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FOURIER ASYMPTOTICS OF CANTOR TYPE MEASURES
AT INFINITY

TIAN-YOU HU AND KA-SING LAU

(Communicated by Andreas Seeger)

Abstract. Let q ≥ 3 be an integer and let φ(t) =
∏∞
n=1 cos(q−nt). In this

note we prove that limt→∞ φ(t) = −φ(π) for all q; lim t→∞φ(t) = φ(π) if q is

odd and lim t→∞φ(t) ≤ φ(π) if q is even. This improves a classical result of
Wiener and Wintner. We also give a necessary and sufficient condition for the
product

∏m
i=1 φ(αit) to approach zero at infinity.

1. Introduction

In the celebrated paper [WW] Wiener and Wintner proved that if

φ(t) =
∞∏
n=1

cos(q−nt),

where q ≥ 3 is an integer, then lim t→∞φ(t) > 0. Moreover, the average
1

2T

∫ T
−T |φ(t)|2dt = O(T

log 2
log q ), as T → ∞. Note that φ is the characteristic func-

tion of the random variable X =
∑∞

n=1 ρ
nεn, where {εn}∞n=1 is a sequence of i.i.d.

Bernoulli random variables, and the corresponding distribution is a Cantor type
measure. This measure is the most basic model in fractal theory; it is generated
by the contractions S1x = ρx, S2x = ρx + 1, 0 < ρ < 1/2. The above result of
Wiener and Wintner has been extended by Strichartz [Str1, 2] and Lau and Wang
[LW] to more general self-similar measures generated by similitudes {Si}mi=1 that
satisfy the open set condition. Fan and Lau [FL] replaced the cosine function in the
infinite product by a periodic function and investigated its multifractal structure
at infinity. In another direction, Liu [L, Theorem 2.1] has found that the exact
values of lim t→∞φ(t) and lim t→∞φα(t) (to be defined in the sequel) are useful
to determine the solutions of the distributional equations arise from some random
multiplicative cascade. Motivated by this, we investigate the limit extrema of the
above expressions. We prove

Theorem 1.1. Let q ≥ 3 be an integer and let φ(t) =
∏∞
n=1 cos(q−nt). Then

limt→∞φ(t) = −φ(π) for all q, lim t→∞φ(t) = φ(π) if q is odd, and lim t→∞φ(t) ≤
φ(π) if q is even.
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We do not know the exact value of lim t→∞φ(t) when q is even. In fact, at
the end of the note we display a graph of φ(t) for q = 4 which suggests that
lim t→∞φ(t) < φ(π).

For {α1, · · · , αm} ⊆ R+, let

φα(t) =
m∏
i=1

φ(αit) =
m∏
i=1

∞∏
n=1

cos(q−nαit).

Note that φα is the Fourier transform of the measure µ induced by X =
∑m

i=1 αiXi,
where {Xi}mi=1 are i.i.d. random variables, each induced by the 1

q -Cantor measure.
We rewrite X as X =

∑∞
n=1 q

−nYn, where {Yn}∞n=1 are i.i.d. and Yn ∼
∑m

i=1 αiεi.
From this expression we see that µ is the self-similar measure generated by Sjx =
x/q + bj , where bj =

∑m
i=1 αiεi, εi = 0 or 1 and the weight associated with the

map is wj = 2−m#{(ε1, · · · , εm) :
∑m

i=1 αiεi = bj , εi = 0 or 1}.
A set {α1, · · · , αm} of positive numbers is called commensurable if for all

1 ≤ i, j ≤ m, αiα
−1
j are rational numbers, and incommensurable otherwise. If

{α1, · · · , αm} is commensurable, then it is easy to show that there is an a > 0 such
that

αi = aNi, i = 1, · · · ,m,(1.1)

where the Ni’s are positive integers and have no common divisor. In the following
we need to use a special expression of Ni by writing

Ni = qdini,(1.2)

with di ∈ N. We also write

ni = liq + ri,(1.3)

where li, ri ∈ N, with 1 ≤ ri ≤ q − 1.

Theorem 1.2. Let q ≥ 3 be an integer and let φα(t) be defined as above.

(i) If {α1, · · · , αm} is incommensurable, then lim t→∞φα(t) = 0.
(ii) Suppose that {α1, · · · , αm} is commensurable. If q is even and if rj = q/2 for

some j, where rj is as in (1.3), then lim
t→∞

φα(t) = 0. Otherwise,

lim
t→∞
|φα(t)| = sup{

m∏
i=1

|φ(sniπ)| : s = 1, 2, ...} > 0

where the ni’s are as in (1.3).

2. The proofs

It is easy to see that φ(t) satisfies the equation

φ(qnt) = φ(t)
n−1∏
i=0

cos(qit).(2.1)

By replacing t with q−nt, we have

φ(t) = φ(q−nt)
n∏
i=1

cos(q−it).(2.2)
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By using (2.2) and φ(0) = 1, it follows that

φ(t) = 0 iff t = qi
(
l +

1
2
)
π for some i > 0, l ∈ Z.(2.3)

In order to prove the two theorems in Section 1, we need a few lemmas for φα(t) =∏m
i=1 φ(αit). Let

Q =
{
kq−jπ : q - k, k, j ∈ N

}
.

Lemma 2.1. Let q ≥ 3 and let αi = aqdini be defined by (1.1)-(1.3).
(i) If there is a t > 0 such that αit = kiq

−jiπ ∈ Q for all i = 1, · · · ,m, then there
is a positive integer s such that ki = sni for all i = 1, · · · ,m. Furthermore,
(a) if ki 6= qk

(
l + 1

2

)
for all k, l ∈ N, i = 1, · · · ,m, then

|φα(qnt)| =
m∏
i=1

|φ(sniπ)| > 0 for all n > max
1≤i≤m

{ji};

(b) if there is a ki = qk
(
l + 1

2

)
for some k, l ∈ N, then |φα(qnt)| = 0 for all

n > ji.
(ii) If there are t > 0 and i ∈ N such that αit /∈ Q, then limn→∞|φα(qnt)| = 0.

Proof. (i) Since αit = kiq
−jiπ and αi = aqdini for all i, it follows that for 1 ≤ i, l ≤

m,
ki
ni

=
kl
nl
qki,l , where ki,l ∈ Z.

It is easy to see that ki,l = 0, since q - ki and q - ni for all i = 1, · · · ,m. Hence
there are two co-prime integers n and s such that for 1 ≤ i, l ≤ m,

ki
ni

=
kl
nl

=
s

n
.

Therefore ki = sni/n, and hence n|ni for all i = 1, · · · ,m. This forces n to be 1,
so that ki = sni for i = 1, · · · ,m, as asserted.

To prove (a), we see that by (2.1), |φ(qnkπ)| = |φ(kπ)| for k, n ∈ N. So for
n > max{ji : 1 ≤ i ≤ m}, we have∣∣φα(qnt)

∣∣ =
∣∣ m∏
i=1

φ(qnαit)
∣∣ =

∣∣ m∏
i=1

φ(qn−jikiπ)
∣∣ =

∣∣ m∏
i=1

φ(kiπ)
∣∣ =

∣∣ m∏
i=1

φ(sniπ)
∣∣.

By (2.3), the above product is positive if and only if ki 6= qk
(
l+ 1

2

)
for all k, l ∈ N,

i = 1, · · · ,m. This proves (a), and also (b).
To show (ii), we first prove that if t /∈ Q, then limn→∞|φ(qnt)| = 0. By (2.1) it

suffices to show that there exists 0 < η < 1 such that | cos(qnt)| ≤ η for infinitely
many n ∈ N.

For x ≥ 0, let ||x|| = min{|x − kπ| : k ∈ N}. Let η be such that cos
(
π
q+1

)
<

η < 1. For t /∈ Q and for any n, if ‖qnt‖ ≥ π
q+1 , then | cos(qnt)| ≤ cos

(
π
q+1

)
< η.

If ‖qnt‖ < π
q+1 , we write qnt = (k + ε)π, where 0 < |ε| < 1

q+1 . There exists
j such that 1

q+1 ≤ qj |ε| ≤ q
q+1 . This implies that ‖qn+jt‖ ≥ π

q+1 , and hence∣∣ cos(qn+jt)
∣∣ ≤ ∣∣ cos

(
π
q+1

)∣∣ < η.
If αit /∈ Q for some i, then

lim
n→∞

∣∣φα(qnt)
∣∣ = lim

n→∞

∣∣ m∏
i=1

φ(qnαit)
∣∣ = 0.
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Lemma 2.2. limx→∞|φα(x)| = sup{limn→∞|φα(qnt)| : t > 0}.

Proof. It suffices to show that the left hand side is less than or equal to the right
hand side. Let tn → ∞ be such that limn→∞ |φα(tn)| = λ > 0. We will show that
there exists t > 0 such that lim n→∞|φα(qnt)| ≥ λ.

Let {kn}∞n=1 be such that q−kntn ∈
[
π
q , π

]
. Without loss of generality we assume

that limn→∞ q
−kntn = t.

We claim that lim n→∞|φα(qnt)| = γ ≥ λ. Otherwise γ + ε < λ for some ε > 0.
We can find N such that for all n ≥ N, |φα(qnt)| < γ + ε

2 . Note that φα(qN t) is a
continuous function of t; hence, for large n,∣∣φα(qN−kntn)− φα(qN t)

∣∣ < ε

2
.

Since (2.2) implies that |φα(t)| ≤ |φα(q−nt)| for all n, for large n we get∣∣φα(tn)
∣∣ ≤ ∣∣φα(qN−kntn)∣∣ < ε

2
+
∣∣φα(qN t)

∣∣ < γ + ε,

so that limn→∞|φα(tn)| ≤ γ + ε < λ. The contradiction proves the lemma.

Corollary 2.1. limx→∞|φα(x)| = 0 if and only if limn→∞|φα(qnt)| = 0 for every
t > 0.

Corollary 2.2. If lim x→∞|φα(x)| = λ > 0, then {α1, · · · , αm} is commensurable
and

λ = sup{
m∏
i=1

|φ(sniπ)| : s = 1, 2, · · · },

where ni is related to αi through (1.1)–(1.3).

Proof. For any ε > 0, by Lemma 2.2 there is t > 0 such that limn→∞|φα(qnt)| >
λ− ε > 0. Lemma 2.1 implies that αit = kiq

−jiπ ∈ Q with ki 6= qk
(
l + 1

2

)
π for all

k, l ∈ N, for i = 1, · · · ,m. Hence {α1, · · · , αm} is commensurable and there is a
positive integer s such that

lim
n→∞

|φα(qnt)| =
m∏
i=1

|φ(sniπ)|.

Letting ε→ 0, we see that

λ ≤ sup{
m∏
i=1

|φ(sniπ)| : s = 1, 2, · · · }.

On the other hand, by (1.1) αi = aNi for all i, and hence

α−1
1 N1 = α−1

2 N2 = · · · = α−1
m Nm.(2.4)

Given any positive integer s, let t = α−1
i sNiπ for i = 1, · · · ,m. Note that Ni =

qdini and |φ(qnkπ)| = |φ(kπ)| for all n, k ≥ 1; hence for n ∈ N we have

|φα(qnt)| =
m∏
i=1

|φ(qnsNiπ)| =
m∏
i=1

|φ(sniπ)|.

Since s is arbitrary, this implies that

λ ≥ sup{
m∏
i=1

|φ(sniπ)| : s = 1, 2, · · · }.
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Proof of Theorem 1.1. We first show that lim t→∞|φ(t)| = φ(π) for all q. Since
|φ(qnπ)| = φ(π) > 0 for all n, using Corollary 2.2 with m = 1 and α1 = n1 = 1, we
have lim t→∞|φ(t)| = sup{|φ(sπ)| : s = 1, 2, · · · } ≥ φ(π). For the reverse inequality
it suffices to show that |φ(kπ)| ≤ φ(π) for any k ≥ 1.

If k = qn for some n, then |φ(kπ)| = φ(π). If k is not a power of q, then for
n = 1, 2, ... we have k ≡ kn (mod qn), where 1 ≤ kn ≤ qn − 1. Hence

cos
π

qn
≥ | cos

kπ

qn
|.

It follows that φ(π) ≥ |φ(kπ)|, so that lim t→∞|φ(t)| = φ(π) for all q. From (2.1) it
is easy to see that if q is even then φ(qnπ) = −φ(π) for all n, and if q is odd then

φ(qnπ) = φ(π) if n is even, −φ(π) if n is odd.

Hence Theorem 1.1 follows.

Lemma 2.3. Let q ≥ 3 and αi = aqdini be defined by (1.1)-(1.3). If there is an
integer s ∈ N such that for all i = 1, · · · ,m,

sri 6≡ q/2 (mod q) and sri 6≡ 0 (mod q),(2.5)

then lim t→∞|φα(t)| > 0. Otherwise limt→∞|φα(t)| = 0.

Proof. Suppose that (2.5) is true. We will show that for all i = 1, · · · ,m,
sNi 6= qj(l + 1/2) for all j, l ∈ N.(2.6)

In fact, we have

sNi = qdi(sqli + sri).

Since sri 6≡ 0 (mod q), so q - (sqli + sri). If sNi = qj(l + 1/2) for some j, l ∈ N,
then by the uniqueness of the prime factorization we have sqli + sri = ql + q/2.
This implies that sri ≡ q/2 (mod q), contradicting (2.5). Therefore (2.6) is true
for all i = 1, · · · ,m. By (2.4) we can let t = sα−1

i Niπ, i = 1, · · · ,m; then, by (2.3)
and (2.6) for all n

|φα(qnt)| =
m∏
j=1

|φ(qnsNjπ)| =
m∏
j=1

|φ(sNjπ)| > 0.

Conversely, assume that for each integer s, there is an i, 1 ≤ i ≤ m, such that

either sri ≡ q/2 (mod q) or sri ≡ 0 (mod q).(2.7)

We will show that limt→∞|φα(t)| = 0. Suppose otherwise, by Corollary 2.2, then
{α1, · · · , αm} is commensurable and

lim
t→∞
|φα(t)| = sup{

m∏
i=1

|φ(sniπ)| : s = 1, 2, · · · } > 0.

Hence there exists an integer s such that
m∏
i=1

|φ(sniπ)| > 0.

Since |φ(qnkπ)| = |φ(kπ)|, we can therefore assume that q - s. This implies that
sri 6≡ 0 (mod q). On the other hand, by (2.3), for i = 1, · · · ,m, we have sni =
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sqli + sri 6= qj(l + 1/2) for any j, l ∈ N. It follows that sri 6≡ q/2 (mod q). This
contradicts (2.7).

Proof of Theorem 1.2. (i) If lim t→∞|φα(t)| > 0, then {α1, · · · , αm} is commensu-
rable by Corollary 2.2.

(ii) Assume that {α1, · · · , αm} is commensurable. If q is odd, then (2.5) is
satisfied with s = 1. Suppose that q is even. If rj 6= q/2 for all j, then (2.5) is
satisfied with s = 1. If rj = q/2 for some j, then srj = sq/2 ≡ 0 (mod q) if s is even
and srj ≡ q/2 (mod q) if s is odd. By Lemma 2.3, hence limt→∞ |φα(t)| = 0.

Corollary 2.3. If q ≥ 3 and φ(t) =
∏∞
n=1 cos

(
(
√
q)nt

)
, then limt→∞φ(t) = 0.

The corollary follows directly from Theorem 1.2 by writing

φ(t) =
∞∏
n=1

cos(qnt) ·
∞∏
n=1

cos(
√
q · qnt)

and taking {α1, α2} = {1,√q}. It is a special case of an elegant but more involved
result due to Erdös and Salem [S] that for φ(t) =

∏∞
n=1 cos(ρnt), 0 < ρ < 1,

limt→∞φ(t) = 0 if and only if ρ−1 6= 2 is not a P.V. number.
To illustrate Theorem 1.1, we display the graphs of φ(t) for q = 3 and 4. For

q = 3, we have

lim
t→∞

φ(t) = | lim
t→∞

φ(t)| = φ(π) ≈ 0.4663.

For q = 4 we have

lim
t→∞

φ(t) = −φ(π) ≈ 0.6926.

However, we do not have an explicit expression for lim t→∞φ(t). It appears that
lim t→∞φ(t) < φ(π).
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Figure 1. The graph of φ(t) for q = 3
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Figure 2. The graph of φ(t) for q = 4
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[S] R. Salem, Algebraic numbers and Fourier transformations, Heath Math. Monographs,

Boston. 1962. MR 28:1169
[Str1] R. Strichartz, Fourier asymptotics of fractal measures, J. Functional Anal., 89 (1990),

154-181. MR 91m:42015
[Str2] R. Strichartz, Self-similar measure and their Fourier transform I., Indiana University Math.

J., 39 (1990), 797-817. MR 92k:42015
[WW] N. Wiener and A. Wintner, On singular distributions, J. Math. Phy., 17 (1939), 233–346.

Department of Mathematics, University of Wisconsin-Green Bay, Green Bay, Wis-

consin 54311

E-mail address: HUT@uwgb.edu

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong

Kong

E-mail address: kslau@math.cuhk.edu.hk

http://www.ams.org/mathscinet-getitem?mr=99j:41054
http://www.ams.org/mathscinet-getitem?mr=94g:42018
http://www.ams.org/mathscinet-getitem?mr=96c:42027
http://www.ams.org/mathscinet-getitem?mr=28:1169
http://www.ams.org/mathscinet-getitem?mr=91m:42015
http://www.ams.org/mathscinet-getitem?mr=92k:42015

	1. Introduction
	2. The proofs
	References

