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Abstract

For an expanding integralx s matrix A with |detA| = p, it is well known that ifD = {do, ..., d,-1} C Z° is
a complete set of coset representativeE9fAZ*, thenT (A, D) is a self-affine tile. In this paper we show that if
p is a prime, suclD actually characterizes the tile digit sets provided that 6paa- R*. This result is known for
s =1, the one-dimensional case [R. Kenyon, in: Contemp. Math., vol. 135, 1992, pp. 239-264] and the question
for s > 1 has been considered by Lagarias and Wang [J. London Math. Soc. 53 (1996) 21-49] under some other
conditions. The proof here involves a new setup to study the zeros of themigsk= p—?1 ’.’;3 eZritEdi) 1t
can also be generalized to consider the existence of a compactly suppbigetlition of the reffnement equation
(scaling function) with positive coefficients.
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1. Introduction

Let M, (Z) be the set of x s matrices with integral entries. Let € M,(Z) be anexpanding matrix,
i.e., all its eigenvalues have modwi 1. LetD = {dp, ds, ...,dy_1} C Z° be a set ofN (> 1) distinct
integral vectors. We calD adigit set and(A, D) a self-affine pair. Without loss of generality, we assume
thatdyp =0inD. Let

vix)=A"Yx+d), j=01,...,N—1
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They are contractions with respect to a suitable noriggrthe finite family{+; } |s called ariterated
function system (IFS). It is well known that there exists a unique nonempty compacTse:‘tT(A D)
satisfying the set-valued functional equatibnr= Uf’: S ¥ ;(T). Equivalently,

N-1
AT:LﬁT+d»:T+D
j=0
A more explicit expression df is given by the radix expansions

o oo
:{E:A*@,JMGD}:E:A%D.
k=1 k=1

One of the most interesting cases for the gdir D) is when #D = |detA| andT° # @. It is known
that in this caseT tiles R* by translations (e.g., [14, Theorem 1.2]). Because of this we define

Definition 1.1. Let (A, D) be a self-affine pair and?= |detA|. If T° #£ @, thenT is called aself-affine
tileandD is called atile digit set (with respect taA).

The current theory of tiles was first considered by Dekking [3] and Rauzy [21] via the substitutions
on finite alphabets. The foundation of self-affine tiles and self-replicating tilings were laid down by
Thurston [24] and Kenyon [10], and the basic properties were proved by Lagarias and Wang [14-17].
Recently there have been extensive investigations in this topic, for example, on the tiling properties, the
wavelet properties, the fractal structure of the boundaries, the connectedness and disk-likeness, and the
classification of the expanding integral matrices (e.g., [1,2,4,5,7,11-17,19,22,23,25]). However, there are
still many problems remaining unsolved. Among them is the following:

Question. For a given expanding matrix € M,(Z), characterize théle digit sets D with respect taA
[15,19].

Regarding this question, the following is well known.

Proposition 1.2 [1]. Let (A, D) be a self-affine pair and #D = |detA| = b. Then D isatile digit set if D
isa complete set of coset representatives of Z° /AZ*.

The condition in the proposition is far from being necessary. In the one-dimensional casé; istaen
prime, the characterization is reduced to a modulo condition (see, e.qg., [10]):

Proposition 1.3. On R, let A = [p], where p isa prime and let D C Z with #D = p. Then D is a tile
d|g|t set if and only if D = ¢D, where ¢ € Z and D is complete set of coset representatives of Z/pZ, i.e.,
={0,..., p—1} (modp).

The assumption thagt is a prime is essential in the proposition. In fact, the more extensive form of
tile digit sets forA = [p'] and[pq], wherep, ¢ are primes were characterized by Lagarias and Wang
[15] and Lau and Rao [19], respectively. The higher-dimensional case is more difficult even for prime
determinant, Proposition 1.3 was partially extendef1¢15] under the extra conditiopZ*® ¢ A%75. 1t
was conjectured that the condition is unnecessary. In this paper we give an answer to this question.
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Theorem 1.4. Let (A, D) be a sdlf-affine pair with #D = |detA| = p and p > 1 is a prime. Suppose
spanD) =R°. Then D is atile digit set if and only if D = A"D for some nonnegative integer n and a
complete set of coset representatives D of Z° / AZ*.

The theorem will be proved in Theorem 4.2. For this we will set up the problem in the more general
refinement equation

N-1

o)=Y wp(Ax —d;), (1.2)

j=0

where eachy; eRandZ " w; =|detA| =b. Formally, the Fourier transfori(£) = [ ¢(x)e?8) dx
satisfies

Q) =m(B€)p(B ) =m(B7'E) - -m(B™&)p(B~E) = 9O [ [m(B*¢), (1.3)
k=1
whereB = A" and
N-1
mE)=b"1 Z wjezni@’df).
j=0
We callm (&) the mask of the refinement equation, andpasitive mask if the coefficients are positive.
The product in (1.3) converges uniformly on compact subsets. It followsgtlexists as a distribution.
If ¢ exists as a compactly supportéd-solution, we call it ascaling function; the existence can be
characterized by the Fourier transfogit€) (Lemma 2.1).
For the self-affine paitA, D) with #D = |detA| = b, if we let ¢ = x7, the indicator ofl := T (A, D),
theng satisfies

b—1
p(x) =Y ¢(Ax —d))
j=0
and the corresponding maskigé) = 12” Le2nite.dj) It is well known that (Proposition 2.2) is a

tile (equivalentlyyr is a scaling funct|on) if and only if for each®v € Z*, there exists an integér> 0
such thatn(B~*v) =0

Our main idea to prove Theorem 1.4 is that wheetA| = p is a prime, we can make use of the special
properties of the roots of unity for primes to reduce the above criterion to a certain finite set of zeros of
the maskn (£). Such finite set is called tight set (see Section 3) which is an extension of the “minimal
cut set” introduced by Protasov [20]. The tight sets can also be used to study the scaling functions. We
prove the following interesting result for the refinement equation with positive rational weights. For the
case with positive weights, the reader can refer to [9,18,26] for detail.

Theorem 1.5. Let p be a prime. Suppose {w; } ! are positive rationals and Z 0 w; = p. Then the
eguation ¢(x) = Z} ‘0 w;ip(px —dj) onR has a compactly supported Ll-solutlon if and only if there
exists a positive integer k such that m(p~—*) =0, where m(£) = _12, o wjeXmidis,
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For the organization of the paper, in Section 2, we give some preliminaries and study the roots of unity
for the primep in conjunction with the mask:(£). We introduce the tight sets in Section 3 and prove
some related properties. Theorem 1.4 is proved in Section 4. In Section 5, we make use of the tight sets
to study the existence of scaling functions of the refinement equations.

2. Preliminaries

Throughout the paper we assume, unless otherwise specifiedi thaf,(Z) is expanding,B = A’
andD ={0=d,, ..., dy_1} C Z*. We need the following lemma of which the necessity is well known,
and the sufficiency was proved in [20] & The proof here is a higher-dimensional analog and is a
simplification of [20, Lemma 2].

Lemma 2.1. Suppose ¢ is a scaling function satisfying (1.2), then ¢(v) = 0 for any nonzero integral
vector v € Z*. The converse is also true if the w;’sin (1.2) are nonnegative. In this case ¢ is a bounded
function.

Proof. By assumptiong is a compactly supporteti*-solution of (1.2). It follows from (1.3) that
¢&) =m(B7')---m(B~"€)p(B*¢), (2.1)

wherem(£) = b1 Z;":’Ol w;e?"¢:4j) Foranonzero € Z*, leté = BXv. Thenm(B~/&) =m(B*/v) =1,
j < k and the above identity is reduced@oB*v) = ¢(v). It follows that@(v) = lim;_, ., ¢(B*v) =0 by
the Riemann-Lebesgue lemma.

Conversely assume that the coefficients of (1.2) are nonnegative, Walkstote the Schwartz space
of rapidly decreasing functions dR’. For f € S, let f(x) = Yovens f(x +0). Then 7 is a periodic
function and

F)=Y"a,e",  wherea, = / F)e 0 dy = f(—v).

veZs [0.1]¢

Sinceg (as a distribution) has compact support, we defige) = >, . ¢(x + £). It follows from the
assumptiorp(v) = 0 and@(0) = 1 that for anyf € S,

@. f)=1lp. f)= <¢, > avez”“”’”> =D_ag(v) =ao= / f@x)dx.
veZs veZs RS

Hence@(x) = 1. ¢ is nonnegative and(x) = >, ¢(x + ¢) imply that the compactly supported

distribution¢ is actually a function ofR* and is bounded. O

As a direct consequence of Lemma 2.1, we have the following criterion of self-affine tiles [10,15].

Proposition 2.2. Let (A, D) be asalf-affine pair and #D = |detA| = b, andlet m (&) = b= Y| 27 E:)
then T(A D) isa sef-affine tile if and only if for any 0 #£ v € Z°, there exists an integer k& > 0 such that
m(B~*v) =
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Proof. Lety = x7, the indicator function of := T (A, D). Then the scaling function satisfiesp(x) =
Zl;;éga(Ax — d;). The proposition follows directly from Lemma 2.1, (2.1) and Jim, $(B~*&) =
¢(0) = L(T) > 0, whereL denotes the Lebesgue measurékdn O

Proposition 2.2 has been used extensively in conjunction with the roots of unity [10,15,19]. For each
N > 1, lete?**/N denote theVth roots of unity and let

N-1
FfFV = {a:(ao,...,aN_l)t eZN: a, >0, Zakezmk/N :0}
k=0

be the semigroup of integral vectors generated bytié/V, k =0,..., N — 1. Therank of I"" is the
dimension of the real vector space it spans. It was proved in [15] thatisifa prime and ifN = p" for
somen > 0, thenI"Y has rankp"~! and is generated hy” € I'Y, 0< r < p"~! — 1, where the entries
of a® are

a(r): 1 ifk=r+jpn711j=oa~~~ap_lv
k 0 otherwise.

More explicitly,
a®=(,0,...,0,...,1,0,...,0), a®=(,1,...,0,...,0,1,...,0), etc,

pn—l pn—l pn—l pn—l

and the corresponding relation (with= p") reduces to

N-1 -1
; . s on—1 n

Zal(:)eZMk/N = ZEZnt(r-i-./p )/ Pt — 0, 0< r< pn—l -1

k=0 j=0

It follows easily that

Lemma 2.3. If p is a prime and for {b.,'}j.’;é C Z such that Z;’;éez’”b-f/l’" = 0, then subject to a
permutation, b; =r + jp"~* (mod p") for some r with0 < r < p"~t — 1.

In the following and in the next section we will modify the conditienB~*v) =0, v € Z* in
Proposition 2.2 to another criterion that is more flexible to use.

LetC={0=co,c1,...,cn} CZ*,m >1andletS;(x) = B*l(x—i-cj), j=0,...,m.We use the maps
{8;}7_o to define a tree structure: leg = 0 and let

o = Sjk (ap-1) = B_l(akfl + Cjk)’ Cir € C,

denote the descendants in thil generation. We call sudly, a C-state (or just astate if there is no
confusion). Itis clear that

oy = Bikcj1 +- Bilcjk.

Let Cj;,l denote they’s andCy?, = U,t‘;ocj;,l. The following is the key lemma, it is used to prove
Theorem 3.3, and the main result Theorem 4.2 via a spécial
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Lemma 2.4. Let A € M,(Z) be an expanding matrix, where |det(A)| = p isa prime, and let D = {0 =
do,d1, ...,d,_1} C Z° such that spar(D) = R®. Then, for any C C Z* and for B = A’, there are at most
finitely many oy € C°, that are roots of m(£) = p~ 375 €274,

We remark that the lemma is trivial in one dimension, however, in higher dimension, the set of zeros
of m(&) is a manifold and the assertion is not as obvious.

Proof. Suppose otherwise, we can find a sequeiagg;2, C C37, with strictly increasing indices such
that thea,, s are distinct and are roots of(¢). Let B be the adjomt matrix oB. ThenB' is an integer
matrix andB~! = p~!B'. By the definition of states, we can writg, as p~"a; with o] € Z*. From
m(ey,) =0, we have

p

Z 2i{ay, ,d Z sd/)/l’lk ]

=0
For each, applymg Lemma 2.3 witlV = p’*, we haver = 0 sincedy = 0, and

(] . dj)
(@ dpy=—220 Tl mod D, j=0,1,...,p—1,
' D* p
where the set oﬁrk,j}j.’;é is a permutation off0, ..., p — 1}. Since {«;, }2, is bounded, we can
assume that it converges to somdor simplicity. Using the standard diagonal argument, there exists
a subsequence which we still denote{by };°,, such that for eachi =0,1,..., p — 1,

v v
(@, dj) ==L +n ;== (mod D,
p p
where {ro.r1, ..., 7p-1} is a permutation of0, 1,..., p — 1}. Assume that lim, (. d;) = (@, d;)
yields ak such that for each & j < p — 1, we have
ng;=n; fork>k.
Consequently for, ¢’ >k, # ¢,
(ay, —Olz,,,dj) =0 Vv;=01,...,p—1,

which impliesa;, = o, by the condition spafD) = IR*. This contradicts with the assumption that the
are distinct and the proof is complete

3. Tight sets

In this section we will give a more detailed consideration on the structure Gkttates in Lemma 2.4
that are roots of the mask(¢).

Let B= A" and letC = {0 = cg,c1,...,c,} C Z°. For a finite sequencéc;,,...,c;,}, let o =
B*"cj1 + .4 B*lcjk, 1<k <nandag= 0, we call the corresponding finite sequence of states
Yy = {a}i_o apath from O to«,. An infinite pathy = {a )2, is defined similarly. Likewise we can
define a path starting from some statg in this case

o = B *ag+ B_kcjl 4+ B_lcjk.
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Note that the path from one state to another may not be uniqug; # o,, then we can identify all
paths starting frona;, with those fromu,.

It is easy to see that the states defined{@yt;,, cj,,...} and{0,...,0,c;,cj,, ...} are exactly the
same. We can identify the paths arising from this way and it is an equivalence relation. Therefore, we can
treat a patHo,}7_, (n is finite or infinite) as an equivalence class and the representative is the one with
cj, # 0. For convenience we make the following convention.

Convention. We assume that for any path};_, with » finite or infinite, s = B~1c;, # 0 (except the
zero path with all digits:;, = 0).

Using this convention we define tihength of a path{c,};_, to ben.

Definition 3.1. Let C = {0=co, ..., c,} C Z°. Let P denote the pathéx )2, that contain infinitely
many distinct states. We say th&tc 57, is aC-tight set (or just dight set) of P if 0 ¢ A and

(i) every pathy = {32, € P intersectsV for at least one point, and

(i) N is a minimal finite set, i.e., for any/” C N/, there exists a path iR which does not intersec¢t”.

Itis useful to observe that for anye C3” ,, there exists a path iR passing througk. Indeed, this is
obvious ifa = 0. If « £ 0, let{0, oy, ..., @y = a} be a path that reaches Sincex = B "« foralln > 1,
the path{ay, ..., o = «, B~*a, B %a, ...} belongs taP.

Proposition 3.2. Let B = A’. Suppose that C = {0 =co, ..., cn} CZ° with¢; ¢ BZ for all 1 <i <m
Then all (nonzero) infinite paths arein P, i.e., each infinite path contains infinitely many distinct states.

Proof. Let {at}2, be a nonzero path. The convention guaranteescthe4 O. If o, = a4, then
B7cj -+ B e, =B ey -+ B,
By multiplying with B and by reshuffling the terms, we see tagte BZ* which contradicts the

assumption. Hence all the elementq®f};-, are distinct and the statement follows:

Theorem 3.3. Let A € M,(Z) be an expanding matrix such that |det(A)| = p isa prime. Suppose D =
{0=dy, dv,...,d,_1} C Z* isatiledigit set and sparfD) = R®. Thenfor any C = {0=co, c1, ..., cm} C
Z*, m > 1, there exists a C-tight set V' that consists of the roots of the mask m (¢) = ‘12” be2rid)),

Proof. Letp(x) = x7r(x) be the characteristic function of the self-affine filed, D). Theng(x) satisfies
the refinement equatiop(x) = j.’;éga(Ax —d;) and ¢(&) = m(B~X)@(B~€), where B = A'.
Iterating this fork-times, we have

¢&)=m(B7'€)---m(B~*£)p(B7*¢). 3.1)

Now for anyC- path {ax}ie € P, consider thosey, such that G# v, = Bfay € 7°, and thusy, =
c¢j, + -+ B*1c;. The integral periodicity ofs(¢) implies that for/ <k,

m(B* ) =m((B* it BTe) o+ B ) = mien).
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Hence from Lemma 2.1, we have foe 1,
0=¢() =m(B 1) - m(B v )@ (B~ ) =mlar) - - m(o) @ ().

We claim thatn (o) = O for somek. If otherwisem(ay) # 0 for all k > 1, and the above identity implies
thatg (o) =0 for all kK > 1. Using (3.1) again we have

O0=¢(a) = m(B_lak) .. .m(B—lak)(Z)(B_lak).

SinceT (A, D) is a tile by assumption, lig, o ¢(B~*£) = ¢(0) = L(T (A, D)) > 0. Thus there existl
such that

¢(B'a) #£0 Vi >Ipanda € T(A,C).

By the definition of{a}2, in P, there are infinitely many distinat,. It is easy to see that there
exist 0< I <lgand a subsequen@q; such that{B‘lak;}?;l are distinct roots of the mask(¢). This
contradicts Lemma 2.4 and the claim follows.

The claim implies that any paffa,};2, in P contains at least one root of(£). Let ko be the smallest
integer such that,, is a root ofm (¢) and let\ be all suchy, of the pathga,}32, € P. Since there are
at most finitely many distinct states that are roots:0f) (Lemma 2.4)./\7 must be a finite set. Itis clear
that we can choose a tight skt from N. o

To conclude this section, we give a general property of the tight sets which will be needed in the proof
of the main theorem in the next section.

Proposition 3.4. Let B € M,(Z) be an expanding matrix, and let C = {0=cy, ..., ¢} C Z* such that
c; ¢ BZ* for all 1 <i < m. Then for a C-tight set V, there exists a state « such that all its next-level
descendants arein V, i.e,, {B~!(a + ¢;)}"_o C N In particular, if « = 0, then N = (B¢, }"_;.

Proof. We claim thata, # 8, for any two statesy, and g, with k # [. If otherwisea; = 8;, we can
assume that > [. Recall that in a remark before Definition 3.1, we have identified the paths such that
the first terme;, # 0, then

—k -1 -1 -1
B le++B Cjk:B C/i++B Cj]/.

By multiplying B* and by moving the terms to the right, we see thate BZ*. This contradicts the
assumption on the;’s and the claim follows. We conclude that the index of a staie equal to the
length of the path to reach (with the convention that; # 0). (Note that such a state can still be
reached by different paths but of the same length.)

Now we consider the tight se¥. Since N is a finite set, we lek be the maximal index so that
a; € N. Consider the paths from 0 tg,, by the minimality of A/ in Definition 3.1, there exists at least
one path starting from 0 and reachiag without intersecting\/ (exceptay). The path has length by
the conclusion in the above paragraph; let us denote it by,0. ., «y. It follows that

a ¢ N, i=01....k—1 and o =B Hay_1+c;).

Forthe casey_1 # 0, letay ; = Bfl(ak_l—i-cj), j=0,1,...,m.Bythe remark following Definition 3.1,
we see that there are infinite pathsArpassing througlky, ; and they must mee¥’. The maximality of
k hence implies thaB~Y(c;_1 + c;) € N for each 0< j < m. For the casey_;, =0, it reduces to
N = {B‘lcj};”zl readily (the case; = 0 does not appear due to our convention of nonzero patis).
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4. Tiledigit sets
In this section, we consider the characterization of the prime tile digit sets.

Lemma4.1. Let A € M, (Z) be expanding such that |detA| = pisaprime, let B = A" andlet B" = pB~*!
be the adjoint matrix of B. Then p does not divide (B'v, d) for any d ¢ AZ* and v € Z*\ BZ*.

Proof. Let {0=p,v1,...,v,_1} be a complete set of coset representative®°¢BZ°. By considering
75 /BZ* as a group, it follows that faf ¢ AZ*, the charactee?™ 574 in the dual group satisfies

p—1 p—1
0= ZeZM (B~ v] eZm
j=0 j=0
(see, e.g., [8, Lemma 2.1]). Applying Lemma 2.3 foe= 1 and usingyy, = 0, we obtain, after an
rearrangement,
B'v;,d
B d) _J modD. j=0... . . p—1.
p p
Hence, forv € Z*\ BZ*, there exists # 0 such thav € v; + BZ* and
B'v,d) j
(Bv.d) =1 (mod J).
p p

The lemma follows from this. O

Theorem 4.2. Let A € M,(Z) be an expanding matrix such that [det(A)| = p isaprime. Let D = {0 =
do,dy, ...,d,—1} € Z* and spanD) = R*. Then D is a tile digit set if and only if D = A"D for some
n > 0and D isa complete set of coset representatives of Z* /AZ’.

Proof. The sufficiency follows from Proposition 1.2 aidA, D) = A"T (A, D) We only need to prove
the necessity. Let > 0 be the largest integer such tHAt= A"D with D c Z¢ and henceD #0
(mod AZ). In view of T(A, D) = A"T(A, D), we can assume, without loss of generality, that D,
henced, ¢ AZ* for some 1</ < p — 1. Letm(&) = p~1 Zf;éez””f*dﬂ be the mask of. For

veZ\BZ and C={0,v,...,(p—Dyv},

according to Theorem 3.3 there exists a tight Aétof P Which consists of the roots ofi(¢£). By
Proposition 3.4, there exists a statsuch that B~ (« + tv)}/_ (for a#0)or{tB~ ! _11 (fora =0)
are the roots of the mask(¢).

We first consider the case= 0: for r = 1, B~1v is a root ofm (£). Hence

0 m — 712:627118 vd l§:€2n18vd

By applying Lemma 2.3 (W|tln =1)and notlng that there is one term in the above summand equal to 1,
we conclude that

[(Bv,d;): 0<j<p-1}={0,1,..., p— 1} (modp).
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It follows thatd; — d; ¢ AZ* for anyi # j (otherwise, ifd; —d; = Aw € AZ’ for somei, j, then
(B™v,d;) — (B™v,d;) = (BT, Aw) = p(v, w) =0 (mod p),
which is impossible). This implies th@ is a complete set of coset representativeZgfAZ° .
Next we show that the case 0 cannot happen and the theorem will follow. Sincis aC-state,

1 o
a=jpB 4+ 4 B = ?(jlpkleTu +oo o+ i (BHY) = % #£0,

where 0< j; < p — 1. By substituting the root8 (« + tv) into the maskn (&), we have

p—1
Zez:n'(BM’Hp"BTv,d/)/p"“ -0 Vt=01,...,p—1 (4.1)
j=0

Hence forr =0, (4.1) reduces to
p—1
j=0

Lemma 2.3 (use = k + 1 andr = 0 since 0= D) shows that with a rearrangement
(B!, dj) = jp* + p*tw; VO<j<p-1,
wherew; € Z. Substituting these into (4.1) we have

-1
ZiUIP /DB — 0 v =0,1,...,p—1,

<

~.
Il
o

Again we apply Lemma 2.3 to each<0r < p — 1,
[i+t(B™v,d;): 0<j<p-1}={0,1,..., p— 1} (modp).
Sincedy = 0, we see that for eachQr < p — 1,
j+t(B',d;)=0(@modp) ifandonlyif j=0. (4.4)
On the other hand, by Lemma 444 (B'v, d;). This implies that
{t(BTv,d): 0<t<p—-1}={0,1,..., p—1} (modp).
Sincel # 0, there exists X 7 < p—1such that(B'v, d;) = —I (modp),i.e.,l+7(BTv,d;) =0 (modp).

This contradicts (4.4) and completes the proof of the claim, and hence the thearem.

We remark that Theorem 4.2 was proved in [15] under the additional assumptiopZthat A%75.
The assumption was used to show that the alVms the specific formi'd, = jd, (mod p) for some
j # 0. Itis known that there are matrices that do not satisfy the assumption (see [12, Proposition 6.2] for
examples withdetA| = 3 in R?). Our proof here bypasses this by using the tightness property.

The condition spafD) = R® in the theorem is only used in Lemma 2.4; we conjecture that it can be
removed. Indeed this is true f&:
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Corollary 4.3. Let A € M>(Z) be an expanding matrix such that |det(A)| = p isaprime. Let D = {0 =
do,dy,...,dp,_1} C Z?. Then D is atile digit set if and only if D = A"D for n > 0 and D is a complete
set of coset representatives of 72/ AZ2.

Proof. If spanD) = R?, the assertion follows from the above theorem. OtherwiBeis collinear
(i.e., D =1{0,i1v,...,i,—1v} for somev e 72 and for alli; € Z). The assertion was proved in [11,
Theorem 3.1]. O

If |detA] is not a prime, then it is harder to characterize the tile digit sets. For example, if we take
A=[4andD =1{0,1,8,9}inR, itis easy to show thaf = [0, 1] U [2, 3]; note thatD = {0, 1} (mod 9
and the criterion in Theorem 4.2 does not hold. Besides the cast tohave prime determinant, we
only know two other cases dR that the tile digit sets can be completely characterized, namely, the cases
A =[p'1[15] andA = [pq] [19], wherep, ¢ are distinct primes. In the second case, the characterization
is quite simple: leb = pgq,

D =& + b1 (modbt)

for some integek > 1, where&, ={0,...,p — 1}, & ={0, p,..., p(g — 1} (or interchange the role
of p andg). We do not know if this can be extended to more gengral [b] or to higher dimensions.

5. Scaling functions

In this section we will consider thé-tight set in regard to the existence of the scaling function

N-1

p(x) =Y wip(Ax —d;) (5.1)

j=0
(N > |detA]) asin Lemma 2.1. In one dimension, let= [b] with positive integeb > 1. Itis well known
that a necessity for (5.1) to have compactly suppoftedolutiong is Zj.vz_ol w; = b™*1 for somem > 0;

in this case, there existssuch thaid” g(x))/(dx™) = ¢(x) andg(x) = Z?;ol b™w;g(bx —d;). Hence
we can assume th@?’;ol w; = |detA| = b as usual.
For any set C Z*, letCp1=C,Cpx =C + BCg 4_1, andCp = | ;= Ch -

Theorem 5.1. Let B= A", and let C = {0 =cg, c1,...,cn} C Z° with Cg = Z°. Suppose the weights
w;’sin (5.1) are positive and suppose there exists a C-tight set V' consisting of the roots of the mask
m(E)=b"1 27;01 w;e?"&:4j) Then the scaling function ¢ in (5.1) exists.

Proof. Let 0£v € Z* =Cp, thenv € C; for somek and
v=cj; +Bcj, +---+ Bkilcjk.

Without loss of generality, we assume that # 0. Let o; = B~c;, + B~"*ic;, + --- + B7¢;,
i=1,2,...,k, betheC-states, them = B*w;. If we letay; be the states defined by,...,c;,0,0,...,
then{e, }2° ; contains infinitely many distinct states ane= B**'«; 4, also. By (5.1), we have

o) = m(B_lv) . -m(B_"v)gﬁ(B_”v), n>1
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The integral periodicity ofz (&) implies that

Q) =m(ar) - - m(ot41)P(ir1)

for all nonnegative integers By the tightness property of/, one of the states in the pafh,}2, is a
root of m(&). Hencep(v) = 0. Since 0% v € Z* is arbitrary, the second part of Lemma 2.1 implies the
theorem. O

For the hypothesi€z = Z* in the above theorem, a sufficient condition is tfat (£ — &), where&
is a tile digit set with respect t®& and L(T (B, £)) = 1 (this implies € — £)p = Z* [15]). It was also
known that for a given expanding matrke M,(Z), such& exists fors < 3 [17]; but fors > 3, Potiopa
gave an example that this is not true (see the addendum of [17]). Here since we have no restriction on the
number of elements ofi, we can guarantee the existence of sidiy the following proposition.

Proposition 5.2. For an expanding matrix B € M,(Z), there exists a digit set C c Z* with 0 € C and
Cpg=7".

Proof. Let £ be a complete set of coset representativeZ°¢giBZ°* and assume that©&. Then there
exists7 C (£ — &)p with 0 e 7 such thatT' (A, &) tilesR* using 7 as a tiling set [14].

Let F=T(A, £)NZ*, then Oe F. For anyv € Z°* there exists € 7 such that — ¢ € D, this implies
thatZ* C 7 + F. Now letC =& — £ + F. Itis clear that

Z'2OCp2(E-Ep+FO2IT+FOZ.

Consequentlfz =7Z°. O

We do not know whether the necessity of Theorem 5.1 is true; a special case is Theorem 3.3 for
¢ = xr, whereT is determined by the prime tile digit sets. Nevertheless the necessity is true for the
refinement equation with one variable.

Proposition 5.3. Suppose the refinement equation (5.1) defined on R has a compactly supported -
solution. Then for anyC ={0,¢;,...,cn} CZwithm > 1, there exists a C-tight set consisting of roots of

m(s) Z] o W) eZm'djf_

Proof. The proof is essentially the same as that of Theorem 3.3; we need only replace the application of
Lemma 2.4 at the end of the proof by the fact that for the one varightlee trigonometric polynomial
m(&) can have at most finitely many zeros in a bounded regian.

As an application of the tight sets, we have an interesting one-dimensional result on the scaling
functions with prime dilation.

Recall that a cyclotomic polynomidl, (x) is the minimal polynomial of the algebraic integes /"
over the rational field. I = p is a prime, therF,(x) = 1+ x + --- +x” L and Fox (x) = F,(x”" ).
Theorem 5.4. Let p be a prime. Suppose {w; } ! are positive rationals and Z 0 w; = p. Then the
eguation ¢(x) = Z} ‘0 w;ip(px —dj) onR has a compactly supported Ll-sol ution if and only if there

exists a positive integer k such that m(p~—*) =0, where m(£) = _12, o wjeXmidis,
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Proof. We first prove the sufficiency. Le¥(z) = p~* 27:’01 w;z%, then M (e?¢) = m(&). For C =
{0,1,...,p—1}, let '
i1+izp+---+ip" !
i,y *= " )
p

where 1< i1 <p—1,0<i, <p—1,t=23,...,n. Itis clear that the set of adl;, is a tight set.
Suppose that:(p~*) = 0 for somek > 0, then the minimal property af .« (x) over the rational field
implies thatF « (x) divides M (x). Note that

k—1

Fu(x)=1+ T T D (5.2)

is a root of the masku (). The set\ of oy, _;, IS

ik
therefore a tight set of zeros of the mask&), and Theorem 5.1 implies that the scaling function
exists.

Conversely Proposition 5.3 implies that there &-fght set\ that are roots of the mask(&). Since
o € N can be expressed &s +ixp + - -+ iy pF~1)/pX,i; € C, i1 # 0, it follows thate?* is a primitive
p*th root of unity. HenceF « (x) divides M (x), so thatm(p =) = M(@ei/P'y=0. O

We remark that the above theorem can be modifiedifer [ p*]: the scaling function of (5.1) exists if
and only if there exist integeds, I =1, ..., X, such thain(p'T%*) = 0.
The proof is essentially the same; all we need to do is to adjust states into a slightly more complicated
form: the 1st level is
ittt i pl T i p Y
Pt ’
where 0<i; < p—1andnotali; =0, 1< j < A. Equivalently the states are of the form

i1+---+ijpj71+--'+i1plfl
P’ ’
Then(n + 1)th states have the form

ra /P, LI A,

wherer, , and p are co-prime. Now we can use the same argument as in the above theorem to verify the
assertion.

For #D > |detA|, we call T := T (A, D) a sdf-affine region if T° # (. Note that this gives a
necessary condition for the existence of the scaling functions defined by théApdir). We have
studied the sufficient conditions for such péir, D) to be a self-affine region [6,7]; but we do not have
a characterization even for the prime case in one dimension. An interesting example ig\ whEsj,

D ={0,1, 3,4}, thenT =[O0, 2] is a self-affine region, bub is not a complete residue set modulo 3 [6].
Normally, we should expect that on a self-affine region, we can assign weights with certain flexibility
to the refinement equation to yield scaling functions. It is interesting and unexpected to see that in the

above example, the refinement equation

@(x) = wop(3x) + w1p(3x — 1) + w2p(3x — 3) + w3p(3x — 4),
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wherew;’s are nonnegative rationals ang + w1 + w» + w3 = 3 has no nontrivial*-solution. Indeed
the mask is

m(&) = wo + w17 + woe®E 4 weetTiE

Using Theorem 5.4, we see that ah-solution ¢(x) exists if and only if there existé > 0 such that
m(37%) = 0. But the condition cannot be satisfied becausé ferl,

1 )
m (§> = wo + wa + (wy + w3)e@d™ £ 0

for k > 1, if m(37%) = wo + w1e2™/3 4 w,e® /3 4 wee™/3 = 0, we can assume that all the;’s
are integers without loss of generality. Using Lemma 2.3Nox 3¢, the vector(wg, w1, 0, wo, ws, 0,
0,...,0) ¢ ka can be expressed as integral combination of the ve¢tdrs 0 < < 3~! — 1}, which
is impossible. Hence: (37%) # 0 for k > 1. We, therefore, conclude that (5.1) hasrfesolution.
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