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Abstract. Little is known about the connectedness of self-affine tiles inRn . In this note we
consider this property on the self-affine tiles that are generated by consecutive collinear digit
sets. By using an algebraic criterion, we call it the height reducing property, on expanding
polynomials (i.e., all the roots have moduli > 1), we show that all such tiles in Rn, n ≤ 3,
are connected. The problem is still unsolved for higher dimensions. For this we make
another investigation on this algebraic criterion. We improve a result of Garsia concerning
the heights of expanding polynomials. The new result has its own interest from an algebraic
point of view and also gives further insight to the connectedness problem.

1. Introduction

Let Mn(Z) denote the set of n × n matrices with entries in Z, and let A ∈ Mn(Z) be
expanding, that is, all eigenvalues of A have moduli > 1. Suppose |det A| = q, we let
D = {0, d1, . . . , dq−1} ⊆ Zn be a set of q distinct vectors, and call it a q-digit set. It is
well known that there exists a unique compact set T = T (A,D) satisfying the set-valued

∗ The first author was supported by a grant from the Wavelets Strategic Research Programme, National
University of Singapore. The other two authors were partially supported by an HK RGC grant, a Direct Grant
from the CUHK. The third author was partially supported by CNSF 19901025.



276 I. Kirat, K.-S. Lau, and H. Rao

equation

AT =
⋃
d∈D

(T + d).

The set T can be expressed explicitly by T = {∑∞i=1 A−i xi : xi ∈ D}. T is called an
integral self-affine tile if T has a nonvoid interior. For such a tile there exists a subset
J ⊆ Zn , we call it a tiling set, such that

T + J = Rn and (T + t)◦ ∩ (T + t ′)◦ = ∅, t �= t ′, t, t ′ ∈ J .
Recently the geometric and algebraic properties of the self-affine tiles have been

studied extensively in literature. However, knowledge on the connectedness of the tiles
is still very limited. In [O] Odlyzko gave a characterization of a tile T in R to be the
finite union of intervals by using the strict product form of the digits. Bandt and Gelbrich
[BG] investigated the disk-like tiles inR2 for |det A| = 2 or 3 and new progress has been
obtained by Bandt and Wang in [BW]. In Rn the only known result was by Hacon et al.
[H], which says that all two-digit tiles T are pathwise connected (actually such tiles can
be filled up by space filling curves).

In [KL] Kirat and Lau studied the particular class of integral self-affine tiles that are
generated by the collinear digit sets of the form {0, v, 2v, . . . , (q − 1)v}, v ∈ Zn\{0}.
They made use of the following algebraic property of the characteristic polynomial
f (x) of A to determine the connectedness of T (A,D). Let Z[x] denote the class of
polynomials with integer coefficients. We say that a monic polynomial f (x) ∈ Z[x]
with | f (0)| = q has the height reducing (HR) property if there exists g(x) ∈ Z[x] such
that

g(x) f (x) = xk + ak−1xk−1 + · · · + a1x ± q,

with |ai | ≤ q − 1, i = 1, . . . , k − 1.

Theorem 1.1 [KL]. Let A ∈ Mn(Z) be expanding with |det A| = q and let D =
{0, v, 2v, . . . , (q − 1)v} be a collinear digit set in Zn . Suppose the characteristic poly-
nomial f (x) of A has the HR-property, then T is connected.

We call a polynomial f (x) ∈ Z[x] an expanding polynomial if all its roots have moduli
greater than 1. It is easy to show that all monic, expanding integer polynomials of degree
2 have this property [KL]. Hence, by Theorem 1.1, all the tiles inR2 with collinear digits
are connected. Also in [KL] it is shown explicitly that the expanding polynomials of
degree 3 with constant terms equal to 2, 3, 4, or 5 all have the HR-property. Motivated
by that, we prove here (Theorem 2.7):

Theorem 1.2. All the expanding integer monic polynomials of degree 3 have the HR-
property. Consequently, if T is a self-affine tile in R3 generated by an expanding integer
matrix A with |det A| = q and collinear digit setD = {0, v, 2v, . . . , (q − 1)v}, v ∈ Z3,
then T is connected.

The proof of the theorem is elementary, however, it cannot be extended to higher
degrees directly. In Lemma 1.6 of [G2] Garsia proved a statement weaker than the
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HR-property: for an expanding polynomial f (x) ∈ Z[x] with | f (0)| = q, there exists
g(x) ∈ Z[x] such that

g(x) f (x) = ak xk + · · · + a1x ± q, where |aj | ≤ q, ∀ j = 1, . . . , k. (1.1)

His proof makes use of the pigeonhole principle and is simple. Here we improve Garsia’s
result by employing a geometric argument of the tiling set:

Theorem 1.3. Let f (x) ∈ Z[x] be an irreducible expanding monic polynomial with
| f (0)| = q . Then there exists g(x) ∈ Z[x] such that

h(x) = f (x)g(x) = ak xk + ak−1xk−1 + · · · + a1x ± q,

where |ai | ≤ q − 1 for i = 1, . . . , k.

Still the result falls short of the HR-property on the leading coefficient. We therefore
make the following conjecture:

Conjecture. All monic expanding polynomials f (x) ∈ Z[x] have the HR-property.

If this is true, then all the self-affine tiles generated by consecutive collinear digit sets
are connected.

2. Expanding Polynomials of Degree 3

Let f (x) and f̃ (x) denote the characteristic polynomials of A and −A ∈ Mn(Z),
respectively. It is easy to see that f̃ (x) = (−1)n f (−x). This enables us to restrict our
attention to the degree 3 characteristic polynomials with positive constant terms, i.e.,
det A < 0 (see Lemma 5.6 of [KL] and the remark before the lemma). Hence in the
following we only consider

f (x) = x3 ± ax2 ± bx + q, (2.1)

where a, b ≥ 0, ab �= 0, and q ≥ 2 (the case ab = 0 is trivial). We want to determine the
coefficients a, b so that f is an expanding polynomial. We begin with two elementary
lemmas.

Lemma 2.1. Suppose f (x) is of the form (2.1) and is expanding, then the following
holds:

f (1), f (−1), f (q) > 0 and f (−q) < 0.

Proof. Note that f (0) = q > 0. If f (1) or f (−1) ≤ 0, then the intermediate value
theorem will imply that there is a root in [−1, 1]. This will contradict the expanding
property.

If f (q) ≤ 0 or f (−q) ≥ 0, then there will be a root θ with |θ | ≥ q. Since the
product of the three roots is q , one of the other two roots must have modulus ≤ 1. This
is impossible.
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Lemma 2.2. Let f (x) be of the form (2.1). Suppose f (x) has a real root in (−q,−1)
or (1, q) and has no real root in [−1, 1]. Then f (x) is expanding.

Proof. Let θi , i = 1, 2, 3, be the roots with θ1 real and 1 < |θ1| < q. If θ2, θ3 are real,
then by assumption they have moduli > 1 and the result is trivial. Otherwise θ2, θ3 are
complex conjugates and q = θ1θ2θ3 = θ1|θ2|2. This implies that |θ2| = |θ3| > 1 and f
is expanding.

We now divide the classification of the degree 3 expanding polynomials into four
different cases.

Proposition 2.3. Let f (x) = x3 − ax2 + bx + q as in (2.1). Then f (x) is expanding
if and only if q ≥ a + b + 2.

Proof. For the necessity, we use Lemma 2.2 to show that

0 < f (−1) = −(1+ a + b)+ q.

For the sufficiency, we see that q ≥ a + b + 2 implies that f (−q) < 0, f (−1) > 0,
hence there is a root in (−q,−1). We next claim that f (x) > 0 for x ∈ [−1, 1]. Indeed,
it is clear for x ∈ [0, 1]. For x ∈ [−1, 0], we have

f (x) = x3 − ax2 + bx + q

≥ x3 − ax2 + bx + a + b + 2

= x3 + a(1− x2)+ b(1+ x)+ 2 > 0.

Lemma 2.2 implies that f is expanding.

Proposition 2.4. Let f (x) = x3 − ax2 − bx + q as in (2.1). Then f (x) is expanding
if and only if q ≥ a + b.

Proof. The proof is similar to the above. For the necessity, we use 0 < f (1) =
1 − a − b + q . For the sufficiency, we observe that f (−q) < 0, f (−1) > 0, hence
there exists a root in (−q,−1). Also there is no root in [−1, 1]: this is because f (x) > 0
trivially for x ∈ [−1, 0], and for x ∈ [0, 1],

f (x) ≥ x3 − ax2 − bx + a + b

= x3 + a(1− x2)+ b(1− x) ≥ 0.

Hence f is expanding by Lemma 2.2.

Proposition 2.5. Let f (x) = x3 + ax2 − bx + q as in (2.1). Then f (x) is expanding
if and only if

(i) a = q − 1, b ≤ q − 2 or
(ii) a < q − 1, b ≤ q + a.
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Proof. For the necessity, we use f (−q) < 0 to see that a ≤ q − 1. Case (i) follows
immediately; for case (ii) we make use of f (1) > 0. To prove the sufficiency, we observe
that either one of the conditions implies that f (−q) < 0, f (−1) > 0, hence there is a
root in (−q,−1). For x ∈ (−1, 0] it is clear that f (x) > 0 and for x ∈ (0, 1),

f (x) ≥ x3 + ax2 − (a + q)x + q

= x3 + (1− x)(q − ax) > 0.

Hence f (x) is expanding by Lemma 2.2.

Proposition 2.6. Let f (x) = x3 + ax2 + bx + q as in (2.1). Then f (x) is expanding
if and only if

(i) a = q + 1, q + 2 ≤ b ≤ 2q − 1; or
(ii) a = q , 2 ≤ b ≤ 2q − 2; or

(iii) a ≤ q − 1, b ≤ q + a − 2.

Proof. For the necessity, we use f (−1) > 0 and f (−q) < 0 to show that a ≤ q + 1.
We then make use of f (−q) < 0 again to imply cases (i) and (ii); case (iii) follows from
f (−1) > 0. To prove the reverse implication, we observe that any one of cases (i)–(iii)
will imply f (−q) < 0, f (−1) > 0, hence there is a root in (−q,−1). Also f (x) > 0
on (0, 1] and for x ∈ [−1, 0],

f (x) ≥ x3 + ax2 + (a + q − 2)x + q

= x3 + 2x2 + (1+ x)(q + (a − 2)x) > 0.

This implies f (x) is expanding by Lemma 2.2.

We conclude this section with the following main result:

Theorem 2.7. Let f (x) ∈ Z[x] be a degree 3, monic expanding polynomial. Then
f (x) has the HR-property.

Proof. We assume that f (x) is as in (2.1). For the f (x) that a or b > q − 1, as
in Propositions 2.5(ii) and 2.6(i)–(iii), we need to find a g(x) ∈ Z[x] to reduce the
coefficients to have moduli ≤ q − 1. We assume that q ≥ 4 (because of case II in the
following); for the case q = 2, 3, the theorem is true by Table 1 in the Appendix.

(I) In Proposition 2.5(ii), a < q − 1 and we divide the b ≤ q + a into two cases. If
b = q + a, we let g(x) = (x2 + 1)(x + 1), then

g(x) f (x) = x6 + (a + 1)x5 + (1− q)x4 + x3 − ax + q.

If q ≤ b < q + a, we let g(x) = x + 1, then

g(x) f (x) = x4 + (a + 1)x3 + (a − b)x2 + (q − b)x + q.
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(II) In Proposition 2.6(i), a = q+1 and we divide the b into three cases. If b = (q+2),
we let g(x) = (x − 1)2, then

g(x) f (x) = x5 + (q − 1)x4 − (q − 1)x3 − 3x2 − (q − 2)x + q.

If b = 2q − 1, we let g(x) = (x2 + 1)(x − 1)2, then

g(x) f (x) = x7 + (q − 1)x6 − x5 − (q − 2)x4 − 3x3 − (q − 3)x2 − x + q.

If q + 2 < b < 2q − 1, we take g(x) = (x − 1)2(x2 + 1)(x3 + 1), then

g(x) f (x) = x10 + (q − 1)x9 + (b − 2q)x8 + (3q − 2b + 1)x7 + (2b − 3q − 2)x6

+ (q − b + 1)x5 + (q − b)x4 + (2b − 3q − 1)x3

+ (3q − 2b + 1)x2 + (b − 2q)x + q,

and the HR-property is satisfied.
(III) For Proposition 2.6(ii) and (iii), we take g(x) = x − 1, then

g(x) f (x) = x4 + (a − 1)x3 + (b − a)x2 + (q − b)x + q.

These take care of all the cases and the theorem is proved.

It follows immediately from this and Theorem 1.1 that any self-affine tile in R3

generated by an expanding integer matrix A with |det A| = q and collinear digit set
D = {0, v, . . . , (q − 1)v} is connected. As an illustration of Theorem 2.7, we attach in
the Appendix the degree 3 expanding integer polynomial for q = 2, 3, 4, 5 with a or
b > q − 1 and the corresponding polynomials after the height is reduced. Note that the
table for q = 5 includes all the cases in the theorem and the factors g we used in the
proof.

3. Another Reduction of the Coefficients

In this section we need some notions on the tiles introduced by Lagarias and Wang in
[LW2]. LetZ[A,D] be the integer lattice generated byD, . . . , An−1D. IfZ[A,D] = Zn ,
we say that (A,D) is a primitive pair (orD is primitive in short) and the tile T (A,D) is
a primitive tile. The following proposition was proved in [LW2, Corollary 6.2].

Proposition 3.1. Suppose that the expanding matrix A ∈ Mn(Z) is irreducible. Then
for any primitive digit setD which is a complete set of coset representatives of Zn/AZn ,
the tile T (A,D) tiles Rn with Zn , i.e., J = Zn is a tiling set.

If the tile T (A,D) is not primitive, then we can easily adjust it by the following
proposition (Lemma 2.1 of [LW2]).

Proposition 3.2. Let T (A,D) be an integral self-affine tile inRn withZ[A,D] = BZn .
Define

Ã = B−1 AB ∈ Mn(Z), D̃ = B−1D ∈ Zn,

then T ( Ã, D̃) is a primitive tile and satisfies T ( Ã, D̃) = B−1T (A,D).
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Now let f (x) = xn+ cn−1xn−1+· · ·+ c1x +q ∈ Z[x] be an expanding polynomial,
we consider the corresponding companion matrix

A =


0 1 0

. . .
. . .

. . .

0 1 0
0 1

−q · · · · · · · · · −cn−1

 . (3.1)

Lemma 3.3. Let f (x) ∈ Z[x] be an expanding monic polynomial, then there exists an
irreducible A ∈ Mn(Z) and D = {0, v, . . . , (q − 1)v} ⊂ Zn such that

(i) A has f (x) as its characteristic polynomial;
(ii) D is a complete set of coset representatives of Zn/AZn .

Furthermore we can choose the above pair (A,D) such that the tiling set J = Zn .

Proof. Let A be defined as in (3.1) and let A∗ be the adjoint matrix of A (i.e., AA∗ = q I ),
then

A∗ =



−c1 · · · −cn−1 −1
q

q 0
...

0
. . .

q 0

 .
Let v = [0, . . . , 0, 1]t and let D = {0, v, . . . , (q − 1)v}. Notice that |Zn/AZn| =
|det A| = q . Suppose D is not a complete coset representative of Zn/AZn , then there
exists 1 ≤ 
 ≤ q − 1 such that 
v = Aw. Hence

[−
, 0, . . . , 0]t = 
A∗v = A∗Aw = qw.

This implies that q divides 
 and is a contradiction. Hence D is complete in Zn/AZn .
For the second part we see that A is irreducible. If the pair (A,D) is primitive, then

we are done. Otherwise, we can find B, Ã, and D̃ as in Proposition 3.2 such that ( Ã, D̃)
is a primitive pair. We need to see that ( Ã, D̃) will satisfy (i) and (ii).

Indeed, Ã = B−1 AB implies that Ã has f (x) as its charateristic polynomial. Let
ṽ = B−1v, then D̃ = {0, ṽ, . . . , (q − 1)̃v}. It remains to prove that D̃ is complete in
Z

n/ ÃZn . Suppose this is not true, then there is an integer 1 ≤ 
 ≤ q − 1 such that

̃v = Ãu for some u ∈ Zn . This implies


v = 
Bṽ = B Ãu = B B−1 ABu = A(Bu)

and contradicts that D is complete in Zn/AZn as proved in the previous paragragh.
The last statement follows from Proposition 3.1.

Let D0 = {0} and

Dk =
{

k−1∑
i=0

Ai xi : xi ∈ D
}
=

q−1⋃
j=0

( j Ak−1v +Dk−1), k ≥ 1.
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Then Dk ⊂ Zn and Dk is increasing on k. Moreover, we have

Lemma 3.4. If T (A,D) tiles Rn with tiling set J = Zn , then (Dk + T )◦ ∩ Zn ⊂ Dk .

Proof. Let u ∈ Zn , then for any k, the tiling property of Zn implies that either

(u + T )◦ ∩ (Dk + T )◦ = ∅ or (u + T )◦ ⊆ (Dk + T )◦.

In the latter case, u must be in Dk by the tiling property of Zn again. Hence u ∈
(Dk + T )◦ ∩ Zn implies that u ∈ Dk and the lemma follows.

Theorem 3.5. Let f (x) ∈ Z[x] be an irreducible, expanding monic polynomial with
| f (0)| = q . Then there exists g(x) ∈ Z[x] such that

h(x) = g(x) f (x) = ak xk + ak−1xk−1 + · · · + a1x ± q,

where |ai | ≤ q − 1 for i = 1, . . . , k.

Proof. Let A andD = {0, v, . . . , (q−1)v} be as in Lemma 3.3, thenJ = Zn is a tiling
set for T tiles (by Proposition 3.1). Since Ak T = Dk+T contains an arbitrarily large ball
when k tends to infinity and Zn tiles Rn , it follows from Lemma 3.4 that for k large, Dk

contains an arbitrarily long sequence of vectors of the form {x, x + v, . . . , x + tv}, x ∈
Z

n, t ∈ N. Assume that m + 1 is the smallest integer such that Dm+1 contains q + 1
vectors {x, x+v, . . . , x+qv} for some x ∈ Zn . Note thatDm+1 =

⋃q−1
i=0 (i Amv +Dm),

we claim that there exists j , 0 ≤ j ≤ q − 1, and i1 �= i2, 0 ≤ i1, i2 ≤ q − 1, such that

x + jv ∈ i1 Amv +Dm, x + ( j + 1)v ∈ i2 Amv +Dm .

If otherwise, there exists i∗ such that x + jv ∈ i∗Amv + Dm for all j = 0, 1, . . . , q.
Let x ′ = x − i∗Amv, then Dm contains the sequence {x ′, x ′ + v, . . . , x ′ + qv}, which
contradicts the minimal assumption of m. Hence the claim is true.

We write

x + jv = i1 Amv +
m−1∑
i=0

ri Aiv, 0 ≤ ri ≤ q − 1,

x + ( j + 1)v = i2 Amv +
m−1∑
i=0

si Aiv, 0 ≤ si ≤ q − 1.

By subtracting the two expressions and rearranging, we have

(i2 − i1)A
mv +

m−1∑
i=1

(si − ri )A
iv + (s0 − r0 − 1)v = 0. (3.2)

Let

h(x) =
m∑

i=0

ai x
i := (i2 − i1)x

m +
m−1∑
i=1

(si − ri )x
i + (s0 − r0 − 1).
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Then |a0| ≤ q and 0 ≤ |ai | ≤ q − 1 for i = 1, . . . ,m. Since f (x) is the characteristic
polynomial of A, f (A) = 0 by Cayley’s theorem. Therefore we can reduce h(A) to the
form

h(A) =
n−1∑
i=0

ci Ai . (3.3)

By (3.2)

0 = h(A)v =
n−1∑
i=0

ci Aiv. (3.4)

Since T is a tile, v, Av, . . . , An−1v are independent, (3.4) implies that ci = 0, and by
(3.3), h(A) = 0. Since the characteristic polynomial f is irreducible by assumption, f
must divide h, and the constant term of h must be ±q. The theorem follows by taking
g(x) = h(x)/ f (x).

4. Remarks

It follows directly from the theorem that if q = 2, then f (x) has the HR-property, and
hence a two-digit tile is connected. Of course, the second fact is known in [H]. We also
remark that for a give expanding integral matrix A with |det A| = q, the collinear digit
sets {0, v, . . . , (q − 1)v} may not give a tile (e.g., if A = 2I is a 2 × 2 matrix, then
for any collinear digit set D, T is one-dimensional and cannot be a tile, however it is
connected). Some sufficient conditions have been studied in Theorems 3.1 and 3.3 of
[KL].

It is well known that in the one-dimensional case, if A = [p] where p is a prime, then
D = {0, d1, . . . , dp−1} is connected if and only if D = {0, d, . . . , d(p − 1)} for some
d ∈ Z. This is not true in higher dimensions. In fact Tan [T] has an interesting example that
if A is an expanding integer matrix with characteristic polynomial x2− x − 3 (|det A| =
3) and if D = {0, d1v, d2v} with v = [0, 1]t and d1 < d2, then T is connected if
8
5 d1 ≤ d2 ≤ 8

3 d1; it is disconnected if d2 < ((
√

13− 1)/2)d1 or d2 > ((
√

13+ 5)/2)d1.
It is known that an integer polynomial f (x) = x2 + ax + q is exanding if and only

if |a| ≤ q if q ≥ 2, and |a| ≤ |q| − 2 if q < 0 [BG], [KL]. It is not difficult to show
that [T]

f (x) has the HR-property if and only if |a| ≤ q if q ≥ 1, and |a| ≤ |q| − 1 if q < 0.

In particular, f (x) = x2 − x + 1 has the HR-property (multiply by x + 1), but it is not
expanding as the two roots are (1±√−3)/2.

Since the completion of the paper, Leung [L] has drawn our attention to the Schur–
Cohn criterion [G1] for expanding polynomials. By using that, he found the explicit
expression of the coefficients of the expanding polynomials (as in Proposition 2.6) up
to degree 4. Furthermore, by using a case by case test similar to Theorem 2.7, Akiyama
and Gjini [AG] proved that the HR-property holds up to degree 4. However, the problem
for arbitrary degree remains unsolved.
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Appendix

The following tables list the degree 3 expanding integer polynomials with constant terms
q = 2, 3, 4, 5 and some of the other terms have coefficients> q−1. We need to multiply
factors g(x) to reduce the heights as in Theorem 1.3. Note that all the factors g(x) used
are from the roots of unity.

Table 1. f (0) = 2, 3.

c.p. = f (x) g(x) h(x) = g(x) f (x)

x3 − 2x + 2 (x2 + 1)(x + 1) x6 + x5 − x4 + x3 + 2
x3 + 2x2 + 2x + 2 x − 1 x4 + x3 − 2
x3 − 3x + 3 (x2 + 1)(x + 1) x6 + x5 − 2x4 + x3 + 3
x3 + x2 − 3x + 3 x + 1 x4 + 2x3 − 2x2 + 3
x3 + x2 − 4x + 3 (x2 + 1)(x + 1) x6 + 2x5 − 2x4 + x3 − x + 3
x3 + 2x2 + 3x + 3 x − 1 x4 + x3 + x2 − 3
x3 + 3x2 + 2x + 3 x − 1 x4 + 2x3 − x2 + x − 3
x3 + 3x2 + 3x + 3 x − 1 x4 + 2x3 − 3
x3 + 3x2 + 4x + 3 x − 1 x4 + 2x3 + x2 − x − 3
x3 + 4x2 + 5x + 3 (x2 − x + 1)(x − 1) x6 + 2x5 − x4 + x − 3

Table 2. f (0) = 4.

c.p. = f (x) g(x) h(x) = g(x) f (x)

x3 − 4x + 4 (x2 + 1)(x + 1) x6 + x5 − 3x4 + x3 + 4
x3 + x2 − 4x + 4 x + 1 x4 + 2x3 − 3x2 + 4
x3 + x2 − 5x + 4 (x2 + 1)(x + 1) x6 + 2x5 − 3x4 + x3 − x + 4
x3 + 2x2 − 4x + 4 x + 1 x4 + 3x3 − 2x2 + 4
x3 + 2x2 − 5x + 4 x + 1 x4 + 3x3 − 3x2 − x + 4
x3 + 2x2 − 6x + 4 (x2 + 1)(x + 1) x6 + 3x5 − 3x4 + x3 − 2x + 4
x3 + 2x2 + 4x + 4 x − 1 x4 + x3 + 2x2 − 4
x3 + 3x2 + 4x + 4 x − 1 x4 + 2x3 + x2 − 4
x3 + 3x2 + 5x + 4 x − 1 x4 + 2x3 + 2x2 − x − 4
x3 + 4x2 + 2x + 4 x − 1 x4 + 3x3 − 2x2 + 2x − 4
x3 + 4x2 + 3x + 4 x − 1 x4 + 3x3 − x2 + x − 4
x3 + 4x2 + 4x + 4 x − 1 x4 + 3x3 − 4
x3 + 4x2 + 5x + 4 x − 1 x4 + 3x3 + x2 − x − 4
x3 + 4x2 + 6x + 4 x − 1 x4 + 3x3 + 2x2 − 2x − 4
x3 + 5x2 + 6x + 4 (x − 1)2 x5 + 3x4 − 3x3 − 3x2 − 2x + 4
x3 + 5x2 + 7x + 4 (x2 + 1)(x − 1)2 x7 + 3x6 − x5 − 2x4 − 3x3 − x2 − x + 4
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Table 3. f (0) = 5.

c.p. = f (x) g(x) h(x) = g(x) f (x)

x3 − 5x + 5 (x2 + 1)(x + 1) x6 + x5 − 4x4 + x3 + 5
x3 + x2 − 5x + 5 x + 1 x4 + 2x3 − 4x2 + 5
x3 + x2 − 6x + 5 (x2 + 1)(x + 1) x6 + 2x5 − 4x4 + x3 − x + 5
x3 + 2x2 + 5x + 5 x − 1 x4 + x3 + 3x2 − 5
x3 + 2x2 − 5x + 5 x + 1 x4 + 3x3 − 3x2 + 5
x3 + 2x2 − 6x + 5 x + 1 x4 + 3x3 − 4x2 − x + 5
x3 + 2x2 − 7x + 5 (x2 + 1)(x + 1) x6 + 3x5 − 4x4 + x3 − 2x + 5
x3 + 3x2 + 5x + 5 x − 1 x4 + 2x3 + 2x2 − 5
x3 + 3x2 − 5x + 5 x + 1 x4 + 4x3 − 2x2 + 5
x3 + 3x2 + 6x + 5 x − 1 x4 + 2x3 + 3x2 − x − 5
x3 + 3x2 − 6x + 5 x + 1 x4 + 4x3 − 3x2 − x + 5
x3 + 3x2 − 7x + 5 x + 1 x4 + 4x3 − 4x2 − 2x + 5
x3 + 3x2 − 8x + 5 (x2 + 1)(x + 1) x6 + 4x5 − 4x4 + x3 − 3x + 5
x3 + 4x2 + 5x + 5 x − 1 x4 + 3x3 + x2 − 5
x3 + 4x2 + 6x + 5 x − 1 x4 + 3x3 + 2x2 − x − 5
x3 + 4x2 + 7x + 5 x − 1 x4 + 3x3 + 3x2 − 2x − 5
x3 + 5x2 + 2x + 5 x − 1 x4 + 4x3 − 3x2 + 3x − 5
x3 + 5x2 + 3x + 5 x − 1 x4 + 4x3 − 2x2 + 2x − 5
x3 + 5x2 + 4x + 5 x − 1 x4 + 4x3 − x2 + x − 5
x3 + 5x2 + 5x + 5 x − 1 x4 + 4x3 − 5
x3 + 5x2 + 6x + 5 x − 1 x4 + 4x3 + x2 − x − 5
x3 + 5x2 + 7x + 5 x − 1 x4 + 4x3 + 2x2 − 2x − 5
x3 + 5x2 + 8x + 5 x − 1 x4 + 4x3 + 3x2 − 3x − 5
x3 + 6x2 + 7x + 5 (x − 1)2 x5 + 4x4 − 4x3 − 3x2 − 3x + 5
x3 + 6x2 + 8x + 5 (x − 1)2(x2 + 1)(x3 + 1) x10 + 4x9 − 2x8 − x6 − 2x5 − 3x4 − 2x + 5
x3 + 6x2 + 9x + 5 (x2 + 1)(x − 1)2 x7 + 4x6 − x5 − 3x4 − 3x3 − 2x2 − x + 5
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