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Abstract

For an expanding integrals × s matrix A with |detA| = p, it is well known that ifD = {d0, . . . , dp−1} ⊂ Zs is
a complete set of coset representatives ofZs/AZs , thenT (A,D) is a self-affine tile. In this paper we show that
p is a prime, suchD actually characterizes the tile digit sets provided that span(D) = Rs . This result is known for
s = 1, the one-dimensional case [R. Kenyon, in: Contemp. Math., vol. 135, 1992, pp. 239–264] and the q
for s > 1 has been considered by Lagarias and Wang [J. London Math. Soc. 53 (1996) 21–49] under som
conditions. The proof here involves a new setup to study the zeros of the maskm(ξ) = p−1 ∑p−1

j=0 e2πi〈ξ,dj 〉. It
can also be generalized to consider the existence of a compactly supportedL1-solution of the refinement equatio
(scaling function) with positive coefficients.
 2004 Published by Elsevier Inc.
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1. Introduction

Let Ms(Z) be the set ofs × s matrices with integral entries. LetA ∈ Ms(Z) be anexpanding matrix,
i.e., all its eigenvalues have moduli> 1. LetD = {d0, d1, . . . , dN−1} ⊂ Zs be a set ofN (> 1) distinct
integral vectors. We callD adigit set and(A,D) aself-affine pair. Without loss of generality, we assum
thatd0 = 0 in D. Let

ψj(x) = A−1(x + dj ), j = 0,1, . . . ,N − 1.

✩ The research is partially supported by a HK RGC Grant, a Direct Grant from CUHK and by SRF for ROCS(SEM).
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They are contractions with respect to a suitable norm onRs ; the finite family{ψj }N−1
j=0 is called aniterated

function system (IFS). It is well known that there exists a unique nonempty compact setT := T (A,D)

satisfying the set-valued functional equationT = ⋃N−1
j=0 ψj(T ). Equivalently,

AT =
N−1⋃
j=0

(T + dj ) = T +D.

A more explicit expression ofT is given by the radix expansions

T =
{ ∞∑

k=1

A−kdjk
: djk

∈D
}

=
∞∑

k=1

A−kD.

One of the most interesting cases for the pair(A,D) is when #D = |detA| andT ◦ �= ∅. It is known
that in this case,T tiles Rs by translations (e.g., [14, Theorem 1.2]). Because of this we define

Definition 1.1. Let (A,D) be a self-affine pair and #D = |detA|. If T ◦ �= ∅, thenT is called aself-affine
tile andD is called atile digit set (with respect toA).

The current theory of tiles was first considered by Dekking [3] and Rauzy [21] via the substit
on finite alphabets. The foundation of self-affine tiles and self-replicating tilings were laid dow
Thurston [24] and Kenyon [10], and the basic properties were proved by Lagarias and Wang [1
Recently there have been extensive investigations in this topic, for example, on the tiling propert
wavelet properties, the fractal structure of the boundaries, the connectedness and disk-likeness
classification of the expanding integral matrices (e.g., [1,2,4,5,7,11–17,19,22,23,25]). However, th
still many problems remaining unsolved. Among them is the following:

Question. For a given expanding matrixA ∈ Ms(Z), characterize thetile digit sets D with respect toA
[15,19].

Regarding this question, the following is well known.

Proposition 1.2 [1]. Let (A,D) be a self-affine pair and #D = |detA| = b. Then D is a tile digit set if D
is a complete set of coset representatives of Zs/AZs .

The condition in the proposition is far from being necessary. In the one-dimensional case, wheb is a
prime, the characterization is reduced to a modulo condition (see, e.g., [10]):

Proposition 1.3. On R, let A = [p], where p is a prime and let D ⊂ Z with #D = p. Then D is a tile
digit set if and only if D = �D̃, where � ∈ Z and D̃ is complete set of coset representatives of Z/pZ, i.e.,
D̃ ≡ {0, . . . , p − 1} (modp).

The assumption thatp is a prime is essential in the proposition. In fact, the more extensive for
tile digit sets forA = [pl] and [pq], wherep, q are primes were characterized by Lagarias and W
[15] and Lau and Rao [19], respectively. The higher-dimensional case is more difficult even for
determinant, Proposition 1.3 was partially extended toRs [15] under the extra conditionpZs � A2Zs . It
was conjectured that the condition is unnecessary. In this paper we give an answer to this questi
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Theorem 1.4. Let (A,D) be a self-affine pair with #D = |detA| = p and p > 1 is a prime. Suppose
span(D) = Rs . Then D is a tile digit set if and only if D = AnD̃ for some nonnegative integer n and a
complete set of coset representatives D̃ of Zs/AZs .

The theorem will be proved in Theorem 4.2. For this we will set up the problem in the more g
refinement equation

ϕ(x) =
N−1∑
j=0

wjϕ(Ax − dj ), (1.2)

where eachwj ∈R and
∑N−1

j=0 wj =|detA|=b. Formally, the Fourier transform̂ϕ(ξ) = ∫
ϕ(x)e2πi〈x,ξ 〉 dx

satisfies

ϕ̂(ξ ) = m
(
B−1ξ

)
ϕ̂
(
B−1ξ

) = m
(
B−1ξ

) · · ·m(
B−kξ

)
ϕ̂
(
B−kξ

) = ϕ̂(0)

∞∏
k=1

m
(
B−kξ

)
, (1.3)

whereB = At and

m(ξ) = b−1
N−1∑
j=0

wje
2πi〈ξ,dj 〉.

We call m(ξ) the mask of the refinement equation, and apositive mask if the coefficients are positive
The product in (1.3) converges uniformly on compact subsets. It follows thatϕ exists as a distribution
If ϕ exists as a compactly supportedL1-solution, we call it ascaling function; the existence can b
characterized by the Fourier transform̂ϕ(ξ) (Lemma 2.1).

For the self-affine pair(A,D) with #D = |detA| = b, if we let ϕ = χT , the indicator ofT := T (A,D),
thenϕ satisfies

ϕ(x) =
b−1∑
j=0

ϕ(Ax − dj )

and the corresponding mask ism(ξ) = b−1 ∑b−1
j=0 e2πi〈ξ,dj 〉. It is well known that (Proposition 2.2)T is a

tile (equivalentlyχT is a scaling function) if and only if for each 0�= ν ∈ Zs , there exists an integerk > 0
such thatm(B−kν) = 0.

Our main idea to prove Theorem 1.4 is that when|detA| = p is a prime, we can make use of the spec
properties of the roots of unity for primes to reduce the above criterion to a certain finite set of z
the maskm(ξ). Such finite set is called atight set (see Section 3) which is an extension of the “minim
cut set” introduced by Protasov [20]. The tight sets can also be used to study the scaling functio
prove the following interesting result for the refinement equation with positive rational weights. F
case with positive weights, the reader can refer to [9,18,26] for detail.

Theorem 1.5. Let p be a prime. Suppose {wj }N−1
j=0 are positive rationals and

∑N−1
j=0 wj = p. Then the

equation ϕ(x) = ∑N−1
j=0 wjϕ(px − dj ) on R has a compactly supported L1-solution if and only if there

exists a positive integer k such that m(p−k) = 0, where m(ξ) = p−1 ∑N−1
wje

2πidj ξ .
j=0
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For the organization of the paper, in Section 2, we give some preliminaries and study the roots
for the primep in conjunction with the maskm(ξ). We introduce the tight sets in Section 3 and pro
some related properties. Theorem 1.4 is proved in Section 4. In Section 5, we make use of the t
to study the existence of scaling functions of the refinement equations.

2. Preliminaries

Throughout the paper we assume, unless otherwise specified, thatA ∈ Ms(Z) is expanding,B = At

andD = {0 = d0, . . . , dN−1} ⊂ Zs . We need the following lemma of which the necessity is well kno
and the sufficiency was proved in [20] onR. The proof here is a higher-dimensional analog and
simplification of [20, Lemma 2].

Lemma 2.1. Suppose ϕ is a scaling function satisfying (1.2), then ϕ̂(ν) = 0 for any nonzero integral
vector ν ∈ Zs . The converse is also true if the wj ’s in (1.2) are nonnegative. In this case ϕ is a bounded
function.

Proof. By assumption,ϕ is a compactly supportedL1-solution of (1.2). It follows from (1.3) that

ϕ̂(ξ ) = m
(
B−1ξ

) · · ·m(
B−kξ

)
ϕ̂
(
B−kξ

)
, (2.1)

wherem(ξ) = b−1 ∑N−1
j=0 wje

2πi〈ξ,dj 〉. For a nonzeroν ∈Zs, letξ =Bkν. Thenm(B−j ξ )=m(Bk−j ν)=1,
j � k and the above identity is reduced toϕ̂(Bkν) = ϕ̂(ν). It follows thatϕ̂(ν) = limk→∞ ϕ̂(Bkν) = 0 by
the Riemann–Lebesgue lemma.

Conversely assume that the coefficients of (1.2) are nonnegative, we letS denote the Schwartz spa
of rapidly decreasing functions onRs . For f ∈ S , let f̃ (x) = ∑

�∈Zs f (x + �). Then f̃ is a periodic
function and

f̃ (x) =
∑
ν∈Zs

aνe
2πi〈ν,x〉, whereaν =

∫
[0,1]s

f̃ (x)e−2πi〈ν,x〉 dx = f̂ (−ν).

Sinceϕ (as a distribution) has compact support, we defineϕ̃(x) = ∑
�∈Zs ϕ(x + �). It follows from the

assumptionϕ̂(ν) = 0 andϕ̂(0) = 1 that for anyf ∈ S ,

〈ϕ̃, f 〉 = 〈ϕ, f̃ 〉 =
〈
ϕ,

∑
ν∈Zs

aνe
2πi〈ν,x〉

〉
=

∑
ν∈Zs

āν ϕ̂(ν) = a0 =
∫
Rs

f (x)dx.

Hence ϕ̃(x) = 1. ϕ is nonnegative and̃ϕ(x) = ∑
�∈Zs ϕ(x + �) imply that the compactly supporte

distributionϕ is actually a function onRs and is bounded. �
As a direct consequence of Lemma 2.1, we have the following criterion of self-affine tiles [10,1

Proposition 2.2. Let (A,D) be a self-affine pair and #D = |detA| = b, and let m(ξ) = b−1
∑b−1

j=0 e2πi〈ξ,dj 〉,
then T (A,D) is a self-affine tile if and only if for any 0 �= ν ∈ Zs , there exists an integer k > 0 such that
m(B−kν) = 0.
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Proof. Let ϕ = χT , the indicator function ofT := T (A,D). Then the scaling functionϕ satisfiesϕ(x) =∑b−1
j=0 ϕ(Ax − dj ). The proposition follows directly from Lemma 2.1, (2.1) and limk→∞ ϕ̂(B−kξ ) =

ϕ̂(0) = L(T ) > 0, whereL denotes the Lebesgue measure onRs . �
Proposition 2.2 has been used extensively in conjunction with the roots of unity [10,15,19]. Fo

N > 1, lete2πik/N denote theN th roots of unity and let

Γ N
+ :=

{
a = (a0, . . . , aN−1)

t ∈ ZN : ak � 0,

N−1∑
k=0

ake
2πik/N = 0

}

be the semigroup of integral vectors generated by thee2πik/N , k = 0, . . . ,N − 1. Therank of Γ N+ is the
dimension of the real vector space it spans. It was proved in [15] that: ifp is a prime and ifN = pn for
somen > 0, thenΓ N+ has rankpn−1 and is generated bya(r) ∈ Γ N+ , 0� r � pn−1 − 1, where the entrie
of a(r) are

a
(r)
k =

{
1 if k = r + jpn−1, j = 0, . . . , p − 1,
0 otherwise.

More explicitly,

a(0) = (1,0, . . . ,0︸ ︷︷ ︸
pn−1

, . . . ,1,0, . . . ,0︸ ︷︷ ︸
pn−1

), a(1) = (0,1, . . . ,0︸ ︷︷ ︸
pn−1

, . . . ,0,1, . . . ,0︸ ︷︷ ︸
pn−1

), etc.,

and the corresponding relation (withN = pn) reduces to

N−1∑
k=0

a
(r)
k e2πik/N ≡

p−1∑
j=0

e2πi(r+jpn−1)/pn = 0, 0� r � pn−1 − 1.

It follows easily that

Lemma 2.3. If p is a prime and for {bj }p−1
j=0 ⊂ Z such that

∑p−1
j=0 e2πibj /pn = 0, then subject to a

permutation, bj ≡ r + jpn−1 (modpn) for some r with 0 � r � pn−1 − 1.

In the following and in the next section we will modify the conditionm(B−kν) = 0, ν ∈ Zs in
Proposition 2.2 to another criterion that is more flexible to use.

Let C = {0= c0, c1, . . . , cm} ⊂ Zs , m � 1 and letSj (x) = B−1(x +cj ), j = 0, . . . ,m. We use the map
{Sj }m

j=0 to define a tree structure: letα0 = 0 and let

αk = Sjk
(αk−1) = B−1(αk−1 + cjk

), cjk
∈ C,

denote the descendants in thekth generation. We call suchαk a C-state (or just astate if there is no
confusion). It is clear that

αk = B−kcj1 + · · · + B−1cjk
.

Let Ck
B−1 denote theαk ’s andC∞

B−1 = ⋃∞
k=0Ck

B−1. The following is the key lemma, it is used to pro
Theorem 3.3, and the main result Theorem 4.2 via a specialC.
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Lemma 2.4. Let A ∈ Ms(Z) be an expanding matrix, where |det(A)| = p is a prime, and let D = {0 =
d0, d1, . . . , dp−1} ⊂ Zs such that span(D) = Rs. Then, for any C ⊂ Zs and for B = At , there are at most
finitely many αk ∈ C∞

B−1 that are roots of m(ξ) = p−1
∑p−1

j=0 e2πi〈ξ,dj 〉.

We remark that the lemma is trivial in one dimension, however, in higher dimension, the set o
of m(ξ) is a manifold and the assertion is not as obvious.

Proof. Suppose otherwise, we can find a sequence{α�k
}∞
k=1 ⊂ C∞

B−1 with strictly increasing indices suc
that theα�k

’s are distinct and are roots ofm(ξ). Let B† be the adjoint matrix ofB. ThenB† is an integer
matrix andB−1 = p−1B†. By the definition of states, we can writeαlk asp−lkα∗

lk
with α∗

lk
∈ Zs . From

m(αlk ) = 0, we have

0= 1

p

p−1∑
j=0

e2πi〈αlk
,dj 〉 = 1

p

p−1∑
j=0

e
2πi〈α∗

lk
,dj 〉/plk

.

For eachk, applying Lemma 2.3 withN = plk , we haver = 0 sinced0 = 0, and

〈αlk , dj 〉 = 〈α∗
lk
, dj 〉

plk
= rk,j

p
(mod 1), j = 0,1, . . . , p − 1,

where the set of{rk,j }p−1
j=0 is a permutation of{0, . . . , p − 1}. Since {αlk}∞

k=1 is bounded, we ca
assume that it converges to someα for simplicity. Using the standard diagonal argument, there ex
a subsequence which we still denote by{αlk}∞

k=1, such that for eachj = 0,1, . . . , p − 1,

〈αlk , dj 〉 = rj

p
+ nk,j ≡ rj

p
(mod 1),

where {r0, r1, . . . , rp−1} is a permutation of{0,1, . . . , p − 1}. Assume that limk→∞〈αlk , dj 〉 = 〈α,dj 〉
yields ak̄ such that for each 0� j � p − 1, we have

nk,j = nj for k > k̄.

Consequently fort, t ′ > k̄, t �= t ′,

〈αlt − αlt ′ , dj 〉 = 0 ∀j = 0,1, . . . , p − 1,

which impliesαlt = αlt ′ by the condition span(D) = Rs . This contradicts with the assumption that theαlk

are distinct and the proof is complete.�

3. Tight sets

In this section we will give a more detailed consideration on the structure of theC-states in Lemma 2.
that are roots of the maskm(ξ).

Let B = At and let C = {0 = c0, c1, . . . , cm} ⊂ Zs . For a finite sequence{cj1, . . . , cjn
}, let αk =

B−kcj1 + · · · + B−1cjk
, 1 � k � n and α0 = 0, we call the corresponding finite sequence of st

γ = {αk}n
k=0 a path from 0 to αn. An infinite pathγ = {αk}∞

k=0 is defined similarly. Likewise we ca
define a path starting from some stateα0, in this case

αk = B−kα0 + B−kcj1 + · · · + B−1cjk
.
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Note that the path from one state to another may not be unique; ifαk1 = αk2, then we can identify al
paths starting fromαk1 with those fromαk2.

It is easy to see that the states defined by{0, cj1, cj2, . . .} and {0, . . . ,0, cj1, cj2, . . .} are exactly the
same. We can identify the paths arising from this way and it is an equivalence relation. Therefore,
treat a path{αk}n

k=0 (n is finite or infinite) as an equivalence class and the representative is the on
cj1 �= 0. For convenience we make the following convention.

Convention. We assume that for any path{αk}n
k=0 with n finite or infinite,α1 = B−1cj1 �= 0 (except the

zero path with all digitscji
= 0).

Using this convention we define thelength of a path{αk}n
k=0 to ben.

Definition 3.1. Let C = {0 = c0, . . . , cm} ⊂ Zs . Let P denote the paths{αk}∞
k=0 that contain infinitely

many distinct states. We say thatN ⊂ C∞
B−1 is aC-tight set (or just atight set) of P if 0 /∈N and

(i) every pathγ = {αk}∞
k=0 ∈P intersectsN for at least one point, and

(ii) N is a minimal finite set, i.e., for anyN ′ � N , there exists a path inP which does not intersectN ′.

It is useful to observe that for anyα ∈ C∞
B−1, there exists a path inP passing throughα. Indeed, this is

obvious ifα = 0. If α �= 0, let{0, α1, . . . , αk = α} be a path that reachesα. Sinceα �= B−nα for all n � 1,
the path{α1, . . . , αk = α,B−1α,B−2α, . . .} belongs toP .

Proposition 3.2. Let B = At . Suppose that C = {0 = c0, . . . , cm} ⊂ Zs with ci /∈ BZs for all 1 � i � m.
Then all (nonzero) infinite paths are in P , i.e., each infinite path contains infinitely many distinct states.

Proof. Let {αk}∞
k=0 be a nonzero path. The convention guarantees thatcj1 �= 0. If αn = αn+l , then

B−ncj1 + · · · + B−1cjn
= B−(n+l)cj1 + · · · + B−1cjn+l

.

By multiplying with B(n+l) and by reshuffling the terms, we see thatcj1 ∈ BZs which contradicts the
assumption. Hence all the elements of{αk}∞

k=0 are distinct and the statement follows.�
Theorem 3.3. Let A ∈ Ms(Z) be an expanding matrix such that |det(A)| = p is a prime. Suppose D =
{0= d0, d1, . . . , dp−1} ⊂ Zs is a tile digit set and span(D) = Rs. Then for any C = {0= c0, c1, . . . , cm} ⊂
Zs , m � 1, there exists a C-tight set N that consists of the roots of the mask m(ξ) = p−1 ∑p−1

j=0 e2πi〈ξ,dj 〉.

Proof. Letϕ(x) = χT (x) be the characteristic function of the self-affine tileT (A,D). Thenϕ(x) satisfies
the refinement equationϕ(x) = ∑p−1

j=0 ϕ(Ax − dj ) and ϕ̂(ξ ) = m(B−1ξ)ϕ̂(B−1ξ), where B = At .
Iterating this fork-times, we have

ϕ̂(ξ ) = m
(
B−1ξ

) · · ·m(
B−kξ

)
ϕ̂
(
B−kξ

)
. (3.1)

Now for any C-path {αk}∞
k=0 ∈ P , consider thoseαk such that 0�= νk = Bkαk ∈ Zs , and thusνk =

cj1 + · · · + Bk−1cjk
. The integral periodicity ofm(ξ) implies that forl � k,

m
(
B−lνk

) = m
((

B−lcj1 + · · · + B−1cjl

) + · · · + Bk−l−1cjk

) = m(αl).
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Hence from Lemma 2.1, we have fork � 1,

0= ϕ̂(νk) = m
(
B−1νk

) · · ·m(
B−kνk

)
ϕ̂
(
B−kνk

) = m(α1) · · ·m(αk)ϕ̂(αk).

We claim thatm(αk) = 0 for somek. If otherwise,m(αk) �= 0 for all k � 1, and the above identity implie
that ϕ̂(αk) = 0 for all k � 1. Using (3.1) again we have

0= ϕ̂(αk) = m
(
B−1αk

) · · ·m(
B−lαk

)
ϕ̂
(
B−lαk

)
.

SinceT (A,D) is a tile by assumption, limk→∞ ϕ̂(B−kξ ) = ϕ̂(0) = L(T (A,D)) > 0. Thus there existsl0
such that

ϕ̂
(
B−lα

) �= 0 ∀l � l0 andα ∈ T (A,C).

By the definition of{αk}∞
k=0 in P , there are infinitely many distinctαk. It is easy to see that the

exist 0� l � l0 and a subsequenceαk′
j

such that{B−lαk′
j
}∞
j=1 are distinct roots of the maskm(ξ). This

contradicts Lemma 2.4 and the claim follows.
The claim implies that any path{αk}∞

k=0 in P contains at least one root ofm(ξ). Let k0 be the smalles
integer such thatαk0 is a root ofm(ξ) and letN̂ be all suchαk0 of the paths{αk}∞

k=0 ∈ P . Since there are
at most finitely many distinct states that are roots ofm(ξ) (Lemma 2.4),N̂ must be a finite set. It is clea
that we can choose a tight setN from N̂ . �

To conclude this section, we give a general property of the tight sets which will be needed in th
of the main theorem in the next section.

Proposition 3.4. Let B ∈ Ms(Z) be an expanding matrix, and let C = {0 = c0, . . . , cm} ⊂ Zs such that
ci /∈ BZs for all 1 � i � m. Then for a C-tight set N , there exists a state α such that all its next-level
descendants are in N , i.e., {B−1(α + cj )}m

j=0 ⊂ N . In particular, if α = 0, then N = {B−1cj }m
j=1.

Proof. We claim thatαk �= βl for any two statesαk and βl with k �= l. If otherwiseαk = βl , we can
assume thatk > l. Recall that in a remark before Definition 3.1, we have identified the paths suc
the first termcj1 �= 0, then

B−kcj1 + · · · + B−1cjk
= B−lcj ′

1
+ · · · + B−1cj ′

l
.

By multiplying Bk and by moving the terms to the right, we see thatcj1 ∈ BZs . This contradicts the
assumption on thecj ’s and the claim follows. We conclude that the index of a stateα is equal to the
length of the path to reachα (with the convention thatcj1 �= 0). (Note that such a state can still
reached by different paths but of the same length.)

Now we consider the tight setN . SinceN is a finite set, we letk be the maximal index so tha
αk ∈ N . Consider the paths from 0 toαk, by the minimality ofN in Definition 3.1, there exists at lea
one path starting from 0 and reachingαk without intersectingN (exceptαk). The path has lengthk by
the conclusion in the above paragraph; let us denote it by 0, α1, . . . , αk. It follows that

αi /∈N , i = 0,1, . . . , k − 1 and αk = B−1(αk−1 + cjk
).

For the caseαk−1 �= 0, letαk,j = B−1(αk−1+cj ), j = 0,1, . . . ,m. By the remark following Definition 3.1
we see that there are infinite paths inP passing throughαk,j and they must meetN . The maximality of
k hence implies thatB−1(αk−1 + cj ) ∈ N for each 0� j � m. For the caseαk−1 = 0, it reduces to
N = {B−1cj }m

j=1 readily (the casec1 = 0 does not appear due to our convention of nonzero paths).�
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l to 1,
4. Tile digit sets

In this section, we consider the characterization of the prime tile digit sets.

Lemma 4.1. Let A ∈ Mn(Z) be expanding such that |detA| = p is a prime, let B = At and let B† = pB−1

be the adjoint matrix of B . Then p does not divide 〈B†ν, d〉 for any d /∈ AZs and ν ∈ Zs\BZs .

Proof. Let {0 = ν0, ν1, . . . , νp−1} be a complete set of coset representatives ofZs/BZs . By considering
Zs/BZs as a group, it follows that ford /∈ AZs , the charactere2πi〈B−1·,d〉 in the dual group satisfies

0=
p−1∑
j=0

e2πi〈B−1νj ,d〉 =
p−1∑
j=0

e2πi〈B†νj ,d〉/p

(see, e.g., [8, Lemma 2.1]). Applying Lemma 2.3 forn = 1 and usingν0 = 0, we obtain, after an
rearrangement,

〈B†νj , d〉
p

≡ j

p
(mod 1), j = 0, . . . , p − 1.

Hence, forν ∈ Zs\BZs , there existsj �= 0 such thatν ∈ νj + BZs and

〈B†ν, d〉
p

≡ j

p
(mod 1).

The lemma follows from this. �
Theorem 4.2. Let A ∈ Ms(Z) be an expanding matrix such that |det(A)| = p is a prime. Let D = {0 =
d0, d1, . . . , dp−1} ⊆ Zs and span(D) = Rs . Then D is a tile digit set if and only if D = AnD̃ for some
n � 0 and D̃ is a complete set of coset representatives of Zs/AZs .

Proof. The sufficiency follows from Proposition 1.2 andT (A,D) = AnT (A, D̃). We only need to prove
the necessity. Letn � 0 be the largest integer such thatD = AnD̃ with D̃ ⊂ Zd and henceD̃ �≡ 0
(modAZ). In view of T (A,D) = AnT (A, D̃), we can assume, without loss of generality, thatD = D̃,
hencedl /∈ AZs for some 1� l � p − 1. Letm(ξ) = p−1 ∑p−1

j=0 e2πi〈ξ,dj 〉 be the mask ofT . For

ν ∈ Zs\BZs and C = {
0, ν, . . . , (p − 1)ν

}
,

according to Theorem 3.3 there exists a tight setN of P which consists of the roots ofm(ξ). By
Proposition 3.4, there exists a stateα such that{B−1(α + tν)}p−1

t=0 (for α �= 0) or {tB−1ν}p−1
t=1 (for α = 0)

are the roots of the maskm(ξ).
We first consider the caseα = 0: for t = 1, B−1ν is a root ofm(ξ). Hence

0= m
(
B−1ν

) = p−1
p−1∑
j=0

e2πi〈B−1ν,dj 〉 = p−1
p−1∑
j=0

e2πi〈B†ν,dj 〉/p.

By applying Lemma 2.3 (withn = 1) and noting that there is one term in the above summand equa
we conclude that{〈B†ν, dj 〉: 0 � j � p − 1

} ≡ {0,1, . . . , p − 1} (modp).



168 X.-G. He, K.-S. Lau / Appl. Comput. Harmon. Anal. 16 (2004) 159–173

6.2] for

n be
It follows thatdi − dj /∈ AZs for any i �= j (otherwise, ifdi − dj = Aw ∈ AZs for somei, j , then

〈B†ν, di〉 − 〈B†ν, dj 〉 = 〈B†ν,Aw〉 = p〈ν,w〉 ≡ 0 (modp),

which is impossible). This implies thatD is a complete set of coset representatives ofZs/AZs .
Next we show that the caseα �= 0 cannot happen and the theorem will follow. Sinceα is aC-state,

α = j1B
−1ν + · · · + jkB

−kν = 1

pk

(
j1p

k−1B†ν + · · · + jk(B
†)kν

) := α′

pk
�= 0,

where 0� ji � p − 1. By substituting the rootsB−1(α + tν) into the maskm(ξ), we have

p−1∑
j=0

e2πi〈B†α′+tpkB†ν,dj 〉/pk+1 = 0 ∀t = 0,1, . . . , p − 1. (4.1)

Hence fort = 0, (4.1) reduces to

p−1∑
j=0

e2πi〈B†α′,dj 〉/pk+1 = 0.

Lemma 2.3 (usen = k + 1 andr = 0 since 0∈D) shows that with a rearrangement

〈B†α′, dj 〉 = jpk + pk+1wj ∀0� j � p − 1,

wherewj ∈ Z. Substituting these into (4.1) we have

p−1∑
j=0

e2πi(j/p+wj +(t/p)〈B†ν,dj 〉) = 0 ∀t = 0,1, . . . , p − 1.

Again we apply Lemma 2.3 to each 0� t � p − 1,{
j + t〈B†ν, dj 〉: 0� j � p − 1

} ≡ {0,1, . . . , p − 1} (modp).

Sinced0 = 0, we see that for each 0� t � p − 1,

j + t〈B†ν, dj 〉 ≡ 0 (modp) if and only if j = 0. (4.4)

On the other hand, by Lemma 4.1,p � 〈B†ν, dl〉. This implies that{
t〈B†ν, dl〉: 0 � t � p − 1

} ≡ {0,1, . . . , p − 1} (modp).

Sincel �= 0, there exists 1� t̃ � p−1 such that̃t〈B†ν, dl〉 ≡ −l (modp), i.e.,l+ t̃〈B†ν, dl〉 ≡ 0 (modp).
This contradicts (4.4) and completes the proof of the claim, and hence the theorem.�

We remark that Theorem 4.2 was proved in [15] under the additional assumption thatpZs � A2Zs.
The assumption was used to show that the abovedl has the specific formA†dl ≡ jdl (modp) for some
j �= 0. It is known that there are matrices that do not satisfy the assumption (see [12, Proposition
examples with|detA| = 3 in R2). Our proof here bypasses this by using the tightness property.

The condition span(D) = Rs in the theorem is only used in Lemma 2.4; we conjecture that it ca
removed. Indeed this is true forR2:
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Corollary 4.3. Let A ∈ M2(Z) be an expanding matrix such that |det(A)| = p is a prime. Let D = {0 =
d0, d1, . . . , dp−1} ⊆ Z2. Then D is a tile digit set if and only if D = AnD̃ for n � 0 and D̃ is a complete
set of coset representatives of Z2/AZ2.

Proof. If span(D) = R2, the assertion follows from the above theorem. Otherwise,D is collinear
(i.e., D = {0, i1ν, . . . , ip−1ν} for someν ∈ Z2 and for all ij ∈ Z). The assertion was proved in [1
Theorem 3.1]. �

If |detA| is not a prime, then it is harder to characterize the tile digit sets. For example, if we
A = [4] andD = {0,1,8,9} in R, it is easy to show thatT = [0,1] ∪ [2,3]; note thatD ≡ {0,1} (mod 4)
and the criterion in Theorem 4.2 does not hold. Besides the case forA to have prime determinant, w
only know two other cases onR that the tile digit sets can be completely characterized, namely, the
A = [pl] [15] andA = [pq] [19], wherep, q are distinct primes. In the second case, the characteriz
is quite simple: letb = pq,

D ≡ E1 + bk−1E2
(
modbk

)
for some integerk � 1, whereE1 = {0, . . . , p − 1}, E2 = {0, p, . . . , p(q − 1)} (or interchange the rol
of p andq). We do not know if this can be extended to more generalA = [b] or to higher dimensions.

5. Scaling functions

In this section we will consider theC-tight set in regard to the existence of the scaling function

ϕ(x) =
N−1∑
j=0

wjϕ(Ax − dj ) (5.1)

(N � |detA|) as in Lemma 2.1. In one dimension, letA = [b] with positive integerb > 1. It is well known
that a necessity for (5.1) to have compactly supportedL1-solutionϕ is

∑N−1
j=0 wj = bm+1 for somem � 0;

in this case, there existsg such that(dmg(x))/(dxm) = ϕ(x) andg(x) = ∑N−1
j=0 b−mwjg(bx −dj ). Hence

we can assume that
∑N−1

j=0 wj = |detA| = b as usual.
For any setC ⊂ Zs , let CB,1 = C, CB,k = C + BCB,k−1, andCB = ⋃∞

k=1CB,k.

Theorem 5.1. Let B = At , and let C = {0 = c0, c1, . . . , cm} ⊂ Zs with CB = Zs . Suppose the weights
wj ’s in (5.1) are positive and suppose there exists a C-tight set N consisting of the roots of the mask
m(ξ) = b−1 ∑N−1

j=0 wje
2πi〈ξ,dj 〉. Then the scaling function ϕ in (5.1) exists.

Proof. Let 0 �= ν ∈ Zs = CB , thenν ∈ Ck for somek and

ν = cj1 + Bcj2 + · · · + Bk−1cjk
.

Without loss of generality, we assume thatcj1 �= 0. Let αi = B−icj1 + B−i+1cj2 + · · · + B−1cji
,

i = 1,2, . . . , k, be theC-states, thenν = Bkαk. If we letαk+l be the states defined bycj1, . . . , cjk
,0,0, . . . ,

then{αk}∞
k=1 contains infinitely many distinct states andν = Bk+lαk+l also. By (5.1), we have

ϕ̂(ν) = m
(
B−1ν

) · · ·m(
B−nν

)
ϕ̂
(
B−nν

)
, n � 1.
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The integral periodicity ofm(ξ) implies that

ϕ̂(ν) = m(α1) · · ·m(αk+l)ϕ̂(αk+l)

for all nonnegative integersl. By the tightness property ofN , one of the states in the path{αk}∞
k=0 is a

root of m(ξ). Henceϕ̂(ν) = 0. Since 0�= ν ∈ Zs is arbitrary, the second part of Lemma 2.1 implies
theorem. �

For the hypothesisCB = Zs in the above theorem, a sufficient condition is thatC = (E − E), whereE
is a tile digit set with respect toB andL(T (B,E)) = 1 (this implies (E − E)B = Zs [15]). It was also
known that for a given expanding matrixB ∈ Ms(Z), suchE exists fors � 3 [17]; but fors > 3, Potiopa
gave an example that this is not true (see the addendum of [17]). Here since we have no restrictio
number of elements onC, we can guarantee the existence of suchC by the following proposition.

Proposition 5.2. For an expanding matrix B ∈ Ms(Z), there exists a digit set C ⊂ Zs with 0 ∈ C and
CB = Zs .

Proof. Let E be a complete set of coset representatives ofZs/BZs and assume that 0∈ E . Then there
existsJ ⊂ (E − E)B with 0 ∈ J such thatT (A,E) tiles Rs usingJ as a tiling set [14].

LetF = T (A,E) ∩ Zs , then 0∈F . For anyv ∈ Zs there existst ∈ J such thatv − t ∈D, this implies
thatZs ⊆ J +F . Now letC = E − E +F . It is clear that

Zs ⊇ CB ⊇ (E − E)B +F ⊇ J +F ⊇ Zs .

ConsequentlyCB = Zs . �
We do not know whether the necessity of Theorem 5.1 is true; a special case is Theorem

ϕ = χT , whereT is determined by the prime tile digit sets. Nevertheless the necessity is true f
refinement equation with one variable.

Proposition 5.3. Suppose the refinement equation (5.1) defined on R has a compactly supported L1-
solution. Then for any C = {0, ci, . . . , cm} ⊂ Z with m � 1, there exists a C-tight set consisting of roots of
m(ξ) = b−1 ∑N−1

j=0 wje
2πidj ξ .

Proof. The proof is essentially the same as that of Theorem 3.3; we need only replace the applic
Lemma 2.4 at the end of the proof by the fact that for the one variableξ , the trigonometric polynomia
m(ξ) can have at most finitely many zeros in a bounded region.�

As an application of the tight sets, we have an interesting one-dimensional result on the
functions with prime dilation.

Recall that a cyclotomic polynomialFn(x) is the minimal polynomial of the algebraic integere2πi/n

over the rational field. Ifn = p is a prime, thenFp(x) = 1+ x + · · · + xp−1 andFpk (x) = Fp(xpk−1
).

Theorem 5.4. Let p be a prime. Suppose {wj }N−1
j=0 are positive rationals and

∑N−1
j=0 wj = p. Then the

equation ϕ(x) = ∑N−1
j=0 wjϕ(px − dj ) on R has a compactly supported L1-solution if and only if there

exists a positive integer k such that m(p−k) = 0, where m(ξ) = p−1 ∑N−1
wje

2πidj ξ .
j=0
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Proof. We first prove the sufficiency. LetM(z) = p−1 ∑N−1
j=0 wjz

dj , thenM(e2πiξ ) = m(ξ). For C =
{0,1, . . . , p − 1}, let

αi1,...,in := i1 + i2p + · · · + inp
n−1

pn
,

where 1� i1 � p − 1, 0� it � p − 1, t = 2,3, . . . , n. It is clear that the set of allαi1,...,in is a tight set.
Suppose thatm(p−k) = 0 for somek > 0, then the minimal property ofFpk (x) over the rational field
implies thatFpk(x) dividesM(x). Note that

Fpk(x) = 1+ xpk−1 + x2pk−1 + · · · + x(p−1)pk−1
. (5.2)

Then Fpk (e2πiαi1,...,ik ) = 0. It follows thatαi1,...,ik is a root of the maskm(ξ). The setN of αi1,...,ik is
therefore a tight set of zeros of the maskm(ξ), and Theorem 5.1 implies that the scaling functionϕ

exists.
Conversely Proposition 5.3 implies that there is aC-tight setN that are roots of the maskm(ξ). Since

α ∈N can be expressed as(i1 + i2p +· · ·+ ikp
k−1)/pk, ij ∈ C, i1 �= 0, it follows thate2πiα is a primitive

pk th root of unity. HenceFpk (x) dividesM(x), so thatm(p−k) = M(e2πi/pk

) = 0. �
We remark that the above theorem can be modified forA = [pλ]: the scaling function of (5.1) exists

and only if there exist integerskl, l = 1, . . . , λ, such thatm(pl+klλ) = 0.
The proof is essentially the same; all we need to do is to adjust states into a slightly more comp

form: the 1st level is

i1 + · · · + ijp
j−1 + · · · + iλp

λ−1

pλ
,

where 0� ij � p − 1 and not allij = 0, 1� j � λ. Equivalently the states are of the form

i1 + · · · + ijp
j−1 + · · · + ilp

l−1

pl
, 0 � ij � p − 1, i1, il �= 0, 1� l � λ.

Then(n + 1)th states have the form

rl,n/p
l+nλ, 1 � l � λ,

whererl,n andp are co-prime. Now we can use the same argument as in the above theorem to ve
assertion.

For #D � |detA|, we call T := T (A,D) a self-affine region if T ◦ �= ∅. Note that this gives a
necessary condition for the existence of the scaling functions defined by the pair(A,D). We have
studied the sufficient conditions for such pair(A,D) to be a self-affine region [6,7]; but we do not ha
a characterization even for the prime case in one dimension. An interesting example is whenA = [3],
D = {0,1,3,4}, thenT = [0,2] is a self-affine region, butD is not a complete residue set modulo 3 [6

Normally, we should expect that on a self-affine region, we can assign weights with certain flex
to the refinement equation to yield scaling functions. It is interesting and unexpected to see tha
above example, the refinement equation

ϕ(x) = w0ϕ(3x) + w1ϕ(3x − 1) + w2ϕ(3x − 3) + w3ϕ(3x − 4),
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wherewi ’s are nonnegative rationals andw0 + w1 + w2 + w3 = 3 has no nontrivialL1-solution. Indeed
the mask is

m(ξ) = w0 + w1e
2πiξ + w2e

6πiξ + w3e
8πiξ .

Using Theorem 5.4, we see that anL1-solution ϕ(x) exists if and only if there existsk > 0 such that
m(3−k) = 0. But the condition cannot be satisfied because fork = 1,

m

(
1

3

)
= w0 + w2 + (w1 + w3)e

(2/3)πi �= 0

for k > 1, if m(3−k) = w0 + w1e
2πi/3k + w2e

6πi/3k + w3e
8πi/3k = 0, we can assume that all thewj ’s

are integers without loss of generality. Using Lemma 2.3 forN = 3k , the vector(w0,w1,0,w2,w3,0,

0, . . . ,0) ∈ Γ 3k

+ can be expressed as integral combination of the vectors{a(l): 0 � l � 3k−1 − 1}, which
is impossible. Hencem(3−k) �= 0 for k > 1. We, therefore, conclude that (5.1) has noL1-solution.
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