S〉, let

Φv(h) :=
∑

s

vsΦs(h).

It can be proved by applying the self-similar identity and a change of variables (see [25, Propo-
sition 4.2]) that for s ∈ S ,

Φs(h) = ρ−αΦT (s)

(
h

ρ

)
.

Note that supp(μ) is contained in the ball with center 0 and radius (max |bi |)/(1 − ρ) =
ρ/(1 − ρ)max |di |.
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Definition 5.8. Let {Si}Ni=1 be defined as in (5.10) and let q � 2 be an integer. Let C =
2 max |bi |/(1 − ρ) and let

S̃ = {
s = (ζ1, . . . , ζq−1) ∈ S:

∣∣ζi(0)
∣∣ � C for i = 1, . . . , q − 1

}
.

We say that {Si}Ni=1 satisfies the weak separation condition∗ (WSC∗) if for q = 2 (and hence for
all integers q � 2), the set S̃ is finite.

This definition is equivalent to that in [25], where various classes of IFSs satisfying the WSC∗
are illustrated. If the WSC∗ holds, then T can be written as

T =
[

T̃ 0
Q T ′

]
,

where T̃ is a sub-Markov matrix on the states S̃. By the WSC∗, T̃ is a finite matrix.
Now, we choose an irreducible component of T̃ as follows. Denote by ι = (I, . . . , I ) ((q −1)-

coordinates) the identity map in S̃ . Let S̃ι be the T̃ -irreducible component of S̃ that contains ι;
that is, s ∈ S̃ι if and only if there exist m,n � 1 such that T

(m)
ι,s , T

(n)
s,ι > 0 (where T

(n)

s,s′ denotes the

(s, s′) entry of T̃ n). Let Tι be the truncated square matrix of T̃ on S̃ι. Then Tι is irreducible.
The following theorem generalizes [25, Theorem 4.1].

Theorem 5.9. Suppose the IFS {Si}Ni=1 defined as in (5.10) satisfies the WSC∗. Let λmax be the
maximal eigenvalue of TI . Then

τ(q) = lnλmax

lnρ
.

For IFSs satisfying the WSC∗ but not the OSC, we can use Theorem 5.9 to calculate the values
of τ(q) for integers q > 0. If there exists some positive integer q0 such that τ(q0)/q0 > d − 2,
then by Lemma 5.7, the condition dim∞(μ) > d − 2 holds. Plenty of examples of such IFSs
on R

d , where d � 3, can be constructed to illustrate this; we briefly mention one below.

Example 5.10. Let {Si}9
i=1 be an IFS on R

3 defined by Si(x) = x/2 + bi , where b1 = (0,0,0),

b2 = (1/2,0,0), b3 = (0,1/2,0), b4 = (1/2,1/2,0), b5 = (0,0,1/2), b6 = (1/2,0,1/2), b7 =
(0,1/2,1/2), b8 = (1/2,1/2,1/2), b9 = (1/4,0,0).

It is easy to see that {Si}9
i=1 does not satisfy the OSC. However, it satisfies the WSC∗ (see [25, Ex-

ample 2.4]). In the case pi = 1/9 for all i = 1, . . . ,9, we have that 92λmax = (
√

113 + 11)/2, the
largest root of the polynomial x2 − 11x + 2. Thus, τ(2) = lnλmax/ ln(1/2) ≈ 2.9048785171 . . . .
Since τ(2)/2 = 1.4524392585 . . . > d − 2, Proposition 5.7 implies that dim∞(μ) > d − 2.
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