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The fractal method has been successfully used to study many problems in physics,
mathematics, engineering, finance, even in biology till now. In the past decade or so
there has been a ground swell of interest in unravelling the mysteries of DNA. How
to get more bioinformations from these DNA sequences is a challenging problem. The
problem of classification and evolution relationship of organisms are the central problems
in bioinformatics. And it is also very hard to predict the secondary and space structure of
a protein from its amino acid sequence. In this paper, some recent results related these
problems obtained through multifractal analysis and iterated function system (IFS)
model are introduced.

Keywords: Measure representation; multifractal analysis; IFS (RIFS) model; complete
genome; length sequence; protein.

1. Introduction

The concept of “fractal” was proposed by Benoit Mandelbrot1 in the later of 1970s.

Fractal geometry provides a mathematical formalism for describing complex spa-

tial and dynamical structures1,2 (e.g. the strange attractor of a chaotic dynamical

system is usually a fractal). Multifractal analysis was initially proposed to treat
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turbulence data. This kind of analysis is a useful way to characterise the spatial

inhomogeneity of both theoretical and experimental fractal patterns3 and play an

important role in the fractal theory.

In the past decade or so there has been a ground swell of interest in unravelling

the mysteries of DNA. The heredity information of most organisms is encoded in a

universal way in long chains of nucleic acids formed by four different nucleotides,

namely adenine (a), cytosine (c), guanine (g) and thymine (t). One of the challenges

of DNA sequence analysis is to determine the patterns in these sequences. Prob-

lems related to the classification and evolution of organisms are also important. A

significant contribution in these studies is to investigate the long-range correlation

in DNA sequences.4–20 The availability of complete genomes since 199521 induces

the possibility to establish some global properties of these sequences. A time series

model was proposed by Yu et al.22–24 to study the correlation property of coding

segments and length sequences of complete genome.

The global and visual methods can amplify the difference between a DNA se-

quence and a random sequence as well as to distinguish DNA sequences themselves

in more details.25 After the famous chaos game representation of DNA sequences

proposed by Jeffrey et al,26,27 Hao et al.25 proposed a visualisation method based

on counting and coarse-graining the frequency of appearance of substrings with a

given length. They called it the portrait of an organism. They found that there

exist some fractal patterns in the portraits which are induced by avoiding and

under-represented strings. The fractal dimension of the limit set of portraits was

also discussed.28,29 The connection between the Hao’s scheme and the chaos game

representation is established through the multifractal property.30 Yu et al.31 pro-

posed the measure representation of complete genomes followed by the multifractal

analysis. The multifractal analysis of the length sequences based on the complete

genome was performed.32

Twenty different kinds of amino acids are found in proteins. The three-

dimensional structure of proteins is a complex physical and mathematical prob-

lem of prime importance in molecular biology, medicine, and pharmacology.33,34

The central dogma motivating structure prediction is that: “the three dimensional

structure of a protein is determined by its amino acid sequence and its environ-

ment without the obligatory role of extrinsic factors”.35,36 How to predict the high

level structures (secondary and space structures) from the amino acid sequence is

a challenge problem in science, in particular to the large proteins. A number of

coarse-grained models have been proposed to provide insight to these very compli-

cated issues.36 A well known model in this class is the HP model proposed by Dill

et al.37 In this model 20 kinds of amino acids are divided into two types, hydropho-

bic (H) (or non-polar) and polar (P) (or hydrophilic). In last decade the HP model

has been extensively studied by several groups.34,38,39 After studying the model on

lattices, Li et al.38 found there are small number of structures with exceptionally

high designability which a large number of protein sequences possess as their ground

states. These highly designable structures are found to have protein-like secondary
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structures.34,38,40 But the HP model may be too simple and lacks enough consid-

eration on the heterogeneity and the complexity of the natural set of residues.41

According to Brown,42 in the HP model, one can divide the polar class into three

classes: positive polar, uncharged polar and negative polar. So 20 different kinds of

amino acids can be divided into four classes: non-polar, negative polar, uncharged

polar and positive polar. In this model, one gets more details than in the HP model.

We call this model a detailed HP model. In this paper we will adopt the detailed

HP model.

The fractal method has been used to study the protein backbone,43 the ac-

cessible surface of protein43–46 and protein potential energy landscapes.47 The

multifractal analysis of solvent accessibilities in proteins was done by Balafas and

Dewey.48 The model used to fit the multifractal spectrum was also discussed.48 But

the parameters derived in their multifractal analysis cannot be used to predict the

structural classification of a protein from its amino acid sequence.

The amino acid sequence of a protein is also called a protein sequence in this

paper. Based the idea of DNA walk model and different mapping, a decoded walk

model was proposed to study the correlation property of protein sequences by Pande

et al.49 using “Bridge analysis” and Straint and Dewey50 using multifractal anal-

ysis. Deviations of the decoded walk from random behaviour provides evidence of

memory.

Inspired by the idea of measure representation of DNA sequence,31 we also

proposed a visual representation — measure representation of protein sequences

based on the detailed HP model.51

To our knowledge,52 it is much harder to simulate a measure than to fit its

multifractal spectrum (because different measures may have the same multifractal

spectrum). The iterated function systems (IFS) model proposed by Barnsley and

Demko53 is a powerful tool in fractal theory (many fractals such as the Cantor

set can be generated by the IFS model). We found that the recurrent IFS (RIFS)

model can be used to simulate the measure representation of complete genomes

while the IFS model can be used to simulate the measure representation of protein

sequences. In this paper, the estimated parameters in RIFS or IFS model are used

to discuss the classification of living organisms and the structural classification of

large proteins.

2. Measure Representation of DNA and Protein Sequences

We call any string made of K letters from the set {g, c, a, t} a K-string. For a given

K, there are in total 4K different K-strings. In order to count the number of each

kind of K-strings in a given DNA sequence, 4K counters are needed. We divide the

interval [0, 1] into 4K disjoint subintervals, and use each subinterval to represent a

counter. Using the observed frequencies of all 4K kinds of K-strings in the com-

plete genome, we can define a measure µK on the interval [0, 1] in one dimensional
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space.31 We call µK the measure representation of the organism corresponding to

the given K.

Twenty different kinds of amino acids are found in proteins. In the detailed HP

model they can be divided in to four classes: non-polar, negative polar, uncharged

polar and positive polar. The eight residues designating the non-polar class are:

ALA, ILE, LEU, MET, PHE, PRO, TRP, VAL; the two residues designating the

negative polar class are: ASP, GLU; the seven residues designating the uncharged

polar class are: ASN, CYS, GLN, GLY, SER, THR, TYR; and the remaining three

residues: ARG, HIS, LYS designate the positive polar class.

For a given protein sequence with length L, s = s1 · · · sL, where si is one of the

twenty kinds of amino acids for i = 1, · · · , L, we define

ai =



























0, if si is non-polar,

1, if si is negative polar,

2, if si is uncharged polar,

3, if si is positive polar.

(1)

So we can obtain a sequence X(s) = a1 · · · aL, where ai is a letter in the alphabet

{0, 1, 2, 3}. Using the same idea as DNA sequences,31 we can define the measure

representation µK of K-strings of the given protein sequence.

3. Multifractal Analysis and IFS (RIFS) Model

The most common numerical implementations of multifractal analysis are the so-

called fixed-size box-counting algorithms.54 In the one-dimensional case, for a given

measure µ with support E ⊂ R, and q a real number, we can define the scaling

exponent τ(q) and the generalized fractal dimensions Dq of the measure as which in

Ref. 31. D1 is called the information dimension and D2 the correlation dimension.

The Dq of the positive values of q give relevance to the regions where the measure

is large, i.e. to the coding or noncoding segments which are relatively long. The Dq

of the negative values of q deal with the structure and the properties of the most

rarefied regions of the measure, i.e. to the segments which are relatively short.

By following the thermodynamic formulation of multifractal measures,

Canessa55 derived an expression for the “analogous” specific heat as Cq ≡ −∂2τ(q)
∂q2 ≈

2τ(q)−τ(q+1)−τ(q−1). He showed that the form of Cq resembles a classical phase

transition at a critical point for financial time series. The types of phase transitions

are helpful to discuss the classification of bacteria.

In order to simulate the measure representation of the complete genome, Anh

et al.56 proposed the iterated function systems (IFS) model and the recurrent IFS

model. IFS is the name given by Barnsley and Demko53 originally to a system

of contractive maps w = {w1, w2, · · · , wN}. Recurrent IFS (RIFS) is a kind of

extension from IFS. Usually one can generate the attractor of an IFS or RIFS

through the famous Chaos game process.57 Let µ be the invariant measure on the
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attractor E of an IFS or RIFS, for the Borel subset B ⊂ E, µ(B) is the relative

visitation frequency of B during the chaos game.53

The coefficients in the contractive maps and the probabilities in the IFS or

RIFS model are the parameters to be estimated for a real measure which we want

to simulate. Vrscay57 introduced a moment method to perform this task. From the

measure representation of a complete genome or protein sequence, we see that it is

natural to choose N = 4 and

w1(x) = x/4, w2(x) = x/4+1/4, w3(x) = x/4+1/2, w4(x) = x/4+3/4

in the IFS or RIFS model. For a given measure representation of a complete genome

or protein sequence, we obtain the estimated values of the probabilities p1, p2, p3, p4

in IFS model or the matrix of probabilities P = (pij) by the moment method. Based

on the estimated values of the probabilities, we can use the chaos game to generate

a histogram approximation of the invariant measure of IFS or RIFS which we can

compare with the real measure representation of the complete genome or protein

sequence.

4. Applications to the Biological Sequence Analysis

Till now more than 50 complete genomes of Archaea and Eubacteria are available

in public databases (for example in Genbank at web site ftp://ncbi.nlm.nih.gov/

genbank/genomes/).

The multifractal analysis were performed on the measure representations of a

large number of complete genomes.31 For examples, the Dq and Cq curves of some

organisms are shown in Fig. 1. From the measure representations and the values of

the Dq spectra and related Cq curves, it was concluded that these complete genomes

are not random sequences. For substrings with length K = 8, the Dq spectra of

all organisms studied are multifractal-like and sufficiently smooth for the Cq curves

to be meaningful. With the decreasing value of K, the multifractality lessens. The

Cq curves of all bacteria resemble a classical phase transition at a critical point.

But the ’analogous’ phase transitions of chromosomes of non-bacteria organisms

are different. Apart from Chromosome 1 of C. elegans, they exhibit the shape of

double-peaked specific heat function.

We simulated the measure representations of the complete genomes of many

organisms using the IFS and RIFS models.56 We found that RIFS is a good model to

simulate the measure representation of complete genome of organisms. For example,

the histogram of substrings in the genome of Buchnera sp. APS for K = 8 is given

in the left figure of Fig. 2. Self-similarity is apparent in the measure. The histogram

approximation of the generated measure of Buchnera sp. APS using the RIFS model

is shown in the right figure of Fig. 2. It is seen that the RIFS simulation traces very

well the original measure representation of the complete genome.

It is well known that all statistical method and nonlinear scale method require

enough data samples. The methods introduced in the previous sections can only
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Fig. 1. Dimension spectra (Left) and “Analogous” specific heat (Right) of Chromosome 22 of
Homo sapiens, Chromosome 2 of A. thaliana, Chromosome 3 of P. falciparum, Chromosome 1 of
C. elegans, Chromosome 15 of S. cerevisiae and M. genitalium.
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Fig. 2. The measure representation (left) and the RIFS simulation (right) of the complete genome
of Buchnera sp. APS when K = 8.

be used to analyse long protein sequences (corresponding to large proteins). The

amino acid sequence of 32 large proteins are selected from RCSB Protein Data

Bank (PDB) (http://www.rcsb.org/pdb/index.html). These 32 proteins belong to

five structure classes58 according to their secondary structures: α, β, α + β (α,β

alternate), α/β (α, β segregate) and others (no α and no β) proteins. First we

convert the amino acid sequences of these proteins to their measure representations

with K = 5 according to the method introduced in Section 2. If K is too small, there

are not enough combinations of letters from the set {0, 1, 2, 3}, therefore there is no

statistical sense. And if K is too big, the frequencies of most substrings are zero.

So we cannot obtain any biological information from the measure representation.

Considering the length of the selected proteins which ranges from 350 to 1000, we

think it is suitable to choose K = 5.
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Fig. 3. The measure representation (left) and the IFS simulation (right) of protein P.69 Pertactin

(PDB ID: 1DAB)

We found the IFS model is better than the RIFS model to simulate the mea-

sure representation of protein sequences.51 For example, we show the histograms

of measure representation and simulated measures of protein P.69 Pertactin (PDB

ID: 1DAB) in Fig. 3.

From Fig. 3, one can see that the difference between measure representation

and IFS simulated measure is very small. Once the probabilities are determined,

the IFS model is obtained. Hence the probabilities obtained from the IFS model

can be used to represent the measure representation of the protein sequence. From

the estimated parameters in the IFS model for the 32 selected large proteins, we

find the probability p3 (which corresponding to the uncharged polar property) can

be used to distinguish the structural class of proteins from α class and β class

(values of p3 of proteins in class α are less than those of proteins in class β), and

the probability p1 (which corresponds to the non-polar property) can be used to

distinguish the structural class of proteins from class α+β and class α/β (values of

p1 of proteins in class α/β are less than those of proteins in class α + β). Hence we

believe that the non-polar residues and uncharged residues play a more important

role than other kinds of residues in the protein folding process. This information is

useful for the prediction of protein structure.
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