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SOME EXCEPTIONAL PHENOMENA IN MULTIFRACTAL

FORMALISM: PART II∗

DE-JUN FENG† , KA-SING LAU‡ , AND XIANG-YANG WANG§

Abstract. In Part I we showed that the Lq-spectrum of the 3-fold convolution of the Cantor
measure has a non-differentiable point at a q0 < 0 [LW], therefore the standard multifractal formalism
does not hold. In this Part II, we prove a modified multifractal formalism for the measure.
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1. Introduction. The present paper is a continuation of the work in [LW] for
investigating the multifractal structure of the measure µ of the 3-fold convolution
of the Cantor measure. We first recall some basic setting in [LW]: the probability
measure µ satisfies the self-similar identity

µ =

3∑

j=0

pjµ ◦ S−1
j ,

where Sj(x) = 1
3 (x + 2j) for j ∈ {0, 1, 2, 3} and [p0, p1, p2, p3] = [1/8, 3/8, 3/8, 1/8].

This is one of the simplest examples of the IFS with overlaps having some exceptional
multifractal properties. We can express it in a vector-valued form

µ(·) =

2∑

j=0

Tjµ(3 · −j), (1.1)

where

µ(A) =





µ
(
A ∩ [0, 1]

)

µ
(
(A ∩ [0, 1]) + 1

)

µ
(
(A ∩ [0, 1]) + 2

)





for any Borel subset A ⊂ R, and the matrix-valued coefficients Tj are defined by

T0 =





p0 0 0
0 p1 0
p3 0 p2



 , T1 =





0 p0 0
p2 0 p1

0 p3 0



 , T2 =





p1 0 p0

0 p2 0
0 0 p3



 .
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The Lq-spectrum τ(q) of µ has been shown in [LW] to be

τ(q) = − lim
n→∞

1

n

(
log3

2∑

i=0

∑

|J|=n

(eiTJ1)q
)
,

where TJ denotes Tj1 · · ·Tjn
for J = j1 · · · jn, and ei denotes the 3-dimensional unit

vector whose (i+1)-th entry is 1, and 1 the 3-dimensional vector in which each entry
is 1.

Now we define a sequence of functions sn(q) of q on R by setting s0(q) = pq
1 + pq

2,
s1(q) = (p0p2 + p1p3)

q and

sn(q) =
∑

J∈{0,2}n−1

(

[p2, p1]T̄J

[
p0

p3

])q

, n ≥ 2, (1.2)

where

T̄0 =

[
p0 0
p3 p2

]

, T̄2 =

[
p1 p0

0 p3

]

.

It was shown in [LW] that

Theorem 1.1. The Lq-spectrum τ(q) of µ is given by

τ(q) =

{
log3 r(q) if q ≥ q0,
q log3 8 if q < q0,

where r(q) satisfies
∑∞

k=0 sk(q)r(q)k+1 = 1 and q0 satisfies 8−q0r(q0) = 1 (q0 ≈
−1.149). Furthermore τ(q) is real analytic except for q = q0, which is a non-
differentiable point of τ .

For x ∈ supp(µ), let α(x) = limδ→0
log µ(Bδ(x))

log δ
be the local dimension of µ at

x (if the limit exists). It was proved in [HL] that

Theorem 1.2. Let E be the set of local dimensions of µ, i.e.,

E = {α : α = α(x) for some x ∈ supp µ}.

Then E = [α, α̃] ∪ {ᾱ} with

α = log3(8/3), α̃ = log3(8/
√

λ1) and ᾱ = log3 8,

where λ1 = (7 +
√

13)/2.

As in the above two theorems, the multifractal formalism breaks down resulting
from the non-differentiable point of the Lq-spectrum at q0, and the isolated point
ᾱ in the dimension spectrum. It is known in [HL] that the isolated point ᾱ comes
from the two end points of supp µ(= [0, 3]). In this Part II, we will overcome these
problems by restricting µ to the interior of its support [0, 3]. More precisely, we let
µm = µ|[3−m,3−3−m], the restriction of µ on the interval [3−m, 3 − 3−m]. Our main
theorem is:

Theorem 1.3. Let r(q) be defined as in Theorem 1.1. Then r(q) is real analytic
on R. The Lq-spectrum of µm are the same for all m ∈ N and the common value is
given by τ̃(q) = log3 r(q), q ∈ R.



EXCEPTIONAL PHENOMENA IN MULTIFRACTAL 475

Moreover if we denote K(α) = {x ∈ supp µ : α(x) = α}, then

dimH K(α) = τ̃∗(α), ∀ α ∈ (α, α̃),

where τ̃∗(α) is the Legendre transform of τ̃ (q), i.e., τ̃∗(α) = inf{αq − τ̃(q) : q ∈ R}.
For the first part of the theorem, the main task is to show that r(q) is real analytic.

Note that this has been proved for q > q0 (in fact for q > −2) in Part I. For the more
general q < 0, it requires more techniques in manipulating the product of the matrices
involved in sn(q). It will be discussed in detail in Section 2.

The second part of the theorem follows easily once we have shown that the multi-
fractal formalism holds for µ0. To achieve this point, we represent µ0 as a self-similar
measure generated by an IFS with infinitely many similitudes fj :

µ0 =

∞∑

j=1

wjµ0 ◦ f−1
j , (1.3)

where {wj}∞j=1 is a set of probability weights, and the family of {fj}∞j=1 satisfies the
following separation condition:

fi(I) ∩ fj(I) = ∅, i 6= j,

where I = [1, 2].
Using the representation (1.3) of µ0, we can verify the multifractal formalism for

µ0 (actually for a more general self-similar measure generated by a non-overlapping
IFS with infinitely many similitudes). We remark that a multifractal analysis for such
infinite IFS have been given by Riedi and Mandelbrot [RM], however they need more
restrictions on the contraction ratios and their theorem is not applicable here.

We point that a representation similar to (1.3) was set up earlier by Feng in [F]
for the Bernoulli convolutions associated with the golden ratio and some other Pisot
numbers. It was shown in [F] that, in the golden ratio case, the Lq-spectrum also has
a non-differential point in (−∞, 0); however Feng and Olivier [FO] showed that in this
case, the multifractal formalism still holds in the sense that the dimension spectrum
and the Lq-spectrum strictly form a Legendre transform pair.

In the appendix part we show that Theorem 1.2 can also be derived from Theorem
1.3. The argument is considerably simpler than the original combinatorial proof given
in [HL]. Actually in the appendix we will provide another one proof depending directly
on the estimates of the product of matrices developed here.

2. The Lq-spectrum. In this section, we prove the first part of Theorem 1.3.
As in Part I, we let

M0 = 8T̄0 =

[
1 0
1 3

]

, M2 = 8T̄2 =

[
3 1
0 1

]

.

For a 2 × 2 nonnegative matrix M , we let ‖M‖ = [1, 1]M
[

1

1

]
.

Note that for any m > 0 and J ∈ {0, 2}m, J can be written as 0n12n2 · · · ǫnk

or 2n10n2 · · · (2 − ǫ)nk for some positive integers k and n1, . . . , nk, where ε = 0 or 2
according to k is odd or even. Accordingly, MJ can be written as Mn1

0 Mn2

2 · · ·Mnk
ε

or Mn1

2 Mn2

0 · · ·Mnk

2−ε.
To evaluate the norm of the product of matrices, for any k ≥ 1, let ε = 0 or 2

according to k is odd or even, and let n1, · · · , nk ∈ N. Define

c(n1, · · · , nk) = ‖Mn1

0 Mn2

2 · · ·Mnk
ε ‖ (= ‖Mn1

2 Mn2

0 · · ·Mnk

2−ε‖),
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and let

c̄(n1, · · · , nk) = [0, 1]Mn1

0 Mn2

2 · · ·Mnk
ε

[
0
1

]

.

It is clear that c̄(n1, · · · , nk) is the (2, 2)-entry of the matrix Mn1

0 Mn2

2 · · ·Mnk
ε .

Lemma 2.1. For any k, l ≥ 1, n1, · · · , nk+l ≥ 1, we have

c̄(n1, · · · , nk)c̄(nk+1, · · · , nk+l) ≤ c̄(n1, · · · , nk+l), (2.1)

1/8 ≤ c̄(n1, · · · , nk)/c(n1, · · · , nk) ≤ 1, (2.2)

and

3−k ≤ c̄(n1, · · · , nk)/3n1+···+nk ≤ 2k. (2.3)

Proof. The inequality (2.1) is true for the product of any two non-
negative matrices. For (2.2), it suffices to prove the first inequality. We write
Mn1

0 Mn2

2 · · ·Mnk
ε =

[
α β

γ δ

]
and Mn1−1

0 Mn2

2 · · ·Mnk
ε =

[
a b

c d

]
, then

[
α β
γ δ

]

=

[
1 0
1 3

] [
a b
c d

]

=

[
a b

a + 3c b + 3d

]

.

It follows that α ≤ γ, β ≤ δ. We claim that γ ≤ 3δ; this will imply that (α + β + γ +
δ)/8 ≤ δ and (2.2) follows.

To prove the claim, we write Mn1

0 · · ·Mnk−1

2−ǫ =
[

a′ b′

c′ d′

]
. Note that Mn

0 =
[

1 0

3n
−1
2

3n

]

and Mn
2 =

[
3n 3n

−1
2

0 1

]

. Hence if k is even, then

[
α β
γ δ

]

=

[
a′ b′

c′ d′

] [

3nk 3nk−1
2

0 1

]

=

[ ∗ ∗
3nkc′ 3nk−1

2 c′ + d′

]

,

so that γ ≤ 3δ. Here and afterwards, we use ∗ to represent an entry of a matrix
without giving its exact value. If k is odd, then

[
α β
γ δ

]

=

[
a′ b′

c′ d′

] [
1 0

3nk−1
2 3nk

]

=

[ ∗ ∗
c′ + 3nk−1

2 d′ 3nkd′

]

;

since k − 1 is even, we have c′ ≤ 3d′. Therefore

γ = c′ +
3nk − 1

2
d′ ≤ 3d′ + 3nkd′ ≤ 2 · 3nkd′ = 2δ.

We see that γ ≤ 3δ in both cases and the claim is proved.

The second inequality of (2.3) follows from

Mn1

0 · · ·Mnk
ε ≤

[
3n1 3n1

3n1 3n1

]

· · ·
[

3nk 3nk

3nk 3nk

]

= 3n1+···+nk

[
1 1
1 1

]k
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and [0, 1]
[

1 1

1 1

]k[
0

1

]
= 2k−1. For the first inequality of (2.3), we observe that

Mn1

0 Mn2

2 =

[
1 0

3n1−1
2 3n1

] [
3n2 3n2−1

2
0 1

]

=

[ ∗ ∗
∗ (3n1−1)(3n2−1)

4 + 3n1

]

.

Hence if k is even, we have

c̄(n1, · · · , nk) = [0, 1](Mn1

0 Mn2

2 ) · · · (Mnk−1

0 Mnk

2 )

[
0
1

]

> (3n1 − 1)(3n2 − 1) · · · (3nk − 1)/2k

≥ 3n1+···+nk/3k.

If k is odd, then note that Mnk

0

[
0

1

]
= 3nk

[
0

1

]
. Hence by using the previous result,

we have

c̄(n1, · · · , nk) = [0, 1](Mn1

0 Mn2

2 ) · · · (Mnk−2

0 M
nk−1

2 )Mnk

0

[
0
1

]

= c̄(n1, · · · , nk−1) · 3nk

≥ 3n1+···+nk/3k−1.

Lemma 2.2. For a fixed q ∈ R, let s̃0(q) = 2, s̃1(q) = 2q and

s̃n(q) =
∑

J∈{0,2}n−1

‖MJ‖q, n ≥ 2. (2.4)

Then for any fixed ℓ ∈ N, there exists zℓ ∈ (0, 3−q) such that

∑

n1,··· ,nℓ≥1

c̄(n1, · · · , nℓ)
q(zℓ)

n1+···+nℓ = 1.

Moreover if let R denote the radius of convergence of the series
∑

n≥2 s̃n(q)xn−1, then
∑

n≥2 s̃n(q)Rn−1 = ∞.

Proof. From (2.3), we have for any fixed ℓ,

c1

( ∑

n≥1

(3qx)n )ℓ ≤
∑

n1,··· ,nℓ≥1

c̄(n1, · · · , nℓ)
qxn1+···+nℓ ≤ c2

( ∑

n≥1

(3qx)n
)ℓ

,

where c1 = min{3−qℓ, 2qℓ} and c2 = max{3−qℓ, 2qℓ}. The existence of zℓ follows
from the above inequalities. By the way,

∑

n1,··· ,nℓ≥1

c̄(n1, · · · , nℓ)
qxn1+···+nℓ < ∞, ∀x ∈ (0, 3−q). (2.5)

For the second part, we only give a proof in the case q < 0; since the case for
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q ≥ 0 has been considered in Part I. For each ℓ ∈ N, we write

∑

n≥2

s̃n(q)xn−1 = 2
∑

k≥1

∑

n1,··· ,nk≥1

c(n1, · · · , nk)qxn1+···+nk

= 2

ℓ∑

j=1

∑

n1,··· ,nj≥1

c(n1, · · · , nj)
qxn1+···+nj

+ 2
ℓ∑

j=1

∑

k≥1

∑

n1,··· ,nkℓ+j≥1

c(n1, · · · , nkℓ+j)
qxn1+···+nkℓ+j

:= 2(I1 + I2).

By using (2.1) for q < 0, we have

I2 ≤

ℓX
j=1

X
k≥1

X
n1,··· ,nkℓ+j≥1

c̄(n1, · · · , nkℓ+j)
qxn1+···+nkℓ+j

≤
ℓX

j=1

X
k≥1

X
n1,··· ,nkℓ+j≥1

c̄(n1, · · · , nkℓ)
q c̄(nkℓ+1, · · · , nkℓ+j)

qxn1+···+nkℓ+j

≤
� ℓX

j=1

X
n1,··· ,nj≥1

c̄(n1, · · · , nj)
qxn1+···+nj

�
·
X
k≥1

� X
n1,··· ,nℓ≥1

c̄(n1, · · · , nℓ)
qxn1+···+nℓ

�k
.

By (2.5) and the definition of zℓ, we have
∑

n≥2 s̃n(q)xn−1 converges on (0, zℓ). Thus
R ≥ zℓ.

On the other hand, by (2.2), we have

∑

n≥2

s̃nxn−1 ≥ 2I1 ≥ 2 · 8q
ℓ∑

j=1

∑

n1,··· ,nj≥1

c̄(n1, · · · , nj)
qxn1+···+nj .

For a given integer m ∈ N, let ℓ = 2m. Then for j = 1, 2, . . . , 2m, by making use of
(2.1), we have

1 =
∑

n1,··· ,nℓ≥1

c̄(n1, · · · , nℓ)
q(zℓ)

n1+···+nℓ ≤
( ∑

n1,··· ,nj≥1

c̄(n1, · · · , nj)
q(zℓ)

n1+···+nj
)ℓ/j

.

This implies that

∑

n1,··· ,nj≥1

c̄(n1, · · · , nj)
q(zℓ)

n1+···+nj ≥ 1,

and

lim
xրzℓ

∑

n≥2

s̃n(q)xn−1 ≥ 2 · 8q(m + 1).

Thus
∑

n≥2 s̃nRn−1 ≥ 8q(m + 1). Since m is arbitrary, we have
∑

n≥2 s̃nRn−1 = ∞.

Now we can prove the main result of this section.
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Theorem 2.3. There exists a unique real analytic function r(q) > 0 satisfying

∞∑

k=0

sk(q)r(q)
k+1

= 1 and

∞∑

k=1

ksk(q)r(q)
k

< ∞. (2.6)

(sn(q) is defined in (1.2)). The Lq-spectrum of µm is independent of m and is given
by τ̃ (q) = log3 r(q).

Proof. We have proved the theorem for q ≥ −2 in Part I. We will prove the
theorem for q < 0 here. It will be more convenient to use the s̃n(q) as in Lemma 2.2
than the sn(q). Note that in this case

sn(q) = 3q8−(n+1)qs̃n(q), n = 0, 1, · · · .

If we let r̃(q) = 8−qr(q), then (2.6) becomes

3q
∞∑

k=0

s̃k(q)r̃(q)
k+1

= 1 and

∞∑

k=1

ks̃k(q)r̃(q)
k

< ∞, (2.6)′

and τ̃ (q) = q log3 8 + log3 r̃(q). Let

F (q, x) := 3q
∞∑

n=0

s̃n(q)xn+1.

For any fixed q ∈ R, denote by R(q) the radius of convergence of the series
∑∞

n=0 s̃n(q)xn+1. Note that F (q, 0) = 0 and F (q, R(q)) = ∞ (Lemma 2.2); the
continuity of F (q, ·) implies that there exists r̃(q) satisfies (2.6)′. Also observe that
for any fixed q ∈ R, F (q, ·) is a monotone function. Hence, r̃(q) > 0 is unique.

The last part of the theorem was proved in Part I.
The following proposition describes the limit behavior of τ̃ (q) at infinity.

Proposition 2.4. limq→∞ τ̃ (q)/q = α, limq→−∞ τ̃ (q)/q = α̃, where

α = log3(8/3), α̃ = log3(8/
√

λ1),

(see Theorem 1.2) where λ1 = (7 +
√

13)/2.

Proof. It was shown in [LW] that

τ̃ (q) = − lim
n→∞

( 1

n
log3

∑

|J|=n

(et
1TJ1)q

)
,

where et
1 = [0, 1, 0] and 1t = [1, 1, 1]. For any J = j1 · · · jn ∈ {0, 1, 2}n, we have

et
1TJ1 ≤ 1tTj1 · · ·Tjn

1 ≤ 3

8
1tTj2 · · ·Tjn

1 ≤ · · · ≤ 3

(
3

8

)n

.

Hence for q > 0, we have

(
3

8

)nq

= (et
1T

n
0 1)q ≤

∑

|J|=n

(et
1TJ1)q ≤ 3n+q

(
3

8

)nq

.
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It follows that limq→+∞ τ̃(q)/q = α.

To prove the second limit, making use of (A.3) and (A.4), we have

Cq
1

(√
λ1

8

)nq

≤
∑

|J|=n

(
et
1TJ1

)q ≤ 3nCq
2

(√
λ1

8

)nq

,

for some constants C1, C2 > 0, and it follows that limq→−∞ τ̃ (q)/q = α̃.

3. The restricted measure . In this section, we represent µ0 = µ|[1,2] as a self-
similar measure generated by an IFS with infinitely many non-overlapping similitudes.

Let Σ =
⋃∞

n=1{0, 1, 2}n be the collection of all finite words over {0, 1, 2}. For
J = j1 · · · jn, J ′ = j′1 · · · j′m ∈ Σ, we say that J and J ′ are incomparable if there exists
some k ≤ min{n, m} such that jk 6= j′k. Let [[J ]] be the subinterval [

∑n
k=1 jk3−k,

∑n
k=1 jk3−k + 3−n] ⊂ [0, 1] and let

ϕJ (x) = 3−n(x − 1) +
n∑

k=1

jk3−k + 1.

Lemma 3.1. Let J, J ′ ∈ Σ, then
(i) ϕJ ([1, 2]) = [[J ]] + 1 ⊂ [1, 2];
(ii) ϕJJ′ = ϕJ ◦ ϕJ′ ;
(iii) if J and J ′ are incomparable, then µ0

(
ϕ−1

J ([[J ′]] + 1)
)

= 0.

Proof. It is direct to check (i) and (ii). For (iii), observe that

ϕJ

(
ϕ−1

J ([[J ′]] + 1) ∩ [1, 2]
)

=
(
[[J ′]] ∩ [[J ]]

)
+ 1.

Since J and J ′ are incomparable, there exists k ≤ min{|J |, |J ′|} such that ji = j′i for
i < k and jk 6= j′k. Thus [[J ]] ∩ [[J ′]] ⊂ [[j1 · · · jk]] ∩ [[j′1 · · · j′k]] which contains at most
one point. Since µ0 does not have any point mass, (iii) follows.

Now let

Σ0 =
{
0, 2

}
∪

{
1j1 · · · jn1 ∈ Σ : n ≥ 0, jk 6= 1, k = 1, · · · , n

}
.

Let Tj’s be defined as in Section 1. For each J ∈ Σ0, we define wJ as follows:
w0 = w2 = 3/8, and for the other J , wJ = et

1TJe1 where et
1 = [0, 1, 0]. By making

use of [LW, Lemma 2], we have

wJ = [p2, 0, p1]Tj2···jn−1
T1e1 = [p2, p1]T̄j2···jn−1

[
p0

p3

]

=
3

8n
‖Mj2 · · ·Mjn−1

‖.

Observe that

‖(M0 + M2)
n‖ = [1, 1]

[
4 1
1 4

]n [
1
1

]

= 2 · 5n.

HenceX
J∈Σ0

wJ = 2 ·
3

8
+

3

82

∞X
n=0

X
j1,··· ,jn=0,2

1

8n
‖Mj1 · · ·Mjn‖ =

3

4
+

3

64

∞X
n=0

‖(M0 + M2)
n‖/8n = 1.
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Theorem 3.2. The measure µ0 satisfies the following self-similar identity

µ0 =
∑

J∈Σ0

wJµ0 ◦ ϕ−1
J .

Furthermore {ϕJ : J ∈ Σ0} has no overlap in the sense that ϕJ ([1, 2]) ⊂ [1, 2], and
ϕJ ([1, 2]) ∩ ϕJ′([1, 2]) = ∅ for any J 6= J ′, J, J ′ ∈ Σ0.

Proof. For the case J = 0, 2, ϕJ([1, 2]) are [1, 4
3 ] and [53 , 2] respectively. Let C be

the standard Cantor set in [43 , 5
3 ], then for any J ∈ Σ0\{0, 2}, [[J ]]+1 corresponds to the

middle-third interval in the construction of the Cantor set. Since ϕJ ([1, 2]) = [[J ]]+1,
the disjointness of the {ϕJ([1, 2]), J ∈ Σ0} implies the last part of the theorem.

Let X =
⋃

J∈Σ0
([[J ]]+1). Then X = [1, 2]\C. From the vector-valued self-similar

identity of µ in (1.1), we see that µ0 is the middle entry of the expression. Hence

µ0([[J ]] + 1) = et
1T1j2···jn−11µ([0, 1]) = et

1TJe1µ([1, 2]) = wJµ0([1, 2]). (3.1)

It follows that µ0(X) =
∑

J∈Σ0
wJµ0([1, 2]) = µ0([1, 2]), so that µ0 is concentrated

in X . To prove the self-similar identity for µ0, it suffices to see that it holds on each
[[J ]] + 1, J ∈ Σ0. Indeed for A ⊆ [[J ]] + 1, let B ⊆ [1, 2] be such that ϕJ (B) = A. It
follows from Lemma 3.1(iii) that

∑

J′∈Σ0

wJ′µ0 ◦ ϕ−1
J′ (A) = wJµ0 ◦ ϕ−1

J (ϕJ (B)) = wJµ0(B) = µ0(A)

(the last equality follows from the same proof as (3.1)).

4. The modified multifractal formalism . In this section, we determine the
dimension spectrum of µ. Recall that the local dimensions α(x) has the range E =
[α, α̃] ∪ {ᾱ} (see Theorem 1.2 and [HL]). For each α ∈ E, let

K(α) = {x ∈ supp(µ) : α(x) = α}.

Theorem 4.1. For any α ∈ (α, α̃),

dimHK(α) = τ̃∗(α),

where τ̃(q) denotes the Lq-spectrum of µ0 (Theorem 2.3), i.e., τ̃∗(α) := inf{αq− τ̃(q) :
q ∈ R}.

We will prove the theorem for a more general measure than the µ0. Set I = [0, 1].
Assume that {fi}∞i=1 is a family of similitudes on R with contraction ratios {ri}∞i=1.
Furthermore we assume that fi(I) ⊂ I and fi(I) ∩ fj(I) = ∅. Suppose there is a
non-empty compact set K ⊂ I such that

K =
∞⋃

i=1

fi(K).

For probability weights {wi}∞i=1, let µ̄ be a finite Borel measure on K satisfying

µ̄ =

∞∑

i=1

wiµ̄ ◦ f−1
i . (4.1)
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Let N
∞ be the sequence space over N endowed with the product topology. For J =

{ji}∞i=1 ∈ N
∞, let Jn = j1 . . . jn. Define π : N

∞ 7→ I by

π(J) = lim
n→∞

fJn
(x),

Note that the limit is independent of x ∈ I. It is clear that K = π(N∞).

Assume that for q ∈ R, there exists η(q) such that

∞∑

i=1

wq
i r

−η(q)
i = 1. (4.2)

Let q ∈ R, let νq be the product measure with probability weight {wq
i r

−η(q)
i : i ∈ N}.

It is well known that νq is an ergodic measure on N
∞. Define the measure µq on I by

µq = νq ◦ π−1.

Lemma 4.2. Suppose sup1≤i<∞
(
log wi/log ri

)
< ∞ and for each q ∈ R, there

exists η(q) satisfies

∞∑

i=1

wq
i r

−η(q)
i = 1 and −

∞∑

i=1

wq
i r

−η(q)
i log ri < ∞.

Then there exists a Borel set Gq ⊂ N
∞ with νq(Gq) = 1 such that for any J ∈ Gq,

the following holds:

lim
n→∞

1

n
log µq(fJn

(I)) =
∞∑

i=1

wq
i r

−η(q)
i log(wq

i r
−η(q)
i ), (4.3)

lim
n→∞

1

n
log µ̄(fJn

(I)) =

∞∑

i=1

wq
i r

−η(q)
i log wi, (4.4)

lim
n→∞

1

n
log |fJn

(I)| =

∞∑

i=1

wq
i r

−η(q)
i log ri, (4.5)

where |fJn
(I)| denotes the length of the interval fJn

(I).

Proof. We use [Jn] to denote the cylinder set in N
∞ with base Jn. Note that

fi(I)∩ fj(I) = ∅ for any i 6= j, hence π−1(fJn
(I)) = [Jn]. By the definition of µq and

νq,

µq(fJn
(I)) = νq([Jn]) =

n∏

i=1

wq
ji

r
−η(q)
ji

.

It follows that

1

n
log µq(fJn

(I)) =
1

n

n∑

i=1

log(wq
ji

r
−η(q)
ji

).
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The limit (4.3) follows by applying the Birkhoff ergodic theorem to the i.i.d. random

variables {Xi}∞i=1 with values {log(wq
i r

−η(q)
i )}∞i=1 and with probability {wq

i r
−η(q)
i }∞i=1.

The other two limits follow from the same argument and

µ̄(fJn
(I)) = (

n∏

i=1

wji
)µ̄(I) and |fJn

(I)| =

n∏

i=1

rji
.

Let ℓ ∈ N be fixed. For J = (ji)
∞
i=1 ∈ N

∞, let n1 = min{i ∈ N : ji = ℓ} and
nk+1 = min{i ∈ N : i > nk, ji = ℓ}, k ≥ 1. We can choose the Gq in the theorem
satisfying in addition that each J ∈ Gq,

lim
k→∞

nk+1

nk
= 1. (4.6)

Indeed, by the Birkhoff ergodic theorem again, we have

lim
n→∞

1

n

n∑

i=1

χ{ℓ}(ji) = wq
ℓ r

−η(q)
ℓ , a.e. νq, J ∈ N

∞,

where χ is the characteristic function. It follows that

lim
k→∞

nk+1

nk
= lim

k→∞

( 1

nk

nk∑

i=1

χ{ℓ}(ji)
)/( 1

nk+1

nk+1∑

i=1

χ{ℓ}(ji)
)

= 1.

For a measure ν on R
d, denote

Kν(α) :=
{
x ∈ I : lim

δ→0+

log ν([x − δ, x + δ])

log δ
= α

}
.

Theorem 4.3. Let µ be the self-similar measure defined as in (4.1). Suppose

sup
1≤i<∞

(
log wi/log ri

)
< ∞,

and for each q ∈ R there exists η(q) satisfying

∞∑

i=1

wq
i r

−η(q)
i = 1 and −

∞∑

i=1

wq
i r

−(η(q)+ǫ)
i log ri < ∞

for some ǫ > 0. Then η(q) is differentiable and

dimHKµ̄(η′(q)) = η′(q)q − η(q).

Proof. It is direct to show that under the hypothesis, η(q) is differentiable. It is
well known (cf., e.g., [LN, Theorem 4.1]) that

dimHKµ̄(η′(q)) ≤ η′(q)q − η(q).

To prove the reverse inequality, we consider the set Gq in Lemma 4.2. First we show
that for each J ∈ Gq and for xJ = π(J), the following identity holds:

lim
δ→0+

log µ̄([xJ − δ, xJ + δ])

log δ
= η′(q). (4.7)
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To see this, fix J = (ji)
∞
i=1 ∈ Gq and let {nk}∞k=1 be the sequence in (4.6). For

a sufficient small δ > 0, there exists k ∈ N such that rJnk+1
≤ δ < rJnk

, where

rj1...jn
:= rj1 . . . rjn

. Then fJnk+1
(I) ⊂ [xJ − δ, xJ + δ]. It follows from (4.4) and (4.5)

that

lim
δ→0

log µ̄([xJ − δ, xJ + δ])

log δ
≤ lim

δ→0

log µ̄
(
fJnk+1

(I)
)

log |fJnk
(I)| ≤

∑∞
i=1 wq

i r
−η(q)
i log wi

∑∞
i=1 wq

i r
−η(q)
i log ri

= η′(q).

To prove the other inequality, we assume without loss of generality that f2(I) is
in between f1(I) and f3(I). Let {nk}∞k=1 be given as in (4.6) with ℓ = 2. Let us
denote J̄ = Jnk+1−1 for short, then J̄2 = Jnk+1

,

xJ ∈ fJ̄2(I) and
3⋃

i=1

fJ̄i(I) ⊂ fJnk
(I).

If we take δ = rJ̄ · min{r1, r3}, then δ > c rJnk+1
= c|fJnk+1

(I)| for some c > 0, and

[xJ − δ, xJ + δ] ⊂ fJnk
(I). It follows that

log µ̄([xJ − δ, xJ + δ])

log δ
≥

log µ̄(fJnk
(I))

log c|fJnk+1
(I)| .

Making use of (4.4) and (4.5) again, we have

limδ→0

log µ̄(xJ − δ, xJ + δ])

log δ
≥ η′(q).

This completes the proof of (4.7).
If we replace µ̄ with µq and use (4.2) in the above arguments, then

lim
δ→0

log µq([xJ − δ, xJ + δ])

log δ
=

∑∞
i=1 wq

i r
−η(q)
i log(wq

i r
−η(q)
i )

∑∞
i=1 wq

i r
−η(q)
i log ri

= η′(q)q − η(q)

for all J ∈ Gq. It follows from [Y] that

dimHµq = η′(q)q − η(q).

Therefore dimHπ(Gq) ≥ η′(q)q − η(q). Observe that (4.7) implies that π(Gq) ⊂
Kµ̄(η′(q)). This implies the theorem.

Proof of Theorem 4.1. Observe that K(α) ⊂
(∑∞

m=0 Kµm
(α)

)
∪{0, 3}. It follows

that

dimH K(α) ≤ max
m

dimH Kµm
(α) = dimH Kµ0

(α) ≤ τ̃∗(α).

To prove the reverse inequality, we apply Theorem 4.3 to the family {ϕJ : J ∈
Σ0} defined in Section 3; the conditions of Theorem 4.3 hold for η(q) = τ̃ (q). By
Proposition 2.4, (α, α̃) = {α ∈ R : α = τ̃ ′(q) for some q ∈ R}. Hence if we take
α = τ̃ ′(q), then dimHK(α) ≥ dimHKµ0

(α) ≥ τ̃∗(α).

Appendix A. Local dimensions. The proof of Theorem 1.2 in [HL] is
based on some complicated combinatorial analysis on the multiple representation of
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∑∞
i=0 ǫi3

−i, ǫi = 0, 1, 2, 3. In the following we give two other proofs: one is a conse-
quence of Theorem 4.1 and another one is based on the direct estimate of the product
of matrices.

For x ∈ supp µ = [0, 3], define

α(x) = lim sup
δ→0

log µ[x − δ, x + δ]

log δ

and define α(x) similarly by taking the lower limit.

Lemma A.1. Let J = j1j2 · · · ∈ {0, 1, 2}N. For a given j0 ∈ {0, 1, 2}, set
x =

∑∞
k=0

jk

3k . Then

α(x) = − lim sup
n→∞

1

n

(
log3 et

j0Tj1···jn
1
)
.

Similar equality holds for α(x) by taking the lower limit respectively.

Proof. Denote Jn = j1 · · · jn. Then x ∈ [[Jn]] + j0. By (1.1) (see also [LW],
Proposition 2.1), we have

µ([[Jn]] + j0) = et
j0Tj1···jn

a,

where a = µ([0, 1]). To prove the lemma, we only need to prove that there exist
C1, C2 > 0 such that

C1µ([[Jn]] + j0) ≤ µ([[Jn]] + j0 − 3−n) ≤ C2µ([[Jn]] + j0), ∀n ∈ N. (A.1)

Indeed, the above inequalities can be checked directly. Here we only consider the case
Jn = j1 . . . jn with jt = 0 for t = k + 1, . . . , n while jk > 0. In this case,

[[Jn]] + j0 − 3−n = [[j1 · · · jk−1(jk − 1)2 · · · 2]] + j0.

It follows that

µ([[Jn]] + i) = et
iTj1···jk−1

Tjk
T n−k

0 a,

and

µ([[Jn]] + i − 3−n) = et
iTj1···jk−1

Tjk−1T
n−k
2 a.

A direct calculation for T ℓ
0 , T ℓ

2 shows that

Tjk
T n−k

0 a, Tjk−1T
n−k
2 a ≈

(
3

8

)n−k

a

for jk = 1 or 2. Thus µ([[Jn]] + i − 3−n) ≈ µ([[Jn]] + i) (i = 0, 1, 2), which implies
(A.1).

Lemma A.2. Let et
1 = [0, 1, 0] and et

3 = [1, 0, 1]. Then T1 = 1
8 (e3e

t
1 + 3e1e

t
3).

Furthermore for any n ∈ N and J ∈ {0, 2}n, we have

e
t
1TJe3 = e

t
3TJe1 = 0; e

t
1TJe1 = e

t
1TJ1 =

�
3

8

�n

; e
t
3TJe3 = e

t
3TJ1 =

�
1

8

�n

‖MJ‖.
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Proof. We only need to observe that for J ∈ {0, 2}n, TJ has the form
[

α1 0 α2
0 α3 0

α4 0 α5

]

. The rest of the proof is direct.

Proof of Theorem 1.2. It follows from Proposition 2.4 and Theorem 4.1 that the
domain of τ̃∗(α) is (α, α̃), and all the local dimension α of µ in (α, α̃) are attainable
for some x ∈ (0, 3).

For the three specific α’s, it is a direct check that for x = 0, 3,

α(x) = log3 8 = ᾱ.

If we take x = 1+
∑∞

k=1 jk3−k, jk = 0 or 2, then Lemma A.1 and Lemma A.2 implies
that

α(x) = log3(8/3) = α.

For α̃, recall that we have proved in [LW, Lemma 3.2] that

2(λ1)
n/2 ≤ ‖MJ0

n
‖ ≤ 5(λ1)

n/2, ‖MJ0
n
‖ = ‖MJ2

n
‖ = min{‖MJ‖ : |J | = n}, (A.2)

where J0
n = ε · · · 2020, J2

n = (2 − ε) · · · 0202 (ε = 0 or 2 according to n is odd or
even), the alternative sequence of 0 and 2 with length n.

Let J = j0j1 · · · = 11020202 · · · and x =
∑∞

k=0 jk3−k = 17/12, then by Lemma
A.2 and (A.2), we have

et
j0Tj1···jn

1 = 3

(
1

8

)n

‖Mj2···jn
‖ ≈

(√
λ1

8

)n

. (A.3)

Lemma A.1 implies that

α(x) = log3(8/
√

λ1) = α̃.

We can also prove Theorem 1.2 by a direct use of the product of matrices instead
of going through Theorem 4.1 on the Lq-spectrum and the Legendre transform.

Lemma A.3. For any x ∈ (0, 3), we have α ≤ α(x) ≤ ᾱ(x) ≤ α̃.

Proof. For x ∈ (0, 3), we can write x =
∑∞

k=0 jk3−k, jk ∈ {0, 1, 2} and j0, j1, · · ·
are not all 0 or all 2.

It is easy to verify that for any i ∈ {0, 1, 2}, j ∈ {0, 1, 2, 3}, there exists some
k ∈ {0, 1, 2, 3} such that et

jTi ≤ 3
8ek, where et

3 = [1, 0, 1]. This implies that

et
j0Tj1···jn

1 ≤ 2

(
3

8

)n

.

By Lemma A.1, it follows that α(x) ≥ log3 8/3 = α.
To prove ᾱ(x) ≤ α̃, we claim that for J ∈ {0, 1, 2}n,

etTJ1 ≥ C1

(√
λ1

8

)n

, (A.4)
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where e = e1 or e3. Indeed let N(J) be the total number of entries of J that equals
to 1. If N(J) = 2k is even, we write J = J11J21 · · ·J2k1J2k+1, Ji ∈ ∪∞

l=0{0, 2}l. By
repeated use of Lemma A.2, we have

et
1TJ1 =

(
3

8

)|J2k+1| k∏

i=1

(
3

8

)1+|J2i−1| (1

8

)1+|J2i|
‖MJ2i

‖,

et
3TJ1 =

(
1

8

)|J2k+1|
‖MJ2k+1

‖
k∏

i=1

(
1

8

)1+|J2i−1| (3

8

)1+|J2i|
‖MJ2i−1

‖.

By making use of (A.2) and noting that λ1 < 6, we can show that etTJ1 >
(√

λ1

8

)|J|
.

If N(J) = 2k + 1 is odd, we write J = J11J2, where J1 ∈ ∪∞
l=0{0, 2}l and

N(J2) = 2k is even. Applying Lemma A.2 and the above estimation to J2 yields the
claim.

Now to complete the proof of the lemma, note that j0, j1, · · · are not all 0 or all
2. Thus there exist some k ≥ 0 and C2 > 0 such that

et
j0Tj1···jk

≥ C2e,

where e = e1 or e3. By the claim, for any n ≥ k, we have

et
j0Tj1···jn

1 ≥ C2eTjk+1···jn
≥ C1C2

(√
λ1

8

)n−k

.

Lemma A.1 implies that

ᾱ(x) = −limn→∞
1

n

(
log3 et

j0Tj1···jn
1
)
≤ log3(8/

√

λ1) = α̃.

Lemma A.4. For any 0 < θ < 1, there exist integer sequences {xk}∞k=1 and
{yk}∞k=1 such that

lim
k→∞

xk
∑k

i=1(xi + yi)
= lim

k→∞

yk
∑k

i=1(xi + yi)
= lim

k→∞

k
∑k

i=1(xi + yi)
= 0,

and

lim
k→∞

∑k
i=1 xi

∑k
i=1(xi + yi)

= θ, lim
k→∞

∑k
i=1 yi

∑k
i=1(xi + yi)

= 1 − θ.

Proof. Let xk = [θk] and yk = k − xk, where [x] is the integral part of x. Then
{xk}∞k=1 and {yk}∞k=1 satisfy all the conditions.

Another proof of Theorem 1.2. We have shown that the three specific values
of α’s are attainable. It remains to consider the case for α < α < α̃. We write
α = θα + (1 − θ)α̃. Let {xn}∞n=1 and {yn}∞n=1 be the sequences in Lemma A.4.
Let Jn = 00 · · ·0

︸ ︷︷ ︸

xn

1 2020 · · ·
︸ ︷︷ ︸

yn

1 and put these segments together as J = 1j1j2 · · · :=

1J1J2 · · · . A similar calculation as Lemma A.3 yields

et
1TJ1J2···Jk

1 =

k∏

i=1

(
3

8

)xi+1 (
1

8

)yi+1

‖MI(yn)‖,
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where I(yn) = 2020 · · ·
︸ ︷︷ ︸

yn

, the alternative sequence of 2 and 0 with length yn. By making

use of (A.2), we know that there exists 6
64 < C(k) < 15

64 such that

et
1TJ1J2···Jk

1 = C(k)k
k∏

i=1

(
3

8

)xi
(√

λ1

8

)yi

. (A.5)

For any n ∈ N, there exists k ∈ N such that
∑k−1

i=1 |Ji| < n ≤ ∑k
i=1 |Ji|, i.e.,

2(k − 1) +
k−1∑

i=1

(xi + yi) < n ≤ 2k +
k∑

i=1

(xi + yi).

It follows that

et
1TJ1J2···Jk

1 ≤ et
1Tj1j2···jn

1 ≤ et
1TJ1J2···Jk−1

1.

By taking logarithm, together with (A.5) and the special properties of
{xn}∞n=1, {yn}∞n=1 in Lemma A.4, we conclude that

− lim
n→∞

1

n

(
log3 et

1Tj1···jn
1
)

=
(
θ log3(8/3) + (1 − θ) log3(8/

√

λ1)
)

= α,

this completes the proof.

Recently Shmerkin [S] independently considered the multifractal structure of the
3-fold convolution of the Cantor measure and the extension from a different approach.
Testud [T] found some interesting phase transition behaviors for another class of self-
similar measures.
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